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POISSON APPROXIMATION FOR POINT PROCESSES VIA
MONOTONE COUPLINGS

By TimorHY C. BROWN AND DARRYL GREIG

University of Melbourne

Monotonicity properties of certain classes of point processes with
respect to the Palm measure are exploited to derive upper and lower
bounds on the total variation distance away from Poisson of these pro-
cesses. The results obtained are applied to new better than used and new
worse than used renewal processes and to a Cox process with rates given
by a two state Markov chain.

1. Introduction. Poisson approximation using the Stein—Chen method
has been the subject of much recent work. This method, introduced in Chen
(1975), produces remarkably accurate results for a wide range of processes;
see Barbour, Holst and Janson (1992) for an encyclopedia of applications. The
bounds that we produce here are based on an inequality in Theorem 3.1 of
Barbour and Brown (1992) which bounds the total variation distance of the
number of points in a point process, N, from Poisson by the average Wasser-
stein distance of N from its reduced Palm distribution. This bound is a point
process generalization of the bound which is often called the coupling method
in discrete time: coupling is also an important tool in the examples studied
here, but the bounds obtained are independent of these couplings, requiring
only the moments of the process to be calculated. Note that the reduced Palm
distribution is that of N — 1 given the existence of a point at a particular
location, and the Poisson process is characterized by the reduced Palm
distribution being identically that of the process itself.

In Barbour, Holst and Janson [(1992), pages 24-26, 60—63] concepts of
positive and negative relationships between indicator random variables are
used to provide upper and lower bounds for the total variation distance
between a sum of indicators and the Poisson distribution. Although these
results do not immediately generalize to point processes on the continuum,
much of the underlying framework provides a helpful basis for deriving
general point process results. We demonstrate that if a given point process
satisfies either a positive or negative ordering condition with respect to its
Palm process, then the computation of bounds on the total variation distance
away from Poisson is greatly simplified, being expressed only in terms of the
first four cumulants of the process. The new definitions required for this also
afford a further benefit, namely, that the treatment of the positive and
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546 T. C. BROWN AND D. GREIG

negative cases requires only a sign change, whereas the positive case is more
complicated in Barbour, Holst and Janson. The upper and lower bounds
under both kinds of monotonicity involve the variance to mean ratio of the
number of points minus 1; this quantity is an upper bound, while the lower
bound involves the fourth cumulant in a multiplying factor (Theorem 2.1). In
cases that are studied here the multiplying factor is bounded over large
ranges of the parameter space for the process, and thus the bounds are tight
up to constants. In particular, in the cases here, “two moments suffice” for
tight bounds as well as for convergence [Arratia, Goldstein and Gordon
(1989)]. While complicated calculations are needed to compute the bounds,
the results are pleasingly simple.

Let .2 be the set of probability measures on N = {0,1,2,...}, and for any
random variable X, denote its probability law by ZX. Define the total
variation distance dry between two measures P,Q €2 by

(1) dpy(P,Q) =3 X |P(n)—Q(n)|=j0§|P(A)—Q(A)|,
n=0 c
and the Wasserstein distance dy by

(2) dw(P,Q) = X | X P(m) — ¥ Q(m)|=inf E|X - Y],
n=1lm=n m=n

where the infimum is taken over all possible joint distributions of (X,Y ) such

that X = P and Y = Q. The probability law of a Poisson random variable

with mean u is denoted by Poisson,,.

Let &£ be the state space for point processes on R*. As usual, this can be
considered as a space of increasing nonnegative right-continuous functions
with value 0 at 0, or a space of nonnegative integer-valued measures. Both
representations will be convenient and the context should make it clear
which is being used.

Suppose {N,}, ., is a point process on the line and that, for s > 0, N° is a
point process with the Palm distribution of IV conditional on a point at s. The
defining equations for these processes N° are that, for measurable f: [0, %) X
Z — R* and 7w the mean measure of N,

(3) [E{f:f(s,N)N(ds)} =f:[E{f(s,Ns)}7r(ds).

See Kallenberg [(1983), page 84] for related theory. It will be convenient to
use the reduced Palm process N° — §, which satisfies

(4) [E{f:f(s,N— 8S)N(ds)} = f:[E{f(s,NS —8,)}w(ds).

Intuitively the Palm distributions of a point process N are the distributions
of N conditional on the presence of a point at a prescribed location. Further-
more, the reduced Palm distribution at s of N is the distribution of N
conditional on the presence of a point at s, with the atom at s removed.
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Equation (3) is thus a manifestation of the law of total probability, at least in
the case when N is simple.

In the examples considered in this paper the point process is simple and
also stationary. It is therefore convenient to use the formulation of Palm
probabilities given by Baccelli and Brémaud (1987). This relies on station-
arity of the whole probability space (Q,.7, P) under translations. These are
represented by a measurable semigroup of automorphisms {6,} on (Q, %, P)
such that for all ¢, Po §,' = P, and furthermore for C a Borel subset of R,

N(6,0,C) = N(w,C + t).

That is, N° 6, has the points of N translated by ¢ to the left. The Palm
probability P°® in this context may be defined for any event A € . by

(5) Ps(A) = %[E{folI[A]oeu_sN(du)},

where pu = EN,. The Palm process N° is then a point process with law given
by the law of N under P®, but it will be important in Section 3 that (5) is
used for another process X to construct a process X° whose law is that of X
under P°.

We may now state Theorem 3.1 of Barbour and Brown (1992).

THEOREM 1.1. Let {N,},., be a simple point process defined as above and
let {(N®—8),),., be its reduced Palm process. For some fixed t > 0, let
A =EN,. Then

1-e?
doy (ZN,, Poisson,) < Tftdw(th,g(Ns —5,),)m(ds),
0

where 1 is the mean measure of N.

2. Of PIGS and PILS. The definition (2) of Wasserstein distance sug-
gests a class of point processes for which a straightforward application of the
upper bounds in Theorem 1.1 is possible. We say that a point process has the
property Palm is greater (less) stochastically [PIGS (PILS)] if, for 0 <s < ¢,
the distribution of (N*® — §,), is stochastically greater (less) than that of N,.
That is, for all m > 1,

(6) P((N* = 3,), 2 m) = (<)P(N, = m).

These properties are quite strong, but the benefits in simplicity of Poisson
approximation are substantial and the examples illustrate that there are
many processes which satisfy these properties. Moreover, these properties are
related to the positive and negative dependence of Barbour, Holst and Janson
(1992) in the discrete case, and there are many examples of that dependence
in Barbour, Holst and Janson.
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THEOREM 2.1. Let {N,},. , be a point process and, for some fixed t > 0, let
A =EN,. Let «,(N,) denote the fourth cumulant of N,, which is assumed
finite. If N has the PIGS property, let

k. ( N, var N,
n= o t)—l, e = Lo, ¢=max(0,l)+3s;
A A Ae
if N has the PILS property, let
k4( N, var N,
n=1- i t), e=1- L ¢=max(o,i—3g).
A A Ae

In either case,

(7 < dpy(ZN,,Poisson,) < (1 —e Y)e.

11 + 3¢

ProoF. Let N, have the property PIGS: the proof for PILS only requires
sign changes. Now, using the PIGS property (6), the upper bound in Theorem
1.1 may be simplified, since

dw(ZN,, Z(N*-38,),) = |P(N, = m) — P((N* = §,), = m)]
1

Ms 1M s

{P((N* = 8,),>m) - P(N, > m)}

m=1

E(N*® - 8,), — A.

Hence,

EifiﬁfﬁﬂN*—@”“d”_Aﬂ

and, from (4), with f(s, £) = £, for s € [0, ¢],
[ E(N® = 8,),m(ds) = [E{ft(Nt - 1)N(ds)}
0 0
- E(N2) - EN,,

(8)  dyy(ZN,,Poisson,) <

SO

(1-e)
dry (ZN,,Poisson,) < f(var N, — 1),

as required.

To derive the lower bound we follow an argument similar to that of
Barbour, Holst and Janson [(1992), Theorem 3.D], with appropriate changes
for the different context here. Let 6 > 0 be fixed and define f: R - R by
f(z2) = (z — Mexp(—(z — A)?/6)). Then by Lemma 3.2.1 of Barbour, Holst
and Janson (1992) the following holds for all y > x:

3 _ 43

9 Fly+2) = flx+0) 2y —x -
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Also the derivation of Barbour, Holst and Janson [(1992), equation (3.2.7)]
remains unchanged for continuous time. Thus, for 0 > e,

[E{Af(N, + 1) = N,f(N)}]
2M(2e 3% + ge 1)

(10) dry(Z(N,),Poisson,) >
Now from (4) it follows that

[E{Ntf(ZVt) - /\f(Nt + 1)}

E| [/ FN)N(ds) | = [ ELFN, + 1)) (ds)

t
[O E{f((N* = 8,), + 1) = f(N, + 1)}w(ds).

Let F and F, be the distribution functions of N, and (N*® — §,),, respectively,
and for y € [0, 1], let F~1(y) = inf{x: F(x) > y}. If U has a uniform distribu-
tion on [0, 1], then W = F~1(U) has the same distribution as N,, and simi-

larly V, = F, 1(U) has the same distribution as (N* — §,),. Moreover, by the
PIGS property, V., > W. Hence

,[Ot[E{f((Ns -8, + 1) - f(N, + 1)}7T(d8)
= fot[E{f(Vs +1) — (W + 1)} (ds)
2ft[E{(V5+1—,\) —(W+1- 1)

0

V,+1-2)° - (W+1-2)>
A/ m( 1Y }w(ds)

by (9). However, by applying (4) to terms involving (N° — §,), the right-hand
side of the last inequality becomes

; . (N°=38),+1-1)" — (N, +1-1°
AE&N—@L—M— o }ﬂw)

1
—varN, — A — a{[E{Nt(Nt — N’} = AN, + 1 - 1))

—varN, — A — 9—1)\{[E{(Nt —1)*) = 3(varN,)* — a

+3(var N, — A)var Nt}

_ /\3(1 B (m/Ae) ;3 + 3¢) )
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SO
Ae(1—((mn/Ae) +3 +3¢e)/0)
2M(2e 3% 4+ ge 1)
e(1—(y+3)/0)
T (4e7¥P 42071

This lower bound achieves its maximum at (approximately) § = 24 + 6, so by
choosing 6 to be this value, it follows from (10) that
e e

> .
e 32 +24e ' +8e Wy 11+ 3y

dry (ZN,,Poisson,) >

drv (ZN,,Poisson,) > 3 O

Those processes for which the PIGS or PILS properties can be established
are thereby shown to achieve the best upper bounds obtainable under the
application of the Stein—Chen method in Theorem 3.1 of Barbour and Brown
(1992), since Theorem 2.1 evaluates the upper bound expression exactly.

We also note here that if a process may be shown to be PIGS or PILS, then
Theorem 2.1 reduces the computation of the upper and lower bounds away
from Poisson to the computation of the first four cumulants of N, for some
fixed ¢ > 0. It has to be said that for many point processes this will prove to
be a rather nontrivial problem, and perhaps intractable in some cases. In the
next two sections of the paper we present some applications of Theorem 2.1 to
specific examples and include some techniques for computing cumulants that
may be more generally applied. In the next section we are able to derive an
exact form for the first four cumulants of a Cox process, which appears to be
extendible to general finite state Markov processes, for cumulants of any
order. On the other hand, Section 4 involves some processes for which a direct
computation of the cumulants does not seem feasible, and so some asymptotic
results are derived which demonstrate the behavior of the Poisson approxi-
mation as ¢ — .

It is instructive to compare Theorem 2.1 with Theorems 3D and 3E of
Barbour, Holst and Janson (1992), whose proofs have much in common with
the above proof. In the case of PILS, the result is of the same form. Indeed, if
the indicator random variables (I,, B8 €{0,1,...,¢}) are negatively related
and for C c{0,1,...,1¢},

N(C) = ¥ N,
pBeC
then it is easy to see [using (2.1.3) of Barbour, Holst and Janson] that N is
PILS.

In the case of PIGS, Theorem 2.1 is simpler and of a similar form to that of
the PILS case, whereas Theorem 3E of Barbour, Holst and Janson has an
extra term in the upper bound. This term appears because the positive
relationship used there implies that

P((N*® = 6,), =m)>P((N - 8,), =m),
but not necessarily
P((N*® - 6,),=m) > P(N, > m),
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which is the PIGS property. On the other hand, it is not necessarily true that
the PIGS property implies the positive relationship of Barbour, Holst and
Janson, being formulated for continuous processes rather than indicators.

3. A two state Cox process which is PIGS. Let {«, 8, a, b} C (0,x),
a < b. Let {X,},. , be a stationary alternating continuous time Markov pro-
cess with states @ and B and associated rates a and b, respectively. The
process {N,},. , is defined in the following way: when X, is in state ¢ for
£ € {a, B}, then N evolves as a Poisson process with rate ¢. Because N can
be defined using X to change time randomly for an independent standard
Poisson process, N is an example of a Cox process [see Snyder (1977) and
Daley and Vere-Jones (1988)]. Throughout this section, let u = ENj, ;; and
assume that A, ¢, ¢ and n are defined as in Theorem 2.1.

LEMMA 3.1. For t > 0, the random variable N, has first, second and
fourth cumulants given by

(Ba + ab)t
Ky =A=ut= W,
26 (exp(—(a +b)t) — 1)
K2=,U,t+m{t+ (a+b) }’
26 (exp(—(a +b)t) — 1)
K4=Mt+m{vl{t+ (a1 }
+vyt(exp(—(a + b)t) — 1) + vyt?exp(—(a + b)¢)
+v,(exp(—(a + b)t) — 1)},
where
_ab(B- a)?
(a +b)° "’
B 36(b — a)( 32— @) | 36(a® — 3ab + 524)( B— a) |
(e +0b) (a +0)
o 24(a® — 3ab + b?)( B — a)’ N 18(b — a)( B — a)
? (a +b)* (a +b)°
L _8b-a)(B-a)
’ (a +b)° ’

66
(a +b)*
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Proor (Sketch). We find an expression for the moment generating func-
tion of N, by conditioning on the state of N, at time ¢, that is,

(11)  Eexp(6N,) = E{exp(ON)I[ X, = ]} + E{exp(6N)I[ X, = B]}.
Let & = o(N,, X,, z <t). Then the conditional intensity of N (which we

denote by A,) relative to & is X_. For the process I[ X, = a] we can also
define a conditional intensity ¢, via

([ Y. X, - o))} - [E(Y.8) ds
for bounded previsible Y. Thus the conditional intensity is ¢, = bI[ X,_= B]
— al[ X, = a]. Furthermore, AN, AX, = 0 a.e. Hence,
E{exp(6N,)I[ X, = a]) ~ P(X, = a)

= [E{fotexp(91\@_)1[Xs_= a](exp(6) — 1) st}
+ [E{foteXP(ONS_)d(I[XS _ a])}
= A:E{eXP(ODQ)I[AQ = a]A}(exp(6) — 1) ds
+f0t[E{exp(0Ns)(bI[Xs = B] —al[ X, = a])}ds
— [/ Elexp(0NI[X, = a]}((exp(0) — )a — a) d

+ [ E{exp(ON)I[ X, = B1}bds,
0

where the first equality follows from integration by parts [Brémaud (1981),
Appendix A.4.2] and the second from the previsibility of the argument and
Fubini’s theorem (noting that N is bounded above by a Poisson random
variable with mean sup{«, 8}).

An analogous expression for E{exp(ON)I[ X, = B8]} may be derived in a
similar fashion. Then, letting x.(¢) = Hexp(ON)I[ N, = ¢} for ¢ € {«, B},

()] [(e'-1)a-a b x, ()
(12) [x;(t)_:l a (e"—l)ﬁ—bea(t)]'

The solution of this equation is then
EXQ)
R (¢)
where (u;, £;) is the ith eigenvector—eigenvalue pair of the matrix in (12) and
u,, u, satisfy the extra constraint that

b/(a +b)
a/(a +b)

] =u, exp( {1t) + u,y exp({yt),

u1+u2=[
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Assume that {; > {, and let f; be the sum of the terms in the ith eigenvec-
tor. Then by (11),

[E{exp(@]\ft)} = exp( §1t)(f1 + fa eXP(_(§1 - gQ)t)),

so the cumulant generating function is

(13) log E{exp(ON,)} = {1t + log(fy + fy exp(—( &y — &£5)t)).

Note that both u; and ¢, are functions of 6. The cumulants are therefore
obtained by calculating the eigenvalues and eigenvectors and differentiating
(13) with respect to 6 and evaluating the resulting expression at 6 = 0.
Details are available from the authors on request. O

For any simple point process driven by a finite state Markov process an
equation similar to (11) may be written down. If the appropriate conditional
intensities can be derived, one would expect a matrix equation like (12) and,
consequently, a cumulant generating function (CGF) of the form of (13). Note
also that the form of this CGF implies that, as ¢ — «, any such point process
will have its cumulants dominated by a linear term involving the derivatives
of the largest eigenvalue of the matrix obtained.

THEOREM 3.1. The process N, has the PIGS property.

Proor. The theorem is proved by specifying a coupling of N, with its
reduced Palm process (N° — §,),, for some 0 < s < ¢, that demonstrates the
necessary monotonicity requirements. Let P° be the Palm probability condi-
tional on a point occurring at time s. Furthermore let X° be a process which
has the law of X under P°.

To begin with we couple X with X°. Papangelou’s formula [Brémaud,
Kannurpatti and Mazumdar (1992)] implies that P*(X,, = «) = P*(X,_= a)
= ab/(ab + Ba), and it follows from standard Markov chain theory that
P(X, = @) = b/(a + b). Let U be a uniform [0, 1] random variable. Then the
values of X, and X; are assigned according to the position of U in the
partition of [0, 1] given in Figure 1. Note that the positions of b /(a + b) and
ab/(ab + Ba) are as shown in the diagram. So, for example, if « > 8, then
with probability b/(a + b), X, = X{ = a, with probability Ba/(ab + Ba),

(@)a>p (b)x <A
X, a g g X, a a B
X;: a a B X «a B B
ab a )
0 v 0 5% a 1

Fic. 1.
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X, = X? = B and with probability ab/(ab + Ba) — b/(a + b), X, = B, X} =
a. Clearly this coupling preserves the correct marginal probabilities for N
and (N* — §,) at time s.

If we condition on the event X, = X7 we can take X, = X; for all ¢ and N,
and (N*® —§,), will be stochastically indistinguishable. In this instance,
therefore, we define (N° — §,), = N, in both cases of Figure 1.

Now assume that o > 8. If X, # X7, then the coupling of Figure 1(a)
ensures that X, = B8 and X = «. Let T, i € N, be the time of the ith
transition of X after time s. We define the analogous times {T}’}; . for X* in
the following way.

Let A ~ exp(a) be independent of X. If A > T, then let T/ = T, for
i>1.If A<T,thenlet 7Y = A and T’ = T,_, for i > 2. Note that X and
X? are coupled after the first transition time T'= T, A T, and consequently
soare N and (N° — §). Thatis,V u > T, Ny ,, = (N° = 87 ,

Assume that the points of N in the interval [s,T) are determined by a
sequence of exp( ) random variables, {B,}. Then the points of (N° — §,) in
the same interval may be defined by the sequence {( B8/a)B;}. Since a > B, it
follows that (N* — 8, ) = N,y Vs <u <T.

For u < s we need only to notice that N, is reversible, and hence the above
coupling may be used in reversed time. Hence, if a > B8, we have that
(N®*—=8),=N, forall 0 <s <t

The coupling is essentially the same in the case B > a, with X} = 3,
X, = a the only nontrivial outcome from the initial uniform [0, 1] realization;
the rest of the argument follows mutatis mutandis. Intuitively, (N° — §,) will
still dominate N since the greater of 8 and « is again the state of (N° — §,)

at time s when a mismatch occurs. O

COROLLARY 3.1. Let 6 and v; be defined as in Lemma 3.1. Then for N, we
have

g(t), where g(t)={t+ exp(—(a +b)t) -1

~ ut(a+b) (a+b)
Let
3e 3y, 3cy(a +b) 18§
cl=|vl|+|vzl+m, cy =11 + P (@ +5)’
Ty 33u 815

c3=|1/1|+7|v2|+m, c4=m+3cs+m.
Then, if t > 3/(a + b),
(14) ci < dw (ZN,,Poisson,) < (1 —e *)e¢

2

and, in particular, if t > 3c,/u+ 1/(a +b) and (B — a)® <(a + b)? X
(Ba + ab)/(18ab),

&
(15) IE < dgy(ZN,,Poisson,) < &.
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Also fort < 3/(a + b),

2
(16) e 8t? < dpy (ZN,,Poisson,) < 8t2.
Cyq

NoTE. Equations (14)-(16) show that the upper and lower bounds are
tight up to a constant order both for small and large ¢. Note, however, that
the bounds are of a different character in the two different cases: those in (14)
and (15) being essentially constant in ¢, while those for small ¢ are quadratic
in ¢.

Proor oF COROLLARY 3.1. The value of ¢ follows directly from the defini-
tions of Theorem 2.1 and the results of Lemma 3.1. Furthermore,
n 1[v, wvy(exp(—(a +b)t) —1)
— +

Ae  p|t g(t)
(17) 2
vstexp(—(a +b)t)  y(exp(—(a +b)t) —1)
g(1) tg(¢)

Clearly these functions may be directly applied to the results of Theorem 2.1
and the most accurate bounds allowed by that theorem obtained. However, a
careful analysis of (17) provides the more appealing and easily applied
bounds given above.

In the first instance, let ¢ > 3/(a + b). Note that t — 1/(a + b) < g(¢) < t.
It follows from (17) and the fact that v, < 0 that

% < ,udg#(t){h}l' + vyl + vyt exp(—(a + b)t)}
3e v, ¢
T ) {W T ) } ~ u(t—1/(a+ b))
and so
d 1y (ZN,, Poisson,) > 8{11 + 3¢y N 93}1 N
u(t—1/(a + b)) o

The lower bound in (15) follows from noticing that under the conditions there,
Bedut —1/(a + b))} <1and e < 185/(w(a + b)) < 1.

Now assume 0 < ¢t < 3/(a + b). By expanding the exponential term of g(¢)
we have that

(a+b)t2{1_(a+b)t+(a+b) tz_ (a +b) t3}

2 3 12 60
(a + b)t?
2

(18)

<g(t) <
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Since the bracketed function in the lower bound is decreasing, it achieves its
minimum at ¢t = 3/(a + b), so

3(a +b)t>  (a+b)t?
= > .

(19) g(6) = = -
Thus
n 1 (lvyl  7lwyl(1 —exp(—(a +b)t)) Tvgexp(—(a + b)t)
ESZ{TJF (a+ D) (a1 b)t
1 Tvg
< ﬁ{h/l' + Tlvy| + p—y b}
and again applying Theorem 2.1,
. ute
dry (ZN,,Poisson,) > 15t 3¢, + 9ept
28g(1)
" (a +b)(11ut + 3¢y + 9eput)
208(t) > 2 812,

“(a+b)e, ey
where the last equality follows from (19).
The upper bound in this case comes directly from the expansion of the
exponential term in the upper bound of (7):
20g(t 26g(t
s(t) _208(t) .o
(a +d)ut a+b

dry(ZN,,Poisson,) < (1 —e *)e < ut
where the last inequality follows from (18). O

4. A monotone coupling for NBU and NWU renewal processes.
The results of Theorem 2.1 may also be applied to two classes of renewal
processes that are characterized by a weak ordering condition on the renewal
distribution.

Let N be a renewal process with interpoint distribution F' concentrated on
(0,»). Let s > 0 be fixed and let D, and B, be the forward and backward
recurrence times of N at s. That is,

D, =inf{y: N(s,s +y] >0}, B, =inf{x: N(s —x,s] > 0}.
Now {D,: s > 0} is a Markov process such that at time s, D, only depends on

the past of the renewal process through B,. Thus, if Y is some F-random
variable,

F(y) =4t P(D,<y|B,=x)=P(Y<y|Y>x)
_ F(x+y) - F()
 1-F(x)
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For any distribution function H, we define its inverse H ! by
H 'Y(y) =inf{x: H(x) =y}, ye<][0,1].

We may now define a coupling of N with its reduced Palm process (N* — §,).
Let U,,U, be independent UJ[0, 1] random variables and let {Y;},.y be a
sequence of independent F random variables. Let X, = F~'(U,), B, =
G '(U)), X, = F'(U,) and D, = Fz'(U,). Let {T}}, be the renewal times
of N with respect to s. That is, T, is the time of the ith renewal of N after
time s and T_; is the time of the ith renewal of N counting back from s. Let
{T}, .y be the analogous times for (N* — §,).

Let T, =s+D,, T/ =s+X,, T_,=s—-B,, T, =s — X, and, for i > 1,
define the timesby 7, =7, _ +Y,_,,T°=T, +Y,_ ,T_,=T_,,, - Y_, 4
and 7%, =T?,,; — Y_,,,. Note that both N and (N° — §,) have the correct
marginal distributions under this coupling and that to establish (say) the
PILS property for N, it is certainly sufficient to show that for all i > 1,
T At<T’AtandT_,vO0x=T: VvO0.

A distribution F is said to be new better than used (NBU) if

Flx+1)—F(7)
1-F(r)

The class new worse than used (NWU) is defined by the obvious reversal of
inequality. These distributions belong to the so-called aging and antiaging
hierarchies of distributions from the increasing failure rate (IFR) and in-
creasing failure rate average (IFRA) classes, and NWU contains the decreas-
ing failure rate (DFR) and decreasing failure rate average (DFRA) classes.
See Barlow and Proschan (1975) and Stoyan and Daley (1983) for definitions
and examples.

>F(x) forall x>0,7>0.

THEOREM 4.1. Let {N,},., be a stationary renewal process with renewal
distribution F. If F is NBU (NWU), then N, has the PILS (PIGS) property
and

&
m < dTV(gNt,POISSOHt/M) < (1 — eit/“)a,
where p = [§(1 — F(x)) dx and & and ¢ are defined as in Theorem 2.1 with
A=t/

Proor. We shall establish PILS for NBU only and note that the PIGS
case (NWU) follows from the obvious sign changes.

If N is stationary, then standard renewal theory [see Daley and Vere-Jones
(1988)] gives the marginal distribution of both D, and B, for N as

1 .
G(t) = —fo (1 - F(x)) dx.

w

As stated above, N, will be PILS, if for all i >1, T, A¢t <T At and
TP vO0=T?, v 0. However, from the coupling, this reduces to demonstrat-
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ing that B, < X, and D, < X, or, equivalently, that for all x,y > 0, G(x) >
F(x) and F,(x) > F(x).

The second of these inequalities is exactly the definition of F NBU.
The first follows by noticing that the NBU property may be restated as
(1-F(x+ 7)) <A - F(x)A — F(7)). Thus,

1 1 .
1-G(x)) =— 1-F(7))dr=— 1-F(r+x))dr<(1—-F(x)).
(1-G(x) = [ (1=F(r))dr=—[ (1= F(r+x)dr=(1-F(x))
The bounds are then a direct application of Theorem 2.1. O

Clearly the usefulness of this corollary depends on our ability to compute
the cumulants of the specific renewal process under review. In particular, the
behavior of ¢ is of interest since if y can be bounded above by a constant,
then the correct order of magnitude of the total variation distance is shown to
be ¢ for all ¢.

For a specific renewal distribution F, an exact computation of cumulants
may be possible; however, in cases where this is not possible, then asymptotic
bounds (as ¢ — «©) may still be obtained. In fact, Cox and Miller (1965)
demonstrated that the first four cumulants of a general renewal process N,
are asymptotically

t ky 3k ky k, 15k3 10k, k,
7 > l— ’ 5 ~ 714 |° == + - ’
Ry’ kY| BT Ry kY k] k3
where k; represents the ith cumulant of the distribution F.
The upper and lower bounds of Theorem 4.1 may now be evaluated directly

in terms of the cumulants of the renewal distribution. Let 6 be defined as
ky/k% — 1 in the PIGS case and 1 — k,/k? in the PILS case. Then

(20) lim sup dyy (ZN;, Poisson, ,,) < 8.
t— oo
Furthermore,
. . . 6
lll;rilglc’lf dpy (ZN;, Poisson, , ) > 95 £ 11’
(21) .

liItILio?f dry (ZN,,Poisson, , ) = ET
for the PIGS and PILS cases, respectively.

From this argument we see that if, for a given PIGS or PILS process, it can
be shown that as ¢ — o« the cumulants of the process are of the same order of
magnitude in ¢ [or at least that n/Ae is 0(1)], then ¢ —» 3¢ in the PIGS case
and ¢ — 0 in the PILS case. Hence the upper and lower bounds are of the
same order of magnitude for sufficiently small & and may be written in the
form of (20) and (21).
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The PIGS property for processes with DFR or increasing mean residual life
(IMRL) interarrival distributions may be immediately inferred from an ele-
gant coupling due to Brown [Theorem 1 of Brown (1980)] in which the Palm
process and stationary process are shown to differ by only a finite number of
points over the whole real line. The coupling used for Theorem 4.1 does not
have Brown’s strong pointwise matching property and thus admits a wider
class of distributions.

5. Conclusions and comments. We have given general conditions un-
der which both upper and lower bounds of the same order of magnitude on
the total variation distance of a point process away from Poisson may be
immediately written down. However, as is clear from the examples of Sec-
tions 3 and 4, these conditions are not always trivial to verify for a given
process. The definition of PIGS and PILS given in (6) seems to require quite
fine knowledge of the probability mass function of both the process and its
Palm process, which is not at all easy to come by in many instances. Thus one
is left to coupling arguments which may prove rather involved for complex
processes, although we reiterate that the bounds obtained are dependent only
on the existence of a satisfactory coupling and not on the specific coupling
chosen.

Of course, the results are particularly interesting when both upper and
lower bounds can be shown to be of the same order of magnitude, at least
asymptotically in ¢, as in the examples here.

Note that the point processes in these examples are stationary, whereas
neither Theorem 1.1 nor 2.1 requires stationarity. If a point process is
assumed to be stationary, then one may use the Baccelli and Brémaud
formulation of Palm probability described in the Introduction to compute the
necessary probabilities. In the case of the Cox process this allows a suitable
coupling of X with X°® from which the PIGS property follows. On the other
hand, the stationarity in Theorem 4.1 serves only to link the result with the
well known NBU and NWU renewal processes. The PIGS and PILS proper-
ties for nonstationary renewal processes should follow directly from a similar
(and, one would imagine, stronger) condition on the residual life and age
distributions of a nonstationary renewal process.

It is not known at this stage just how extensive the class of PIGS and PILS
processes are, although the NBU and NWU renewal processes examined in
Section 4 are a large and well known class. Barbour and Brown (1996) have
shown that the process counting transitions between queues in a Jackson
network is also PIGS, and work is currently in progress to establish lower
bounds complementing the upper bounds given.
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