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This paper is concerned with dynamic scheduling in a queueing system
that has two independent Poisson input streams, two servers, deterministic
service times and linear holding costs. One server can process both classes
of incoming jobs, but the other can process only one class, and the service
time for the shared job class is different depending on which server is in-
volved. A bound on system performance is developed in terms of a single
pooled resource, or super-server, whose capabilities combine those of the
original two servers. Thereafter, attention is focused on the heavy traffic
regime, where the combined capacity of the two servers is approximately
equal to the total input rate. We construct a discrete-review control policy
and show that if its parameters are chosen correctly as one approaches
the heavy traffic limit, then its cost performance approaches the bound
associated with a single pooled resource. Thus the discrete-review policy
is proved to be asymptotically optimal in the heavy traffic limit. Although
resource pooling in heavy traffic has been observed to occur in other net-
work scheduling problems, there have been very few studies that rigorously
proved the pooling phenomenon, or that proved the asymptotic optimality
of a specific policy. Our discrete-review policy is obtained by applying a
general method, called the BIGSTEP method in an earlier paper, to the
parallel-server model.

1. Introduction. Consider the stochastic processing system portrayed
schematically in Figure 1. The circles in this figure represent two process-
ing resources, or servers, and the open-ended rectangles represent buffers in
which jobs of two different classes reside. Jobs of class k arrive according to a
Poisson process at an average rate of λk per hour, and the two input streams
are assumed to be independent. As indicated in Figure 1, we take the average
arrival rates to be λ1 = 1:3ρ and λ2 = 0:4ρ, where ρ is a parameter that will
be allowed to vary. Each job requires a single service before it departs, and
class 1 can be processed by either server 1 or server 2, whereas class 2 can be
processed only by server 2. Jobs of each class remain in buffer storage until
they are withdrawn for service; it is not necessary to decide which server will
handle a class-1 job until the service actually begins. For concreteness, we as-
sume that a service must be completed without interruption once it has begun.
Using the terminology proposed in [7], we identify three different processing
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Fig. 1. Two servers working in parallel.

activities, as follows:

activity 1 = processing of class-1 jobs by server 1;

activity 2 = processing of class-1 jobs by server 2;

activity 3 = processing of class-2 jobs by server 2:

To make things simple, let us assume that service times for activity j are
deterministically of length mj hours, where m1 = m3 = 1 and m2 = 2, as
shown in Figure 1. That is, it takes exactly one hour for server 1 to process a
job of class 1 or for server 2 to process a job of class 2, but it takes two hours
for server 2 to process a job of class 1.

If ρ is near 1, the parallel-server system is “in heavy traffic,” meaning that
its overall input rate and overall processing capacity are approximately equal.
To see that this is true, consider the case ρ = 1. Devoting all of its time to
class 1, server 1 can handle only one of the 1:3 class-1 jobs that arrive per
hour on average, and server 2 must spend 60% of its time in processing the
class-1 jobs that are left over (0.3 jobs per hour × 2 hours per job = 0:6).
Server 2 has 40% of its time left for class-2 jobs, which is just adequate to
handle the arrival rate of λ2 = 0:4. In this paper, we focus on system behavior
in the heavy traffic regime, and more particularly, on dynamic scheduling in
the heavy traffic regime.

To complete the model specification, let us assume that holding costs are
continuously incurred at a rate of hk dollars per hour for each class-k job that
remains within the system, with the specific numerical values

h1 = 3 and h2 = 1:(1)

Each time a service is completed, the system manager must decide which job
class the newly freed server will process next, if there is in fact a choice, or
the manager can choose to keep the server idle if he or she chooses; a similar
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scheduling decision must be made each time a new job arrives to find one or
both servers idle. In making these scheduling decisions, the manager strives
to minimize holding costs.

Following standard practice in queueing theory, let us denote by µj = 1/mj

the average service rate for activity j, and further define

c1 = h1 = 3; c2 = h1 = 3 and c3 = h2 = 1:(2)

Thus cj is the holding cost rate for the job class that is served in activity j.
When the system contains q1 jobs of class 1 and q2 jobs of class 2, holding
costs are continuously incurred at a total rate of h1q1 + h2q2, and activity j
decreases this total at an average rate of cjµj per hour spent in the activity.
Guided by the classical cµ rule of scheduling theory, one might plausibly adopt
the following greedy scheduling rule. First, server 1 should obviously spend
as much time as it can processing class 1, going idle only when buffer 1 is
empty. Second, when server 2 completes the processing of a job and finds new
jobs waiting in both buffer 1 and buffer 2, it should choose between activities
2 and 3 so that the chosen activity j maximizes cjµj. (If there are waiting
jobs in only one buffer, the server will presumably take one of them, and if
both buffers are empty it must go idle.) Since c2µ2 = 3/2 and c3µ3 = 1, this
means that server 2 will always choose to serve class 1 when confronted with
a choice.

System behavior under the greedy scheduling rule has been simulated for
the case ρ = 0:95, and the results are presented in Figure 2, which shows the
simulated queue lengths for class 1 and class 2 (including any jobs that may
be in service) as a function of time. One sees from this plot that the greedy
rule is disastrously ineffective. In fact, the system fails to achieve a statistical
equilibrium: the queue length for class-2 jobs grows in roughly linear fashion
as a function of time, and upon reflection, the source of this instability becomes
obvious. Server 2, eager to reduce holding costs as quickly as possible, allocates
too much time to class-1 jobs when there are class-1 jobs in the system, which
leaves it with too little leftover capacity to handle the flow of class-2 jobs, and
also leaves server 1 with nothing to do some of the time. In 5000 hours of
simulated operation, server 2 spent 71% of its time on class-1 jobs, which did
not leave that server with enough residual capacity to handle the demands
of class 2, while server 1 experienced 13% idleness. These results show that
dynamic scheduling of the parallel-server system is a problem of some subtlety,
although it looks simple at first glance.

One of the frustrations of dynamic scheduling theory for stochastic process-
ing networks is that even for the simplest problems, there typically does not
exist a policy described by a few parameters which is exactly optimal. Consider
our parallel-server problem, for example, with either a long-run average cost
criterion or an infinite-horizon discounted cost criterion. Even if one consid-
ers the case of exponential service time distributions and interruptible service
(yielding a Markov decision process with minimal state space), there is no rea-
son to believe that a simple optimal policy, characterized by just a few critical
numbers, exists. However, lowering aspirations in accordance with the gen-
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Fig. 2. System behavior with greedy scheduling �ρ = 0:95�.

eral program laid out in [7], one may seek a dynamic scheduling policy that
is asymptotically optimal in the heavy traffic limit as ρ→ 1. Experience with
other relatively simple problems of network control [9, 10, 17, 18] suggests
that a policy characterized by a few critical numbers may be asymptotically
optimal in heavy traffic, and such results provide both a guide to practical
action and qualitative insight into system behavior. Thus we shall undertake
a heavy traffic analysis of the parallel-server problem.

To state and explain the significance of the main result proved in this paper,
it will be useful to first derive a bound on achievable cost performance in the
parallel-server system. Let us denote byQk�t� the number of class-k jobs in the
system at time t, calling this the class-k queue length process. Also, let Tj�t�
denote the total hours devoted to activity j by the associated server during the
time interval �0; t�. Thus, I1�t� = t−T1�t� is the cumulative idleness of server
1 up to time t, and I2�t� = t−T2�t� −T3�t� is the corresponding cumulative
idleness process for server 2. Now denoting by Ak�t� the Poisson input process
for class k, and assuming hereafter that the system is initially empty, we define
“workload processes” W1 and W2 for classes 1 and 2, respectively, as follows:
W1�t� = 2A1�t� − 2T1�t� −T2�t� and W2�t� = A2�t� −T3�t�. Obviously, W2�t�
represents the total hours of service required from server 2 to complete the
processing of all class-2 jobs in the system at time t (recall that only server
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2 can process that class), and W1�t� similarly represents the total hours of
service that would be required to complete processing of class-1 jobs in the
system at time t if server 2 were required to complete their processing without
future help from server 1. (In making this interpretation, we imagine that if
server 1 had already devoted δ hours to the service of a class-1 job, where
0 < δ < 1, then server 2 would need 2�1− δ� hours to complete that service.)
With a little reflection, the following inequalities should be obvious:

Q1�t� ≥ 1
2W1�t� and Q2�t� ≥W2�t�:(3)

Also, defining

W�t� =W1�t� +W2�t�(4)

and

X�t� = �2A1�t� +A2�t�� − 3t;(5)

one can combine the various definitions introduced in this paragraph to con-
clude that

W�t� =X�t� + 2I1�t� + I2�t�:(6)

Now let us define the cost rate experienced at time t,

H�t� = h1Q1�t� + h2Q2�t� = 3Q1�t� +Q2�t�:(7)

From (3) and (4), we have that

H�t� ≥ 3
2W1�t� +W2�t� ≥W�t�:(8)

Finally, to complete the derivation of our performance bound, we observe that
the process 2I1+I2 on the right-hand side of (6) is nondecreasing and contin-
uous with I1�0� = I2�0� = 0, while the process W on the left-hand side of (6)
is nonnegative. From this, it follows that

W�t� ≥ Z�t� =X�t� +Y�t�;(9)

where

Y�t� = − inf
0≤s≤t

X�s�;(10)

see [6], Chapter 2. Of course, (8) and (9) together imply that

H�t� ≥ Z�t� for all t ≥ 0;(11)

which is the performance bound referred to earlier. Readers should note that
H�·� is the cost rate process associated with an arbitrary scheduling policy,
whereas the lower bound Z�·� in (11) is defined directly in terms of model
primitives, without reference to any specific policy.

In this paper, we shall consider a sequence of parallel-server systems with
ρ→ 1, and construct a corresponding sequence of dynamic scheduling policies
whose associated cost rate processes H�·� approach the lower bound Z�·� in
an appropriate sense. Thus the constructed sequence of policies is said to
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be asymptotically optimal in the heavy traffic limit. The exact meaning of
that phrase will be explained later, but at this juncture two qualitative points
deserve emphasis. First, the lower boundZ�t� in (11) holds for every t ≥ 0 with
probability 1, so the sequence of policies constructed here approaches what was
called in [7] a pathwise solution to the limiting system control problem. That
is, the sequence of policies does not just minimize some expected value, but
actually minimizes cumulative cost incurred up to any time t, with probability
1, in the heavy traffic limit. In a sense, then, the analysis presented here shows
that the parallel-server problem is asymptotically trivial as one approaches the
heavy traffic limit, because in general one cannot expect to achieve optimality
in such a strong sense.

The second point deserving emphasis is the interpretation of our bounding
processZ in terms of a single pooled resource, or super-server. As noted earlier,
our definition of the workload process W can be animated as follows: W�t� is
the total hours of effort that would be required from server 2, if it were working
without assistance, to complete the processing of all jobs in the system at time
t, including those partially completed. With this definition of “work,” server
2 drains one unit of work from the system per hour that it remains busy,
whereas server 1 drains two units of work from the system per hour that it
remains busy. The heart of our scheduling problem, of course, lies in the fact
that server 1 cannot remain busy unless it has class-1 jobs to work on.

Now suppose that the parallel-server model is modified in the following
three ways. First, holding costs are based on the amount of class-1 and class-2
work in the system, rather than on the number of jobs. To be specific, cost is
continuously incurred at a rate of $1.50 per unit of class-1 work in the system,
and at a rate of $1.00 per unit of class-2 work. This means that the holding
cost charged for a job being serviced is continuously reduced in proportion to
the amount of service it has received, which can only reduce the total cost.
Second, the ability of server 1 to complete work at twice the rate of server 2
is extended to class-2 jobs, which means that server 1 can process a class-2
job in half an hour. Finally, servers 1 and 2 are replaced by a single super-
server that can drain work from the system at a rate of three units per hour,
regardless of whether that work is embodied in jobs of class 1 or class 2. The
super-server dominates the combination of server 1 and server 2 in terms of
potential cost-performance, because it can focus all service effort on a single
job if that is deemed to be desirable, whereas servers 1 and 2 must work on
different jobs.

In the modified system described above, the super-server will continue to
complete three units of work per hour so long as there are any jobs present.
That is, the super-server will fall idle only when its workload backlog reaches
zero. It follows that the quantity Z�t� defined by (9) and (10) is the super-
server’s workload backlog at time t, so the holding cost rate at time t in our
modified system must be at least Z�t�; that lower bound would be achieved if
the super-server could manage to hold all of its backlog in class-2 work, which
is not generally possible. Thus Z�t� is a lower bound on the holding cost rate
H�t� under any dynamic scheduling policy in our original model.
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The result described above might be paraphrased as follows: as one ap-
proaches the heavy traffic limit in our parallel-server model, intelligent dy-
namic scheduling leads to an effective pooling of processing resources. This
general phenomenon has been noted in other heavy traffic analyses of network
scheduling problems that involve alternate routing capabilities, and that lit-
erature is admirably summarized in the survey paper by Kelly and Laws [12].
As they explain, studies of resource pooling have been largely heuristic to date.
That is, authors use plausible arguments to justify a Brownian approximation
to the original control problem under heavy traffic conditions, and then they
show how resource pooling occurs in the Brownian approximation. Except for
the analysis by Foschini and Salz [3, 4] and Reiman [13] of a very special
symmetric problem, the papers surveyed by Kelly and Laws do not prove rig-
orously that the original and pooled systems are asymptotically equivalent in
heavy traffic, and in some cases the authors offer nothing more than tentative
guesses as to what sorts of implementable scheduling rules might allow one
to approach the heavy traffic performance bounds suggested by the Brownian
approximation.

In this paper, we propose a dynamic scheduling policy for the parallel-server
problem, one that is characterized by three critical numbers, and prove that
if the parameters of that policy are chosen in a certain way, then it achieves
the performance bound described earlier in the heavy traffic limit. One contri-
bution of this paper, then, is to provide a complete and rigorous heavy traffic
analysis of a dynamic scheduling problem whose solution is not obvious, in-
cluding a rigorous proof of the resource pooling phenomenon. The policies to be
described involve reviewing system status at discrete points in time, and they
are obtained by application of a general method, called the BIGSTEP method
in an earlier paper [8]. A second contribution of this paper is to provide some
evidence in support of the hope expressed in [8] that the BIGSTEP method is
generally valid as a mechanical means of deriving scheduling policies which
are asymptotically optimal in heavy traffic.

The remainder of the paper is organized as follows. In Section 2, a heavy
traffic limit theorem is proved for the super-server workload process Z. In
Section 3, we apply the BIGSTEP method to derive a parametric family of
discrete-review policies for the parallel-server model. In Sections 4–6, it is
shown that parameters of the policy can be chosen so that the associated cost
rate process H, properly scaled, converges to the same heavy traffic limit as
does the bounding process Z; this establishes the asymptotic optimality of our
discrete-review policy. Section 7 presents simulation results for both discrete-
review policies and a family of continuous-review policies defined by a single
threshold parameter. Some miscellaneous concluding remarks are collected in
Section 8, most notably concerning the role of large deviation estimates in our
analysis, which are its most novel feature.

Contrary to an intention declared in [8], where heavy traffic behavior of
the parallel-server model was described in summary form, this paper does not
contain a formal analysis of an “approximating Brownian control problem.”
That analysis, using the general procedure described in [7] and [11], makes
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it plausible that the performance bound discussed above is achievable in the
heavy traffic limit, without giving a clear idea as to how the bound can be
achieved, and it requires a good deal of additional notation that is inessential
to our ultimate objectives. The general procedure has now been illustrated in
the context of various other network scheduling models [9, 10, 12, 17, 18], so
attention will be focused here on construction of an implementable scheduling
rule and rigorous proof of its asymptotic optimality. It should also be noted that
we use a simplified version of the BIGSTEP method in analyzing the parallel-
server model; for reasons explained later, certain aspects of the general method
are not needed in this relatively simple setting.

Finally, it must be acknowledged that the analysis undertaken in this paper
is quite specific to the structure pictured in Figure 1; it does not suggest how
one might manage a more complicated system of parallel servers with over-
lapping capabilities. For example, if the system had more servers and more in-
put streams, could one still construct a super-server performance bound, what
would be the generalized notion of “work” underlying that bound and could the
bound be approached in the heavy traffic limit? To achieve complete pooling of
all servers in the heavy traffic limit, one obviously needs an adequate degree
of overlap in their various capabilities, but the precise mathematical condition
is not known at the time of this writing, nor are answers yet available to the
other questions raised above. However, by restricting attention to “networks”
in which all arrivals require a single service, one eliminates a great deal of
the complexity associated with dynamic alternate routing problems, and with
that restriction it may indeed be possible to develop a complete and rigorous
heavy traffic theory. It is hoped that this paper may serve to stimulate inter-
est in development of such a theory, and to suggest the insights to be gained
from it.

2. A heavy traffic performance bound. Following the general proce-
dure laid out in [8], we shall consider a sequence of parallel-server systems
indexed by n, each satisfying the assumptions enunciated in Section 1, and
such that only ρ changes with n. More specifically, we assume that ρ�n� → 1
fast enough as n→∞ so that

κ�n� = n1/2�1− ρ�n�� → κ (a finite constant):(12)

The case where ρ approaches 1 from below (so that each system in the se-
quence is stable, or at least potentially stable) is usually considered most
interesting, but strictly speaking, that assumption is not necessary for our
purposes. All stochastic processes associated with the parallel-server model
depend on n, of course, and that dependence will be indicated by attaching
a superscript n to notation established earlier. Thus, for example, Qn

k�t� is
the queue length process for class-k jobs in the nth system, and Hn�t� =
3Qn

1�t� +Qn
2�t� is the cost rate process in the nth system.

Recall that three stochastic processes X, Y and Z were defined in terms of
our Poisson arrival processes A1 and A2 by means of (5), (9) and (10). Viewing
all of these processes as random elements of the function space D�0;∞�, one
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can express (9)–(10) as

Z = φ�X� and Y = ψ�X�;(13)

where �ψ;φ� is the one-sided reflection mapping, or one-sided regulator; see
[6], Chapter 2. Returning to our sequence of systems in heavy traffic, let us
now define scaled versions of Xn, Yn and Zn in the standard way:

X̃n�t� = n−�1/2�Xn�nt�; Ỹn�t� = n−�1/2�Yn�nt�;
Z̃n�t� = n−�1/2�Zn�nt�:

(14)

The scaling used in (14) is that associated with the central limit theorem
(CLT): a scaled process in the nth system (denoted by a tilde) is obtained from
a corresponding unscaled process by compressing time by a factor of n and
compressing space by a factor of n1/2. In similar fashion, the scaled cost rate
process in our nth system, using an arbitrary scheduling policy, is

H̃n�t� = n−�1/2�Hn�nt�; t ≥ 0:(15)

Applying (13) in the nth system gives Zn = φ�Xn� and Yn = ψ�Xn�, and it is
well known that the reflection mapping �ψ;φ� commutes with linear scaling
like that embodied in (14), so from (13) and (14), one has

Z̃n = φ�X̃n� and Ỹn = ψ�X̃n�:(16)

The program now is to prove a functional central limit theorem for X̃n,
then use (16) and the continuous mapping theorem to obtain a corresponding
heavy traffic limit theorem for Z̃n. For the former, first recall that the mean
and variance of a Poisson process are given by E�Ak�t�� = Var�Ak�t�� = λkt.
Thus the translated compound Poisson processX defined by (5) hasE�X�t�� =
−3�1−ρ�t and Var�X�t�� = 4�1:3ρt�+0:4ρt = 5:6ρt, and so the scaled version
X̃n for our nth system has

E�X̃n�t�� = −3κ�n�t and Var�X̃n�t�� = σ2�n�t;(17)

where

σ2�n� = 5:6ρ�n�:(18)

Of course, σ2�n� → σ2 = 5:6 and κ�n� → κ as n→∞ by (12). Thus the follow-
ing proposition follows directly from the functional central limit theorem for
Poisson processes. Here and later, we use the symbol ⇒ to denote weak con-
vergence in the function space D�0;∞� endowed with the standard Skorohod
topology, which is equivalent to weak convergence in D�0; t� for each t > 0;
see [1], Chapter 3.

Proposition 1. X̃n ⇒X∗ as n→∞, where X∗ is a Brownian motion with
drift parameter −3κ, variance parameter σ2 = 5:6 and initial state X∗�0� = 0.

Now the reflection mapping φ that carries X̃n into Z̃n is known to be con-
tinuous in the Skorohod topology, so the following is immediate from (16),
Proposition 1 and the continuous mapping theorem [1], Section 6.
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Proposition 2. Z̃n ⇒ Z∗ = φ�X∗� as n→∞.

The process Z∗ is a reflected or regulated Brownian motion (RBM) with
state space �0;∞�, drift parameter −3κ, variance parameter σ2 = 5:6 and
initial state Z∗�0� = 0. Various distributions and expectations associated with
Z∗ are calculated in [6], especially Chapter 5.

To motivate the development in subsequent sections, let us consider an
arbitrary sequence of dynamic scheduling policies for our sequence of systems,
and define a corresponding sequence of (unscaled) cumulative cost processes

ζn�t� =
∫ t

0
Hn�s�ds; t ≥ 0:(19)

As the following argument will show, the appropriate scaled version of (19) is

ζ̃n�t� = n−�3/2�ζn�nt� = n−�3/2�
∫ nt

0
Hn�s�ds:(20)

Making the change of variable u = s/n in (20), and using the definition (15)
of the scaled cost rate process H̃n�t�, it is easy to verify that

ζ̃n�t� =
∫ t

0
H̃n�u�du:(21)

In Section 1, it was shown that H�·� ≥ Z�·�, and as analogs of (19) and (20),
we define

ξn�t� =
∫ t

0
Zn�s�ds(22)

and

ξ̃n�t� = n−�3/2�ξn�nt� = n−�3/2�
∫ nt

0
Zn�s�ds:(23)

Paralleling (21), one has

ξ̃n�t� =
∫ t

0
Z̃n�u�du:(24)

The (Riemann) integral mapping that carries Z̃n into ξ̃n is known to be con-
tinuous in the Skorohod topology, so (24) and Proposition 2 together imply
that ξ̃n ⇒ ξ∗ as n→∞, where

ξ∗�t� =
∫ t

0
Z∗�u�du:(25)

For each fixed t, the random variable ξ∗�t� has a continuous distribution (that
is, each x > 0 is a continuity point of its distribution function), so one can
combine these various observations to obtain the following: for each fixed t > 0
and x > 0,

lim sup
n→∞

P�ζ̃n�t� ≤ x� ≤ P�ξ∗�t� ≤ x�:(26)

In this sense, the scaled cumulative cost process ζ̃n under an arbitrary control
policy is stochastically dominated in the heavy traffic limit by the process ξ∗.
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In the sections that follow, we construct a sequence of discrete-review poli-
cies such that the corresponding scaled cost rate processes H̃n converge weakly
to Z∗ as n → ∞, implying that ζ̃n ⇒ ξ∗ and hence (26) holds with “lim” in
place of “lim sup” and “=” in place of “≤.” That sequence of policies will be called
asymptotically optimal, but a stronger term such as “asymptotically dom-
inant” might also be used. It is crucial, of course, that our analysis involves
a scaling of time and space under which the bounding processes ξ̃n approach
a finite but nontrivial limit, for this implies that the percentage improvement
in cumulative cost achieved by any sequence of policies, relative to our con-
structed sequence of discrete-review policies, vanishes in the heavy traffic
limit. If the scaling were one that gave a trivial limiting performance bound,
or an infinite limiting performance bound, no such conclusion could be drawn.

3. Discrete-review policies for the parallel-server model. We return
now to the setting of a single model with ρ fixed, so the sequence index n will
not appear in this section. Applying the BIGSTEP method [8] to the parallel-
server model, we consider discrete-review policies where system status is re-
viewed at intervals of length l, striving to construct a policy of that type
which is nearly optimal in heavy traffic. The only other policy parameters,
apart from the period length l, are a pair θ = �θ1; θ2� of threshold parame-
ters, or safety-stock values, for the two job classes. Given values of l and θ,
the general procedure is as follows. First, system status is reviewed at times
t = 0; l;2l; : : : : At each such time, we observe the current queue length vec-
tor q = Q�t�, and then solve a deterministic planning problem for the ensuing
period. In addition to q, data of the planning problem include the vector θ
mentioned above, the vector λ = �λ1; λ2� of external arrival rates, the vector
h = �h1; h2� = �3;1� of holding cost rates, an input–output matrix R, and a
resource consumption matrix A. For our specific problem, R is the 2×3 matrix
(one row for each job class and one column for each of the processing activities
identified in Section 1)

R =
[

1 1
2

1

]
;(27)

while A is the 2× 3 matrix (one row for each server and one column for each
activity)

A =
[

1

1 1

]
:(28)

One interpretsRkj as the average rate at which activity j decreases the class-k
queue length (in jobs per hour) and Aij as the rate at which capacity of server
i is consumed by activity j (in hours of server time consumed per hour devoted
to the activity.) The deterministic planning problem is a linear program with
the following decision variables: xj is the amount of time that will be devoted
to activity j over the coming period by the associated server; ui is the amount
of time that server i will be idle; and zk is the expected or planned inventory
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of class-k jobs at the end of the period. These variables specify a “processing
plan” for the coming period. Defining vectors x, u and z in the obvious way,
the planning problem can be written as follows: choose x, u and z to

minimize h · z(29)

subject to the constraints (here e is a two-vector of ones)

z = q+ lλ−Rx; u = le−Ax; z ≥ θ; u ≥ 0 and x ≥ 0:(30)

Of course, the constraint z ≥ θ imposes a lower bound of θk on the planned
ending inventory zk, which justifies our previous characterization of θk as a
“safety-stock” parameter. Our objective (29) is simply to minimize the holding
cost rate associated with the planned ending inventory vector z, and it is
here that we are using a simplified version of the general BIGSTEP method.
In the general method, one must add to the minimand (29) another term of
the form p · u, where pi is a penalty rate or “shadow price” associated with
idleness of server i. Determination of the coefficients p1 and p2 is the most
difficult aspect of the BIGSTEP method, but for our parallel-server model it is
not necessary to include idleness penalties in the planning problem’s objective
function, because there is no trade-off between minimizing holding cost and
maximizing server utilization. That is, full utilization of both servers is always
desirable for minimization of h ·z, except as idleness may be necessary to meet
the threshold requirements on ending inventory (z ≥ θ).

The planning problem (29)–(30) involves what might be called a fluid ap-
proximation to the parallel-server model, meaning that processing activity is
treated as deterministic and jobs are treated as a continuous fluid rather than
discrete units. Once the meaning of this problem has been grasped, one can
solve it by the following stepwise logic. First, because server 1 can process
only one job class but server 2 is flexible, we should allocate to server 1 as
much class-1 work as possible, subject to the constraints z1 ≥ θ1 and u1 ≥ 0.
Recalling that server 1 takes one hour per class-1 job, this means that

x1 = �q1 + lλ1 − θ1�+ ∧ l:(31)

After this allocation is made, there remain �q1 + lλ1 − θ1 − x1�+ class-1 jobs
available for server 2 to process, and server 2 requires two hours to do each
of them. Each hour spent on class-1 work reduces holding cost by $1.50, be-
cause h1 = 3, whereas each hour devoted to processing class-2 work reduces
holding cost by $1.00 (the service time is m3 = 1, and h2 = 1). Thus server 2
should allocate as much time as possible to class-1 work, consistent with the
constraints z1 ≥ θ1 and u2 ≥ 0, and then allocate as much of its remaining
capacity as possible to class 2, subject to z2 ≥ θ2 and u2 ≥ 0. In symbols, this
means that

x2 = 2�q1 + lλ1 − θ1 − x1�+ ∧ l(32)

and

x3 = �q2 + lλ2 − θ2�+ ∧ �l− x2�:(33)
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Substituting numerical data for the parallel-server problem in (29) and (30),
one can simply verify that (31)–(33) gives one optimal solution. If the initial
queue length vector q, together with the vector of expected arrivals lλ, does
not provide enough work to keep both servers busy throughout the period
(the threshold requirements on ending inventory are also relevant here), then
there may be alternative optima which allow unavoidable idleness to be ab-
sorbed by either one server or the other. The specific solution displayed in
(31)–(33) is that which maximizes utilization of server 1 when idleness be-
comes unavoidable.

The following choice of policy parameters will prove to be particularly con-
venient for theoretical purposes, although other choices might be better in a
given practical situation: we shall restrict attention to values of l that are
even positive integers, and further take

θ1 = lλ1 and θ2 = lλ2:(34)

That is, the minimum planned ending inventory for each job class is set equal
to one period’s expected arrivals, which means that the servers must work ex-
clusively on jobs that are already present at the start of the planning period.
This choice assures that the linear program (29)–(30) has a feasible solution,
and substituting (34) into (31)–(33), our optimal solution reduces to the fol-
lowing:

x1 = q1 ∧ l; x2 = 2�q1 − x1� ∧ l; x3 = q2 ∧ �l− x2�:(35)

Assuming as always that the system is initially empty, we have q = 0 at the
initial review point t = 0. Then (35) reduces to x1 = x2 = x3 = 0, meaning that
both servers are obliged to remain idle throughout the first review period. At
the end of the first period, whatever queue length vector q may be observed,
the time allocations x1 and x3 dictated by (35) are integers, and the time
allocation x2 is an even integer (remember that only even integer values of l
are to be considered). Because all service times are deterministic, with m1 =
m3 = 1 and m2 = 2, each of our time allocations xj translates into an integer
number of jobs to be processed during the coming period, and all of those jobs
are on hand at the start of the period.

Thus there is no uncertainty or ambiguity about how the solution (35) is
to be implemented, and there will be no services partially completed when
the period ends. The same story is repeated in subsequent periods. Finally,
recalling that our idleness variables u1 and u2 are defined via u1 = l−x1 and
u2 = l− �x2 + x3�, it is easy to verify that the time allocations (35) give

u1 = �q1 − l�− and u2 = ��2q1 + q2� + 2u1 − 3l�−:(36)

4. Further identities. Throughout this section, we continue to analyze
a single parallel-server model with ρ fixed (thus the sequence index n will not
appear), operating under the discrete-review policy described in Section 3. The
length l of review periods is assumed to be an even integer, which simplifies
matters as just explained, and server time allocations xj for a given period are
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defined in terms of l and the initial queue length vector q = �q1; q2� by (35).
Our initial focus in this section is on discrete-parameter processes associated
with the times t = 0; l;2l; : : : at which system status is reviewed. As a matter
of convention, period r �r = 1;2; : : :� begins at time �r − 1�l and ends at
time rl. Let Nk�r� be the number of class-k jobs that arrive during period r;
these first become eligible for processing at time rl, or equivalently, they first
become eligible for processing during period r + 1. Let Q̂k�r� be the number
of class-k jobs on hand at the beginning of period r + 1. In terms of earlier
notation, Q̂k�r� = Qk�rl�, and carets will be used similarly in other notation
to follow: when both a discrete-parameter and a continuous-parameter version
of a process are needed, the discrete-parameter version will be denoted by a
caret.

Let ξk�r� be the number of class-k jobs that were already on hand at time
�r − 1�l and remain unprocessed at time rl. (The letter ξ was used in Sec-
tion 2 with a different meaning, but that earlier meaning will not be needed
hereafter.) Thus Q̂k�r� = ξk�r� +Nk�r�. Also define: B̂�r� = 2ξ1�r� + ξ2�r�,
the workload backlog carried forward from period r to period r + 1; 1̂�r� =
2N1�r� +N2�r�, the workload increment that arrives during period r and is
first eligible for processing during period r + 1; and Ŵ�r� = 2Q̂1�r� + Q̂2�r�,
the total workload on hand as period r+ 1 begins. Thus,

Ŵ�r� = B̂�r� + 1̂�r� for r = 1;2; : : : :(37)

Next, let Ui�r� be the idleness experienced by server i during period r. From
the first identity in (36), we have

U1�r+ 1� = �Q̂1�r� − l�− for r = 1;2; : : : :(38)

Because Q̂1�r� = ξ1�r� +N1�r�, it follows from (38) that

U1�r+ 1� ≤ �N1�r� − l�− for r = 1;2; : : : :(39)

The maximum numbers of class-1 jobs that can be processed by servers 1 and
2 during a period are l and 1

2 l, respectively, and thus the time allocations x1
and x2 in (35) imply that

ξ1�r+ 1� =
[
Q̂1�r� − 3

2 l
]+ for r = 1;2; : : : :(40)

Because Q̂1�r� = ξ1�r� +N1�r�, we have from (40) that

ξ1�r+ 1� ≤ ξ1�r� +
[
N1�r� − 3

2 l
]+ for r = 1;2; : : : :(41)

Next, noting that the total work completed by the two servers during period
r+ 1 is 2�l−U1�r+ 1�� + �l−U2�r+ 1��, we have

B̂�r+ 1� = Ŵ�r� − 3l+ 2U1�r+ 1� +U2�r+ 1�(42)

for r = 1;2; : : : ; and combining (42) with the second identity in (36) gives

B̂�r+ 1� = �Ŵ�r� − 3l+ 2U1�r+ 1��+:(43)
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Now defining

χ�r+ 1� = 1̂�r� − 3l+ 2U1�r+ 1� for r = 1;2; : : : ;(44)

one can use (37) and (44) to rewrite (43) as

B̂�r+ 1� = �B̂�r� + χ�r+ 1��+ for r = 1;2; : : : :(45)

This recursive relationship is of a form familiar in queueing theory; one can
use it to express B̂�·� in terms of the partial sums of the random variables
χ�·� as follows. Defining

B̂�1� = χ�1� = 0(46)

as a matter of convention, and letting

Ŝ�r� = χ�1� + · · · + χ�r� for r = 1;2; : : : ;(47)

it is easy to deduce from (45) that

B̂�r� = Ŝ�r� − min
1≤i≤r

S�i� for r = 1;2; : : : :(48)

Let us now define continuous-time versions of the discrete-parameter pro-
cesses 1̂, B̂ and Ŝ as follows. First, set 1̂�0� = B̂�0� = Ŝ�0� = 0 for complete-
ness, and then, for each t ≥ 0 satisfying �r − 1�l ≤ t < rl �r = 1;2; : : :�, let
1�t� = 1̂�r− 1�, B�t� = B̂�r− 1� and S�t� = Ŝ�r− 1�. With these conventions,
one has from (48) that

B�t� = S�t� − inf
0≤u≤t

S�u� for all t ≥ 0;(49)

or equivalently, B = φ�S� where φ is the one-sided reflection mapping intro-
duced in Sections 1 and 2. To bound the difference between B and W, suppose
t ≥ 0 satisfies �r − 1�l ≤ t < rl �r = 1;2; : : :� and observe the following:
W�t� ≤ Ŵ�r− 1� + 1̂�r� = B̂�r− 1� + 1̂�r− 1� + 1̂�r� = B�t� + 1�t� + 1�t+ l�;
on the other hand, because 3l is the maximum amount of work that the two
servers can accomplish during a period,W�t� ≥ Ŵ�r−1�−3l = B�t�+1�t�−3l.
Thus one has

sup
0≤s≤t

�W�t� −B�t� �≤ 3l+ 2 sup
0≤s≤t+l

1�s�:(50)

The last order of business in this section is to establish a relationship be-
tween our piecewise-constant process S�t� and the workload netflow process
X�t� = 2A1�t� + A2�t� − 3t that was introduced in Section 1. If 0 ≤ t < 2l,
then S�t� = 0 by convention, and if �r − 1�l ≤ t < rl for r = 3;4; : : : ; then
combining the definition of 1̂�·� with (44) and (47) gives

S�t� =
r−2∑
i=1

�1̂�i� − 3l� + 2
r−1∑
i=2

U1�i�:(51)

Now define a piecewise-constant, deterministic process τ�·� by setting τ�t� = 0
for 0 ≤ t < 2l and τ�t� = �r−2�l for r = 3;4; : : : and t ∈ ��r−1�l; rl�. The first
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term on the right-hand side of (51) is then equal to X�τ�t��, and the second
sum is the total idleness experienced by server 1 in periods 2; : : : ; r− 1. Thus
we have

S�t� =X�τ�t�� +V�t� for all t ≥ 0;(52)

where

0 ≤ V�t� ≤ 2I1�t�:(53)

5. Large deviation bounds. As a final preliminary to heavy traffic anal-
ysis of our discrete-review control policies, we shall record in this section two
probabilistic bounds on the number of class-1 jobs that arrive in a review pe-
riod, and then explore their implications. Again it will suffice to consider a
single system with ρ fixed; the notation established in Section 4 remains in
force, with the review period length l viewed as a policy parameter to be deter-
mined later. Anticipating the heavy traffic analysis where ρ → 1, and hence
λ1 → 1:3, we shall assume hereafter that ρ is close enough to 1 to assure

1 < λ1 <
3
2 :(54)

Let N1 denote the number of class-1 jobs arriving during a fixed but arbitrary
review period. (This notation is consistent with that used in Section 4.) Thus,
N1 has a Poisson distribution with mean λ1l. The bounds referred to above
are the following:

P�N1 ≤ l� ≤ exp�−f�λ1�l�;(55)

where

f�x� = x− 1− log x for x ∈
(
1; 3

2

)
y(56)

and

P
(
N1 ≥ 3

2 l
)
≤ exp�−g�λ1�l�;(57)

where

g�x� = x− 3
2 − 3

2 log
( 2

3x
)

for x ∈
(
1; 3

2

)
:(58)

Given (54), it is easy to verify that f�λ1� and g�λ1� are both strictly positive.
The large deviation bound (57) is a special use of Markov’s inequality: it is
obtained by first observing that P�N1 ≥ 3

2 l� ≤ E�exp�θN1��/ exp� 3
2θl� for

any θ > 0, and then taking θ = − log� 2
3λ1� because that choice gives the

tightest bound. Similarly, (55) is obtained by first observing that P�N1 ≤ l� ≤
E�exp�−θN1��/ exp�−θl� for any θ > 0, and then taking θ = log λ1 to get the
tightest bound.

Again anticipating the heavy traffic analysis to come, we now fix T > 0,
let n be a large positive integer, also fixed until further notice, and examine
certain aspects of system behavior under our discrete-review policy over the
time interval �0; nT�. For purposes of this analysis, let us define

p = exp�−�g�λ1� ∧ f�λ1��l�;(59)
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assuming that l is large enough to ensure p < 1. From (55) and (59), it follows
that P�N1 ≤ l� ≤ p, and this implies

E��N1 − l�−� ≤ lp;(60)

because the positive random variable �N1− l�− is bounded by l. Similarly, one
has from (57) and (59) that P�N1 ≥ 3

2 l� ≤ p, and combining this with the
strong Markov property of the Poisson process gives

E
[(
N1 − 3

2 l
)+] ≤ E�N1�P

(
N1 ≥ 3

2 l
)
≤ λ1lp:(61)

The time interval �0; nT� contains all or part of the first K review periods,
where K is the smallest integer exceeding nT/l, and (39) gives a bound on
the amount of idleness experienced by server 1 during any but the first of
those review periods; server 1 is idle for all l hours of the first review period.
Thus, combining (39) with (60), and noting that K ≤ nT/l + 1, we have the
following:

E�I1�nT�� ≤ l+ �K− 1�lp ≤ l+ nT
l
lp = l+Tnp:(62)

Finally, a bound will be needed for the maximum value achieved by Q1�·� over
the interval �0; nT�. To derive this bound, we first observe that, if �r − 1�l ≤
t < rl �r = 2;3; : : :�; then

Q1�t� ≤ Q̂1�r− 1� +N1�r� = ξ1�r− 1� +N1�r− 1� +N1�r�:(63)

Using inequality (41) inductively, we have

ξ1�r� ≤
r∑
i=1

[
N1�i� − 3

2 l
]+ for r = 1;2; : : : ;(64)

and combining this with (63) gives

sup
0≤t≤nT

Q1�t� ≤
K∑
i=1

[
N1�i� − 3

2 l
]+ + 2 max

1≤r≤K
N1�r�:(65)

Next, observe that

max
1≤r≤K

N1�r� ≤ 3
2 l+

K∑
r=1

[
N1�r� − 3

2 l
]+
:(66)

Because K ≤ nT/l+ 1, we have from (61) that

E

{ K∑
r=1

[
N1�r� − 3

2 l
]+
}
≤Kλ1lp ≤ nTλ1p+ λ1lp;(67)

and combining this with (65) and (66) yields

E
[

sup
0≤t≤nT

Q1�t�
]
≤ 3�nTλ1p+ λ1lp� + 2

( 3
2 l
)

= 3�nTλ1p+ λ1lp+ l�:
(68)
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6. Heavy traffic performance of discrete-review policies. Let us re-
turn now to the sequence of systems described in Section 2, indexed by n =
1;2; : : :, in which ρ�n� → 1 fast enough to ensure that (12) holds. As in that
section, we attach a superscript n to notation previously established in order to
indicate a process associated with the nth system, but parameters associated
with the nth system are indicated by attaching n as a functional argument.
Throughout this section, we consider performance of the nth system operat-
ing under a discrete-review policy of the form described in Section 3, so the
threshold parameters are θ1�n� = l�n�λ1�n� and θ2�n� = l�n�λ2�n� as in (34).

To complete the specification of our discrete-review policy for the nth sys-
tem, we can take l�n� to be any function increasing slowly enough that

n−�1/2�l�n� → 0 as n→∞;(69)

but increasing quickly enough that

n1/2p�n� → 0 as n→∞;(70)

where p�n� is defined by (59) with λ1�n� in place of λ1 and l�n� in place of l.
Recalling that λ1�n� → 1:3 as n → ∞, one has that p�n� ∼ exp�−cl�n�� as
n→∞, where c = g�1:3� ∧ f�1:3�. Thus, for example, it would suffice to take

l�n� = a log n where a > 1
2c:(71)

Obviously, l�n� must grow without bound as n → ∞, but (69) requires the
growth to be slow enough that l�n�, and hence the threshold parameters θ1�n�
and θ2�n�, are small compared with the spatial scale factor n1/2 that appears
in heavy traffic theorems.

Fixing T > 0 hereafter, we shall restrict attention to the time interval
�0; nT� in our nth system, which means that all unscaled processes associ-
ated with the nth system are viewed as random elements of D�0; nT� and all
scaled processes are viewed as random elements of D�0;T�. Because T is cho-
sen arbitrarily, weak convergence of the restricted scaled processes in D�0;T�
implies weak convergence in D�0;∞�.

Consider first the nondecreasing scaled idleness process Ĩn1�t�=n−�1/2�In1�nt�;
0 ≤ t ≤ T: From (62), we have

E�Ĩn1�T�� = n−�1/2�E�In1�nT�� ≤ n−�1/2��l�n� +Tnp�n��:(72)

The bound in (72) vanishes as n→∞ by (69) and (70), implying that

Ĩn1 ⇒ 0 as n→∞:(73)

Similarly, defining scaled queue length processes Q̃n
k�t� = n−�1/2�Qn

k�nt� in the
obvious way, we have from (68) that

E
[

sup
0≤t≤T

Q̃n
1�t�

]
= n−�1/2�E

[
sup

0≤t≤nT
Qn

1�t�
]

≤ n−�1/2��3�nTλ1�n�p�n� + λ1�n�l�n�p�n� + l�n���:
(74)
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The bound in (74) vanishes as n→∞ by (69) and (70), implying that

Q̃n
1 ⇒ 0 as n→∞:(75)

For future reference, let us recall (suppressing the sequence index n for the
moment) that in Section 4 we defined 1̂1�r� = 2N1�r� +N2�r�, this repre-
senting a workload input increment during the rth review period, and then
1�t� was defined as the piecewise-constant extension of 1̂�·�. The appropriate
scaled version of 1�·� in our n th system is 1̃n�t� = n−�1/2�1n�nt�, 0 ≤ t ≤ T,
and we shall need the fact that

1̃n ⇒ 0 as n→∞:(76)

To prove (76), one first uses the bounds (66) and (67) on the maximum number
of class-1 arrivals occurring during any of the first K review periods; those
bounds were essential to the proof of (75). To complete the proof of (76), one
needs to derive bounds analogous to (66) and (67) concerning the maximum
number of class-2 arrivals during any of the first K review periods; because
the derivation is virtually identical, details are omitted.

Let us consider now the piecewise-constant extended partial sums process
S�t� defined in Section 4. Rewriting the crucial representation (52) in scaled
terms for the nth system, one has

S̃n�t� = X̃n�τ̄n�t�� + Ṽn�t�; 0 ≤ t ≤ T;(77)

where S̃n�t� = n−�1/2�Sn�nt� and similarly for X̃n and Ṽn, and

τ̄n�t� = n−1τn�nt�; 0 ≤ t ≤ T:(78)

(The use of a bar in the notation τ̄n emphasizes the presence of scaling asso-
ciated with functional laws of large numbers, as opposed to processes denoted
by tildes, whose scaling is that associated with functional central limit theo-
rems.) It is trivial to show that the deterministic step function τ̄n converges
to the identity function on �0;T� as n → ∞, and Proposition 1 of Section 2
says that X̃n ⇒X∗ (a Brownian motion), so one has X̃n ◦ τ̄n ⇒X∗ as n→∞
by the random time change theorem [1], Section 17. Finally, it is immediate
from (53) and (73) that Ṽn ⇒ 0, so (77) yields

S̃n ⇒X∗ as n→∞:(79)

As noted earlier, (49) says that Bn = φ�Sn�. Using the functional central limit
theorem (79) and proceeding exactly as in the proof of Proposition 2 (Section 2),
one then has

B̃n = φ�S̃n� ⇒ φ�X∗� = Z∗ as n→∞;(80)

where B̃n�t� = n−�1/2�Bn�nt� as usual. Next, it follows directly from (50), (71)
and (76) that � B̃n − W̃n �⇒ 0, and hence (80) implies that

W̃n ⇒ Z∗ as n→∞:(81)
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Because service times are deterministic in our parallel-server model, it follows
from the definition of the workload process W (see Section 1) that

2�Q1�t� − 1� + �Q2�t� − 1� ≤W�t� ≤ 2Q1�t� +Q2�t�:(82)

Now (75) says that Q̃n
1 ⇒ 0, so (81) and (82) together imply

Q̃n
2 ⇒ Z∗ as n→∞:(83)

Finally, H̃n = 3Q̃n
1 + Q̃n

2 by definition, so (75) and (83) give the result fore-
shadowed in Section 2.

Proposition 3. H̃n ⇒ Z∗ as n→∞.

7. A simulation study. Motivated by the theoretical analysis above, a
simulation study was undertaken to compare the cost performance of discrete-
review policies against the performance bound discussed in Section 1, and also
to make comparisons against a natural family of continuous-review policies.
The discrete-review policies examined in our simulation study differ somewhat
from those discussed in Sections 3–5, which were structured to make the proof
of asymptotic optimality as easy as possible. In particular, the discrete-review
policies on which we focused in Sections 3–5 force both servers, during each
planning period, to work exclusively on jobs present at the start of the period.
Such a constraint is obviously unwise in practice, and here we shall make the
following pragmatic adjustments. First, both servers remain busy so long as
there are jobs available to work on: thus server 1 can be idle only if buffer 1 is
empty, and server 2 can be idle only if both buffers are empty. Second, when
server 2 completes a service and finds jobs waiting in both buffers, it assigns
priority according to the logic described in the next paragraph.

Planning reviews are undertaken at nominal intervals of l hours and, as in
Section 3, we require that l be an even integer. The first review point is time
zero. Each time a review is undertaken, the next one is scheduled l hours
later, but adjustments are made to assure that server 2 is never part way
through a service at a review point. That is, if server 2 is busy at the time
of a scheduled review (because l is an even integer, this can only happen if
server 2 has experienced idleness since the last review), then the next review
is delayed until server 2 completes the service in progress. At that point,
the queue length vector q is observed (q1 may include a class-1 job that is
currently being processed by server 1) and the planning problem (29)–(30) is
then solved to determine a vector x of time allocations for the coming period. In
this calculation, the threshold parameter θ2 is simply set to zero, because there
is no motivation to maintain a safety-stock of class-2 jobs in our parallel-server
model, and the threshold parameter θ1 (hereafter called the target inventory)
is taken to be a positive integer. The only element of x that will actually have
operational significance is x2, for reasons that will become apparent shortly.
Nominally, server 2 is directed to serve 1

2x2 jobs of class 1 during the coming
period, but this need not be an integer in general. Thus we denote by N the
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smallest integer greater than or equal to 1
2x2, and server 2 gives priority to

class 1 during the period that follows until it has served N jobs of class 1;
thereafter, it gives priority to class 2.

The traffic intensity parameter was taken to be ρ = 0:95 in our simulation
study, and an infinite-horizon discounted cost criterion was used. That is, we
sought to

minimize ECR = E
{
γ
∫ ∞

0
e−γth ·Q�t�dt

}
;(84)

where γ is the interest rate for discounting. The integral in (84) is the present
value of future holding costs, and multiplication by γ converts it to an equiv-
alent uniform cost rate, expressed in dollars per hour. The notation ECR is
mnemonic for expected cost rate. For the results reported below, the interest
rate was fixed at γ = 0:0001; with time units representing hours, this corre-
sponds to a monthly interest rate (with continuous compounding) of 7.57%.
Infinite-horizon discounted costs were estimated using 60,000 hours of simu-
lated operation (preliminary checks showed that costs incurred beyond that
point account for less than 1% of the discounted total), and expected values
and confidence intervals were based on 10 independent replications of 60,000
hours each.

Figure 3 presents in graphical form the cost performance observed with
different combinations of target inventory and review period length. For each
choice of period length, the lowest expected cost rate was obtained with a
target inventory value between 5 and 10; cost performance degrades quickly
below this range, but target inventory values between 10 and 20 are almost as
good. For review periods of length 2;4; : : : ;16, Table 1 shows the best target
inventory parameter according to our simulation study, as well as our esti-
mate of ECR using that target inventory value, and the upper and lower 95%
confidence limits on that estimate of ECR. Our estimates of the minimum
achievable expected cost rate increase as the period length increases, but at
a rate which is very small and certainly not significant in comparison with
the confidence limits displayed in Table 1. Also, Figure 3 shows that our es-
timates of expected cost rate are nonmonotone as a function of period length
for any given target inventory value, but no satisfactory explanation for that
nonmonotonicity has been found. The most important conclusions from our
simulation study of discrete-review policies are as follows: there is evidence
to suggest that shorter review periods are better, in contrast to the emphasis
on long review periods in our theoretical analysis, but cost performance is
insensitive to the period length, and also insensitive to the target inventory
value beyond a critical point.

Given the findings above, it is natural to ask what happens as the review
period length goes to zero, so our simulation study was extended to consider a
one-parameter family of continuous-review policies defined as follows. If server
2, upon completing a service, finds N or more class-1 jobs waiting in buffer 1,
then server 2 gives priority to class 1; otherwise, it gives priority to class 2.
Beyond that, both servers remain busy as long as there is work for them to do,
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Fig. 3. Simulation results for discrete-review policies.
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Table 1
Simulation results for discrete-review policies

Review period length 2 4 6 8 10 12 14 16
Best target inventory 7 7 8 8 9 9 10 10
Expected cost rate (ECR) 25.37 25.53 25.68 25.82 25.96 26.07 26.19 26.37
Lower confidence limit (LCL) 24.22 24.38 24.51 24.65 24.80 24.89 25.00 25.13
Upper confidence limit (UCL) 26.52 26.68 26.85 26.99 27.12 27.25 27.37 27.61

just as in the discrete-review scenario. We call N the threshold parameter of
our continuous-review policy. Simulation-based estimates of the expected cost
rate (ECR) are plotted against N in Figure 4, and the numerical estimates of
ECR are compiled in Table 2 forN = 2; : : : ;9, along with 95% upper and lower
confidence limits on those estimates. (With N = 1, our continuous-review
policy is equivalent to the greedy scheduling rule described in Section 1.) By a
very narrow margin, the lowest estimate of ECR is obtained with N = 6, but
again one sees that cost performance is insensitive to the choice of threshold
parameter, at least beyond a critical point.

Table 3 records the best observed cost performance with discrete-review
and continuous-review policies, along with two performance benchmarks com-
puted as follows. First, defining the process Z�t� = X�t� +Y�t� exactly as in

Fig. 4. Simulation results for continuous-review policies.
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Table 2
Simulation results for continuous-review policies

Threshold parameter N 2 3 4 5 6 7 8 9
Expected cost rate (ECR) 116.60 31.74 26.60 25.51 25.34 25.44 25.67 25.93
Lower confidence limit (LCL) 94.44 29.07 25.12 24.28 24.18 24.31 24.52 24.77
Upper confidence limit (UCL) 138.76 34.41 28.08 26.75 26.49 26.57 26.81 27.09

Section 1, let

SSPB = E
{
γ
∫ ∞

0
e−γtZ�t�dt

}
:(85)

The notation SSPB is mnemonic for super-server performance bound: Z�t� is
a lower bound on the instantaneous cost rate H�t� = 3Q1�t� +Q2�t�, as ex-
plained in Section 1, implying that (85) provides a lower bound on the expected
cost rate (84) under any scheduling policy, and this bound was interpreted
earlier in terms of a super-server that combines the capabilities of server 1
and server 2. Now X is a process with stationary, independent increments, or
Levy process, and a calculation undertaken in Section 2 can be summarized
as follows: E�X�t�� = −µt and Var�X�t�� = σ2t, where

µ = 3�1− ρ� and σ2 = 5:6ρ:(86)

Moreover, any well-behaved Levy process satisfies

E�e−ηX�t�� = e8�η�t; η ≥ 0;(87)

and in our case, the exponent function 8�·� is given by

8�η� = λ1�e−2η − 1� + λ2�e−η − 1� + 3η;(88)

where λ1 = 1:3ρ and λ2 = 0:4ρ. With ρ < 1 (or equivalently, µ > 0), the
function 8�·� is strictly increasing on �0;∞� with 8�0� = 0, and we define 9�·�
as the inverse of 8�·� on �0;∞�. That is, 9�·� satisfies

9�8�η�� = η for all η ≥ 0:(89)

Table 3
Cost performance summary

Value LCL UCL

ECR for best discrete-review policy
(period length = 2, target inventory = 7) 25.37 24.22 26.52

ECR for best continuous-review policy
(threshold value N = 6) 25.34 24.18 26.49

Super-server performance bound (SSPB) 17.45 NA NA
Brownian performance estimate (BPE) 17.45 NA NA



846 J. M. HARRISON

With this notation, one can specialize a general result proved in [5] to obtain
the following formula for the super-server performance bound (85):

SSPB = 1
9�γ� −

µ

γ
:(90)

The numerical value of SSPB in Table 3 was obtained from (88)–(90) using the
data ρ = 0:95 and γ = 0:0001. Finally, the Brownian performance estimate in
Table 3 is

BPE = E
{
γ
∫ ∞

0
e−γtZ∗�t�dt

}
;(91)

where Z∗ =X∗ +Y∗ is a reflected Brownian motion with drift parameter −µ
and variance parameter σ2. That is, Z∗ is defined in terms of a Brownian
motion X∗ with parameters −µ and σ2, just as Z was defined in terms of X.
The analog of (90), derived from the same general result in [5], is

BPE = 1
9∗�γ� −

µ

γ
;(92)

where 9∗�·� is the inverse on �0;∞� of the Brownian exponent function

8∗�η� = 1
2σ

2η2 + µη; η ≥ 0:(93)

The numerical value of BPE in Table 3 was obtained from (92) using the data
ρ = 0:95 and γ = 0:0001.

The summary figures presented in Table 3 show that the best cost perfor-
mance achievable with a discrete-review policy is virtually indistinguishable
from the best performance achievable with a continuous-review policy, and
our super-server performance bound and Brownian performance bound are
actually identical to four significant figures, given the parameter values cho-
sen. (The two bounds are not identical in general, however.) Also, the SSPB
is about 30% smaller than the ECR observed with our best scheduling poli-
cies. As explained in Section 1, there are three separate factors contributing
to the gap between the SSPB and actual ECR under any given policy. First,
the super-server workload process Z�·� is uniformly smaller than the work-
load process W�·� with two servers working in parallel, regardless of what
scheduling policy is used. Second, in computing the SSPB, we associate cost
with work rather than with jobs, so the cost charged for a job in service is
decreased in proportion to the amount of service it has completed. Finally, the
SSPB corresponds to an ideal scenario where all work is held in the form of
class-2 jobs, whereas the average inventory of class-1 jobs is obviously pos-
itive under any scheduling rule. A more detailed analysis of our simulation
results shows that the last of these factors is by far the most important with
the parameter values chosen for the simulation study, accounting for about
two-thirds of the 30% gap noted above.
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8. Concluding remarks. This paper has analyzed a family of discrete-
review scheduling policies that involve safety-stock parameters for each job
class. We have considered safety-stock parameters that increase linearly as a
function of the review period length l, taking l to be a slowly growing function
of the parameter n used to rescale time as a heavy traffic limit is approached.
As noted in Section 6, one feasible choice is l�n� = a log n, where a is suf-
ficiently large. Large deviation bounds were then used to prove asymptotic
optimality of the proposed scheduling policies. From a technical standpoint,
that use of large deviations theory is the most novel feature of the analysis.

The simulation results presented in Section 7 suggest that continuous-
review policies of the type described there are at least as good as discrete-
review policies, which is hardly surprising. If a sequence of continuous-review
policies is to achieve asymptotic optimality, it is undoubtedly essential that
the associated threshold parameters grow without bound as heavy traffic is
approached, but the threshold parameters must grow more slowly than the
spatial scaling factor of n1/2 that appears in heavy traffic limit theorems. Kelly
and Laws, in Section 2 of their survey paper [12], discuss continuous-review
threshold policies for a dynamic routing problem that is roughly similar to
ours, and they argue that the threshold parameter must grow at least as fast
as α log n to achieve asymptotic optimality, where α is a certain critical value.

Of course, a proof of asymptotic optimality for continuous-review policies
will require more sophisticated methods than those used here. In particular,
large deviations theory for processes may plausibly provide the key to analysis
of continuous-review policies, whereas our analysis of discrete-review policies
required only large deviation bounds for Poisson random variables.
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