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LIMIT THEORY FOR BILINEAR PROCESSES
WITH HEAVY-TAILED NOISE

By RicHARD A. Davis! AND SIDNEY I. RESNICK 2

Colorado State University and Cornell University

We consider a simple stationary bilinear model X, = cX,_,Z,_; + Z,,
t=0,%+1,+2,..., generated by heavy-tailed noise variables {Z,}. A com-
plete analysis of weak limit behavior is given by means of a point process
analysis. A striking feature of this analysis is that the sample correlation
converges in distribution to a nondegenerate limit. A warning is sounded
about trying to detect nonlinearities in heavy-tailed models by means of
the sample correlation function.

1. Introduction. Current efforts in time series analysis attempt to deal
with data which exhibit features such as long range dependence, nonlinearity
and heavy tails. There are numerous data sets from the fields of telecommu-
nications, finance and economics which appear to be compatible with the
assumption of heavy-tailed marginal distributions. Examples include file
lengths, CPU time to complete a job, call holding times, interarrival times
between packets in a network and lengths of on /off cycles [Duffy, McIntosh,
Rosenstein and Willinger (1993, 1994); Meier-Hellstern, Wirth, Yan and
Hoeflin (1991); Willinger, Taqqu, Sherman and Wilson (1995)].

A key question, of course, is how to fit models to data which require
heavy-tailed marginal distributions. In the traditional setting of a stationary
time series with finite variance, every purely nondeterministic process can be
expressed as a linear process driven by an uncorrelated input sequence. For
such time series, the autocorrelation function (ACF) can be well approxi-
mated by that of a finite order ARMA( p, q) model. In particular, one can
choose an autoregressive (AR) model of order p [AR( p)] such that the ACF of
the two models agree for lags 1,..., p [see Brockwell and Davis (1991), page
240]. So from a second order point of view, linear models are sufficient for
data analysis. In the infinite variance case, we have no such confidence that
linear models are sufficiently flexible and rich enough for modeling purposes.

For a stationary time series {X,} with infinite variance, there is no ana-
logue of a linear process representation or approximation to it. If {X,} is the
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linear process,
o0
X, = Z l[Ith,J—,
j=0

where {Z,} is an iid sequence of random variables with infinite variance, then
one can still define an analogue of the ACF in terms of the coefficients {¢fj} of
the linear filter. Namely, p(h) =X7_ ¢,/ ijol//jz. Somewhat surpris-
ingly, the sample ACF defined for heavy-tailed data as

ryZ 1h X, X,

og(h) = —/—/————, h=1,2,...,

Pr ( ) n_ th
has a number of desirable properties such as consistency [ p5(h) —p p(h)]
and a reasonably fast rate of convergence [see Davis and Resnick (1985b,
1986)]. On the other hand, if the model is nonlinear, then it is not clear what,
if anything, p(%) converges to. One of the principal objectives in this paper is
to show that for a class of bilinear models, p; (%) converges in distribution to
a nondegenerate random variable depending on A. This means that other
model fitting and diagnostic tools which rest on the sample ACF, such as the
Akaike Information Criterion (AIC) for identifying the order of an AR model
and the Yule-Walker estimates for fitting an AR model will not converge to
constants either, but will converge in distribution to nondegenerate random
variables.

Failure to account for nonlinearities can have dramatic consequences in
the analysis and be quite misleading. Additional discussion is contained in
Feigin and Resnick (1996). Here we briefly illustrate the effect of nonlineari-
ties on estimation procedures for autoregressive processes. We simulated
three independent samples (test;, i = 1,2,3) of size 5000 from the bilinear
process

(1.1) X,=01Z, X, ,+Z,, t=0,+1,+2,...,
where {Z,} are iid Pareto random variables,
P[Z,>x] =1/x, x> 1.

A stationary solution for (1.1) is of the form

o k-1
(1.2) X, =2+ Y, (o.1)k( Zt_j)zf_k.
k=1 Jj=1
The erratic nature of the behavior of py is illustrated in Figure 1, which
graphs the heavy-tailed ACF for test,, i = 1,2,3. The graphs look rather
different, reflecting the fact that we are basically sampling independently
three times from the nondegenerate limit distribution of the heavy-tailed
ACF. If one were not aware of the nonlinearity in the data, one would be
tempted to model with a low order moving average based for example on the
left-hand plot. Furthermore, partial autocorrelation plots and plots of the AIC
statistic as a function of the order of the model all show similar erratic
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Fic. 1. Heavy-tailed ACF for three bilinear samples.

behavior as one moves from independent sample to independent sample. So
failure to account for nonlinearity means there is great potential to be misled
in the sorts of models one tries to fit.

In contrast, we present in Figure 2 comparable heavy-tailed ACF plots for
three independent samples of size 1500 of AR(2) data. The AR(2) is

X,=13X, ,— 07X, ,+Z,, t=0,+1,+2,...,

and the innovations have a Pareto distribution as for the bilinear example.
Here, the pictures look identical, reflecting the fact that we are sampling
from degenerate distributions.

The potential for encountering such problems in modeling real data is
illustrated in Section 5 of Resnick (1995), where 3802 interrarrival times of
ISDN D-channel packets are analyzed. From the point of view of the AIC
criterion, the best fitting autoregression model is found and the autoregres-
sive coefficients are estimated by the linear programming (LP) estimators of
Feigin and Resnick (1994). The residuals of the autoregressive model are
analyzed and pass a test for independence [Feigin, Resnick and Stéarica
(1995)]. However, when the residuals are split into three subsamples and the
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Fi1c. 2. Heavy-tailed ACF for three autoregressive samples.

sample ACF is computed for each of the subsamples, we obtain three differ-
ent looking functions (see Figure 3). One explanation could be the presence of
nonlinearity in the data.

Section 2 of this paper deals with some mathematical preliminaries about
tail properties of variables of the type appearing as the summands in (1.2).
Section 3 provides a detailed point process analysis of asymptotic properties
of a simple bilinear process. In Section 4 we consider some corollaries of the
limit results of Section 3 with emphasis on the limiting behavior of the
extremes, partial sums and sample autocorrelations from observations on a
bilinear model. Unlike the linear process case, the sample autocorrelations of
the bilinear process have nondegenerate limit laws.

The principal thrust of this paper is to point out that second order methods
depending on the sample autocorrelation function for identification and esti-
mation of models involving nonlinearities can misguide the analyst and
result in an inappropriate model being selected. In future work, we hope to
discuss the weak limit behavior of higher order nonlinear processes, develop
an estimation theory for a broad class of nonlinear models and develop
methods for the detection of nonlinearities in heavy-tailed phenomena.
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Fic. 3. ACF of partitioned data.

2. Analytic results on tail weights. We assume throughout that
{Z,, — < n < o} are iid nonnegative random variables with common distri-
bution F' whose tail satisfies

(2.1) 1-F(x)=x"“L(x), a>0,x>0,

where L is slowly varying at infinity. Let ¢ > 0 be a positive constant
satisfying

(2.2) c*/?EZ{/? < 1.,

Then it is easy to see, for instance using Hoélder’s inequality, that

L]-—_-[ '

(2.3) X, =Z + icj(

j-1
2 —
. Zt_,) 2, t=0,+1,42,...,
j=1 1

is a well defined stationary process since the infinite series converges. Fur-
thermore, {X,} satisfies the bilinear recursion

(2.4) X, =cZ, X, 1 +2Z,, t=0,+1,+2,. ...
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Set
Yt(o) =27,
(2.5) ) J-1
YtU) = ]._.[Zt—i th—j’ J=1,
i=1
so that

X, = Y iYW,
j=0
We use the convention that l_[?=1 = 1. The condition (2.2) is stronger than
Liu’s (1989) condition for convergence of the infinite series in (2.3), but is
required for the regular variation analysis of the tail of the distribution of X,.
We now begin with a series of lemmas designed to understand the tail
behavior of Y, as well as sums of these variables.

LEMMA 2.1. Suppose Yi,...,Y, are nonnegative random variables (but
not necessarily independent or identically distributed). If Y, has distribution
F satisfying (2.1) and if as x — o,

PY; > «] .
(2.6) 1——F(x)_)ci’ i=1,...,k,
and
(2.7) il LI ] N

' 1-F(x) ’ ’

then

P[Tt Y, > x]

1——F(x) —cy t ey

Proor. Let k = 2. Define b, to satisfy
n(l—F(bn))—>1, n —> x©,

and on (0,] define the measure v by v(x,%] = x~%. The definition of b,
yields vague convergence

nP[y:/bn = ] _)v (414
in the space of measures on (0, ] and (2.6) implies
nP[bn‘l(Yl,YQ) € (dx,dy)] =, cqv(dx)eg(dy) + coe0(dx)v(dy)

in the space of measures on [0, ©]? \ {0}. The proof is completed as in Resnick
[(1987), page 227].
The case for general %k follows by induction. O

We now verify (2.6) and (2.7) for the variables defined in (2.5).
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LEMMA 2.2. For the variables {Y,Y), j > 1} we have, as x — », for all
k>j=1,

P[Yt(j) >x]

. @ i—k
R Py ] o (B2
and
P[Y > x, Y™ > x|
(i) - 0.

P[Y® > x|

PROOF. A result of Breiman (1965) [see also Resnick (1986)] says that if ¢
is a nonnegative random variable satisfying (2.1) and if 7 is another nonnega-
tive random variable independent of ¢ satisfying En? < « for some y > «,
then

P[né>x] ~ En*P[ £€> x], X —> %,

Since Y, satisfies (2.5) and EZ} < « for a/2 < y < «a, this Breiman result
applies to give, for j > 1,

j-1 a/2
PlYD > x| ~ E( l_[Z“-) P[Z? > x|
i=1
= (BZ¢/2) 'x /2L(Vx).

The result (i) now easily follows.
For (i1), observe that

Py >x, Y > x|
=P

j-1
(il:IIZt_i)th_j > x,

= P[AZ} ;> x, ABZ} , > x

i=1 i=j

Jj—1 k-1
nzt_i)( H_zt_i)zak >

<P[A<s, AZ? ;>«x| +P[A> ¢, AZ} ;> x, ABZ} , > x|
X X
<P[Al,_ 27 ;> «x| + P[Zf,j > —,BZ2 , > —]
- & &

=1+1I.
Now I is handled by the result of Breiman quoted above:

P[A1[Asg]zf,j > x]

lim%s:jp P[ZIQ S x] = E(Al[Asg])“/2 -0, e— 0.
For II we have
IT e*/?P[Z2 > x|E(B)“*&°/?P[ 22 > x| .
P[zZ>x] ~ P[2Z > x| ”

This completes the proof of (ii).
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A similar proof works if either j or £ is 0. O
Combining Lemmas 2.1 and 2.2 yields the following corollary.

COROLLARY 2.3. If{Z,} satisfies (2.1), then

k .
~ Y 2 (EZy?) P[22 > &), xoe

k
Y oY > x
| Z

Jj=1

(2.8) P

We now extend Corollary 2.3 so that the number of summands can be
infinite.

COROLLARY 2.4. If{Z,} satisfies (2.1) and c satisfies (2.2), then

. P[ ;c':leYt(j) >x] - ja/2 ay/2)/71 ce/?
(29) 3}1_1’)130 P[le > x] = j;lc (EZl ) - (1 o ca/QEZUc/Z) .

ProoF. The proof follows closely the argument of Cline (1983) outlined in
Resnick [(1987), page 228]. Clearly for any %k > 1,

p

K

k
E cht(j) > x
=1

< P[ Y YY) > x

Jj=1

so that applying Corollary 2.3,
U P[TiLY 9 >x]  P[EELclVY > g
hgrcrilff P|Z? > x| = P[22 > x]

- fcf'aﬂ(EZf/Z)j‘l.
j=1

Letting £ — « yields a lower bound for (2.9).
The upper bound which allows Breiman’s (1965) result to work also allows
us to pass a limit inside an infinite summation which results in

, Zj-’:lP[Cth(j) > x] - /2
coe P[2Z>x]  (1-ciEZi )

To get the upper bound for (2.9) we proceed as in Resnick [(1987), page 229].
Assuming for convenience that 0 < o < 1 (with a similar Hélder argument
when this assumption is not true) we must show

2
fjsx

X 1Echth2—j1[W-z
lim sup -

] —
t JEW?
e P[22 > x| < (const) 2, c’EW,

j=1

for some 8 < «, where

Jj-1

W, = 1__[1Zt,i.
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However,
i-1EcW,Z} Liwzz <
xP[le > x]
o B(Z2 N ) E(Z}5 . )
= J - F.. (dw)———21=%1/
J;c/ow E(Z . ) w, (dw) xP|Z2 > x|

and applying Potter’s inequalities [Bingham, Goldie and Teugels (1987);
Resnick (1987); Geluk and de Haan (1987)], this is bounded by

— i cj[folw(w‘l)laﬂsFWj(dw)(const) + flquWj(dw)]

Jj=1

< ). ¢/2(const) EW? < o
j=1
and the desired result follows. The rest of the proof mimics the material in
Resnick [(1987), pages 229-230]. O

3. Point process convergence. In this section, we investigate the limit
behavior of a sequence of point processes associated with a bilinear time
series model. Let {X,} be the simple first order bilinear time series defined as
a stationary solution to the equations

(3.1) X, =cX, {Z,_ .+ Z,

where {Z,} is an iid sequence of random variables with regularly varying tail
probabilities. Specifically, we assume

(3.2) P[IZ,| >x] =x"*L(x), a> 0, L(x) isregularly varying,

and

P[Z, > x] P[Z, < —x]
Plizi>+ P ™ Pz >q]
as x > »,0 <p <1and g =1 — p. Similar to the condition imposed on ¢ in
Section 2, we assume

(3.4) le|*/*E|Z,|*/* < 1.

Under this condition [see Liu (1989)], there exists a unique stationary
solution to (3.1) given by

(3.3) -q,

X, =) YV,

j=0
where
Zt, lf]:O$
3.5 YW ={ [t
(85) ‘ (nzti)zfj, if j> 1.
i=1

The object of interest in this section is the sequence of point processes based
on the points {b,2X,, t = 1,..., n}, where b, is the 1 — n~! quantile of |Z,],
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that is,

(3.6) b = inf{x: P[1Z,| > x] < n_l}.

Before discussing the relevant limit theory, we quickly review the salient
facts of point process theory.

For a locally compact Hausdorff topological space [E, we let M,(E) be the
space of Radon point measures on E. This means m € M,(b) is of the form

o0
m = Zexi’

i=1
where x; € E are the locations of the point masses of m and &, denotes the
point measure defined by

n

1, ifxeA,
2:(A) = {o, if x & A.
We emphasize that we assume that all measures in M (E) are Radon, which
means that for any m € M, () and any compact K C E, m(K) < «. On the
space M (E) we use the vague metric p(-,-). Its properties are discussed for
example in Resnick [(1987), Section 3.4] and Kallenberg (1983). Note that a
sequence of measures m, € M ,(F) converges vaguely to m, € M ,(E) if for any
continuous function f: E — [0,%) with compact support we have m, (f) —
mo(f), where m,(f) = [ fdm,. The nonnegative continuous functions with
compact support will be denoted by Cz(E).

A Poisson process on F with mean measure u will be denoted by PRM( w).
The primary example of interest in our applications is the case when E,, =
[ —o0,0]™ \ {0}, where compact sets are closed subsets of [ —, ©]™ which are
bounded away from 0.

We begin with the following point process convergence result which under-
pins the main results of this section. This result is a slight generalization of
Proposition 3.2 in Feigin, Kratz and Resnick (1996) to the case when Z, may
have negative values.

PRrROPOSITION 3.1. Suppose the marginal distribution F of the iid sequence
{Z,} satisfies (3.2)~(3.3) and m is a fixed positive integer. Suppose further that
L5 1¢;, is PRM(p), where w(dx) = a(px™* ', o+ q(=2)"" "', o) dx
and {U,,,U;,;, k=1, | > 1} are iid with distribution F. If e; € [—o,o]™
denotes the basis element with ith component equal to 1 and the rest zero and
E, =[—%,2]"\ {0}, then

m
o0

n
_ . . = . . , ,
Z E, 2, i=1,..., m),Z, j,j=1,..., m) Z 8(]391:Sgn(]s‘p1U@lvH»yUs,mfl)
t=1 s=1
o)

+

E(jseq, Uy, sgn(iore, Uit Ug =)
s=1

o0
ot L Een Vs Ust 0P
s=1

in M (E X [, ]™).
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Now for £ = 1,..., m, consider the point processes defined on space E, :=
[ —o,]\ 0 given by

m
k _
D
t=1

where Y,®) is as defined in (3.5). We first establish the joint convergence of
(M, ..., I{™) on M (E,).

PRrROPOSITION 3.2. Under the assumptions of Proposition 3.1, we have
(I(l),...,I(’")) = (IM,..., I™)

m kB _ v
on M'(E,), where I" = ¥{_y&2w, v, U,

Proor. For k €{1,..., m}, the restriction

G(Xqyeney Xy Upyeees ) = (X, Ugyeees Upq)
is a continuous mapping from E, X [—o,%]™ into E, X [—o,»]*1 with the
property that g '(K) is compact for every compact K C E, X [—oe,o]*7 1,
This mapping, therefore, induces a continuous mapping [see Resnick (1987)]
from M, (E,, X [—o,®]™)into M,(E, X [, ©]®*~1) and hence

n 0
13 k.
(37) I = Z b, 2 5.2, 0, Zig 1" = Z Uy jotneos Ug1)?
t=1 s=1
where the convergence is joint in 2 = 1,..., m. If M and —M are continuity

points of F, then this convergence also holds for these point processes when
restricted to the set £, X [—M, M1*~ 1. That is,
1My = I (B x [-M, M]* 7))
(3.8) _
= IMM() =T (E x [-M, M]"7Y))
jointly for & = 1,..., m in M}*(E; X [—oe, o]k~ 1),
Now consider the mapping f,: E;, X [-M, M]*~! — [, defined by

fk(x’ul""’ukfl) = {

Observe that if K is the compact set in F, given by {x: |x| > b}, then
fi ()N (Ey X [-M, M1*~Y) < {x: x| > (b/M"~ )2} x [-M, M]*~ ! which
is compact in E, X [—o,0]* 1 It follows that f, '(K) restricted to E, X
[—M,M]*! is compact for any compact subset K of E,, and since f; is
continuous on the support of I** a.s., we have by Corollary 1.2 of Resnick
(1986) and (3.8) that

(L2Mofrt, I Mo fY) = (TWMo ft L T Mo )

in M;"([El). Since the point processes I* = I* o fk_1 are well defined Poisson
processes, we have as M — oo,

(fl,Mof;I,""fm’Mof;ll) = (I',...,I™)

xPuy wy, VIl <,
17, otherwise.
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pointwise in the vague metric a.s. Noting that I* = I ko ! the conclusion of
the proposition will follow [see Theorem 4.2 in Billingsley (1968)] once we
show that for each %2 and any n > 0,

lim limsupP[ p(TEMe i Tho 1) > n] - 0.

M-» 5 50

By the form of the metric p, it is enough to show for any A € C#(E,) that

(39)  lim limsupP[|Z5"< £t () = It £, ()] > n] =0,

If the support of A is contained in the set G;={x: |x| > 5}, then the
probability in (3.9) is bounded by P[I*(Gs; X K§/) > 1], where & =
(6/M* 1)1/2 and K¢, is the complement of K,, .= [—M, M]*~'. Using (3.7),
this probability converges as n — o to

P[fk(G,XKjl) > 1] -0 as M — o,
which completes the proof. O

PROPOSITION 8.3.  On the space M (E,,) with vague metric p,,,

Proor. Let B = (b, cq] X -+ X (b,,,¢,,] be a bounded rectangle in E,,.
Then either B is bounded away from each of the coordinate axes or intersects
exactly one in an interval [see Davis and Resnick (1985a), page 181]. If B is
bounded away from each of the coordinate axes, then

E( Y ey Y;m))(B)) — nP[b2(Y(,...,Y{™) € B] >0

t=1

by Lemma 2.2. The remainder of the proof of the proposition follows the same
lines of reasoning given for Proposition 2.1 of Davis and Resnick (1985a) and
hence is omitted. O

THEOREM 3.4. Suppose {X,} is the bilinear process (3.1), where the
marginal distribution F of the iid noise {Z,} satisfies (3.2)—(3.3), the constant ¢
satisfies (3.4) and b, is given by (3.6). If ¥;_,¢; is PRM( ) with p given in
Proposition 3.1 and {U, ,, s = 1, k > 1} are iid with distribution F, then:

@ In M,(E)),

s

Ej2etW, o

n o0
)y Epr2x, = )y
t=1 k

—1g=
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where
]_[ i ifk>1,
W, ={""
k), ifk =1,
0, ifk < 1.
G1) In Mp([EhH),
n [e’s} oe)
Z o 2(X, X, 4, X0 = Z Z Ei2( W, gy et W, g1, cFTAW )
t=1 k=1s=1

Proor. (i) Propositions 3.2 and 3.3 imply that

n m
(3.10) 21 b, 2Y ™, Ym) = Y X Ei2WU, 1, Uy pover Z
t= =

on M,(E,). Now the map

s‘ W, rer

IIF18

m
(y1>""ym) e Z ckyk
k=1

induces a continuous map from M,(E,) — M,(E,) and so by the continuous
mapping theorem applied to the convergence in (3.10) we obtain

Epo2ym cky = Z Z Ei2chw,

k=1s=1

M:

t

in Mp(El). As m — o,

m ©
XX szew,, > Zezkw

k=1s=1 k=1s=1

I
—

pointwise in the vague metric and so by Theorem 4.1 in Billingsley (1968), it
suffices to show that for any n > 0 and f € CZ(E,),

3 f(bn‘z ¥ ckY;k)) Y f(brx,)| >
t=1 t=1

k=1

(3.11) lim lim supP[

m— x

n—ow

To prove (3.11) first note that

P[b;2 \n/

t=1

m
XY ® - X,
k=1

>m

SP[”ﬂV(IYJ‘”H > |c|"lYf“')>n

t=1 k=m+1

<nP[b;YY{®] > n/2] + nP|b;2 Y lelflY,®)] > n/z},

k=m+1
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which, by Corollary 2.4,
S50+ (7]/2)7“/2 Z |c|ja/2(E|Z1|a/2)j—1
j=m+1
-0 asm — oo,

The remainder of the proof of (3.11) is now identical to the argument given for
(2.11) in Davis and Resnick (1985a) with this last result substituting for
Lemma 2.3 of the Davis and Resnick paper.

(i) We shall only sketch out the proof in the case & = 1, the general case
being a straightforward adaptation of this argument. First observe that
YO =2Z, Y * D so that

(Yt(l)’ e Yt(m)’ Yt(—l)l? e Yt(_ml— 1))
= (.Yt(l)’ Zt*l(.Yt(fl)l’ ey Yt(irnlli 1))’ .Yt(j)l, e ooy Yt(1n17 1))~
Using a slight modification to the arguments given in Propositions 3.2 and 3.3
we obtain the point process convergence result

n m o0
)» Ep 2,y m, YD,y ) T XX EJRW, jer+ W, 4@ k1)
t=1 k=1s=1
in M,(E,, _,), where the e; are the unit basis elements in R*”~'. Then,
using the continuous mapping of M (E,,,_,) = M,(E,) induced by the func-
tion

m m—1
(Xqseres Xy Upyees 1)~ | 2 ctxy, Y cfuyl,
k=1 k=1
we obtain
n m o0
Zl Eb 2Ty chY®, v by ) = kzl Zl gjsz(ckws,kyckilws,k—l).
t= —1s=

The rest of the proof of (ii) is the same as that given in (i). O

REMARK 3.1. While it was not required in the proofs of the results in this
section, it can be shown that X, has regularly varying tail probabilities with
index «/2. This assertion extends Lemma 2.2 to nonpositive Z, and/or
negative coefficient c¢. A direct proof of this property can be fashioned after
the argument used in Lemma 2.2 as in Cline (1983) for linear processes.

4. Applications. By applying continuous functionals to the basic conver-
gence result of Theorem 3.4, the limiting behavior for a number of statistics
can be easily derived. We now explore some of these applications.

(A) Extremes. The point process convergence in Theorem 3.4(i) allows one
to compute the joint limiting distribution of any collection of upper and lower
extreme order statistics. To illustrate these computations in a simple case, let
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M, = max{X,,..., X,} and note that {6, 2M, < x} = {N,(x,>] = 0}, where N,
is the point process N, = L/_;&;-2x,. It follows that
P[b;2M, < x| = P[N,(x,%] = 0] - P[N(x,*] =0],
where N = X5 _X(_ 62,0y, ,- Now the event {N(x,] = 0} is equivalent to

the event that none of the points {j2c kWs »» =1, k> 1} exceeds x. The
latter can be expressed as the set N“_ {j2V, < x), where V, = Vi_(c*W, )

and since {j2V,, s > 1} are the points of a PRM on (0, «] Wlth mean measure
v(x,»] = EV{"/ZJC_”’/2 [see Resnick (1986), (4.4)], we have
PIN _ 3 , if x <0,
[N(x,<] = 0] = exp{E(Vy/?)x"*}, if x> 0.

(B) Partial sums. If the exponent « of regular variation is less than 4,
then the partial sum S, = ¥7_, X, of the bilinear process {X,} is asymptoti-
cally stable with exponent «/2. These results are essentially special cases of
Theorem 3.1 in Davis and Hsing (1995). For the case a €(0,2), X; has
regularly varying tails with exponent «/2 < 1 (see Remark 3.1) and hence a
direct application of Theorem 3.1(i) of Davis and Hsing (1995) yields

b,%S, =8 = Z Zf "W, ZJ’?A
k=1s=1 =

where A, =Y _ ..z~ [The characteristic function of S is given in Theo-

rem 3.2 of Davis and Hsmg (1995).]

For the case a €[2,4), a direct application of Theorem 3.2 in Davis and
Hsing (1995) is more difficult since condition (3.2) of the theorem must be
checked. Instead, we present a different approach under the simplified as-
sumptions that « € (2,4) and the distribution of Z, is symmetric about zero.
The condition « > 2 implies that Var(Z,) < « and the symmetry of Z, allows
for a simpler expression of the limit random variable in terms of the points
{j,ctw, 1} of the limit point process. Applying Theorem 3.2(ii) to the trun-
cated sequence {X™ = X c*Y,®)}, we obtain

M:

b,*

(X(m) -, ) — Sl 4o +Sm = S(m)’

t

where p, = E(ZF1,,: _,2) and

1

g _ hmﬁoz:_ljgngm]—a(a—z)*l(gl-w—1), itk =1,
' 1 Jic W, if k> 1.

[It is easy to check that b, 2¥"_,Y,(0) = o ,(1).] Using characteristic functions,
one can show that S(™ = S = Z 1S Next we show that for any n > 0,

- ¥ X

t=1

(4.1) lim limsupP[bn_2 >n| =0,

m— ©

n-— o
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from which the limit
b,*(S, —nu,) =8

will follow immediately from Theorem 4.2 of Billingsley (1968). For 6 > 0
fixed, write

n
bnz(sn - ZXt(m))
t=1
n ©
—2 kv (k
bn Z Z c Yt( )
t=1k=m+1
n £ n o
—2 kv (k —2 kv (k
b,> Y X Y 172, <257 + 0, Y X Y M2 5 b25)
t=1k=m+1 t=1k=m+1

(4.2)

The absolute value of the second term in (4.2) has expectation bounded by

0

nby2 Y 1el"(BIZ,)' T E(Z2)1 5 2y

n
k=m+1

= (const) ), rknbn‘ZE(Zfl[leSbﬁa]),

k=m+1
where, by assumption (3.4), r .= ElcZ,| < (EICZII“/Q)Q/"‘ < 1for a > 2. Using
Karamata’s theorem, the right-hand side of (4.3) is asymptotic to
(const)r™nb, 2(b28)P[Z} > b28]| — (const)r™5'~ /2 (as n — =)

(44 -0 (asm — ).

On the other hand, the mean zero assumption of Z, implies that the
Y, M1, 72, <251 S are uncorrelated for all ¢ and % so that the variance of the
first term in (4.2) is

n =]
br:4 Z Z c?* Var(Yt(k)l[Z%gbﬁa])
t=1k=m+1

oo

<nb;* ) CZk(EZf)kilE(Zill[zfsbﬁsl)'

n
k=m+1

Using Karamata’s theorem again, the right-hand side is
< (const)y™52nP[Z% > b25]

— (const)y™s%™ /2

(as n — «)
-0 (asm — ),

where y = E(cZ,)* < 1. This, combined with (4.4) proves (4.1) as asserted.

(C) The sample correlation function. We now consider the behavior of the
vector of heavy-tailed sample correlations {p5(0), [ = 1,..., h} for integers
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h =1,2,....Recall that py(]) was defined in Section 1 to be
Z?;llXtXHl

pu(l) = —=
. tletz

In Davis and Resnick (1985a, 1986) we showed that for a heavy-tailed MA()
process, the sample ACF was a consistent estimate of the model ACF
expressed in terms of the coefficients of the linear filter. This is, of course,
also the case in the classical setting where the innovation variables have
finite second moment [see Brockwell and Davis (1991)]. In contrast to this
phenomena of constant limits, we find for the nonlinear process that sample
correlations converge in distribution to nondegenerate limit random variables
depending on the lag.

THEOREM 4.1. Suppose{X,} is the bilinear process (3.1) where the marginal
distribution F of the iid noise {Z,} satisfies (3.2)~(3.3) and the constant c
satisfies (3.4). If 0 < a < 4 we have for any h = 1,2, ... that

(pu(l),l=1,...,h) = (L;,i=1,...,h)
in R*, where in the notation of Theorem 3.4

0 0 4 2k —1i
Zszlzkzl.]sc Ws,kWs,kfi
L. =
i = o 4 2kTHT 2 ’
Z"szlzkzl.]sc Ws,k

i=1,...,h.

Proor. Theorem 3.4(ii) implies

( Z EbJZ(Xanfz)’ l = 1,...,h
(4.5) ot

= ( Z Z '9j52(0kWs,k,Ckles,kfz)’ l = 1,...,h

s=1k=1

in M ;‘([Ez). In order to simplify the exposition, we focus on convergence of a
single component in (4.5), but at the end of the discussion it should be obvious
that joint convergence ensues.

For convenience we focus on the first component convergence in (4.5):

M=

(4.6)

o0 oo
— = .9 —
Eb2(X,, X, ) )IEDY Ei2(ct Wy, T IW, o)

t=1 s=1k=1

Pick & > 0 and apply a restriction of the state space to
Es = {(x1, x5) € Byt lay| V |xy| > 8}

to obtain

M=

2o20x,x, (N E) = X0 X geew, e, (N Es)-

t=1 s=1k=1
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As in the discussion after (3.8), because the state space has been compactified
by restriction, we may apply the functional which multiplies components to
obtain

™M=

Lix, v 1x, /> 026180, 4X,X,_ 1)
t

2
[o'e] o0
=L X Ly j2etw, v j2et W, 1> 518742 W, W, 4y
s=1k=1

Each point process on the previous line has only a finite number of points and
applying the summation functional we get

Yo, 5(1) = b 1x, v ix, > b§3]bn_4(XtXt—1)
t=2

o o0
= 4 2k—1
= %0,5(1) = Z Z 1[|j§ckWS’k\\/jfck’le’k,1|> 51JsC W, W o1
s=1k=1

We claim
Yn,O(l) = 7%,0(1)
in R. To prove this we check [Billingsley (1968), Theorem 4.2]

(4.7) Yo s(1) = 1 o(1), 810,
and
(4.8) lim limsup P[|v, 5(1) = %,0(1)[ > n] = 0.
To verify (4.7), it will be sufficient to check that the series
(49) Z Z j;‘chk_IWs,kWs,k—l = ZJ?BS’
s=1k=1 s=1

where B, = ¥} _,c* " 'W, ,W, ,_, is absolutely convergent. Since a/4 < 1 we
have by the triangle inequality

4 2k~ 1)a /4 2 4
E|B|** < Y le|** "V E\W, ,_,|*/*E|Z}|*/

(4.10) ot

< (const) Y (EI(:le‘)‘/Q)k_1 < o,
k=1

The last inequality follows from (3.4). The independence of the B, together
with (4.10) implies that ¥, _, ;45 is PRM with intensity measure u[x, ) =
(E|B,|*/*)x~*/* and hence has absolutely summable points a.s. [see Resnick
(1986) and Davis and Resnick (1985a), page 192].

It remains to check (4.8). This is a standard argument mimicking the one
given in Davis and Resnick [(1985a), page 193]. The probability in (4.8) is
bounded by

s n
-4
P|b, Z |XtXt—1|1[|Xt\v|X,,1\sb§8] >l =< FE|X2X1|1[\XZ\V\Xl\gb,%a]/ﬁ,

t=1 n
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which by Cauchy’s inequality is dominated by
n 2
7 B yx, <21/

and since P[|X;| > x] is regularly varying with index —a/2 € (—2,0) we get
by Karamata’s theorem that

n
lim lim sup ﬁE|X1|21[|X1‘S bﬁa]/n =0,

510 e

which proves (4.8).
We have now checked v, ((1) = v, ((1) and in fact, examining the proof of
this fact shows that

(4.11) (%.,0(0)5 %,0(1)) = (7,0(0), %,0(1)),

where v, ((0) = £}_, X, X, ,/b>. Dividing the first component into the second
in (4.11) yields the first component convergence given in the statement of the
theorem. This finishes our discussion of the proof. O
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