
The Annals of Applied Probability
1997, Vol. 7, No. 4, 953–971

MAXIMA OF POISSON-LIKE VARIABLES
AND RELATED TRIANGULAR ARRAYS1

By Clive W. Anderson, Stuart G. Coles and Jürg Hüsler
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It is known that maxima of independent Poisson variables cannot be
normalized to converge to a nondegenerate limit distribution. On the other
hand, the Normal distribution approximates the Poisson distribution for
large values of the Poisson mean, and maxima of random samples of Nor-
mal variables may be linearly scaled to converge to a classical extreme
value distribution. We here explore the boundary between these two kinds
of behavior. Motivation comes from the wish to construct models for the
statistical analysis of extremes of background gamma radiation over the
United Kingdom. The methods extend to row-wise maxima of certain tri-
angular arrays, for which limiting distributions are also derived.

1. Introduction. One result of the public concern aroused by the Cher-
nobyl accident in 1986 was the setting up in several Western European coun-
tries of a network of independent monitoring stations for background gamma
radiation [the Argus Project: see En Garde (1993)]. In the United Kingdom
more than 15 monitoring stations have now been in operation for several
years. Each continuously records the arrival of γ-rays and once a day down-
loads aggregated 10-minute counts to a central data bank. The large volume
of data thus accumulated offers an unprecedented opportunity to explore the
temporal and spatial patterns of variation of background radiation. Of par-
ticular interest in any analysis of the data are the unusually high values of
radiation, since the occurrence of exceptionally high levels may be indicative
of some further accidental nuclear emission. This motivates the search for
statistical models on which to base an analysis of the spatial and temporal
characteristics of extremes of background gamma radiation.

The physical laws which govern the behavior of radiation emission suggest
that counts over fixed periods should follow a Poisson law. Fluctuations in both
meteorology and atmospheric conditions as well as imperfections in recording
devices cause modifications in this basic law, resulting in nonstationarity and
perturbations in the marginal Poisson behavior. The aim of this paper is to
develop a framework for modelling the extremal behavior of a sequence of
Poisson variables, which is robust to misspecification of the marginal Poisson
distribution. This falls in the ambit of classical extreme value theory: given a
sequence of independent variables X1� � � � �Xnwith common distribution func-
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tion F, a sequence of normalizing functions un�x� is sought such that

P
(

max
1≤i≤n

Xi ≤ un�x�
)
→ G�x��(1)

where G is a nondegenerate distribution function. In applications, F is gen-
erally unknown, but the class of possible limits G, usually referred to as the
extreme value family, is sufficiently narrow to permit modelling of max1≤i≤n Xi

directly as G.
In the case of Poisson variables with mean λ, this argument fails. Anderson

(1970, 1980) studied the case where the Xi are Poisson variables and found
that there is a sequence of integers In for which limn→∞P�max1≤i≤n Xi =
In or In + 1� = 1, so that no normalizing functions un�x� can be found which
lead to nondegenerate limits in (1). Figure 1 illustrates this behavior for λ = 2.
As n increases, the distribution of max1≤i≤n Xi concentrates increasingly on
a pair of consecutive integers. The asymptotic properties of the sequence of
integers In have been characterized by Kimber (1983). This argument gives no
justification therefore for modelling Poisson maxima through extreme value
distributions.

The theme of this paper is the presentation of an argument which never-
theless justifies the use of extreme value distributions for modelling Poisson
maxima when λ is sufficiently large. Our reasoning is as follows: for large
λ the Poisson distribution can be approximated by a Normal distribution. If

Fig. 1. Distribution of the maximum of n = 10k independent Poisson random variables with
mean 2.
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the Xi in (1) are Normal, it is well known that un can be found so that the
Gumbel limit G�x� = exp�−e−x� is obtained. Consequently, using the Normal
approximation first and then applying (1), we obtain a Gumbel approximation
to the distribution of Poisson maxima. This limiting behavior is formalized in
Sections 2 and 3 and supported by numerical calculations in Section 5. The
argument hinges critically on the relative rates of convergence of the Poisson–
Normal limit and the extreme value limit in (1). The sharpness of the condition
for a Gumbel limit is shown to depend on the number, r, of terms used in a
series expansion for the tail behavior of the Poisson distribution. In Section 6
it is shown too that if the Normal convergence is too slow, then the standard
degenerate behavior of Poisson maxima persists.

Our arguments for a Gumbel limit do not in fact depend critically on the
random variables being Poisson. In Section 4 we show how they extend to
row-wise maxima of certain triangular arrays of variables, each converging in
distribution to normality. We also present some further results about maxima
of triangular arrays, which show that in non-Poisson heavy-tailed cases, both
the Gumbel and Fréchet extreme value distributions and a related nonextreme
value distribution may also arise as limits.

2. The main limit result. For each positive integer n, let Rn� i� i =
1� � � � � n denote independent Poisson random variables with mean λn grow-
ing with n. We study max1≤i≤n Rn� i as n → ∞. As λn grows, the Poisson
distribution of each Rn� i approaches normality, and so we might expect that
for rapidly increasing λn, normality would set in quickly enough for the dis-
tribution of max1≤i≤n Rn� i to resemble that of the maximum of independent
Normal variables. The results to follow show that this is indeed the case, and
they give appropriate growth rates for λn which guarantee it.

The question we address is the following: when is it possible to find func-
tions un�x� and a nondegenerate distribution function G�x� such that

P
(

max
1≤i≤n

Rn� i ≤ un�x�
)
→ G�x��(2)

as n→ ∞, and what forms do un and G then take?
Since the Rn� i are independent, (2) is equivalent to

lim
n→∞nP�Rn�1 > un�x�� = − logG�x��(3)

and this is the expression we mainly work with. An estimate of the probability
in (3) may be obtained from the large deviations results of central limit theory.
The main result used here, Cramér’s theorem [see, for example, Petrov (1975),
page 218], applies to independent identically distributed random variables Xi

whose moment generating function exists in a neighborhood of the origin. If
E�Xi� = 0� VarXi = σ2 and Sn = ∑n

1 Xi, then for x varying with n in such
a way that x→ ∞ and x = o�n1/2�,

P�Sn/σn
1/2 > x�

1 −��x� = exp
(
x2C

(
x

n1/2

))[
1 +O

(
x

n1/2

)]
�(4)



956 C. W. ANDERSON, S. G. COLES AND J. HÜSLER

where C�·� is a power series

C�z� = c1z+ c2z
2 + · · ·

whose coefficients are determined by the moments of the Xi, cj being a func-
tion of moments of order j + 2 and lower. We apply this result initially to
centered unit Poisson variables Xi, replacing n by λn, so that Sn in (4) follows
the same centered Poisson distribution as Rn� i − λn. Thus

P

(
Rn�1 − λn

λ
1/2
n

> xn

)
∼ �1 −��xn�� exp�x2

nC�xn/λ1/2
n ���(5)

when xn = o�λ1/2
n �. The first coefficient of C�·� in this case, for example, is

c1 = µ3/6σ3 = 1/6� µ3 being the third moment of Xi. This argument appears
to require that the sequence �λn� should be integer valued, but in fact a check
on the proof of Cramér’s theorem shows that it works also for continuously
varying λn.

By taking the first r ≥ 0 terms of the C�·� series, we see from (5) that

P

(
Rn�1 − λn

λ
1/2
n

> xn

)
∼ �1 −��xn�� exp

{
c1

x3
n

λ
1/2
n

+ · · · + cr
xr+2
n

λ
r/2
n

}
�(6)

for xr+3
n = o�λ�r+1�/2

n �. Thus the convergence (2) will certainly occur if it is
possible to find un�x� satisfying

un�x� − λn

λ
1/2
n

= xn = o�λ�r+1�/�2�r+3��
n �(7)

and

n�1 −��xn�� exp
{
c1

x3
n

λ
1/2
n

+ · · · + cr
xr+2
n

λ
r/2
n

}
→ − logG�x��(8)

We prove the existence of xn and G satisfying (7) and (8) in two steps. First
we show that if there is a sequence βn for which

n�1 −��βn�� exp
{
c1

β3
n

λ
1/2
n

+ · · · + cr
βr+2
n

λ
r/2
n

}
→ 1�(9)

then there is a positive sequence αn for which (8) holds with xn = αnx + βn
for each fixed x. Then we show that a βn satisfying (9) can always be found.
Proofs of these facts are contained in Lemmas 1 and 2 in Section 3. It is shown
moreover in Lemmas 1 and 2 that, whatever the value of r, for xn of this form,
the limit in (8) is

− logG�x� = e−x�

so that G is a Gumbel distribution; and for each fixed x,

xn ∼ βn ∼ �2 log n�1/2�
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It follows that (7) is satisfied provided

log n = o�λ�r+1�/�r+3�
n ��

and so the convergence in (2) occurs when λn grows faster than �log n�1+2�r+1�−1
.

Our main technical findings may therefore be summarized in the following.

Proposition 1. Let Rn� i denote independent Poisson random variables
with mean λn, and suppose that λn grows with n in such a way that for some
integer r ≥ 0,

log n = o�λ�r+1�/�r+3�
n ��

Then there is a linear normalization

un�x� = λn + λ1/2
n �β�r�

n + αnx�
such that

lim
n→∞P

(
max
1≤i≤n

Rn� i ≤ un�x�
)
= exp�−e−x��

The constants αn and β
�r�
n are specified more fully in the following section.

For the special case when r = 0, these facts may be deduced from the
large deviations result (6) and known extreme value properties of the Normal
distribution. We briefly outline the details for later use. When r = 0, relation
(6) becomes

P

(
Rn�1 − λn

λ
1/2
n

> xn

)
∼ �1 −��xn���

for xn = o�λ1/6
n �, and it is well known [see, e.g., Leadbetter, Lindgren and

Rootzén (1983), page 14] that

lim
n→∞n�1 −��αnx+ β

�0�
n �� = e−x�

for

αn = �2 log n�−1/2

and

β
�0�
n = �2 log n�1/2 − log log n+ log 4π

2�2 log n�1/2
�(10)

Thus, provided

�2 log n�1/2 ∼ αnx+ β
�0�
n = o�λ1/6

n ��
convergence to G�x� = exp�−e−x� in (2) will hold. The condition on λn for this
case is evidently that it should grow faster than �log n�3.
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3. Proofs.

Lemma 1. Suppose that for fixed r there exists a sequence βn = o�λ1/2
n � for

which (9) is true. Then there exists a sequence αn > 0 for which

n�1 −��xn�� exp
{
c1

x3
n

λ
1/2
n

+ · · · + cr
xr+2
n

λ
r/2
n

}
→ e−x�(11)

for each fixed x, with xn = αnx+ βn�

Proof. On taking logs in (11) and using the fact that, as x → ∞, �1 −
��x�� ∼ exp�−x2/2�/�x√2π�� we see that it will be enough to prove

lim
n→∞

x2
n

2
+ log xn +

1
2

log 2π − x2
nCr�xn/λ1/2

n � − log n = x�(12)

where Cr�·� denotes the truncated series

Cr�z� =
r∑

j=1

cjz
j�

Write hn�x� = x2/2 + log x+ �1/2� log 2π − x2Cr�x/λ1/2
n �. By assumption

lim
n→∞hn�βn� − log n = 0�

so (12) will be proved if we show

lim
n→∞hn�αnx+ βn� − hn�βn� = x�(13)

To prove (13) let µn�x� = h′
n�x�. Then

µn�x� = x+ x−1 − xpn�x��
where pn�x� =

∑r
1�j+ 2�cj�x/λ1/2

n �j, and so, since βn → ∞ and βn = o�λ1/2
n �,

µn�βn� ∼ βn�

It follows that

βn +
x

µn�βn�
∼ βn�

and that

µn

(
βn +

x

µn�βn�
)
∼ µn�βn�(14)

each uniformly over compact sets of x.
From the mean value theorem, for fixed x,

hn

(
βn +

x

µn�βn�
)
− hn�βn� = x

µn�βn + �ξn/µn�βn���
µn�βn�

�
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for some ξn lying between 0 and x. By the uniformity in (14) the right-hand
side converges to x, and (11) is proved, with αn = 1/µn�βn�. ✷

Lemma 2. If log n = o�λn�, then for each r ≥ 0 the equation

hn�x� =
x2

2
+ log x+ 1

2
log�2π� − x2

r∑
j=1

cj

(
x

λ
1/2
n

)j

= log n(15)

has a solution β
�r�
n with the property

β
�r�
n ∼ �2 log n�1/2� n→ ∞�(16)

Moreover β
�r�
n is the only solution of (15) in the region x = o�λ1/2

n �.

Proof. We first prove existence of a solution β
�r�
n of hn�x� = log n in the

region x = o�λ1/2
n �, and then show that β�r�

n must satisfy (16) and is unique.

To start, note that if x = o�λ1/2
n � and x → ∞ then hn�x� ∼ x2/2. Let

ρn = �log n�/λn. Then λnρ
1/2
n = o�λn� and log n = o�λnρ1/2

n �, so that

hn�λ1/2
n ρ1/4

n � ∼ λnρ
1/2
n /2 > log n�

for large enough n. On the other hand, for any fixed x0, if n is large enough,

hn�x0� < log n�

But hn�x� is continuous, so for each large enough n, the equation hn�x� = log n
has a solution in the interval �x0� λ

1/2
n ρ

1/4
n �. Moreover, any such solution β

�r�
n

must satisfy

log n = hn�β�r�
n � ∼ �β�r�

n �2/2�

and so (16) must hold.
Uniqueness is established by showing that, for n large enough, hn�x� is

strictly increasing in any interval of the form �x0� λ
1/2
n εn�, where x0 > 0 is

arbitrary and εn > 0 converges to 0. This follows, for example, from the easily
verifiable fact that

lim
n→∞

h′
n�x�
x

− 1 − 1
x2

= 0

uniformly in such an interval. ✷

Remark 1. We note from (16) that the scaling constants αn defined in
Lemma 1 satisfy

αn = 1/µn�β�r�
n � ∼ �2 log n�−1/2�(17)
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Remark 2. For explicit expressions for β
�r�
n we can argue as follows. Let

β
�0�
n denote the location constant (11) for the r = 0 case, and set β�r�

n = β
�0�
n +δn.

Then, expanding hn�β�0�
n + δn� − log n about β�0�

n , we find

−(
β
�0�
n

)2
r∑
1

cj

(
β
�0�
n

λ
1/2
n

)j

+ δn

(
β
�0�
n + 1

β
�0�
n

−β
�0�
n

r∑
1

�j+2�cj
(
β
�0�
n

λ
1/2
n

)j)
+ o�δn� = 0�

whence

δn = β
�0�
n

∑r
1 cj�β�0�

n /λ
1/2
n �j

1 −∑r
1�j+ 2�cj�β�0�

n /λ
1/2
n �j + o�1/β�0�

n �

= β
�0�
n

r∑
1

cj

(
β
�0�
n

λ
1/2
n

)j(
1 +

r∑
1

�j+ 2�cj
(
β
�0�
n

λ
1/2
n

)j

+ o

(
1

β
�0�
n

))
�

(18)

Only terms nonnegligible in comparison to �log n�−1/2 need be retained in this
expression, since terms of order o�αn� will not affect the limiting distribution
[Feller (1971), page 253]. The above gives a first correction to β�0�

n . In principle,
further correction terms may be found by expanding around the new approxi-
mate β�r�

n and retaining only terms nonnegligible in comparison to �log n�−1/2.
For r = 1 we find

β
�1�
n = �2 log n�1/2 − log log n+ log 4π

2�2 log n�1/2
+ c1

2 log n

λ
1/2
n

�

and for r = 2,

β
�2�
n = �2 log n�1/2 − log log n+ log 4π

2�2 log n�1/2

+ �2 log n�1/2
(
c1

�2 log n�1/2

λ
1/2
n

+ �c2 + 3c2
1�
�2 log n�

λn

)
�

For the unit Poisson, c1 = 1/6 and c2 = −1/8.

4. Maxima of triangular arrays. The result in Proposition 1 may use-
fully be viewed in the wider context of the general theory of maxima of triangu-
lar arrays. A central problem in this theory is as follows. Suppose that we are
given a triangular array of random variables �Sn� i� i = 1� � � � � n� n = 1�2� � � ��,
independent and identically distributed in each row, and with common distri-
bution function Fn in the nth row. If the row distributions Fn converge weakly
to some nondegenerate limit H as n→ ∞, what are the possible nondegener-
ate limit distributions, G, say, for

max
i≤n

�Sn� i − bn�/an

for suitable constants an > 0 and bn, and when does convergence to a specific
G occur?
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For this general problem, it is clear that the class of limit distributions G
contains the extreme value distributions. Also, a simple sufficient condition
for convergence of maxi≤n�Sn� i − bn�/an to an extreme value limit G is evi-
dently that H should belong to the max domain of attraction of G and that
convergence of Fn to H should be fast enough in the upper tail. A specific
condition for the latter (by an argument similar to that in the r = 0 case at
the end of Section 2) is that, for each τ > 0,

1 −Fn�sn� ∼ 1 −H�sn�(19)

for sufficiently large sn ≤ yn�τ�, where yn�τ� satisfies 1 −H�yn�τ�� ∼ τ/n as
n→ ∞.

Proposition 1 goes beyond this simple result in the special case of scaled
Poisson variables Sn� i by showing that a weaker condition than (19) can hold
for them and still be sufficient for a Gumbel limit G. Moreover the argu-
ment leading to Proposition 1 uses the Poisson nature of the variables only
to guarantee the applicability of Cramér’s theorem (4), and so the conclusion
of Proposition 1 can be expected to hold in other cases when Fn is a convo-
lution. What is required is that each variable Sn� i should be representable
as a sum, suitably scaled, of independent and identically distributed random
variables whose moment generating function exists in a neighborhood of the
origin. Specifically, let Uj� j ≥ 1 denote i.i.d. random variables whose moment
generating function exists in an open neighborhood of the origin, and suppose
that for some sequence of integers kn,

Sn� i
d=
( ∑
j≤kn

Uj − ckn

)/
dkn

where ck = kµ and dk = σk1/2 with µ = E�U1� and σ2 = Var�U1�. Then, by
the same arguments as led to Proposition 1, we have Proposition 2.

Proposition 2. For each positive integer n, let Sn� i� i = 1� � � � � n denote
independent random variables, each of which is a sum, scaled to zero mean
and unit variance, of kn independent and identically distributed random sum-
mands whose moment generating function exists in an open interval containing

the origin. If log n = o�k�r+1�/�r+3�
n � for some integer r ≥ 0, then

lim
n→∞P

(
max
1≤i≤n

Sn� i ≤ αnx+ β
�r�
n

)
= exp�−e−x��

where αn and β
�r�
n are the normalizing constants defined in the previous section.

Though Proposition 2 suffices for the immediate needs of our modelling
problem (see Section 6 below), it is interesting to explore the limiting behavior
of maxima of triangular arrays more generally. In Proposition 2 the existence
of a moment generating function is somewhat restrictive, excluding heavy-
tailed distributions. To investigate a heavy-tailed case in which the Sn� i still
converge to normality, suppose that E�U1�2+δ <∞ for some δ > 0 and that the
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distribution function, K, say, of the �Uj−µ�/σ has regularly varying tail, K̄ ∈
�−α for some α > 2. Then, for each i, Sn� i properly normalized converges still
to a normal random variable, but the moment generating function condition
is not satisfied.

To study this case we use a large deviations result of A. V. Nagaev (1969a)
[see also S. Nagaev (1979)], which shows under the conditions above that

P�Sn�1 > x� = P

( kn∑
1

Ui > knµ+ k1/2
n xσ

)

= �1 −��x���1 + o�1�� + knK̄�k1/2
n x��1 + o�1��

(20)

for kn → ∞ and x ≥ 1.
The following heuristic argument based on (20) indicates the kind of limit

distributions now to be expected for maxi≤n Sn� i. Multiplying (20) by n and
taking exponentials suggests that for large x

P
(

max
i≤n

Sn� i ≤ x
)
≈ �n�x�Knkn�k1/2

n x��(21)

so that a limiting distribution for maxSn� i might be expected to coincide with
a limit distribution for the maximum of two independent random variables,
one of which is the maximum of n independent standard normal variables and
the other the maximum of nkn independent copies of �Uj − µ�/σk1/2

n . Let the
sequence b∗k be such that kK̄�b∗k� → 1 as k → ∞. Loosely speaking, b∗k is a
measure of the location of the distribution of maxi≤k�Ui−µ�/σ . It follows that
b∗nkn/k

1/2
n is a measure of the magnitude of maxj≤nkn�Uj−µ�/σk

1/2
n , the second

random variable in our informal interpretation above. Similarly �2 log n�1/2 is
approximately the order of magnitude of the maximum of n i.i.d. standard
normal random variables, the first term in the informal interpretation. Sup-
pose

�2 log n�1/2

b∗nkn/k
1/2
n

→ x0 ≤ ∞�(22)

as n→ ∞. A value of x0 = ∞ suggests that in (21) the normal maximum will
dominate, and so maxSn� i will converge to a Gumbel distribution: a value
x0 = 0 on the other hand suggests that the term based on the maximum Uj
will dominate, and so a Fréchet limit distribution will result. The following
proposition makes these rough arguments precise, and clarifies the behavior
when 0 < x0 <∞. In the latter case a nonextreme value limit is found.

Proposition 3. For each positive integer n, let Sn� i� i = 1� � � � � n denote
independent random variables, each of which is a sum, scaled to zero mean
and unit variance, of kn independent and identically distributed random sum-
mands Uj with distribution function K. Suppose that E�Uj�2+δ < ∞ for some

δ > 0, that K̄ ∈ �−α for some α > 2, and that (22) holds for some x0 ≤ ∞.



MAXIMA OF POISSON-LIKE VARIABLES 963

(i) If x0 = ∞� then

lim
n→∞P

(
max
i≤n

Sn� i ≤ αnx+ β
�0�
n

)
= exp�−e−x��

(ii) If 0 ≤ x0 <∞, then

lim
n→∞P

(
max
i≤n

Sn� i ≤ b∗nknx/k
1/2
n

)
=

{
exp�−x−α�� for x ≥ x0�

0� for x < x0�

Proof. (i) Suppose x0 = ∞. Then for any real x and any B > 0,

αnx+ β
�0�
n ∼ β

�0�
n = �2 log n�1/2 > Bb∗nkn/k

1/2
n

eventually. From (20),

nP
(
Sn�1 > αnx+ β

�0�
n

) = n�1 −��αnx+ β
�0�
n ���1 + o�1��

+ nknK̄�k1/2
n �αnx+ β

�0�
n ���1 + o�1���

The first term on the right here converges to e−x while the second is bounded
above by

nknK̄�Bb∗nkn� ∼ B−α�

which can be made arbitrarily small by choice of B. Thus

lim
n→∞nP

(
Sn�1 > αnx+ β

�0�
n

) = e−x

which proves the assertion.
(ii) Suppose x0 < ∞. If x > x0, then xb∗nkn/k

1/2
n ≥ B�2 log n�1/2 eventually

for some B > 1, and so n�1 − ��xb∗nkn/k
1/2
n �� is eventually bounded above by

n�1−��B�2 log n�1/2��, which tends to 0 as n→ ∞. It follows that the second
term in (20) dominates, and that

nP
(
Sn�1 > xb∗nkn/k

1/2
n

) ∼ nknK̄�b∗nknx� ∼ x−α�

If x < x0, then xb∗nkn/k
1/2
n ≤ θ�2 log n�1/2 eventually for some θ < 1, and so, by

(20) again, eventually

nP
(
Sn�1 > xb∗nkn/k

1/2
n

) ≥ n
(
1 −��θ�2 log n�1/2�) → ∞�

These two limits prove the assertion. ✷

For a lighter-tailed case intermediate between those of Propositions 2 and
3, suppose that the Uj are nonnegative and that �Uj−µ�/σ has an absolutely
continuous distribution with probability density function satisfying

K′�x� ∼ exp�−x1−ε�(23)

as x→ ∞, for some ε ∈ �0�1�. Then

K̄�x� ∼ xε exp�−x1−ε�/�1 − ε�
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so that the tail decays faster than a regularly varying function, but the mo-
ment generating function condition of Proposition 2 is not satisfied. The func-
tion K is a member of the subexponential family of distributions. A defining
property of this family [Embrechts and Goldie (1980)] shows that for each
fixed k,

P

( k∑
j=1

Uj − kµ > k1/2xσ

)
∼ P

(
max
1≤j≤k

Uj − µ > xσ
)
∼ kK̄�x�(24)

as x → ∞. Nagaev (1969b), Theorem 3, proves that for distributions (23) the
relation (24) continues to hold when k increases as x → ∞, provided that
k�1−ε�/2ε = o�x�. From these facts we get Proposition 4.

Proposition 4. For each positive integer n let Sn� i� i = 1� � � � � n, denote in-
dependent random variables, each of which is a sum, scaled to zero mean and
unit variance, of kn independent and identically distributed nonnegative sum-
mands Uj with finite mean µ and variance σ2. Suppose that the distribution
function K of �Uj − µ�/σ is absolutely continuous and has density satisfying

(23). Suppose also that kn = o�log n�2ε/�1−ε�. Then

lim
n→∞P

(
max
i≤n

Sn� i ≤ un�x�
)
= exp�−e−x��

where

un�x� = �log nkn�1/�1−ε�

+ �log nkn�ε/�1−ε�
[

ε

�1 − ε�2
log2 nkn −

1
1 − ε

log�1 − ε� + x

1 − ε

]
�

Proof. Under the condition on the rate of growth of kn, un�x� ∼
�log n�1/�1−ε� so that k

�1−ε�/2ε
n /un�x� = o�1�, and therefore, by Theorem 3

of Nagaev (1969b), (24) holds with x replaced by un�x�. The conclusion of
Proposition 4 follows directly from this by a short calculation. ✷

The Gumbel limiting distribution in Proposition 4 arises because, for kn
growing slowly enough, the tail of Sn� i resembles that of its summands, the
Uj. When kn grows much faster [in fact, so that �log n��1+ε�/�1−ε� = O�kn�],
the tail of Sn� i ultimately resembles that of the Normal distribution [Nagaev
(1969b), Theorem 1], and accordingly we would again expect a Gumbel limit
for maxSn� i, though with different normalizing constants. This fact may be
established rigorously by arguments similar to those in Proposition 2 above.
For intermediate rates of growth of kn there are subtle combinations of the two
dominant forms of tail behavior of the Sn� i. Nagaev (1969b) gives a compre-
hensive discussion, from which further limiting results for maxi≤n Sn� i may
be deduced. In all cases, though for the different reasons outlined above, it is
found that the Gumbel limiting distribution exp�−e−x� persists.
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Suppose now that we drop the assumption of a normal limiting distribution
for Sn� i as n → ∞, and instead assume that Sn� i = �∑j≤kn Uj − ckn�/dkn
converges, for suitable normalizing constants, to a stable distribution Gαβ as
n → ∞, where 0 < α < 2 and the noncentrality parameter β lies in �−1�1�.
Under certain conditions on the pseudomoments of order r of the Uj [see
Christoph and Wolf (1992), Section 5.2], we have the following large deviations
result, which we assume to hold.

For α < 2 and α < r < 1 + α,

P

(( ∑
j≤k

Uj − ck

)/
dk > x

)
= 1 −Gαβ�x� +O�k−�r−α�/αx−r�(25)

as x→ ∞.
The stable distribution Gαβ has the well-known tail behavior:

1 −Gαβ�x� ∼ cx−α(26)

as x→ ∞, for some constant c.
A direct calculation based on (25) and (26) gives Proposition 5.

Proposition 5. Under the assumption (25) with α < 2, we have for any
sequence kn → ∞,

lim
n→∞P

(
max
i≤n

Sn� i ≤ �cn�1/αx
)
= exp�−x−α�

for x > 0.

5. Numerical results for Poisson maxima. Figure 2 compares the dis-
tribution function of a scaled version of the Poisson maximum max1≤i≤n Rn� i

with its limiting Gumbel distribution, for n = 10�100, 1,000 and 10,000. The
Poisson means are taken to be λn = �log n�7/2, giving a rate of growth in the
r = 0 region of Proposition 1. Accordingly, the normalizing constants αn and
β
�0�
n are used. The comparison is made for clarity on a double log scale, so that

what is actually plotted is

− log
(
− logP

(
max
1≤i≤n

Rn� i ≤ un�x�
))

vs. x�

where un�x� = λn + λ
1/2
n �β�0�

n + αnx�. According to Proposition 1, the plotted
step function should converge as n → ∞ to the line y = x. What is evident
from the figure is that the convergence is slow, as might have been expected
from the known slowness of convergence of normal maxima to a Gumbel limit.
However, over the central range −1�53 ≤ x ≤ 4�6, which contains 98% of the
limit distribution, the agreement is remarkably good, even for n = 10.

Figure 3 illustrates a case when λn, here taken to be �log n�5/2, grows more
slowly with n. This corresponds to an r = 1 region in Proposition 1. The step
function plotted in this case is based on the normalizing constants αn and β�1�

n .
The behavior is similar to that in Figure 2, though λn reaches only about a
tenth of the size.
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Fig. 2. Distribution function of the normalized maximum of n independent Poisson random vari-
ables with mean λn = �log n�7/2. Double log vertical scale. Normalization corresponding to r = 0
case of Proposition 1.

Figure 4 illustrates the need for modified normalizing constants in the r = 1
case. For λn = �log n�5/2 as in Figure 3 and for n = 1�000 it compares the dis-
tribution of max1≤i≤n Rn� i normalized by αn�β

�1�
n , with the same distribution

normalized by αn�β
�0�
n . Though at this value of n neither normalization gives

a perfect correspondence, the r = 1 normalization does appear preferable, as
would be expected from Proposition 1.

Figure 5 shows the quality of convergence in relation to the growth
of λn for the r = 1 case with λn = �2 log n�5/2. The plotted points are
− log�− logP�max1≤i≤n Rn� i ≤ un�x��� for x = −1�53� 0�37� 4�60, the
first, fiftieth and ninty-ninth percentiles of the Gumbel distribution (in-
dicated by dashed lines on the plot). The same normalizing sequence
un�x� = λn + λ

1/2
n �β�1�

n + αnx� is used as in Figures 3 and 4. Only proba-
bilities for values of λ at intervals of 20 are plotted, but the results show both
the slowness of convergence and its oscillatory character, a consequence of
discreteness. Again it is clear that the agreement is closer in central parts of
the distribution than in the tails. This suggests that a penultimate approx-
imation by a non-Gumbel extreme value distribution with shape parameter
converging to 0 as n → ∞ is likely to improve the approximation, as it does
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Fig. 3. Distribution function of the normalized maximum of n independent Poisson random vari-
ables with mean λn = �log n�5/2. Double log vertical scale. Normalization corresponding to r = 1
case of Proposition 1.

for normal and other maxima [Fisher and Tippett (1928), Gomes (1994)]. This
can in fact be shown to be the case by arguments similar to those in Section 3.

6. The Poisson case when � n� o�log n�. When λn grows more slowly
than log n, we now show that no limiting distribution is possible for Poisson
maxima. Thus the growth condition in Proposition 1 is close to being necessary
as well as sufficient for a Gumbel limit. To see this we need some further
notation. Let Rn� i denote independent Poisson variables as in Section 2 and
let Fn denote their distribution function and �n their survivor function 1−Fn.
We introduce a continuous distribution function Fc�n which agrees with Fn

on the integers and is defined by linear interpolation in − log �n elsewhere.
Thus for any x,

�n�x+ 1� ≤ �c� n�x� ≤ �n�x��(27)

where �c� n is the survivor function of Fc�n. Since �c� n is strictly decreasing,
we may define a sequence of constants γc�n by the equation

n�c� n�γc�n� = 1(28)
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Fig. 4. Effect of different normalizations on the distribution function of the normalized maximum
of n independent Poisson random variables with mean λn = �log n�5/2. Double log scale; n = 1000.
Step function labelled r = 1 based on normalizing constants asserted by Proposition 1 to be
appropriate for this case; function labelled r = 0 based on normalization appropriate for faster-
growing λn.

for each positive integer n. It is easy to see that for large n the γc�n are the
approximate e−1 quantiles of the distribution of the maximum of n indepen-
dent random variables with distribution function Fc�n, and so they provide an
approximation to the location of the distribution of max1≤i≤n Rn� i.

We first establish a lower bound on the rate of growth of γc�n when λn =
o�log n�. From (27) and (28) we have

1 = n�c� n�γc�n� ≥ n�n�γc�n + 1� ≥ n
λ
�γc�n+2�
n

�γc�n + 2�! e
−λn = n

λ
g
n

g!
e−λn�(29)

say, where g = �γc+2�. On taking logs of (29) and using Stirling’s approxima-
tion g! ∼ �2π�1/2e−ggg+1/2 we find that

log n− λn + g�log�eλn� − logg� − 1
2 logg(30)

must be bounded above. Necessarily therefore g > eλn eventually. Note that
in this region, (30) is monotonic decreasing in g. To obtain a better bound
suppose that g = ��λn log n�1/2� ≤ �λn log n�1/2. Since λn = o�log n�, such a g
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Fig. 5. The quality of convergence in relation to growth of λn for x = −1�53�0�37�4�60 when
λn = �2 log n�5/2�

is certainly in the region g > eλn for large enough n. So expression (30) is no
less than

log n− λn + �λn log n�1/2
{

1 + log
(

λn
log n

)1/2}
− 1

4
log�λn log n�

≥ log n
{

1 − λn
log n

+
(

λn
log n

)1/2

log
(

λn
log n

)1/2

− log�λn log n�
4 log n

}
�

which goes to ∞ with n. Thus it must be true that

g > �λn log n�1/2

for all large enough n.
However, for any sequence γ growing in such a way that γ/�λn log n�1/2 is

bounded away from 0 it is true that

lim
n→∞

�n�γ + 1�
�n�γ�

= 0�(31)

To prove (31) note that

e−λn
λm+1
n

�m+ 1�! < �n�m� < e−λn
λm+1
n

�m+ 1�!
(

1 − λn
m+ 2

)−1
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for integer m > λn − 2. Thus

�n�γ + 1�
�n�γ�

<
λn

�γ + 2�
(

1 − λn
�γ + 2�

)−1

<
λn
γ

(
1 − λn

γ

)−1

�

which goes to 0 as n increases.
It is easily verified from (31) and the definition of �c� n that for any positive

ε and for γ/�λn log n�1/2 bounded away from 0,

lim
n→∞

�c� n�γ + ε�
�c� n�γ�

= 0�(32)

In particular (32) holds for γ = γc�n and γ = γc�n − ε, so that

n�c� n�γc�n + ε� = �c� n�γc�n + ε�
�c� n�γc�n�

→ 0

and

n�c� n�γc�n − ε� = �c� n�γc�n − ε�
�c� n�γc�n�

→ ∞�

as n→ ∞. It follows that
lim
n→∞Fn

c�n�γc�n + ε� = 1�

lim
n→∞Fn

c�n�γc�n − ε� = 0

and so that
lim
n→∞Fn

n�γc�n + 1 + ε� = 1�

lim
n→∞Fn

n�γc�n − ε� = 0�

Thus we have proved the following proposition.

Proposition 6. When λn = o�log n�, there is a sequence of integers In such
that

lim
n→∞P

(
max
1≤i≤n

Rn� i = In or In + 1
)
= 1�

In this case, therefore, max1≤i≤n Rn� i behaves in the same way as when λn
is constant.

7. Discussion. For practical applications we require an approximate fam-
ily for the distribution of max1≤i≤n Ri where the Ri have unknown distribu-
tion. What we have shown in this paper is that if the Ri are Poisson with mean
λ and we consider max1≤i≤n Ri as a point on a suitable path of variables of
the form max1≤i≤n Rn� i, where the Rn� i are Poisson with mean λn, a Gumbel
approximation is valid. This is supported also by numerical calculations. As
shown in Propositions 2, 3 and 4, our results do not depend critically on the Ri

being Poisson variables; the Gumbel limit for maxima is found to be valid for
the entire class of distributions satisfying the conditions of Cramér’s theorem,
and also for some distributions with heavier tails. This robustness is crucial
for statistical applications where the parent population is unknown.
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Returning specifically to the case of Poisson variables, we obtain also that
the Gumbel approximation for maxima will not be good if λ is so small rela-
tive to n that the degenerate limit of Proposition 6 is dominant. In the case
of gamma radiation counts, λ is typically of the order λ ≈ 1000 for 10-minute
counts, of which there are approximately 53,000 in a year. The relative mag-
nitude of these particular values suggests it is entirely reasonable to model
annual maxima of such counts using an extreme value distribution.
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