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NUMERICAL METHODS FOR FORWARD-BACKWARD
STOCHASTIC DIFFERENTIAL EQUATIONS

By JiM DouGLAS, JR.,! JIN Ma? AND PHILIP PROTTER?

Purdue University

In this paper we study numerical methods to approximate the adapted
solutions to a class of forward-backward stochastic differential equations
(FBSDE’s). The almost sure uniform convergence as well as the weak
convergence of the scheme are proved, and the rate of convergence is
proved to be as good as the approximation for the corresponding forward
SDE. The idea of the approximation is based on the four step scheme for
solving such an FBSDE, developed by Ma, Protter and Yong. For the PDE
part, the combined characteristics and finite difference method is used,
while for the forward SDE part, we use the first order Euler scheme.

1. Introduction. Let (Q,7, P;{%},.,) be a filtered probability space
satisfying the wusual conditions. Assume that a standard d-dimensional
Brownian motion {W,},. , is defined on this space. We consider the following
forward—backward stochastic differential equations (FBSDE’s):

X, x+f0tb(s,XS,Ys,Zs)ds +/0ta(s,Xs,Ys)dWs,

(1.1)

Y, =g(Xp) + [b(s, XY, Z) ds + [6(s, XY, Z,) dW,,

where ¢ € [0,T], (X,Y, Z) takes values in R* X R™ X R"*¢ and b, b, o, &
and g are smooth functions with appropriate dimensions; 7' > 0 is an arbi-
trarily prescribed number which stands for the time duration. By an “L?-
adapted solution” we mean a triple (X,Y,Z) which is {#}-adapted and
square integrable, such that the equations (1.1) are satisfied on [0,T],
P-almost surely. Such a stochastic differential equation has been found useful
in applications, including stochastic control theory and mathematical finance
(cf. [2], [7] and [8]). In previous work, Ma, Protter and Yong [12] studied the
solvability of the adapted solution to the FBSDE; in particular, they designed
a direct scheme, called the four step scheme (see Section 2 for a brief review),
to solve the FBSDE explicitly.
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We note that in some applications the FBSDE (1.1) can be slightly simpli-
fied. That is, we may consider the FBSDE of the type

X, =x+ fotb(s,Xs,Y) ds + /:cr(s,Xs,Ys) dw,,

S
)

where ¢ € [0, T']. Applying the usual technique using a martingale represen-
tation theorem, it is easily seen that (1.2) is equivalent to the FBSDE

(1.2) )
Y, - Be(Xp) + [ b5, X, ¥) ds

s

X, =x+ [b(s,X,,Y,) ds + [0 (s, X,,Y,) dW,,
(1.3) 0 0
T A T
Y, =g(Xp) + [ b(s,X,,Y,)ds + [ Z,dW,,
t t

which is obviously a special form of (1.1). A first theoretical treatment of (1.2)
can be found in Antonelli [1]. As a special case of (1.1), a more general
treatment for (1.3) is contained in [12]. We note that the FBSDE’s (1.2) and
(1.3) have been found useful in the theory of mathematical finance. For
instance, in the framework of stochastic recursive utility, the process X
represents the “discounted weight process,” or “wealth process,” while the
process Y defines a recursive differential utility (cf. [6] or [7] for more details).
Also, in a model of term-structure of interest rates, Duffie, Ma, and Yong [8]
considered a FBSDE of a form similar to (1.2), in which the process X is the
short rate, while Y is the “consol rate” (or long term rate). Therefore, a
satisfactory simulation result for the FBSDE (1.2) will have interest in its
own right. In what follows we shall call (1.3) the “special case” and (1.1) the
“general case.”

For standard forward SDE’s, there are two types of approximations typi-
cally considered: a pathwise convergence that typically converges at a rate
@(1/Vn), and weak convergence to the terminal value E{f(X,)}, where X is
the true solution and f is an arbitrary smooth function. In the latter case,
one approximates E{f(X;)} using a Monte Carlo technique once the law of
X is known; thus it is the approximation of X, that is needed, and since the
Monte Carlo rate is slow, one is content to use a simple Euler scheme. We
consider here both types of approximations for the forward—backward SDE’s.
Our technique allows the weak convergence to be a simple consequence of the
pathwise convergence (which is not true in the usual forward case; note that
its rate is faster). We obtain the same convergence rates as in the forward
only case, an a priori surprising result.

It was shown in [12] that the solution, say 6, of a parabolic PDE plays a
key role in solving FBSDE’s; one uses 6 to deduce a standard (forward) SDE
which gives the component X. One then uses # and X to obtain Y and Z. We
have used this idea to construct a numerical scheme which first approximates
0 using PDE numerical techniques, and then approximates X using SDE
techniques. The two approximations have to mesh correctly, and the approxi-
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mate solutions for § have to have a certain regularity (e.g., Lipschitz prop-
erty) so that the subsequent approximation for the forward SDE is feasible. It
turns out that this can be done if the spatial mesh size A and the time mesh
size At are essentially linearly related. In particular, we shall assume in this
paper that the condition h > C At, where C > 0 is a constant obtained from
the coefficients, is fulfilled.

For the PDE approximations we shall use a method combining the finite
difference method and the method of characteristics; it was introduced earlier
by Douglas and Russell [5] (see also Douglas [4]). This method allows us to
treat the PDE in a more natural time-like variable and thus eliminate the
first order term, which then facilitates an error analysis based on a maximum
principle argument for the difference equations arising from the approxima-
tions. In practice, if the drift terms dominate the diffusion terms (i.e., in the
so-called convection-dominated case), then this method will lead not to faster
asymptotic rates but to smaller constants in the error estimate (cf., e.g., [5]),
which can be just as (or more) important.

Since the special FBSDE’s (1.2) and (1.3) are of independent interest, and
the techniques of proofs and ideas are fundamental but more easily seen, we
treat them separately in Section 4. We wish to point out that our techniques
allow not only the approximation of (X,Y), but also that of the “extra”
process Z that one needs to solve the FBSDE'’s in any sort of reasonable
generality. This is significant because in some finance applications (for exam-
ple), the process Z represents a hedging strategy, and thus we can give
pathwise approximations of Z as well as weak (faster) approximations of
E{f(X,, Z;)}. Again, these approximations are of the order #(1/Vn) and
@(1/n), respectively, which are best possible for Euler schemes.

This paper is organized as follows. In Section 2 we formulate the problem
and briefly review our four step scheme. In Section 3 we study the approxima-
tion for the quasilinear PDE arising in the special cases (1.2) and (1.3). In
Section 4 we give our main result for the special case. In Section 5 we extend
the results to the general case and give our final result.

2. Formulation of the problem. Let (Q,.7, P) be a probability space
carrying a standard d-dimensional Brownian motion W = {W,: ¢ > 0} and let
{Z} be the o-field generated by W (.e., & = o{W,: 0 < s < ¢}). We make the
usual P-augmentation to each % so that %, contains all the P-null sets of #.
Then {7} is right continuous and {7} satisfies the usual hypotheses. Let us
consider the FBSDE (1.1). For the sake of simplicity, in what follows we will
consider only the case in which n=m =d =1, 6(¢,x,y,2) =z and o is
independent of Z. In other words, we content ourselves with an FBSDE that
is slightly less general than (1.1) [but more general than (1.2)]:

X, =x+ [b(s,X,,Y,,2,)ds + [[0(s,X,,Y,) dW,,
0 0
(2.1) T, T
Y, =g(Xp) + [ b(s,X,,Y,,2,)ds + [ Z,dW,,
t t
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where ¢t € [0, T']. Here, X, Y and Z are now real-valued processes and b, 13, o
and g are real-valued functions. We note that the numerical study of the
FBSDE of type (1.1) is also possible using our method, in view of the general
theory for the four step scheme (see [12]), but some more complicated
discussion involving the numerical scheme for inverse functions will be
needed. To simplify presentation, we prefer not to include such a case in the
present paper.
We first give the precise definition of an L*-adapted solution to (2.1).

DEFINITION 2.1. A triple of processes (X,Y, Z): [0,T] X Q — R? is called
an L*-adapted solution of the forward—backward SDE (2.1) if it is {7,}-adapted
and square integrable and is such that it satisfies (2.1) almost surely.

Let us recall a standard Hoélder space notation. For any bounded or
unbounded region G C R, T> 0 and « € (0,1), we define C!'**/22%<([0,
T1 X @) to be the space of all functions ¢(¢, x) which are differentiable in ¢
and twice differentiable in x with ¢, and ¢, being a/2- and «-Holder
continuous in (¢, x) € [0,T] X G. The norm in C'T¢/22+<(0, T] X G) is
defined by

lelh,2, a;7,6
=lelle, , +lledle, o + llecle, o + llelle, 4
|¢t(t’x) _wt(t”x’)|+|¢xx(t’x) _(Pxx(t”xl)l
+ sup oz
(t, 0%, ) (lx —x'1* + 1t — ¢'])

b

where ||-llc, , is the usual sup-norm on the closure of [0,T] X G. When
G=R, we set C'"*/227¢([0,T] X R) = C'"*/22%« and | |19 4r.r =
|11, 2, o- For functions of the type ¢ = ¢(x), we define the space C**“(G) and
C*te = C***(R) analogously, for £ = 1,2,... .

We will make use of the following standing assumptions throughout the
paper.

Standing assumptions.

(A1) The functions b, b and o are continuously differentiable in ¢ and
twice continuously differentiable in x, y, z. Moreover, if we denote any one of
these functions generically by ¢, then there exists a constant o € (0, 1), such
that for fixed y and z, (-, -,y,z) € C'**/22%2 Furthermore, for some
L>0,

”‘/j(""y’z)lll,&aSL’ V(y,z)e[RQ.

(A2) The function o satisfies
(2.2) w<o(t,x,y)<C, Y (t,x,y) €[0,T] X R?,

where 0 < u < C are two constants.
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(A3) The function g belongs boundedly to C**“ for some « € (0,1) [one
may assume that « is the same as that in (A1)].

REMARK 2.2. We should note here that the standing assumptions above
are actually much stronger than those in [12], where the FBSDE was shown
to be solvable, and thus they may not be optimal.

We now briefly review our four step scheme (see [12] for complete details).
The four step scheme.

STEP 1. Define a function z: [0,7T'] X R?® - R by
(2'3) z(t,x,y,p) = —pa(t,x,y), V(t’ x,y,p).

STeEP 2. Using the function z above, solve the following quasilinear
parabolic equation for 6(¢, x) in C1**/22%2 for some 0 < a < 1:
0, + o (t,x,0)%0,, +b(t,x,0,2(t,x,6,0,))0,
(2.4) +b(¢,%,0,2(¢,%,60,60,)) =0, (t,x) e (0,T)XR,
(T, x) =g(x), x € R.

STEP 3. Using 0 and z, solve the forward SDE
(2.5) X, =x+ [b(s,X,)ds + [G(s,X,) dW,,
0 0

where b(t, x) = b(¢, x, 0(¢, x), z(¢, x, 6(¢, x), 0.(¢t, x))) and (¢, x) =
o(t, x, 0(¢, x)).

STEP 4. Set
Yt = o(t’Xt)’

(2.6)
Z, = z(t> X,,0(¢,X,), 0.(¢, Xt))

Then, if this scheme is realizable, (X,,Y,, Z,) will give an adapted solution
of (2.1). In fact, in [12] it was proved that under reasonable conditions, the
four step scheme is feasible. We summarize the results there in the following
theorem, with modifications made to suit our future discussion. Since the
arguments are standard, we give only a sketch of the proof.

THEOREM 2.3. Suppose that the standing assumptions (A1)-(A3) hold.
Then, the four step scheme defined above is applicable and any adapted
solution to the FBSDE (2.1) must be the same as the one constructed from the
four step scheme. Consequently, FBSDE (2.1) possesses a unique adapted
solution.
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Furthermore, the unique classical solution 6 to the quasilinear PDE (2.4)
belongs to the space C***/%4*2 and all the partial derivatives of  up to the
second order in t and fourth order in x are bounded by a constant K > 0.

SKETCH OF THE PROOF. The first assertion is a direct consequence of the
results in [12]. To see the second assertion, note that by the result in [12] we
know that the PDE (2.4) has a unique classical solution § € C1*/22%« for
some « € (0,1). If we apply standard techniques (cf. [9] or [11]) using
parabolic Schauder interior estimates to the difference quotients repeatedly,
it is not hard to show that under our regularity and boundedness assump-
tions on the coefficients b, o, b and g, one can improve the regularity of the
solution to the desired order. O

3. Approximation of the PDE (2.4)—special case. In this section we
study the numerical approximation scheme and its convergence analysis for
the quasilinear parabolic PDE (2.4) corresponding to the special FBSDE
(1.2), or equivalently, (1.3). We shall be interested in finding a strong approx-
imation scheme which produces an approximate solution (X™,Y ™) such
that

E{ sup |X™ _Xt|2} + E{ sup |Y,™ -, |Z} -~ 0
0<t<T 0<t<T

and in determining its rate of convergence. Note that in this case the
coefficients b, b and o are independent of Z and only the (X,Y) part of the
adapted solution need be considered; thus, the difficulty of the problem is
reduced considerably. More precisely, in this case the corresponding PDE
(2.4) now takes the simpler form

6, + to(t,x,0)%6,, +b(t,x,0)6, +b(t,x,0)=0,
(3.1) (¢t,x) € (0,T) X R,
(T, x) =g(x), x € R.

We shall follow an idea of Douglas and Russell [5] and Douglas [4] that
combines the method of characteristics with a finite difference procedure to
design the approximation scheme. We discussed the advantages this brings to

bear in the introduction.
Let us first standardize the PDE (3.1). Define u(¢, x) = 6(T — ¢, x) and

o(t,x,y)=0(T—-t,x,y),
b(t,x,y) =b(T—t,x,y),
g(t, x,y) =b(T —t,x,v).
Then u satisfies the PDE
u, — 302(t, x,u)u,, — b(t,x,u)u, —Z(t, x,u) =0,

u(0,x) =g(x).

(3.2)
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To simplify notation we replace &, b and b by o, b and b themselves in
the rest of this section. Following [5], we should first determine the character-
istics of the first order nonlinear PDE

(3.3) u, —b(t,x,u)u, =0.

After transforming (3.3) into a first order system, it is not hard to show that
the characteristic of (3.3) is given by the equation

(34) det|aijt’(s) - 8ijx’(s)| =0,

where s is the parameter of the characteristic and (a,;) is the matrix

0 0 0
(3.5) 0 —b(t,x,u) O0f.

0 -1 0
Therefore, (3.4) leads to
(3.6) t'(s)b(t,x,u) —x'(s) =0,

where (¢, x, u) is evaluated along the characteristic curve #: (£(-), x(-)). We
replace the parameter of # by ¢ and denote the arc length along # by 7.
Then,

(3.7) dr=[1+b2(t, x,u(t, x))]"" dt;
along &,
J 1/( 90 J
Silivi)
ar P\ at ax
where
(3.8) w(t, x) = [1+b%(t, x,u(t, x))] "

Thus, the equation (3.2) can be simplified to

du 1 A
(3.9) 1,[/(9— = Eaz(t,x,u)uxx-kb(t,x,u), u(0,x) =g(x).
T

We shall design our numerical scheme based on (3.9).

Numerical scheme. Let h > 0 and At > 0 be fixed numbers. Let x; = ih,
i=0,+1,... and t* =k At, k=0,1,..., N, where ¢tV = T. For a function
f(t, x), let f*() = f(t*,-) and let f* = f(¢*, x,) denote the grid value of the
function f. Define for each . the approximate solution w* by the following
recursive steps.

STEP 0. Set w! =g(x,), i= ...,—1,0,1,...; use linear interpolation to
obtain a function w°(x) defined on x € R.
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Suppose that w*~1(x) is defined for x € R, let w/ ™! = w* 1(x,;) and

bl = b(¢h, x;, wk ), of = o(th, x, w1,

13

B(tk,x wi), x

(3.10) b}

5352(“])? = hil[wikﬂ - 2w/ + wi—l]-

=x; — bl AL, @i l=whY(7h),

STEP k. Obtain the grid values for the kth step approximate solution,
denoted by {wi]e }, via the difference equation
k 77l k-1

13

1 A
(3.11) = S(ab) 82wyl + (B);,  —w<i<e

At
Since by our assumption ¢ is bounded below positively and b and g are
bounded, there exists a unique bounded solution of (3.11) as soon as an
evaluation is specified for w*~ !(x).

Finally, we use linear interpolation to extend the grid values of {wik}?’= _, to
all x € R to obtain the kth step approximate solution w”*(-).

REMARK 3.1. One must be careful with a numerical scheme to show that
it does converge to the unique bounded solution (3.11) as desired and not to a
(non-unique) unbounded solution. The following “localization” argument is
essential, both theoretically and computationally, for this purpose, and it is
also important to apply the maximum principle argument in Theorem 3.3.
First, we note that the classical solution of the Cauchy problem (3.2) [there-
fore (3.9)] is actually viewed as the uniform limit of the solutions {u%}
(R — ) to the initial-boundary problems (cf. [11] or [12]):

u, — %E(t, x,u)zu“ —B(t, X, U U, — Z(t, x,u) =0,
(3.2") u(0,x) =g(x), x e R;
u(t,x) =g(x), lx| = R, 0<t<T.

Also, the (unique) bounded solution to (3.11) is derived in a similar way: by
the boundedness assumption on the coefficients b and b and an assumption
that o is bounded from below by a positive constant, one can show that {w}}
is the uniform limit of w/>*, i = —i,,...,i,,k =0,1,2,..., where {wj*>*} is
the solution to the initial-boundary problem

k —k-1
wi _wi 1 2 k Ak . . .
TZE(Gik) 82(w)f + (b);; —i, <1 <1,
(3.11) w =g(x;), —ig<i<i,

wh, =g(x.;), k=0,1,2,....

Therefore, if for fixed mesh size A > 0 we choose R = iy A, for some i, = i,(h),
then R — » as i, = «, and, uniformly as i, — © (possibly along a subse-
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quence), we have

u(t,x) = ilim uf(¢,x), uniformlyin (¢, x),
0 ®
wk

i A i ’

I
5
S@-

uniformly in Z, &.

Consequently, we see that the quantities

max |u(tf, x;) —w}| and  max |uf(t*, x;) - wio
i —1p<i<iy

k

differ only by a (uniform) error & > 0, which can be taken to be arbitrarily
small as i,A is sufficiently large. Because of this, in what follows we some-
times use the localized solutions when necessary without further specifica-
tion. Note that if the localized solutions are used, then the error |uf(¢*,
X)) = wig’i’gl =0 for all £=0,1,2,.... Therefore the maximum absolute
value of the error |u®(¢*, x,) — wio*|, i = —i,,...,i,, will always occur in an
“interior” point of (—R, R), which will be essential in the maximum principle
argument used in Theorem 3.3.

To analyze the convergence of the approximation, we need to derive an
error equation for the procedure. First, note that along the characteristic
curve %,

Ju u(th, x) —u(t* 1, x)
o At
i e
[(x —Xx)" + (At) ]

u(th, x) —u(t* 1, x)
At ’
where ¥ is the location of the characteristic starting from (¢, x) at ¢t = t* 1.
Therefore, the solution of (3.9) satisfies a difference equation of the form

uf —af! N2 o, k2, Nk k

(3.12) ;. — (o) 8 (w)i +b(u)i +ef,
—o<i<o k=1,...,N,
where 71 = u*~1(X¥) and X* is an approximation of X [see the definition

following (3.17) below]; b(x)* and o (u)* correspond to b* and o defined in
(3.10), except that the values {w~ 1} are replaced by {w}~1}; e* is the error
term to be estimated.
In order to estimate the error terms {ef"}, we first observe that at each grid
point (¢*, x,),
du 1

(3.13) w(tk, xl)E = Eaz(tk, X;, uf)u“|(tk’xi) + l;(tk, x;, uf’)
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Therefore,
uk —gh-1 u
[ Bt Bl SV SR
e; { At l/l(t ,xz) or (tk,xi)}
1 2 4k k 1 E\2 qo, Nk
(3.14) 5ot e - g (e () 8w
+{B(¢5, % ul) — b(w)i)
=IMF+IPR+ P, —w<i<w k=1,...,N.

We have the following lemma.

LEMMA 3.2. There exists a constant C; > 0, depending only on b, b, o, u
and T, such that forallk =0,...,Nand —o <i < =,

lef| < C(h + At).

ProOF. We shall estimate I1*, I>* and I>* separately. Note that, by
Theorem 2.3, the partial derivatives u,, u,, u,, and u,,, are uniformly

bounded. Hence, it is easy to see from the uniform Lipschitz conditions on b
that

|[13:%] = 13(tk, x;, uf) — I;(tk, x;, uf*1)|
(3.15) R
<15, | u(t®, x;) — w(t*~1, x;)| < CL 1A,
where C*' = |15, |l.llu,|l.. < . Similarly,

1 .
|12:%] < 5 |02(tk, xi,uf) - 0'2(tk, xi,uf’*l)| |uxx(t‘, xl)|

k k k
Uiy — 2up +uj

+|02(tk, x;, uf*1)| uxx(tk, x;) —

|

(3.16) h?
1 2
< 5{ lollello el e, N At + o Ellu . )R]
< CY2(h + At),

2 .
where C? := max{2|lo|l.llo,llllu,llllu, | llollu,, )t << Thus, it re-
mains to estimate I"*. For each % and i, set

13 13

(317)  xb—x, - bt ut )AL, @bl = u(th R,

Let {x(¢): t*~! < ¢ < t*} be the characteristic such that x(¢*) = x,. Since

x(t) =x; — Ltkb(s, x(s),u(s, x(s))) ds, th=l <t < th,
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we have sup,s1_,_|x() — x; < ||bll. At. Therefore, denoting X = x(¢*¥~ 1),
we obtain easily that

* — x| f Jo(eh, 2, ub=) = b(t, x (), u(t, x(2))) | dt

(3.18) < {15l + 16, ILN1B1L + 118, l-(llee,lle + e, IL1B]L)} At?
< CH3 A2,
where C*3 = [|b,.. + 16, L6l + 116, 1, Il + I, |lll]l). Thus,
u(t®1, x) —u(tkfl,i’?) llw, lllx — %%
3.19 : < CL4AtL
( ) At = At ’

where C'* = |lu_|.C"3. Now by integrating along the characteristic from
(t*~1, %) to (t*, x;), we see that
u(th, x;) —u(t* 1, x)
At

1 . d .
= a7 [ gt x()) de

i
=EJHQF%QJMWQUJU»ﬁ

1
(3.20) -l W—Uxﬁ»&
= w( ’xi) o (t*, x))

i du A u d
+A—tftk71 (6 x(1) = o(eh x)— ] 2

Applying Theorem 2.3 and using the boundedness of the function b, one can
easily deduce that

} dt

x;)

L o) = et ) 5

where C15 depends on uniform bounds of 92u/d7? along the characteristics
(hence it depends on the bounds of u,,, u,, and b). Combining (3.18)-(3.21),
we have

(3.21) < CY5(h + At),

du u(th, x;) — i !
4 T |k, x;) At

where C3 = C13 + Cb* + CV5. If we set C; = CV! + C12 + C13, we have
proven the lemma. O

1L,k —
I " =

< CV3(h + At),

We now study the consistency of our numerical scheme; namely, we shall
prove that the approximate solution obtained from the difference equation
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(3.11) converges to the true solution, in a certain sense. To do this, let us first
construct the approximate solution defined on [0,T'] X R as follows. For given
h >0 and At > 0, set

N

(3.22) wh (¢, x) = kglwk(x)l(tkfl,tk](t)y t €(0,T],

w’(x), t=0,
where w*(-), k = 1,..., N, are the functions extended from the solutions of
the difference equations (3.11) by linear interpolations. In other words, for
each k and i, w" *!(t*, x;) = w}, where {w}} is the solution to (3.11).
Let us now define a function (¢, x) = u(t, x) — w™2(t, x) for (¢, x) €
[0,T] X R; as before, let ¢* = ¢(¢*, x,) = u* — wk. We first prove a theorem
analogous to one in [3].

THEOREM 3.3. Assume (A1)—(A3). Then
suplgikl =0d(h + At).
ki

PrOOF. First, by subtracting (3.11) from (3.12), we see that {*} satisfies
the difference equation

gh- (@t -wh) 1 B h s
(3.23) ( At ) = 5{(U(u)i) 82(u); — (o*)"8 (w)i}

+[5(u)f—8f] + ek, ;°=0.

Note that
gt —wt ot = [u(eh =) —u(h B + [u(ett &) - whoi(3)]
= G+ (et L) — (e D),
where £* 1 = u(t*~1, k) — w*(x%). Also,
(c(w)f) 82(w)f - (o) 82(w)!
= (o) 02( )i + [o2(¢h, xpud 1) = o 2(2h, x,wl )] 82(w)

We can rewrite (3.23) as

gik - Zik_l 1 P2 o2 I3 A A 0
(3.24) ~ar E(Ui ) 82(¢)i +1If +ef, & =0,
where
I u(tkfl,if‘) - u(tkfl, o'clk)
P At
1 N o
+§[0'2(tk, xi,uf_l) — o-z(tk, acl-,wl-k_l)]'éf(u)ge + [b(u)fz - blk]
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It is clear that, by Theorem 2.3 and the estimate (3.18), we can find constants
C, and C; > 0, independent of £ and i, such that

‘%[0’2(tk, x,uf ) = o 2(¢h, g, wk )] 52(u)t + [B(u)f - ZS{@H < Gl Y

i i
and
u(t 1, Eh) — u(th 1, &)

i i
At

< Cy At.

Consequently we have
(3.25) IIF| < Col &M + Cy At.
Note that it follows from (3.24) that
=g (e e I el

We wish to apply a maximum principle argument, as was done in [5], to
bound ¢*. In order to do so, we consider the localized solutions of u and w as
described in Remark 3.1. Note that for such solutions, the maximum absolute
value of ¢ (by a slight abuse of notation) occurs at an “interior” mesh point
xﬁk), where —R < i(k)h < R for some large R > 0. Now, if we set ||{*] =
max,| /|, then a maximum principle argument similar to that in [5], together
with Lemma 3.1 and (3.25), shows that
1£*l < max|Z* ! + max {|I}] + lef[} At

14 12

(3.26) - o1
< max|* N+ Coll" I At + (C, + Cg)(h + At) At,

where C; is the constant in Lemma 3.1 and C, and C; are those in (3.25).
Note that the constants C,, C,, C5 are independent of the localization; there-
fore by taking the limit we see that (3.26) should hold for the “global solution”
as well.

In order to estimate max;| Zik_ 1|, we adopt the argument in [5]. Namely, if
I(u)(t*,-) denotes the linear interpolate of the grid values {u*}7_ . and w*(-)

1di=—o
%

the linear interpolate of {w}}"_ _., then
(3.27) mialxlfik_lll < miaxlg“ik‘ll + miax|u(tk‘1, xf) = L(u)(t* 7, a'clk)|
Apply the Peano kernel theorem (cf. [3] or 5]) to show that
max|u(t 1, 2F) = L(w)(¢* 1, 7F)| < C, b,
where h* = @(At) and C, > 0 is independent of k2 and i. This, together with
(3.27), amounts to saying that (3.26) can be rewritten as
IZHI < 2R M+ Collg* M At + C5(h + At) At,
=¥ (1 + Cy At) + C5(h + At) At,

where C; < 2(C; + C; + C,) is independent of k. It then follows from the
Gronwall lemma and the bound on || °|| that

Ik < @(h + At),
which proves the theorem. O

(3.28)
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Our next goal is to construct for each n an approximate solution u™ that
converges to the true solution u in the FSDE (2.5) in a satisfactory way as n
tends to infinity. To this end, let n € N be given. Let At = T/n and h =
2C At, where C = ||b]l.. We note here that such a choice of % is only for the
convenience of actual computation, since A > C At implies that Ia_cfe —-x,l <
5]l.. At < h. Hence x* do not go beyond the interval (x* ,, x%, ). Now let us
choose

u™(t, x) =wT/mT/nt %),  (t,x) €[0,T] XR,

where w’ !

following.

is defined by (3.22). Our main theorem of this section is the

THEOREM 3.4. Suppose that (A1)-(A3) hold. Then the sequence {u'")(-, - )}
enjoys the following properties:

(1) For fixed x € R, u'™(-, x) is left continuous.
(ii) For fixed t € [0,T], u™(¢,-) is Lipschitz, uniformly in t and n (i.e.,
the Lipschitz constant is independent of t and n).
(iii) sup,  lu™(t, x) — u(t, x)| = #(1/n).

Proor. The property (i) is obvious by definition (3.22). To see (iii), we note
that
u™(t, x) —u(t, x) = [w(x) — u(0, x)]|1(t)

N
+ 2 [wh(x) —ult, x)]1pm1 0(2).
k=1

Since for each fixed t € (t*~1,t*], £ > 0 or t = 0, we have u"(¢t, x) = w*(x)
for k> 0or k£ =0if ¢t = 0. Thus,

sup|w*(x) — u(t, x)]

< IZ*l + sup | I (w)(t", x) — u(t®, x)| + sup|u(t:, x) — u(t, x)]

1
<M1+ o(h + Aty + lluglh At = #(h + At) = @(_),
n

by virtue of Theorem 3.3 and the definitions of A and A¢. This proves (iii).

To show (ii), let n and ¢ be fixed, and assume that ¢ € (¢*, ¢*71]. Then
u™(¢, x) = w*(x) is obviously Lipschitz in x. So it remains to determine the
Lipschitz constant of every w*. Let x! and x2 be given. We may assume that
x'elx;,x;, ) and x* € [x, x;,,), with i <j. For i </ <j — 1, Theorem 3.3
implies that

|wk(xl) - wk(xl+1)| S|wk(xl) - u(tk, xl)| +|u(tk, xl) - u(tk, xl+1)|
(3.29) +|u(tk,xl+1) —w*(x;,,)]
< 2028+ llu el — x4 4] < Kb = K(%;41 — %)),
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where K is a constant independent of &, [ and n. Further, for x! € [x;, x;, ),

k k
w(x;1) —w*(x;)
wh(x') = wk(x, ) + - : (351 _xi+1)'
Xip1 — X

Hence,

wh (1) —w*(x;) 2!

Xiv1 =X

lwh(x) = w*(x;1,)| = — %l < Klxt — 2,4,

where K is the same as that in (3.29). Similarly,

|wk(x2) - wk(xj)| < Kl|x* —x.

Combining the above gives
-1

wh(a?) —wh(2*)] <[w*(x") —wh(x;, )| + l;1|wk(xz) —w*(xy,,)]

+|wk(xj) —wk(x2)|
Jj—1

<K{(x—2')+ X (% —x) + (xz - xj+1)
-1

=Kl|x? — x!|.

Since the constant K is independent of ¢ and n, the theorem is proved. O

4. Approximation of the FSDE (2.5)—special case. We now use the
approximate solution derived in the previous section to construct an approxi-
mation of the FSDE (2.5). First, we recall that the FSDE to be approximated
has the form

(4.0) X, =x+ [b(s, X,)ds + [ (s, X,) dW,,
0 0
where b(t, x) = b(¢, x, 0(¢, x)) and (¢, x) = o (¢, x, 0(¢, x)), (¢, x) € [0,T] X

R. In order to define the approximate SDE’s, we first define some quantities.
For each n € N, set A¢t, = T/n and t™* =k At,, k =0,1,2,...,n. Also, let

n—1
n*(t) = X t" e any(8),  t€[0,T),
k=0

n'(T)="T.

(4.1)

Next, we set
0"(t, x) =u"(T — ¢, x),
(4.2) b"(t,x) = b(t, x,0"(t, x)),
a"(t,x) =o(t,x,0"(t,x)).

By Theorem 3.4, 0" is right continuous in ¢ and uniformly Lipschitz in x,
with the Lipschitz constant being independent of ¢ and n; thus, so also are
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the functions 5" and G". We henceforth assume that there exists a constant
K such that, for all ¢ and n,
(4.3) |67(t, x) — b"(t, x")| +|6"(¢, x) — "(¢, x")| < Klx — xl,

x,x" €R.
Also, from Theorem 3.4,

- - 1
(4.4) sup|b™(¢, x) — b(¢, x)| + sup|67(¢t, x) — 6(¢, x)] =@’(—).
t,x t,x n

We now introduce two SDE’s: the first one is a discretized SDE given by
Y iy Y L Y n
(4.5) Xy =x+ fob”(-,X.”)nn(s) ds + foa (- X2 o) AW,

where 1" is defined by (4.1). The other is an intermediate approximate SDE
given by

(4.6) Xy =x+ [07(s, XP) ds + [6"(s, XP) dW,.
0 0

It is clear from the properties of " and ¢” mentioned above that both SDE’s
(4.5) and (4.6) possess unique strong solutions.

Our first result of this section is the following lemma. The proof of the
lemma is more or less standard in the context of first order Euler approxima-
tions, but contains some special considerations due to the structure of the
approximate solution to the PDE (2.4). We provide details for completeness.

LEMMA 4.1. Assume (A1)—(A3). Then

_ 1
E{ sup | X/ —Xt”|2} =ﬁ(—).
0<t<T n

ProoF. To simplify notation, we shall suppress the tilde () for the
coefficients in the sequel. We first rewrite (4.5) as

(4.7) X=X, +ul+ f()tbn(s, Xr)ds + [Otan(s, Xr) dw,

s

where

t - —
ul = fo[b (-, X )nn(s) - b"(s, X, )] ds
(4.8)
t - —
+f0 [o" (- X"y — o"(s, X2)] dW,.
Applying Doob’s maximal quadratic inequality, Jensen’s inequality and the
Lipschitz property (4.3) of the coefficients, we have

E{supIXS” - X’S"|2} < 3E{sup|ug|2} + 3K%['B{|X} ~ X1} ds
(4 9) s<t s<t 0
+ 12K2ftE{|Xs” — Xr[?) ds.
0
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Now, set a,(t) = E{sup, _,| X — X["|*}. Then, from (4.9),
a,(t) < 3E{§t}3|ug|2} + 3K*(T + 4)[0”‘%(3) ds
and Gronwall’s inequality lea_lds to
(4.10) E{ sup|X" — )_(S"IZ} < 363K2(T+4)E{ suplu?IQ}.
s<t s<t

Consequently, we turn our attention to E{sup, _,u"?}. Note that if s €
[tmk ¢kt 1) for some 1 < k < n, then 1"(s) = k At, [whence T — n"(s) =
(n—k)At, as T=nA¢t, ] and T —s e ((n — k — D A¢,,(n — k) At,). Thus,
by definitions (3.22) and (4.1), for every x € R,

0" (n"(s),x) =u"(T — n"(s),x) =u((n — k) At,, x)
=u"(T —-s,x) =0"(s, x).
More generally,
(4.11) b"(s,x) =b(s,x,0"(s,x)) =b(s,x,0"(n"(s),x))
V(s,x) €[0,T] X R.

Using this fact, it is easily seen that

JB (-, X2), 0 — b"(s, X2) ds
A '

< fot‘b(nn(s), Xlis)» 9”(77"(8), Xv?”(s))) = b(s, X7, 0"(s, Xs"))‘ds

(4.12) < f;{\b(n"(s),)?;n(s), 6"(s, X)) — b(s, X7, 07(5, X))

b, X2 0%(5, Ep)) - bs, X2, 07(5, X)) s
=1, +1,.

Using the boundedness of the functions b,, b, and b,, we see that

t —
I, < f(){llbtllmln”(s) — 5| + 1B, I X s, — X2} ds

and
L n n
I, < Kllbyllxj;ann(s) ~ X7| ds.
Thus,
[ B X)) = b"(5, XI) ds
(4.13) 0

< Kjot{m"(s) — sl + 1 X, — X[} ds,
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where K depends only on K, |5, l|5,]l. and IIbyIIw. Since

2

¢ n-1 peH1p g 5 1n-1 9 T
[ln*(s) =slds = ¥ [0 "(s =t ds < o ¥ (At,)" =
0 R=0"tFnt 2,50

2n’
2}

) _ T*
< 2K2{Tth|Xgn(s) — X71* ds + —}
0

(4.14) E{ sup

u<t

ftbn(,’ X'n)n”(S) - bn(s’ Xsn) ds
0

4n?

Using the same reasoning for o with Doob’s inequality, we can see that
2}

(4.15) S8K2{ tEIX”n —X"?*ds + ‘(s — (s 2ds}
[EIX iy = X0 ds + [ (s = 0"(5))

ftO'”(‘, X.”)nn(s) —o"(s, X)) dW,
0

u<t

E{ sup

T
> ¢ Y n n|2
< 8K2{fOE|Xnn(S) - X' ds + W}
Combining (4.14) and (4.15), we get

E{ suplquQ} < K2(4T + 16)ftE|)_(n"n(s) - X? ds
< 0

4.16 o=t
(4.16) )
_2-

- 16
+K2T(T+ —
3 )n

Thus, by (4.10),

E{supIXS” - X:F}

s<t

(4.17) < 3exp(3K*(T + 4)){K2(4T + 16)/TE|)_(,;‘"(5) - X"?*ds
0

- 16\ 1
+K2T(T + —)—2 .
3 /n
Finally, noting that IX'T’I‘,L(S) - X! < II_(;,L(S) — X7 +|X" — X”| and that
Xn;e(s) - Xsn = bn(, )_(.n)nn(s)(s - nn(s)) + 0'(', X.n).qn(s)(Ws - Wn"(s))’

n

we see as before that
t = — ¢
fOElX,fn(s) — X" ds < 2/0{||b||3:(s —1"(s))* + lollls — n"(s)l} ds

20b/27 1 o1
< — +llollT—.
3 n n
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Therefore, (4.17) becomes

_ 1 1 _
(4.18) E{ sup| X" —Xsn|2} <Ci— +Cys + cgftE{ sup| X" —X,n|2} ds,
n n

s<t 0 r<s

where C;, C, and C; are constants depending only on the coefficients b, o
and K and can be calculated explicitly from (4.17). Now, we conclude from
(4.18) and Gronwall’s inequality that

a,(t) < B, exp(Cr), Vte[0,T],

where B, = C;n"' + Cyn~% and C, = C,T. In particular, by slightly chang-
ing the constants, we have

_ N C G 1
(419)  a () = B{ suwp X - X1} < o 2o s|),
0<t<T

proving the lemma. O
Our main result of the section is the following theorem.

THEOREM 4.2. Assume (A1)-(A3) hold. Let X " be the solution of the
discretized SDE (4.5) and define Y" by Y,” = 0"(¢, X*), t € [0, T1], where 6"
is given by (4.2). Then

_ _ 1
(4.20a) E{ sup | X/ —th} + E{ sup |Y,” — Ytl} = @’(T),
0<t<T 0<t<T n

where (X,Y) is the adapted solution to the FBSDE (2.1).
Moreover, if f is any uniformly Lipschitz C? function, then for n large
enough,
. K
(4.20b) |E{F(X)} - B{f(Xp)}| < —,

where K is a constant depending only on f, o, b, b and g.

PrOOF. Recall that at the beginning of the proof of Lemma 4.1, we have
suppressed the tilde () for b and & to simplify notation. Set

(1) = {sup|b”(t, %) = b(t, x) > + sup|o™(t, x) — o(t, x)|2},

where b, b", o and o" are defined by (4.0) and (4.2). Then, from (4.4) we
know that sup,|s"(¢)| = @(1/n?). Now, applying Lemma 4.1, we have

E{ sup|X" — Xs|2} < 2E{ sup| X" — XS"|2} + 2E{sup|XS" - Xs|2}

s<t s<t s<t
(4.21) )
= @’(—) + 2E{sup|Xs” — Xslz}.

n s<t
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Further, observe that

E{ sup| X" —Xsl2}

s<t

< 2T ['E|b"(s, X7') = b(s, X,)[" ds + 8 ['E|o"(s, X') = o (s, X,)" ds
0 0
< 4T [‘E|b"(s, X}') = b"(s, X,)[* ds
0
+16['Elo"(s, X) = (5, X,) [ ds + 4T + 4) ['&,(s) ds
0 0

< 4(T + 4)K?[ E{ sup| X" — X,|2} ds + (T + 4) ['e,(s) ds.
0

t
0 r<s

Applying Gronwall’s inequality, we get
¢
T9»

(4.22) E{ sup| X" — XSIZ} <4(T+ 4)(Lten(s) ds) exp(4(T + 4)K?) < -

s<t

where C is a constant depending only on K and 7. Now, note that the
functions 6 and 6" are both uniformly Lipschitz in x. So, if we denote their
Lipschitz constants by the same L, then

E{ sup |Y, — E"IZ} < 2E{ sup |6(t,X,) — On(t’}_{tn)F}
0<t<T 0<i<T
+2E{ sup |6"(¢, X") — G(t,?/‘)|2}
0o<t<T

s2L2E{ sup IXt—Xt"IZ} +2sup |02, x) — 07(¢, x)|°
0<t<T (t, x)

A}

by Theorem 3.4 and (4.22). The estimate (4.20a) then follows from an easy
application of the Cauchy—Schwarz inequality. To prove (4.21), let us begin by
assuming from Theorem 3.4, without loss of generality (e.g., by taking n large
enough), that sup, ,,|6"(¢, x) — 6(¢, x)| < Cn~'. We modify X, as defined by
(4.5) by fixing n and approximating the solution X" of (4.6) by a standard
Euler scheme indexed by £k:

— t — t =
XMt =x+ [b(, X" ds+ [ o, X™* dw.,.
t _/;) ( )nk(s) '/O ( )nk(s) <
It is then standard ([10], page 460) that

(4.23) |E(r(X1)) - B{f(X#")}]

IA

G
P
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On the other hand, we have
|E{f(Xr)} - E{f(X})}| < KE{| Xy — X7
(4.24) C,
< E{ sup |X, —X[‘I} < —
0<t<T n

for Lipschitzian f, by (4.22). Therefore, noting that X as defined by (4.5) is
just X", the triangle inequality, (4.23), and (4.24) lead to (4.21). O

5. The general case. In this section we generalize the results in the
previous sections to the general case. Namely, we shall consider the FBSDE

X, =x+ [0(t,X,Y,2)dt + [[o(t,X,,Y,) dW,,
0 0
(6.1) T, T
Y, =g(Xp) + [ b(¢,X,,Y,,2,)dt + [ Z,dW,,
t t

and we shall design a numerical scheme that approximates not only the
processes (X,Y ), but also the process Z, which in some applications is the
most interesting part. For example, in an option pricing model (see, e.g., [2]),
the process Z represents a hedging strategy and therefore schemes approxi-
mating Z are of intrinsic interest.

Using the four step scheme described in Section 2, one can easily deduce
that in this case the function z(#, x, y, p) in Step 1 is given by

Z(ty xX,y, P) = _O-(t’ X, y)p
Therefore, the PDE (2.4) becomes
0=10,+302%(t,x,0)0,, +b(t,x,0,—0(t,x,0)0,)0,
+b(t,%,0,—0(t,x,0)6,), 6(T,x) =g(x).
Define b, and 130 by
bo(ty xX,Y, Z) = b(ty xX,Y, _O-(ty X, y)z)y

Z;O(t, X,y,2) = 13(15, x,y,—o(t,x,y)z).

One can check that, if o, b and b satisfy (A1)~(A3), then so do the functions
o, b, and b,. Further, if we again set u(¢, x) = 6(T — ¢, x), V (¢, x), then
(5.2) becomes

(5.2)

(5.3)

ut = %aZ(t’ x’ u)uxx + Zo(t, x7 u$ ux)ux + Zo(t: xa u: ux),

u(0,x) =g(x).
We will again drop the overbar () in the sequel. Note that Theorem 2.3 holds
for the general case; hence, the solution to (5.4) will be bounded in C2*«/24*«
for some o € (0, 1).

A way to approximate the process Z is to have a numerical scheme that
approximates 6, or equivalently u .. To do this, let us define the function

(5.4)
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v(t, x) = u (¢, x); then using the technique mentioned in the proof of Theo-
rem 2.3, one can first “differentiate” equation (5.4) and then show that (u, v)
satisfies a parabolic system

u, = %52(t, X, U)U,, +bo(t, x,u,v)u, + Bo(t, x,U,V),
(5.5) v, = 232(¢t, x,u)v,, + By(t, x,u,v)v, + By(t, x,u,v),

u(0,x) =g(x), v(0,x)=g'(x),

where

By(t,x,y,2) = o(t,x,y)[ou(t,2,5) + a,(t,x,5)z]
+b(t,x,y,2) +b,(t,x,y,2) +b,(t,x,y,2),

éo(t, xX,y,2) = [bx(t, x,y,2) +b,(t, x,y,z)z]z

+ l;(t, xX,y,2)z + Bxs(t, x,¥,2).

(5.6)

REMARK 5.1. Since v and v are uniformly bounded by Theorem 2.3, the
functions B(¢, x, u(¢, x),v(¢, x)) and B(¢, x, u(t, x), v(¢, x)) are uniformly
bounded for all (¢, x). Also, B, and B, are Lipschitz in x, y and z, uniformly
in ¢ and x and locally uniformly in y and z.

We shall introduce a numerical scheme based on (5.6) which produces a
sequence of approximate solutions {U", V™¥:_ | such that

1
stup{|U(”)(t, x) —u(t, x)| +|VP(¢, x) — v(t, x)|} = ﬁ(;)

Following the idea presented in Section 3, we first determine the characteris-
tics of the first order system

u, — boy(t,x,u,v)u, =0,
v, — By(t,x,u,v)v, = 0.

It is easy to check that the two characteristics curves &;: (¢, x;(¢)), i = 1,2,
are determined by the ODE’s

dx,(t) = bo(t, x1(2), u(t, xl(t))’ U(t’ xl(t))) dt,
dxy(t) = Bo(t, xo(t), u(t, x5(2)),v(t, x5(t))) dt.
Let 7, and 7, be the arc lengths along %, and %,, respectively. Then,
(5.7) dry = (¢, x,(2)) dt, dry = Yy(t, x4(t)) dt,
where
d(t, x) = [1 +b3(¢t, x,u(t, x),v(t, x))]l/Q,

(5.8) s
Wo(t, x) = [1 +B§(t,x,u(t,x),v(t,x))] )
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Thus, along %, and &,, respectively,

J A J A
lplﬁTl_ ot ox)’ %afz_ ot %ox

and (5.5) can be simplified to

du 1 N
b— = —a?(t,x,u)u,, +by(t,x,u,v),
aT4 2
59
(5.9) av 1 A
ho— = —o%(t,x,u)v,, + By(t, x,u,v).
aty 2

Numerical scheme. For any n € N, let At = T'/n. Let h > 0 be given. Let
thk=kAt,k=0,1,2,..., and x, =ih,i= ...,— 1,0,1,..., as before.

STEP 0. Set U’ =g(x,), V. =g'(x,) V i, and extend U° and V° to all
x € R by linear interpolation.

Next, suppose that U*~! and V*~! are defined such that U*~(x,) = U} ~!
and V* " Y(x;,) = V! and let

(bo)
(éo = éo(tka x;, UF~L VAT,
(5.10) of = o(t", %, U,
b=+ bo(th, x,, U1, VA1) A,
X} =x; + By(¢", x,, UL, VA ) Ae
and U1 = Uk~ (x}) and V} 1 = VE-1(xH).

k N
k k-1 k-1

i bo(t $xi’[Ji 5‘/i )7

k

STEP k. Determine the kth step grid values (U*, V*) by the system of
difference equations

Ut —-Urt 1 A
= (ah) (U + (b))

(5.11) o A’%kl i
i i A R
- E(Uik)25f(v)f + (By), -

We then extend the grid values {U*} and {V/} to the function U”*(x) and
V*(x), x € R, by linear interpolation.

We shall follow the argument in Section 3 to prove convergence. We point
out that, unlike in the previous case, the functions B, and B, [see definition
(5.6)] are neither uniformly bounded nor uniformly Lipschitz. The arguments
are thus more delicate. It turns out that this difficulty can be overcome if one
can show that the solutions {U/*} and {V/*} to the difference equation (5.11)
are uniformly bounded for all 2 and i and the bound is independent of n.
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Indeed, if this is the case, then because the true solutions v and v = u, are
uniformly bounded, we can restrict ourselves to the set @, = {(¢, x, y, 2) €
[0,T] X R®: |y| < M, |z| < M}, where M depends on the bounds of (u,v) and
{U*,V*}, and all previous estimates will go through, with constants now
depending possibly on uniform bounds of B, and B, and their partial
derivatives over @,,. To justify this argument, let us first prove a lemma that
has intrinsic interest.

LEMMA 5.2. Suppose that {a,: k = 1,...,n} is a finite sequence such that
a,>0,V k and a, < a. Also assume that the following recursive relation
holds:

C
(5.13) ay<a, +—(1+a} ), k=1,...,n,
n

where C > 0 is a constant independent of k and n. Then there exists a constant
M > 0 depending only on C and «, such that sup, sup,_,., o, < M.

Proor. Let A(-) be the solution to the ODE

dA(¢)
dt

(5.14) = %(1 +A%(1)), A(0) = a,

where 0 <t < n. Since dA/dt > 0, A is increasing. Thus, for each % =
1,...,n, it holds that

C ¢
A(k) =A(k 1) + — [ (1+A%(r))dr
n-’p-1
(5.15) o
>A(k —1) + —(1+ A%k - 1)).
n
Noting that A(0) = « > a,, a simple induction using (5.13) and (5.15) then

shows that A(k) > a,, & =1,...,n. It suffices to determine the bound for
A(?), 0 < t < n, but by solving (5.14), we have

dA(t)

C= f g Az(t) = arctan A(n) — arctan A(0) = arctan A(n) — arctan o,

hence

sup A(k) =A(n) =tan(C + arctan a) == M < o,

0<k<n

Consequently, we obtain that

sup sup q, <sup sup A(k) =M

n 0<k<n n 0<k<n

proving the lemma. O
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We now give a crucial result of this section.

THEOREM 5.3. Suppose that (A1)-(A3) hold. Then the solutions {U*,V}}
to the system of difference equations (5.11) are uniformly bounded in k and i,
and the bound is independent of n. More precisely, there exists a constant
M, > 0, depending only on b, o, b and T, such that

5.16 sup sup{|U*| + [V} < M,.
i i 1

n k,i
PRrROOF. Let us rewrite (5.11) as
Ut = T+ {30t 82U)E + (bo); )AL,
V=i (3(ah) 82 (V) + (By) At

Since |U*~!| < max,|U* | = [|[U* | and [V~ !| < [[V*¥~ 1|, a maximum prin-
ciple argument shows that

IO < NT* 21+ (B ) | At = 1T+ [ (Bo) | A,

(5.17) B o -
VA< 17411 +]|(By) | At < ive-11+(Bo)" | ac.

Since 30 is uniformly bounded, it is easy to check by iteration that
sup,, sup, [[U*|| < «. It remains to show that the same is true for VE as well.
To this end, we first observe from the definition (5.6) that B, is of quadratic
growth in z, uniformly in (¢, x, y). Namely, there exists a constant K > 0,
depending only on the bounds of b, o, b and their first order partial

derivatives, such that Iﬁo(t, x,y,z) < K(1 + z2). Therefore,
A R A
(Bo); [ = Bo(eh, i, Uf 2 V) < K(L+ 72 1)
and the second inequality in (5.17) leads to

IVE < [V Y + K (1 + IVEL1?) A¢

(5.18) TK
=IVE Y+ — (1 + [[VE1?),
n

since At = T'/n. Hence, the result follows from Lemma 5.2. O

We can now follow the arguments in Section 3 line by line. What follows is
essentially a somewhat detailed sketch of the proof of Theorem 5.5. First, we
evaluate the first equation in (5.9) along %, and the second one along &, to
get an analogue of (3.12):

B oAk-1
Uy —uU;

(o)) 82(w)! + bo(u,0)t + (),

N| = N -

(o)t 82(w)! + Bo(u,v)! + (en)",
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where u® = u(t*, x,), v} = v(t*, x,) [recall that (u,v) = (u,u,) is the true

P =

solution of (5.6)] and 2%~ = u(¢*~1, &), 6 = v(¢*~1,%,), with

13

&F =0, + bo(th, x,ul ol )AL, RE=x; + By(th, x,, ul "t 0f ) A

Also, o(w)¥, by(u,v)* and By(u,v)* are analogous to o, (b,)* and (B,)*
except that U*~! and V™! are replaced by u?~! and v/~ 1.

Next, we estimate the error {(el)f} and {(ez)f"} in the same fashion as in
Lemma 3.2 to see that

(5.19) sup |(e1);

+[(e) [} <@(h + Ar).

REMARK 5.4. In Lemma 3.2 we used the bound ||b]l. [see (8.18)]. The
analogue for (5.19) is that C = max{|| Byll, l|5ll}. In theory, the definition (5.6)
implies that | Byl is always computable using the bounds of the coefficients
(i.e., b, b, o) their partial derivatives and the bound on v = u,. However, in
practice, the a priori estimate of ||[v|l.. is not easy to obtain. However, in a

computational process one could always replace ||v|.. by the a priori bound of
the approximate solution {V;*} derived in Theorem 5.3.

We now define as we did in (3.22) the approximate solutions U™ and V("
by
U™t x) = k; U*( %)L r-1vyry/n, b/ n1(E)s t €(0,T],
UO( x)a t=0,
(5.20)

Vot x) = kglvk(x)l(((k—l)T)/n,kT/n](t)’ t €(0,T],

VO(x), t=0.

Let &(¢, x) = u(t,x) — U™(¢, x) and (¢, x) = v(¢t, x) — V*(¢, x). We can de-
rive the analogue of (3.24):

gik _ éikfl 1
x5, = (@) RO+ ()] (e,
évik _ fikfl 1
S, = (o) SO+ (L) + (e
where
P u(t® 1 &F) —u(t* 1, %)
(1) = <
1
g lo?(ehx, bt = (4, 1, UF )] 02 (w)!

+[130(u,v)§e — (Bo)f]
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1
+ Lo, x0T = 022, x, VA 62(0)!

A 1 N
+ [Bo(u, v); — (Bo)i ]
Using the uniform Lipschitz property of 50 in y and z, one shows that

(521)  |(L)!

On the other hand, note that the true solution (z,v) is uniformly bounded
and that {U*} and {V/} are also uniformly bounded by Lemma 5.1. We can
use the locally uniform boundedness and local Lipschitz property of the
function B, (in y and z) to get

<Ol U+ 14 M + Cy(h + At)  VE,i.

|Bo(u,v)f = (Bo)t| < ci(ler-11+12+1)  Vki,

where C, depends only on the bounds of u, v, {U/}, {V}*} and those of o, b, b
and their partial derivatives. Consequently,

(5.22)  [(L)*| < Cy{leh—t+14" 1) + Cy(h + At) VR,

Use of the maximum principle and the estimates (5.19), (5.21) and (5.22)
leads to

IEXI < M+ Co(NE* I+ 2% M) At + C5(h + At) At,
ICHN < HZF M+ Co(IER I + I12F M) At + Cy(h + At) At.
Add the two inequalities above and apply Gronwall’s lemma; we see that
szp(llfkll +1¢H) = @(h + At).

Arguments similar to those in Theorem 3.4 complete the proof of the follow-
ing theorem.

THEOREM 5.5. Suppose that (A1)—(A3) hold. Then
1
sup {|{U™(¢, x) — u(t, x)| +|VO(¢, x) — u, (¢, x)|} = @’(;)
(t, x)

Moreover, for each fixed x € R, U™(-, x) and V™(-, x) are left-continuous;
for fixed t € [0,T], U™(t,-) and V™(¢,-) are uniformly Lipschitz, with the
same Lipschitz constant that is independent of n.

Using Theorem 5.5, we can now approximate the SDE (2.5) as before
without any extra work. In fact, if we set

(5.24)  0"(t,x) =U"N T —t¢t,x), 6 (T—t,x)=V"(¢x)
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and
b (t, x) = by(t, x,0™(¢t, x), 0 (t, %)),  &"(t,x) =o(t,x,0"(¢t,x)),
then it follows from Theorem 5.6 that

i _ 1
sup {|b(t, x) = b"(t,x)| +|a(¢,x) — a"(¢, )|} = @’(;)
(¢, x)

and that, for fixed ¢ € [0, T], 5"(¢,-) and ¢"(¢,-) are uniform Lipschitz, with
the Lipschitz constant independent of n. Thus, if we again let X" denote the
solution to the discretized SDE,

Y iy v Loy Yn
(5.25) X! =x+ fob"(-,X,”)nn(s) ds + /Ocr (-, X)) AW,

where 1" is defined by (4.1), then one can easily show the following final
result of the paper, which is the analogous to Theorem 4.2.

THEOREM 5.6. Suppose that the standing assumptions (A1)-(A3) hold.
Then the adapted solution (X,Y, Z) to the FBSDE (2.1) can be approximated
by a sequence of adapted processes (X",Y",Z"), where X" is the solution to
the discretized SDE (5.25) and, for t € [0,T],

Y =08, X)) Zf = —o(t,)?;‘, en(t,)_(t”))ex”(t,)_(ﬁ),

with 0" and 0 being defined by (5.24) and U™ and V™ by (5.20).
Furthermore,

_ _ _ 1
E{ sup | X - X,|+ sup |Y,* =Y, |+ sup |Z] - Ztl} = @’(—)
0<t<T 0<t<T 0<t<T \/;

If fis C? and uniformly Lipschitz, then, for n large enough,

\E{f(X}‘,Z;)} —E{f(XT;ZT)}‘ < g
for a constant K.
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