
The Annals of Applied Probability
1998, Vol. 8, No. 1, 234–245

LACK OF MONOTONICITY IN FERROMAGNETIC
ISING MODEL PHASE DIAGRAMS

By Roberto H. Schonmann1 and Nelson I. Tanaka2

University of California, Los Angeles and Universidade de São Paulo

We study patterns of the phase diagram of ferromagnetic Ising models
on graphs under an external magnetic field. We provide an example of a
tree with only two types of vertices on which for a range of values of the
external field there is a unique Gibbs distribution at low enough and at
high enough temperatures, while at intermediate temperatures there is
phase coexistence (in other words, a reentrance transition takes place).

1. Introduction. The investigation reported in this paper started with
the following thoughts. The ferromagnetic Ising model can be seen as the most
basic model in mathematical statistical mechanics and its natural mathemat-
ical setting is a graph, with the vertices being the sites, which we can think of
as the locations of spins +1 or −1, and the edges indicating the pairs of spins
which do interact. Two parameters appear in this model: an external field
h ∈ R and a temperature T ∈ R+. A fundamental problem is then to locate on
the phase diagram h×T the region where there is more than one Gibbs dis-
tribution (the so called “phase-coexistence” region). It is natural to ask what
the general features of the phase-coexistence region are. Regarding its inter-
section with the T-axis (i.e., the reduced problem in which h is held fixed
equal to 0), there is a well-known argument—to be reviewed later, when we
have enough notation available—based on one of Griffiths’ inequalities, which
shows that this intersection is always an interval (possibly degenerate), which
has one of its end points at �h;T� = �0;0�. This simple feature of the phase-
coexistence region can, of course, be seen as a monotonicity property: if there
is a unique Gibbs measure at the point �0;T1� of the phase diagram, then the
same is also true at all the points �0;T�, with T > T1. The main point of this
paper is that if h 6= 0, then the same sort of monotonicity in T is not true,
even if we restrict ourselves to very simple graphs (our example will be an
almost homogeneous tree, with only two types of vertices).

Before proceeding, we will have to introduce a certain amount of notation
and terminology. We will also recall some well-known facts about the statistical
mechanics of lattice systems and the Ising model, and we refer the reader to
[1] and [5] for their proofs.

We will consider graphs with countably many vertices and locally bounded
degree (meaning that each vertex belongs to a finite number of edges). This

Received June 1997; revised July 1997.
1Supported in part by NSF Grants DMS-94-00644 and DMS-97-03814.
2Supported in part by FAPESP (Brazil) Proc. 96/2769-2.
AMS 1991 subject classifications. Primary 60K35, 82B27.
Key words and phrases. Ising model, ferromagnetism, graphs, phase diagram, monotonicity,

reentrance transition.

234



LACK OF MONOTONICITY IN ISING MODELS 235

class of graphs will be denoted by C . No assumption that the graph is con-
nected or infinite is being made, but these are the typical cases in which one
is interested. Given a graph G ∈ C , we will use V�G� to denote its set of ver-
tices (also called sites) and E �G� to denote its set of edges. When there is no
risk of confusion, G will be omitted in this notation. Two vertices are called
neighbors if they belong to a common edge.

An isomorphism between two graphs, G1 and G2, is a one-to-one mapping
from V�G1� onto V�G2�, which preserves the graph structure, that is, such
that the set of edges of G2 can be obtained as the set of pairs of images of
vertices ofG1 which form edges. An isomorphism between a graphG and itself
is called an automorphism of G. Two vertices of G are said to be of the same
type, if each one can be mapped into the other one by an automorphism of G.
Graphs which have a single type of vertex will be called homogeneous graphs
(sometimes the term transitive graphs is used in the literature). Graphs which
have a finite number of types of vertices will be called almost-homogeneous
graphs (sometimes the term almost-transitive graphs is used in the literature).

Configurations are elements of the set � = �−1;+1�V, interpreted as the
assignment of a spin−1 or+1 to each site inV. Given σ ∈ � and x ∈ V, we use
σ�x� for the value of the spin at x. We will consider the formal ferromagnetic
Ising Hamiltonian:

�1:1� Hh�σ� = −
∑

�x;y�∈E
σ�x�σ�y� − h

∑
x

σ�x�;

where h ∈ R is the external field and σ ∈ � is a generic configuration. In order
to give precise definitions, we consider finite subsets of V. The expression
3 ⊂⊂ V will mean that 3 is a finite subset of V. Given a set 3 ⊂⊂ V we
define also

E3 = ��x;y� ∈ E x x;y ∈ 3�;
∂E3 = ��x;y� ∈ E x x ∈ 3;y 6∈ 3�:

Given also a configuration η ∈ �, we define the following set of configurations:

�3;η =
{
σ ∈ �x σ�x� = η�x� for all x 6∈ 3

}
:

For each set 3 ⊂⊂ V and each boundary condition η ∈ �, we define

�1:2� H3;η;h�σ� = −
∑

�x;y�∈E3
σ�x�σ�y� −

∑

�x;y�∈∂E3
y6∈3

σ�x�η�y� − h
∑
x∈3

σ�x�:

The Gibbs (probability) measure in 3 with boundary condition η, under
external field h and at temperature T > 0 is now defined on � as

µ3;η;T;h�σ� =





exp�−βH3;η;h�σ��
Z3;η;T;h

; if σ ∈ �3;η;

0; otherwise,
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where β = 1/T and

Z3;η;T;h =
∑

σ∈�3;η
exp�−βH3;η;T;h�σ��:

A Gibbs measure for the system on the graph G (possibly infinite) is defined
as any probability measure µ which satisfies the DLR equations in the sense
that for every 3 ⊂⊂ V and µ-almost all η ∈ �,

�1:3� µ� · ��3;η� = µ3;η;T;h� · �:
It is easy to check and very important that this definition is self-consistent in
case V is finite.

Alternatively and equivalently, Gibbs measures on a possibly infinite graph
can be defined as limits of the corresponding Gibbs measures on finite subsets
of the system, with arbitrary boundary conditions. For this purpose one says
that a sequence of probability measures, �µn�n=1;2;:::, converges weakly to the
probability measure ν in case

�1:4� lim
n→∞

∫
fdµn =

∫
fdν;

for each fx � → R which depends only on the value of the spins on a finite
set of sites. The set of Gibbs measures for the system on G coincides with
the closed convex hull of the set of weak limit points of sequences of the form
�µ3i; ηi;T;h�i=1;2;:::, where each 3i is finite and 3i→ V, as i→∞, in the sense
that

⋃∞
i=1

⋂∞
j=i 3j = V.

The set of Gibbs measures will be denoted by GT;h. The subset of the h×T
half-plane where GT;h has a single element is called the phase-uniqueness
region, and its complement is called the phase-coexistence region. From Do-
brushin’s uniqueness condition (see, e.g., Chapter 8 of [1]), it is easy to see
that if our graph G has the degree of all the vertices bounded by a common
constant κ, then there are finite positive constants h�κ� and T�κ� such that if
�h� > h�κ�, or T > T�κ�, the system is in the phase-uniqueness region.

For the expected value corresponding to a Gibbs measure µ···, in finite or
infinite volume, we will use the notation

�f�::: =
∫
fdµ···;

where · · · stands for arbitrary subscripts. We will use a common and con-
venient form of abuse of notation: σ�x� will be used to denote the function
which associates to each configuration the value of the spin at the site x in
that configuration.

The Gibbs measures satisfy the following monotonicity relations, which we
will refer to as the FKG-Holley inequalities:

If η ≤ ζ and h1 ≤ h2; then, for each 3 ⊂⊂ V; µ3;η;T;h1
≤ µ3; ζ;T;h2

:

In what follows we will abbreviate by + (resp. −) the configuration with all
spins +1 (resp. −1). We will also use the notation ± in a standard way, with
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each equation in which it appears representing the two equations obtained by
replacing this symbol consistently with + or consistently with −.

A consequence of the FKG-Holley inequalities in combination with the DLR
equations is that

�1:5� µ3;±;T;h→ µ±;T;h weakly as 3→ V:

The Gibbs distributions µ+;T;h and µ−;T;h so obtained are called, respectively,
the (+)-phase and the (−)-phase of the Ising model on G. Moreover, the fol-
lowing three statements are equivalent:

(U1) �GT;h� = 1;
(U2) µ−;T;h = µ+;T;h;
(U3) �σ�x��−;T;h = �σ�x��+;T;h, for each site x ∈ V.

In case the graphG is not connected, the equality in (U3) can be satisfied for
some sites x while it fails for others. On the other hand, if G is connected, that
equality is either true for all sites x or false for all sites x. To prove this last
statement one can proceed as follows. Suppose that the equality fails for one
given site x. Consider next a site y which is neighbor to x. By conditioning on
the configuration in the neighbors of y and using the Holley-FKG inequalities,
one can readily see that the equality in (U3) also fails for y. By proceeding
inductively, one concludes then that once the equality in (U3) fails for one site,
it will fail for all sites which belong to the connected component of the graph
to which this site belongs.

The Ising model has been mostly studied on the cubic lattices, V = Zd, with
edges connecting sites which are separated by Euclidean distance 1. In this
fundamental case, the phase-coexistence region is contained in the T-axis. In
case d = 1, it is empty, while for d ≥ 2, it is a nondegenerate interval contained
in this axis and of the form �0;Tc�. The proofs that there is uniqueness of the
Gibbs distribution for the Ising model on these graphs when h 6= 0 depend
only on the facts that these graphs are homogeneous, and the number of sites
at distance N from a fixed site grows slower than the number of sites at
distances smaller than N from this site, as N→∞.

Also frequently studied is the Ising model on a homogeneous tree, Tb. In
this notation, b is the branching number, so that each site has b+1 neighbors.
Note that T1 = Z1. In the case b ≥ 2, the phase-coexistence region is not
confined to the T-axis; it is given by the set

�1:6�
{
�h;T�x 0 < T < Tc; −hc�T� ≤ h ≤ hc�T�

}
;

where

�1:7� hc�T� = Tmax
t≥0
�bϕβ�t� − t�;

with

�1:8� ϕβ�t� =
1
2

log
(

cosh�t+ β�
cosh�t− β�

)
= tanh−1�tanh�β� tanh�t��;
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and

�1:9� Tc = sup�T > 0x hc�T� > 0� = 1

coth−1�b�
= 2

log��b+ 1�/b− 1� :

The following properties of the function ϕβ are important. It is a continuous
odd function, which is strictly increasing and has range �−β;β�. It is also
strictly convex on �−∞;0� and strictly concave on �0;∞�.

Before proceeding, we recall the well-known argument to the effect that if
there is a unique Gibbs measure at the point �0;T1� of the phase diagram,
then the same is also true at all the points �0;T�, with T > T1. For this
purpose one uses the symmetry between +s and −s in the case h = 0, and
writes

0 ≤ �σ�x��+; 3;T;0 − �σ�x��−; 3;T;0 = 2�σ�x��+; 3;T;0
≤ 2�σ�x��+; 3;T1;0 = �σ�x��+; 3;T1;0 − �σ�x��−; 3;T1;0:

Here the first inequality is an instance of the FKG-Holley inequalities, while
the second inequality is an instance of one of Griffiths’ inequalities. Letting
3 → V, and using the equivalence between (U1) and (U3), one then obtains
phase uniqueness at �T;0� from phase uniqueness at �T1;0�.

A similar well-known argument can be used to show that if we delete edges
from a graph on which there is phase uniqueness at a certain point �0;T�,
then at the same point of the phase diagram, there will be phase uniqueness
for the new graph.

Note nevertheless that the absence of symmetry between +s and −s when
h 6= 0 spoils the argument above, in that case.

We describe next a tree with only two types of sites (an almost-homogeneous
tree), on which for certain values of h 6= 0, phase uniqueness at certain values
of T does not imply phase uniqueness at larger values of T.

Our tree can be constructed from Tb, by adding vertices and edges to it. In
this procedure, each vertex of Tb is connected to A new vertices, by means
of A new edges. These new vertices are not connected to any other vertex,
so that they are leaves of the graph. This completes the construction of the
graph, which we denote by Tb;A. This graph has two types of vertices; those
of first type are the ones with which we started; the ones we added are of the
second type. Each vertex of first type is connected to b + 1 other vertices of
the same type and to A vertices of the second type. Each vertex of the second
type is connected to exactly one vertex of the first type and to no vertex of the
second type.

Proposition 1. For the tree Tb;A with a proper choice of b and A (e.g., A =
2b and b large enough) for h in a nondegenerate interval which contains 1 the
following happens. There are values of T for which there is phase coexistence,
but for T either large enough or small enough there is phase uniqueness.

In the proof of this proposition, we will see that when A > 0 the phase-
coexistence region of Tb;A is a strict subset of that of Tb. It is clear that the
graph that has the same set of vertices as Tb;A but only has edges connecting
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the sites corresponding to sites of the first type in Tb;A has the same phase
diagram as Tb (the other sites are not connected to anything, and in particular
the graph is not connected, but still it is in C ). Hence the conclusion that the
addition of edges to a graph may reduce the phase-coexistence region, contrary
to what happens with the intersection of this region and the T-axis.

The lack of monotonicity in T exemplified in Proposition 1 contrasts with
the monotonicity in �h� expressed in the next one.

Proposition 2. For all graphs in C , if there is a unique Gibbs measure at
the point �h1;T� of the phase diagram, then the same is also true at all the
points �h;T�, with �h� > �h1�.

Proof. With no loss of generality we can take 0 ≤ h1 ≤ h. The following
correlation inequalities are then available, where 3 ⊂⊂ V and x ∈ 3,

�1:10� 0≤�σ�x��+; 3;T;h−�σ�x��−; 3;T;h≤�σ�x��+; 3;T;h1
−�σ�x��−; 3;T;h1

:

Here the first inequality is an instance of the FKG-Holley inequalities, while
the second inequality can be obtained from Lebowitz’s inequalities for dupli-
cated spins in [4]. (The derivation appears in the second step of the proof of
Theorem 2 in [3], page 6, where only the case 0 = h1 ≤ h is considered, but the
same argument works as well for 0 ≤ h1 ≤ h. The reader should also beware
that Higuchi uses a slight generalization of the work in [4], in which now dif-
ferent external fields act on each copy of the spin system.) Letting 3→ V in
(1.10), and using the equivalence between (U1) and (U3), one obtains phase
uniqueness at �T;h� from phase uniqueness at �T;h1�. 2

Section 2 will be dedicated to the proof of Proposition 1. Here we give a
heuristic argument, which makes this proposition at least plausible. The idea
in this heuristic argument is to consider the spins at the sites of first type in
Tb;A as being the sites of the smaller graph Tb, and the spins at the sites of
second type (the leaves of Tb;A) as providing an extra effective external field
which acts on the sites of first type, in addition to the external field h.

For the heuristic argument, we will need two facts about the phase diagram
of the Ising model on Tb. The first one is

�1:11� lim
T→0

hc�T� = b− 1:

One way to obtain (1.11) is by computing hc�T� explicitly from its definition
(1.7). This is done in [1], where the result appears as equation (12.30). Their
J is our β, d is our b and h�J;d� is our βhc�T�. The behavior of hc�T� as
T → 0 is also found in [1] [the first display after (12.30)], and in particular
one has (1.11).

The second fact is that for fixed T,

�1:12� lim
b→∞

hc�T�
b
= 1:

This is a straightforward consequence of (1.7) and the properties of ϕβ.
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Suppose that h is slightly larger than 1. At low temperature the spins at the
sites of second type will, with overwhelming probability, be aligned with this
external field and so be +1. This is so because in this state the contribution to
the energy from each such spin is lower than in the opposite state, regardless
of the state of the spin at the site of first type neighbor to the site that we are
considering. But then the spins at the A sites of second type, neighbors to a
site of first type x, produce an effective extra external field acting on the spin
at x of magnitude close to A. This should be contrasted with (1.11), which
tells us that hc�T� is close to b − 1. The total effective external field close to
A+ 1 = 2b+ 1 should therefore be enough to assure phase uniqueness.

We suppose that b is so large that we can take a temperature large com-
pared with 1, while still small compared with b. When the temperature is
much larger than 1, there should be a substantial entropy effect affecting the
spins at the leaves of the tree and the extra effective field acting on the spins
at sites of first type should be just a small fraction of A = 2b. Contrasting
this with (1.12), we see that, if b is large, now the effective field is no longer
strong enough to bring the system into the phase-uniqueness region.

At larger temperatures, of course, Dobrushin’s uniqueness condition tells
us that phase uniqueness will again be restored.

2. Proof of Proposition 1. When studying Gibbs measures on trees, it
is natural to look for recursions. In such an approach, success depends on
making a good choice of the quantities for which the recursion is written. Our
choice of Lx;n;η below as this quantity was motivated by [2].

For the moment the setting is an arbitrary connected tree G in C . Call one
of the vertices of the tree its root, denoted by 0. Each vertex x in the tree has
a generation index g�x�, defined inductively by setting g�0� = 0, and giving
the generation index n+1 to the vertices which are neighbors of a vertex with
index n unless they already have index n− 1. We write x→1 y in case x and
y belong to a common edge and g�y� = g�x� + 1. A vertex z is a descendent
of a vertex x if there is a sequence of vertices x = x0; x1; : : : ; xi = z such that
xj→1 xj+1, for j = 0; : : : ; i− 1.

Given x ∈ V, we define the tree Gx, obtained from the original tree G
that we are considering by only keeping the vertex x and its descendents, and
keeping all the edges connecting any two of these vertices. Given also n ≥ g�x�,
we define Vx;n as the set of vertices containing x and its descendents with
generation index not exceeding n. Note that Vx;n is a subset of the set of
vertices of Gx.

In what followsT and h are fixed, and will be omitted from the new notation
being introduced. First define

�2:1�

Hx;n;η�σ� = −
∑

�y; z�∈E �Gx�
y∈Vx;n z∈Vx;n

σ�y�σ�z�

−
∑

�y; z�∈E �Gx�
y∈Vx;n z6∈Vx;n

σ�y�η�z� − h
∑

y∈Vx;n

σ�y�:
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Now, given A ⊂ �−1;+1�Vx;n , define

Zx;n;η�A� =
∑
σ∈A

exp
(
−βHx;n;η�σ�

)
:

Next set

Lx;n;η =
1
2

log
Zx;n;η�σ�x� = +1�
Zx;n;η�σ�x� = −1� :

We can now write the following recursion:

�2:2�

Lx;n;η = 1
2 log

{[
eβh

∏
yxx→1y

{
eβZy;n;η�σ�y� = +1�

+ e−βZy;n;η�σ�y� = −1�
}]

×
[
e−βh

∏
yxx→1y

{
e−βZy;n;η�σ�y� = +1�

+ eβZy;n;η�σ�y� = −1�
}]−1}

= βh+
∑

yxx→1y

ϕβ�Ly;n;η�;

where ϕβ is defined by (1.8).
We will write ln;η = L0; n;η and V0; n = Vn. Note that

�2:3� ln;η =
1
2

log
µVn; η;T;h

�σ�0� = +1�
µVn; η;T;h

�σ�0� = −1� :

In what follows, we will suppose that η is either the configuration with all
spins −1 or that with all spins +1. From (1.5) and (2.3) we obtain

l± x= lim
n→∞

ln;± =
1
2

log
µ±;T;h�σ�0� = +1�
µ±;T;h�σ�0� = −1� :

A simple computation now yields

�σ�0��±;T;h = tanh�l±�:
Therefore the remark in the paragraph after the equivalent conditions (U1)–
(U3) were introduced implies that for an arbitrary connected tree G ∈ C , also

�2:4� �GT;h� = 1 ⇔ l− = l+:
We want to use the equivalence in (2.4) to find the coexistence region for

the tree Tb;A. From this point on we will use the notation above, having in
mind that it refers now to the tree G = Tb;A.

Before we can study Tb;A, we will have to consider a related but somewhat
different tree G′ = T′b;A, and for this tree we will use similar notation, but
distinguished by a prime. The tree T′b;A is obtained from Tb;A by removing
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one of the neighbors of its root, as well as all the descendents of this site. All
the edges from Tb;A connecting sites which are not being removed are kept.

The tree G′ = T′b;A has the particularly nice feature that for each of its
vertices x, the corresponding tree G′x [as defined above, before (2.1) was in-
troduced] is isomorphic to T′b;A itself. This makes the recursion (2.2) become
particularly simple and yields

�2:5� l′n;± = βh+Aϕβ�βh� + bϕβ�l′n−1;±�;
where the second term comes from summing over the leaves among the neigh-
bors of the root. We will introduce the notation

�2:6� HA
eff �β;h� = βh+Aϕβ�βh�;

so that (2.5) turns into

�2:7� l′n;± =HA
eff �β;h� + bϕβ�l′n−1;±�:

From the last display and the continuity of ϕβ, it follows that l′− =
limn→∞ l

′
n;− and l′+ = limn→∞ l

′
n;+ are solutions of the following equation in t

�2:8� t =HA
eff �β;h� + bϕβ�t�:

This equation is precisely equation (12.22) of [1], where the case of the ho-
mogeneous trees is studied. One simply has to replace the variable J in [1]
with our β, d in [1] with our b and the h in [1] with our HA

eff �β;h�. From the
analysis in [1] of this equation, we know that (2.8) has exactly one solution if
T ≥ Tc or �HA

eff �β;h�� > βhc�T�, where Tc is given by (1.9) and hc�T� is given
by (1.7). It has exactly two solutions if T < Tc and �HA

eff �β;h�� = βhc�T�. And
it has exactly three solutions in case T < Tc and �HA

eff �β;h�� < βhc�T�. We
will denote by t− the smallest solution of (2.8) and by t+ the largest solution
of that equation.

Next we want to argue that

�2:9� l′± = t±:
For this purpose, we extend the definition of ϕβ by continuity, setting

ϕβ�±∞� = lim
t→±

ϕβ�t� = ±β:

We also define

l′−1;± = ±∞;
so that a direct computation shows that

l′0;± =HA
eff �β;h� ± bβ =HA

eff �β;h� + bϕβ�l′−1;±�:
In other words, (2.7) is now satisfied for n = 0;1;2; : : : :

For t > t+ we have t > HA
eff �β;h� + bϕβ�t� (compare the limits of both

sides as t → ∞ and note that by continuity of the functions on both sides,
the inequality between them must be the same for all t > t+). It is therefore
clear that the recursion (2.7), started from l′−1;+ = +∞, produces a decreasing
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sequence �l′n;+�n≥−1, bounded below by t+. This decreasing sequence must then
converge to a fixed point of the recursion, not smaller than t+, and hence it
must converge to t+. This proves (2.9) in case ± is replaced with +. The case
in which it is replaced with − is analogous.

From (2.4), (2.9) and the behavior of the solutions of (2.8) for different values
of T and h, we conclude that the phase-coexistence region for the Ising model
on T′b;A is the set

�2:10� ��h;T�x t− < t+� = ��h;T�x 0 < T < Tc; −hAc �T� ≤ h ≤ hc�T��;
where Tc is still given by (1.9), and

�2:11� hAc �T� = max�h ≥ 0x HA
eff �β;h� ≤ βhc�T��;

with hc�T� given by (1.7). In justifying the equality in (2.10), note that
HA

eff �β;h� is a strictly increasing function of h and HA
eff �β;0� = 0.

Regarding the phase-coexistence region for the Ising model on the tree G =
Tb;A, we can readily see that it is the same set (2.10) above. For this, note
that the recursion (2.2), applied in case x is the root of this graph, gives

ln;± = βh+Aϕβ�βh� + �b+ 1�ϕβ�l′n−1;±� =HA
eff �β;h� + �b+ 1�ϕβ�l′n−1;±�:

This is so because for each site y different from the origin, Gy is isomorphic
to T′b;A. Letting n→∞ gives

l± =HA
eff �β;h� + �b+ 1�ϕβ�l′±� =HA

eff �β;h� + �b+ 1�ϕβ�t±�:
Since ϕβ is strictly monotone increasing, we can conclude now that

l− = l+ ⇐⇒ t− = t+;
so that (2.4) implies that indeed the phase-coexistence region for the Ising
model on Tb;A is given by (2.10). Incidentally, note that the analysis above
includes a review of a proof that (1.6) is the phase coexistence region for the
Ising model on the homogeneous tree Tb (the case A = 0). Also, from (2.11)
and (2.6), it is clear that the phase-coexistence region shrinks as A grows.
This justifies the claim that we made after the statement of Proposition 1.

Our problem of proving Proposition 1 is now reduced to the study of the
phase-coexistence region, as described by (2.10), and in particular of the be-
havior of hAc �T�, given by (2.11), as a function of T. According to the statement
of that proposition, we take A = 2b, and we will at some points below also
have to choose b large enough.

Note that from the definition (1.9) of Tc, it follows that

�2:12� lim
b→∞

Tc/b = 1:

This, of course, shows that

�2:13� If b is large enough, for T = 2b we have T > Tc.

We will show next that

�2:14� If b is large enough, for T = b/2 we have T < Tc and hAc �T� > 1.
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The claim about Tc in (2.14) is immediate from (2.12). The first step in the
derivation of the claim about hAc �T� in (2.14) is a sort of mean-field bound.
From (1.7) we have

βhc�T� = max
t≥0
�bϕβ�t� − t�

= max
t≥0

(
b tanh−1�tanh�2/b� tanh�t�� − t

)

≥ max
t≥0

(
b tanh�2/b� tanh�t� − t

)
:

Therefore, for large enough b,

βhc�T� ≥ max
t≥0

( 3
2 tanh�t� − t

)
> 0;

where the last inequality is straightforward from the fact that at t = 0,
d tanh�t�/dt = 1. The important fact here is that the factor 3/2 multiplying
tanh�t� is larger than 1. The reader can see in this estimate the connection
with the mean field model. Note that the lower bound obtained is uniform for
all large b.

On the other hand, for h = 1,

HA
eff �β;h� =HA

eff �β;1� = β+Aϕβ�β�
= 2/b+ 2bϕ2/b�2/b� = 2/b+ 2b tanh−1�tanh�2/b� tanh�2/b��
= 2/b+ bO�1/b2�:

From the last two displays and the definition (2.11) we conclude that for b
large enough,

hAc �T� = max�h ≥ 0x HA
eff �β;h� ≤ βhc�T�� > 1;

which is our claim about hAc �T� in (2.14).
Next we show that

�2:15� For each b, for T small enough (depending on b) we have hAc �T� < 1:

For this we first note that for h = 1,

HA
eff �β;h�
β

= 1+Aϕβ�β�
β
→ 1+A = 1+ 2b as T→ 0:

Comparing this behavior with the behavior of hc�T�, as given by (1.11) (which,
as explained, is derived from an explicit computation that can be found in [1]),
we obtain the claim (2.15) from the definition (2.11) of hAc �T�.

Proposition 1 is a consequence of (2.13), (2.14) and (2.15), and the fact that
the phase-coexistence region for the the Ising model on Tb;A is given by (2.10).
As a remark, it is worth noting that (2.14) and (2.15) are really the important
estimates. In the proof of Proposition 1 we could replace the use of (2.13) with
the fact that from Dobrushin’s uniqueness condition, for each b, for T large
enough (depending on b), there is a unique Gibbs distribution regardless of
the value of h.
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3. Some open problems.

1. The graph Tb;A is almost homogeneous but not homogeneous. Is there any
homogeneous graph on which the Ising model presents for some value of
the external field and three values of the temperature, T1 < T2 < T3,
phase uniqueness at temperatures T1 and T3 and phase coexistence at
temperature T2?

2. Is there any graph on which at some temperature T1 the Ising model
presents phase coexistence if and only if h = 0, but at some larger temper-
ature T2 > T1 it presents phase coexistence also for some nonnull value of
the external field?

Note added in revision. After this paper was completed, problem 2 above
was solved by M. Salzano, who obtained a graph with the required property.
As far as we know, problem 1 is still open.
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