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THE HAZARD RATE TANGENT APPROXIMATION FOR
BOUNDARY HITTING TIMES

By G. O. RoBERTS AND C. F. SHORTLAND
University of Cambridge

We consider the problem of estimating first exit distributions for
one-dimensional diffusion processes. We provide analytic bounds and an
approximation which is shown to be accurate in a range of numerical
examples involving Brownian motion.

1. Introduction. We consider the problem of estimating the distribution
of

7= inf{t: X, = f(1)),

where X is a one-dimensional diffusion process and f is a given curved
boundary, by using a collection of one-dimensional techniques, which provide
bounds for the boundary hitting time hazard rates. When X is Brownian
motion, this often leads to tight bounds, which are easily calculated.

The most general result we prove (Theorem 1) is a comparison result for
boundary hitting time hazard rates (at time ¢) of hitting three sufficiently
smooth boundaries f, g and h such that A(s) < f(s) < g(s) for all s <¢, and
h(t) = f(t) = g(t). Applications of this result are restricted to the case where
boundary hitting distributions are known for suitable enveloping curves (see
Definition 2). This paper concentrates on the case where X is Brownian
motion and the enveloping curves are linear, where explicit bounds for
hazard rates are easily deduced (Corollary 2). In the case where f is concave
or convex, one of the enveloping curves is the tangent to f at ¢. The latter
part of this paper investigates analytically and numerically the properties of
this hazard rate tangent approximation in general.

For Brownian motion, hitting time distributions are rarely explicitly avail-
able. However, the exit time distribution to a linear boundary has a simple
closed form known as the Bachelier-Lévy formula. Letting X, = 0 and
f(t) = a + bt, p®°(¢), the density of 7, is given by

a + bt

a
(1) po(t) = t—ﬁqb(—ft—

where ¢ is the standard normal density function. The Bachelier—Lévy for-
mula gives rise to an appealing simple approximation for the exit time
distribution to curved boundaries. The tangent approximation [Strassen
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(1967)] approximates the density p,(¢) of hitting a curved, differentiable
boundary f by

(1.2) p(t) = p™®20(t),

where a(t) = f(t) — tf'(t) and b(¢) = f'(¢). Thus p; is approximated by the
density of the linear boundary which forms the tangent to f at ¢. The tangent
approximation is rarely accurate for boundaries which are significantly non-
linear. However, asymptotic accuracy of the approximations for sequences of
concave boundaries receding to infinity can be shown [Lerche (1986)]. More
importantly, the tangent approximation can be extended to more sophisti-
cated approximations; see Durbin (1992). This approximation takes the form
of an infinite expansion in which the tangent approximation forms the
leading term. Durbin’s work can produce extremely accurate estimates using
a small number of terms in the expansion, but the calculation involved can be
extremely computationally intensive.

In this contribution, we give an approximation which combines the explic-
itness and computational simplicity of the tangent approximation with a
greater degree of accuracy. The idea is to approximate the hazard rate of f by
the hazard rate of exiting a tangential linear boundary. Thus, instead of
obtaining an explicit expression for the estimate of the hitting time density,
we obtain an explicit form for the estimated hazard rate. This is the hazard
rate tangent approximation in general, and we demonstrate that for concave
or convex boundaries this approximation considerably improves on the tan-
gent approximation (Theorem 3). Numerical investigation demonstrates the
accuracy of the method for more general boundaries where analytic bounds
for the hazard rate tangent approximation are not possible.

Although the numerical results are extremely good, the hazard rate tan-
gent approximation will fail to be as accurate as Durbin’s (1992) method for
sufficiently many terms in the Durbin expansion. However, the hazard rate
method is simpler to use and computationally straightforward. Moreover the
upper and lower bounds of Theorem 1 provide an assessment of the accuracy
of the hazard rate method. An application where the upper and lower bounds
from Theorem 1 are essential (and turn out to be extremely close) is given in
Roberts and Shortland (1994). This application concerns the evaluation of
certain types of exotic financial options known as barrier options.

The techniques we shall use for this are exclusively one dimensional and
follow from the work of Roberts (1991a, 1993). One-dimensional diffusion
processes are strongly stochastically monotone [Roberts (1991a)], allowing us
to prove comparison results on unconditioned and conditioned distributions of
the process. (Conditioned distributions here typically refer to not exiting f
before a specified time.) These comparisons in turn can be used to give
estimates on hitting time hazard rates.

2. Definitions and preliminary results. We assume throughout this
paper that X is a diffusion process satisfying the stochastic differential
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equation
dX, = o(t,X,)dB, + n(¢t,X,) dt,

and we shall assume throughout that X, = 0. For technical reasons, we need
to assume that n and o satisfy the following assumptions:

(A1) o(:, ) is bounded away from zero.

(A2) 1 and o are bounded continuous functions and o is continuous in ¢,
uniformly with respect to (¢, x).

(A3) 1 and o are Hélder continuous in x, uniformly with respect to (¢, x) in
compact subsets, and o is Holder continuous in x uniformly with
respect to (¢, x).

(A4) 9(c?)/dx,(0%(0?2))/dx? and dn/Jx exist and satisfy the constraints of
(A2) and (A3).

One important property of the diffusion process X is that of strong
stochastic monotonicity, that is,

pi(%x2, )

is nondecreasing in y for all ¢, x; < x,,
pi(x1, )

where p, is the transition density for X. We will find that this property is
fundamental for the ordering results in the sequel. For further details, see
Roberts (1991a).

Stochastic orderings are not necessarily preserved under conditioning: If
Y, and Y, are two random variables such that Y; stochastically dominates
Y,, then it does not necessarily follow that [Y; | Y; € C] stochastically domi-
nates [Y, | Y, € C]. We therefore make a natural extension to a stronger
stochastic ordering, which is preserved under conditioning, in some cases.

DEFINITION 1 (Strong stochastic ordering). We say the probability mea-
sure v, is strongly stochastically greater than v, (written v, >, v,) if the
Radon-Nikodym derivatives satisfy

vy(dy)
vy(dy)

is nondecreasing in y.

We will require our process X to be conditioned not to have hit our
boundary f. We shall make comparisons using other boundary curves which
envelop f.

DEFINITION 2 (Enveloping). We say that boundaries g and A envelop f
from above and below, respectively, prior to ¢, if

g(s) = f(s) =h(s) forall s <t,
with
g(2) =1(2) = h(t).
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With several boundaries now being used, we shall use subscripts and
superscripts to denote the particular boundary being considered. We shall
write

Pln,<t+elm>t]

r(t) = lgi% -

for the hazard rate of
7 = inf{¢: X, > A(2)}
t>0

for arbitrary C? function A.
The first preliminary result finds an expression for the hazard rate in
terms of the density of the conditioned process. If we denote

uw(x)dx =P[X,edx| 7 >t],

then we can state the following lemma.
LEMMA 1 [Roberts (1993)]. For an arbitrary C? boundary A(t),

1 :
r(t) = Eaz(t, A(t))xlTixAx(ltM(it)(—i-);.

Intuitively, this result states that the hazard rate is proportional to the
derivative of the density of the conditioned process, evaluated close to the
boundary.

The second lemma uses ordered boundaries to produce strongly stochasti-
cally ordered conditioned processes. It is a special case of Theorem 2.8 of
Roberts (1991a).

LEMMA 2. Suppose that f and g are right continuous boundaries with left
limits, such that f(t) < g(t) for all t. Then

[ X |7, > t] 2 [ X, | 7p> 2]

The intuition behind this result is that the conditioning is more severe
from boundary f, and this “pushes down” the process X more than the other
conditioning does. As a result, the above ordering presents itself.

3. The hazard rate bounds theorem. The two lemmas may be com-
bined to provide a bound on the hazard rate r/(¢) by using the hazard rates
associated with a collection of enveloping curves {g,(-), ¢ > 0} and {A,("),
¢t > 0}, where g, and k, envelope f from above and below, respectively, prior
to ¢.

THEOREM 1. Let f be a C? boundary, and {g,(-), t > 0} and {h,(-), t > 0}
be collections of C? functions, where g, and h, envelope f from above and
below, respectively, prior to t. Then, for each t,

(3.1) ra(t) <rp(t) <r,(t).
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ProoF. Fix ¢ > 0. First note that since f is C2, we can find C? curves g,
and h, with the desired ordering. Therefore, applying Lemma 2, we have

[Xt | 74, > t] Zgst [Xt | 70> t] >t [Xt | 74, > t].

We shall consider only the first of these strong stochastic inequalities, and
prove the second hazard rate inequality. The first can be proved in the same
manner, using the second strong stochastic inequality.

Note Lemma 1 yields

~ 1, pE(x)
relt) = () = go¥(t,g(0)) lim

ni(x)

__02
(t f(t)) lf(t) f(t) —x

and since f(¢) = g,(¢), this reduces to

_1, pi(x)  pl(x)
rg(t) —re(t) a (2, f(t)) 11;:(1” ) = f) x|

Suppose that
gt x f x
lim Rt (=) < lim ——Mt( ) y
e f(8) —x =1 f(E) —x
so that
gt X
(3.2) lim (%) <1.

Y ONLED)

Then, since our strong stochastic inequality is equivalent to (see Definition 1)

pi(x) _ mi(y)

pf(x) = wi(y)

[ie., the ratio of (8.2) is an increasing function of x], we have
pi(x)

pl(x)

forall x <y

<1 forall x < f(2).

That is,
uf(x) < pf(x),

which is impossible since both w#«(-) and u/(-) are densities on (—x, f(¢)],
and must integrate to 1, and using f(¢) = g,(¢).
Thus we conclude r, () > r(¢). D

4. Remarks and corollaries. It is often more convenient, from an
intuitive perspective, to use distribution functions rather than hazard func-
tions. We can also produce bounds on the distribution function of our hitting
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time 7, by exploiting the algebraic relationship between hazard rates and
distribution functions.
We begin with a further definition:

DEFINITION 3. For a collection of functions {A,(*), ¢ > 0}, define

Qu() = 1 - expf - ['r (&) ds}.

COROLLARY 1. Let f be a C? boundary, let P; denote the distribution
function for the first exit time across boundary f(t) and let {g,("), t > 0} and
{h,(-), t = O} be collections of C* functions, where g, and h, envelop f from
above and below, respectively, prior to t. Then,

Qy(t) < Pp(t) < Qg (2)
for all t.

This is immediate from Definition 3 and Theorem 1.

For the Brownian motion case, we can explicitly calculate the form of the
hazard rate across any straight line by using the Bachelier-Lévy formula.
Therefore, we select our curves g, and h, to be straight lines. We use the
following definitions:

N f(t) = f(s)
= sup———————
s<t t—s
ot = g O 1)
s<t t—s

¢, = f(2) — mit,

ep = f(t) — mit,
8,(8) = mis +cg,
h,(s) =mls +¢c,.

Then we have g,(s) > f(s) > h,(s) for all s <¢, with equality at time ¢.
Therefore straightforward application of the Bachelier-Lévy formula (1.1),

(4.1) P“’b(t)=1—d)(a—i—£) +e—2ab<1>(bt_a)
. ﬁ ‘/Z 2

where ® denotes the standard normal distribution function, and Theorem 1,
gives the following corollary.
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COROLLARY 2. Iffis a C? boundary and r; denotes the hazard rate of the
first exit time of Brownian motion across it, then

cnd((£(£))/Vt)
t3/2[q)((f(t))/\/l?) — exp(—2¢,m})®((f(¢) - 2ch)/\/z)]
c d((f(t))/V¢)

<ri(t) <

t3/2[®((f())/Vt) — exp(—2¢,m})®((£(t) — 2¢,)/Vt )|’

where c,, ¢, and m}, are defined above.

5. Hazard rate tangent approximation. For the case of Brownian
motion exiting C? boundaries, we introduce a new approximation for the first
exit distribution. This is based on estimating the hazard rate of the first exit
time by the hazard rate of the tangent at the same time point, which can be
found exactly by the Bachelier-Lévy formula. We shall denote this approxi-
mation by HRT. In the case where

7= tiil(f)'{t: B, > f(t)}

is the first exit time from a concave, C? boundary, the tangent to the curve at
each time point is the same as our upper enveloping straight line. Conse-
quently, the upper analytic bound and the HRT method produce identical
approximations. Conversely, if f is a convex, C2? boundary, the tangent to the
curve at each time point is the same as the lower enveloping straight line.
Therefore, the lower analytic bound and the HRT method produce the same
approximations. In either of these cases, we can prove that the HRT tech-
nique produces more accurate approximations to the distribution function
than the tangent approximation [Strassen (1967)] does.

In the remainder of this section, we shall use the following notation. Let
u,(-) be the tangent to f at time ¢ and let r;(-) denote the hazard rate
tangent approximation (HRT) ry(¢#) = 7,(#). Therefore, r/(-) is estimated by

re(t) = ro(t).

Let py and Py be the density and distribution function derived from r;(-).
Therefore, from Definition 3,

Py(t) = Q,.(t),
pu(t) =rp(t)(1 — Q,.(2)).
We will compare the HRT approximation with the tangent approximation.
Esing (1.2) and adapting (4.1), we will write the tangent approximation (TA)
' Py(t) = PO-0(p),
pr(t) =p @ *0(1),
where a(t) = f(¢) — tf'(t) and b(¢) = f'(¢).
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We first show that the densities produced by the HRT method and the
tangent approximation for Brownian motion exit distributions are ordered if
the boundary is either concave or convex.

THEOREM 2. (i) Iffis a concave, C? boundary, then

pu(t) <prp(t) forallt.
Gi) Iffis a convex, C? boundary, then

pu(t) = pr(t) forallt.

ProoF. We shall prove (i) only, as (ii) follows is a similar manner, with
the inequalities reversed.
Since f is concave, we have u,(s) > f(s) for all s < ¢. Therefore,

(5.1) P[r, > t] = P[r>t] =1 - Pi(2),
and from Corollary 1,
(5.2) P(t) < Py(t).
Then, by definition,
pr(t) = rp(¢)P[r,, > t]

> rp(£)(1 — Py(£)) [by (5.1)]

> rp(t)(1 ~ Py(t)) [by (5.2)]

=pu(2). U

The most important ordering results are for the distribution functions
produced by the two approximation methods, which imply that the HRT
method is superior to the tangent approximation.

THEOREM 3. (i) Iffis a concave, C? boundary, then

P(t) < Py(t) <Pp(t) forallt.

(i) Iffis a convex, C? boundary, then

P:(t) = Py(t) = Pr(t) forallt.

ProoF. This follows trivially from Corollary 1 and integrating the result
of Theorem 2. O

Another advantage of the HRT method over the tangent approximation is
shown by another corollary of Theorem 1.

COROLLARY 3. If fis C? and concave and 7, < ® a.s., then
Py(t) > 1 ast— «.
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PrOOF. Note that Py() =1, so that [{r/(s)ds - © as t — ». From
Theorem 1, since f is concave,
re(t) =rp(t) forallt

and, consequently,
ftrT(s) ds > © ast— o,
0

The result follows from this. O

Note that this is not true for the tangent approximation, which always
overestimates the density. Therefore, in this case Pr(¢) > 1 for sufficiently
large ¢ is the only conclusion which can be drawn.

We can produce a partial converse to Corollary 3.

THEOREM 4. If fis C? and concave, Py(t) > 1 as t — ® and

(5.3) F(OLF@) —tf'(1)] > ast -,
then
Tf<°° a.s.

PROOF. Assume that Pgy(¢) > 1 as t —» ©, so that [{rp(s)ds » » as
t — o, Expanding r;, this is equivalent to

ft(f(s) - sf’(s))¢(( f(s))/ﬁ) ds

0 A(s)
where A(s) = s3/2[®((f(s))/ Vs) — exp(— 2" (s) f(s) — sf'(s)DD((2sf'(s) —
£(s)/ Vs)l.
Assuming also that (5.3) holds,
1 _(f(s) 1
A(S) > E(I)( ‘/; ) > Z,

for s sufficiently large, or else f is eventually decreasing so that the assertion
is trivial. We thus deduce

[tf(s) = sf'(s) ¢(f(8)

)ds—>°° as t — o,

0 s3/2 Vs
Noting that
[ (1] _ o) = (W/Df(s) (1)
a | P\ )T 5372 NE )

we conclude

t| (1/2)f(s) (f(s)) df_[F(s)
_/;) s¥/% ¢(‘/S—)—$(I)(‘/s—)”ds—+oo ast — o
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and hence

ef(s) (1(s)
[l 2

ds > o ast — o,
o s%/2 \/5)

Using the Kolmogorov-Erdos—Feller-Petrowski theorem [see, e.g., Roberts
(1991b), Corollary 5.3], we obtain the claimed result. O

REMARK. For instance, in critical cases, such as f(¢) = 1 + /¢ In(¢ + 1),
(5.3) holds and P[7; < =] is known to be less than unity. In this case, HRT
does not falsely approximate the distribution of 7; by a nondefective distribu-
tion.

One way of seeing heuristically the advantages of HRT over the tangent
approximation is as follows. The estimate of the density at time ¢,

(5.4) py(t) = ra(t)exp = ['rs(s) s},

takes into account estimates of the density at previous time points. If the
density estimates at previous time points are all overestimates, then

exp{—jO‘rT(s) ds} < exp{—j:rf(s) ds}

and this has the effect of reducing the estimate of p/(¢) in (5.4). Conversely, if
the previous densities have all been underestimated, exp{— [{ r;(s) ds} will
be larger than it should be, thus increasing the current density estimate. This
negative feedback effect makes fluctuations between over- and underestima-
tion less drastic and, intuitively, this may lead to a better approximation.

6. Numerical examples. We illustrate the analytic bounds and HRT
approximation with some numerical examples, which also include the tan-
gent approximation for comparison. We shall denote the lower bound by L,
the upper bound by U (derived from Corollary 2) and the tangent approxima-
tion [given by (1.2)] by TA. For the first example, the exact distribution is
found using the method of images [see Daniels (1982) or Lerche (1986)].
However, for the second and third examples, the exact exit distribution is
unknown, and we have simulated these by using the empirical distribution
from 200,000 sample paths.

For Figure 1, the exit boundary is

liay2 1-a (62)]7°

—_f — + — ,

4 ( a ) a exp{ t }

with 6 = 20 and a = a = 0.3. Because this is a concave boundary, the tan-
gent to the curve is the upper enveloping line and, consequently, the HRT

method and upper analytic bound produce the same distribution. Note that
the ordering of the tangent approximation and the analytic bounds are as

6 t 1l a
61 ft)=5- glog(——

2 a
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Fic. 1. Estimates for the first hitting time of Brownian motion of the boundary given by (6.1). (a)
Distribution function comparison; (b) density function comparison.

expected (Theorem 3). Furthermore, the enveloping straight lines have fairly
similar gradients and thus remain tight to the boundary. A consequence of
this is that the upper and lower analytic bounds are both reasonably accu-
rate. In fact, the lower bound is about as accurate as the tangent approxima-
tion over the range plotted.

The second example (Figure 2) is for the boundary

(6.2) f(t) =2 + 0.1¢ + 0.25sin(¢).

In this case, we have no theoretical justification for the HRT method to be
superior to the tangent approximation, because the curve is neither concave
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Fic. 2. Estimates for the first hitting time of Brownian motion of the boundary given by (6.2). (a)
Distribution function comparison; (b) density function comparison.

nor convex. Because the enveloping straight lines are rarely close to the
actual boundary, the quality of the upper and lower analytic bounds is fairly
poor. However, both approximations remain within these analytic bounds,
due to the cancellation of errors. When the curve is locally concave, both
approximations overestimate the true value, and when it is locally convex,
they underestimate. Thus, the successive periods of under- and overestima-
tion cancel to some extent and produce good approximations. In fact, the HRT
method is more accurate than the tangent approximation, because the use of
J¢ r7(s) ds in the calculation of the distribution at time ¢ acts as a feedback
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mechanism, making the fluctuations less drastic. Note also, that for some
time values, the lower enveloping line is the tangent, and this intercepts the
x-axis at a negative value, leading to a zero density for these times.

The final example (Figure 3) is for the boundary

(6.3) f(t) = 6e /% + 2¢74/1

which is neither concave nor convex. The most noticeable feature of this
example is that the lower bound and HRT method produce virtually indistin-
guishable distributions. This is because the boundary is initially convex and
thus the methods produce identical values over this time interval. Thereafter,
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Fic. 3. [Estimates for the first hitting time of Brownian motion of the boundary given by (6.3). (a)
Distribution function comparison; (b) density function comparison.



AN APPROXIMATION FOR BOUNDARY HITTING TIMES 459

the difference between the tangent (used in the HRT method) and lower
enveloping curve is comparatively small and so similar approximations are
obtained. The upper bound is fairly poor, essentially because the upper
enveloping line is a poor approximation to the curve. The main cause of the
inaccuracy of the tangent approximation is the underestimation when the
curve is initially convex.

For further numerical examples supporting the belief that the HRT method
is a good approximation technique, see Shortland (1993).

7. Discussion. We have introduced a simple approximation technique
for first exit times of one-dimensional diffusions which appears to be accurate
in a wide range of situations. For approximating the first exit distribution
function, the HRT method has been shown to be more accurate than the
tangent approximation for convex and concave boundaries, and appears to be
more accurate for all choices of boundary curves. Like the tangent approxima-
tion, this approximation works best for boundaries which are almost linear,
when the tangent is a good approximation to the curve.

We show the analytic bounds also work best for boundary functions which
are close to linear. The accuracy is improved when the boundary is either
concave or convex, since one of the analytic bounds is then the accurate HRT
approximation. For other boundaries, the analytic bounds tend to be poor
compared with the approximation techniques, because they produce approxi-
mations with no cancellation of errors.

The advantages of the techniques presented here lie in their ease of
implementation, their accuracy in comparison to the tangent approximation
and the existence of upper and lower bounds to supplement the approxima-
tion. However, in problems where the tangent approximation performs badly,
HRT can also give poor results (especially in situations where tangents go
below starting values). Therefore, care has to be taken in assessing the
suitability of the method to particular problems. The results in Theorem 1
can be used in this assessment.

Acknowledgments. We would like to thank an Associate Editor and
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