Open Access
Translator Disclaimer
August, 1994 An Extremal Rearrangement Property of Statistical Solutions of Burgers' Equation
Yiming Hu, W. A. Woyczynski
Ann. Appl. Probab. 4(3): 838-858 (August, 1994). DOI: 10.1214/aoap/1177004974

Abstract

We prove that a certain (centered unimodal) rearrangement of coefficients in the moving average initial input process maximizes the variance (energy density) of the limit distribution of the spatiotemporal random field solution of a nonlinear partial differential equation called Burgers' equation. Our proof is in the spirit of domination principles developed in the book by Kwapien and Woyczynski.

Citation

Download Citation

Yiming Hu. W. A. Woyczynski. "An Extremal Rearrangement Property of Statistical Solutions of Burgers' Equation." Ann. Appl. Probab. 4 (3) 838 - 858, August, 1994. https://doi.org/10.1214/aoap/1177004974

Information

Published: August, 1994
First available in Project Euclid: 19 April 2007

zbMATH: 0805.60053
MathSciNet: MR1284988
Digital Object Identifier: 10.1214/aoap/1177004974

Subjects:
Primary: 60H15
Secondary: 35K55 , 76F99

Keywords: domination principle , maximum energy density , Schur convexity , Stochastic Burgers' flow

Rights: Copyright © 1994 Institute of Mathematical Statistics

JOURNAL ARTICLE
21 PAGES


SHARE
Vol.4 • No. 3 • August, 1994
Back to Top