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The study of Gaussian free field level sets on supercritical Galton–
Watson trees has been initiated by Abächerli and Sznitman in 2018. By means
of entirely different tools, we continue this investigation and generalize their
main result on the positivity of the associated percolation critical parame-
ter h∗ to the setting of arbitrary supercritical offspring distribution and ran-
dom conductances. In our setting, this establishes a rigorous proof of the
physics literature mantra that positive correlations facilitate percolation when
compared to the independent case. Our proof proceeds by constructing the
Galton–Watson tree through an exploration via finite random walk trajecto-
ries. This exploration of the tree progressively unveils an infinite connected
component in the random interlacements set on the tree, which is stable un-
der small quenched noise. Using a Dynkin-type isomorphism theorem, we
then infer the strict positivity of the critical parameter h∗. As a byproduct, we
obtain transience results for the above-mentioned sets.

1. Introduction. The main subject of this article is the study of level set percolation for
the Gaussian free field on supercritical Galton–Watson trees. Due to the strong correlations
inherent to the model, the problem of level set percolation induced by the Gaussian free field
is quite intricate and significantly harder to understand than that of Bernoulli percolation.
In the setting of fairly general transient graphs, the model has received increased attention
in the last decade, as it is an important showcase for percolation problems with long-range
correlations. A fundamental question in this context is to show the positivity of the associated
critical parameter h∗—see (1.4) below for its definition—which entails a coexistence phase
for h > 0 close to zero. It has been investigated on Zd , d ≥ 3, in [4, 12, 29], and on more
general graphs with polynomial growth in [13]. Of particular relevance for us is the setting
of the Gaussian free field on trees, which has been studied in [1, 3, 35]. More precisely, in
[3], Section 5, Abächerli and Sznitman consider the particular case of the Gaussian free field
on supercritical Galton–Watson trees with mean offspring distribution m ∈ (1,∞), and prove
that h∗ ∈ [0,∞) for all m ∈ (1,∞), as well as the strict inequality h∗ > 0 when m > 2.

The main goal of the current article is to extend this result h∗ > 0 to all supercritical
Galton–Watson trees, that is, with offspring mean m ∈ (1,∞), which along the way solves
an open question of [3], Remark 5.6. Moreover, we additionally allow the edges of the tree to
be equipped with random conductances with finite mean, and show that the associated critical
parameter h∗ is still deterministic and strictly positive.

It is intriguing to compare our main result with Bernoulli site percolation on supercritical
Galton–Watson trees T , for which—conditioned on survival—the associated critical param-
eter is known to almost surely equal the inverse of the offspring mean, that is, pc(T ) = 1/m;
see [22] or [23], Proposition 5.9. Contrasting this well-known result with the inequality
h∗(T ) > 0 is particularly interesting in the newly investigated range m ∈ (1,2] in our ar-
ticle. Indeed, in this range we have that the density of Bernoulli percolation at the critical
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parameter is given by pc(T ) = 1/m ≥ 1/2, whereas the density of percolation for the Gaus-
sian free field level sets at the critical parameter is strictly smaller than 1/2, since h∗(T ) > 0.
Therefore, when m ∈ (1,2] the positive correlations of the Gaussian free field make percola-
tion easier. This is a behavior expected for many percolation models, see in particular [26] as
well as [24] for numerical reasonings concerning the setting of percolation with long-range
correlations. To the best of our knowledge, the only other class of transient graphs where an
inequality between densities at criticality of Gaussian free field and independent percolation
has been rigorously proven are d-regular trees, see [35], Corollary 4.5, but it is conjectured
to hold for a large class of transient graphs.

A key tool in our proof is based on a construction of the Galton–Watson tree and random
walks on it at the same time, see Section 4. Each random walk will explore a portion of the
tree below its starting point, and we call such a subset of the tree a “watershed”. The specific
exploration via watersheds will prevent the random walks from “predicting the future of the
tree” during its construction; that is, we construct each watershed on a part of the Galton–
Watson tree while preserving the independence of the rest of the tree. The main feature of the
explored tree is its stability to perturbation by small quenched noise. The desired positivity of
h∗ will then be obtained by means of a Dynkin-type isomorphism theorem between the Gaus-
sian free field and random walks, see [17], or more precisely with random interlacements, a
random soup of random walks, see [21, 32]. Moreover, we expect that our exploration pro-
cedure of the Galton–Watson tree via watersheds can also be used to obtain other interesting
results. A first manifestation of this is already provided by the results on noise-stability and
transience for the interlacements set as well as for the level sets of the Gaussian free field
above small positive levels, see Theorems 1.2 and 1.3 below.

1.1. Main results. Let us now explain our setting and results in more detail. We consider
a

(1.1)
Galton–Watson random tree T with mean offspring distribution m > 1,

conditioned on survival,

and denote the underlying probability measure by PGW. We endow the natural graph structure
induced by T with positive random conductances λx,y , x ∼ y, such that, conditionally on T ,
and denoting by y− the parent of y ∈ T , with y different from the root ∅,

(1.2)

the family {λx,y : y ∈ T and y− = x}x∈T , is i.i.d. and

EGW[λx,+] < ∞ ∀x ∈ T ,where λx,+ := ∑
y:y−=x

λx,y;

note that this setting is slightly more general than endowing the edges of the Galton–Watson
tree with independent conductances. In particular, when the conductances λx,y , x ∼ y, are
constant equal to 1, we recover the usual Galton–Watson tree, and in this case condition
(1.2) simply boils down to the mean offspring distribution m being finite. In a slight abuse of
notation, we also denote by T the weighted graph with the conductances λ, and will explicitly
mention when we consider the tree T to be weightless as in (1.1) to avoid confusion. We refer
to Section 2.1 for precise notation and definitions.

It is known that the random tree T is almost surely transient, cf. Proposition 2.1, and
conditionally on its realization, we denote by gT the Green function associated to the random
walk on T , see below (2.10).

Conditionally on the realization of T , we then define the Gaussian free field (φx)x∈T
under some probability measure PG

T as the centered Gaussian field with covariance function
gT , see Section 2.3 for further details. Note that this is a Gaussian free field in a random
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environment, that is, we first generate the Galton–Watson tree T with random conductances
and then—conditionally on the surviving Galton–Watson tree T —we generate a Gaussian
free field on T .

We will study the percolative properties of the level sets or excursion sets of the Gaussian
free field on T , that is, of the random set

(1.3) E≥h := E≥h(T ) = {x ∈ T : φx ≥ h}, h ∈R.

We observe that the level set is clearly decreasing in h, and we define the critical parameter

(1.4)
h∗ := h∗(T )

:= inf
{
h ∈ R : PG

T -a.s. all connected components of E≥h(T ) are bounded
}

for the corresponding percolation problem.
A priori, it is not known if h∗ is deterministic, nor whether the phase transition is nontrivial,

that is, whether h∗ ∈ R. For unitary conductances, the former is proved in [3], Lemma 5.1,
and the latter—more precisely the inequality 0 ≤ h∗ < ∞—is proved in [3], Proposition 5.2,
taking advantage of [36]. The result h∗ > 0 is shown to hold in [3] for constant conductances
under the additional assumption m ∈ (2,∞); however, it seems that the assumption of finite
mean is not essential to their proof. Let us also note in passing that even for Galton–Watson
trees with random i.i.d. conductances, h∗(T ) is still deterministic, see the Appendix. We now
state our main result.

THEOREM 1.1. Under (1.1) and (1.2), there exists h > 0 such that E≥h contains
EGW[PG

T (·)]-almost surely an unbounded connected component, and hence h∗(T ) > 0.

Note that Theorem 1.1 does not yet imply that the phase transition is nontrivial, that is,
h∗(T ) < ∞. Indeed, this finiteness property does hold true for i.i.d. weights, but it may fail
without this condition—we refer to the discussion below (1.6) for details.

In the case m > 2, the assumption EGW[λx,+] < ∞ from (1.2) is not necessary to prove
the inequality h∗ > 0 as explained at the end of Section 3 (for unitary conductances this also
follows from [3], Theorem 5.5). In view of Theorem 1.1, a natural question then is whether
h∗ > 0 under the broader assumptions EGW[λx,+] = ∞ and m ∈ (1,2].

We will now put our result into the context of previous literature on percolation for the
Gaussian free field. The study of this percolation problem for unitary conductances had been
initiated by Bricmont, Lebowitz and Maes in [4] on the Euclidean lattice Zd in transient
dimensions d ≥ 3. Using a soft but quite robust contour approach, they proved that h∗(Zd) ≥
0 for all d ≥ 3, as well as h∗(Z3) < ∞. More recently, on Zd , it has been established in [29]
that h∗(Zd) < ∞ for all d ≥ 3, as well as h∗(Zd) > 0 for all sufficiently large d; in [12]
it has then subsequently been shown that h∗(Zd) > 0 for all d ≥ 3. For trees with unitary
conductances, the parameter h∗ ∈ (0,∞) was first characterized in [35] on d-regular trees,
d ≥ 3, and subsequently in [3] for a larger class of transient trees, including supercritical
Galton–Watson trees with mean m > 2. In the regular tree case, finer percolative properties
have been obtained in the recent preprint [7], which appeared after the preprint version of this
article.

In [1], further percolative properties for d-regular trees have then been studied in the super-
and sub-critical regime. In [13], h∗ > 0, and in fact local uniqueness of the infinite cluster at a
positive level, has been shown for a larger class of graphs with polynomial growth. This class
of graphs actually include Zd , d ≥ 3, with bounded conductances as a special case, which
was further studied in [9]. We also refer to [2, 6, 11, 16, 19, 34] for further recent progress in
this area.
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Our proof crucially relies on another important object: the random interlacements set Iu,
u > 0, which has been introduced in Zd , d ≥ 3, by [31]. Later on, it has been generalized
to transient weighted graphs in [37]. It is related to the Gaussian free field via Ray–Knight
type isomorphism theorems, first obtained in [32], and later on extended in a series of works
[14, 21, 35]. From a heuristic point of view, random interlacements is a random soup of
doubly infinite transient random walks, and the union Iu of their traces thus trivially has
an unbounded connected component (and hence percolates). On Zd , d ≥ 3, it was proved
in [28] that Iu still percolates when perturbed by a small quenched noise, and this property
was essential in the proof of h∗ > 0 from [12]. Although our approach to proving h∗ > 0 on
Galton–Watson trees is quite different from that of [12], the stability of Iu to perturbation
via small quenched noise will still play an essential role in our proof of Theorem 1.1. Note
that in the context of random Galton–Watson trees, we will see Iu as a quenched random
interlacements on the realization of the tree T ; see Section 2.4 for details.

We now describe this stability property—which is of independent interest, see its impli-
cations in Theorem 1.3 below—in more detail. Again conditionally on the realization of the
tree T , for some p ∈ (0,1), denote by Bx , x ∈ T , an independent family of i.i.d. Bernoulli
random variables with parameter p and let

(1.5) Bp := {x ∈ T : Bx = 1}.

THEOREM 1.2. Under (1.1) and (1.2), for all u > 0, there exists p ∈ (0,1) such that
Iu ∩ Bp contains almost surely an infinite connected component. Moreover, there exist h > 0
and p ∈ (0,1) such that E≥h ∩ Bp contains almost surely an infinite connected component.

In [28], the question of stability of the vacant set Vu := (Iu)c to perturbation by small
quenched noise on Zd has also been studied. In a similar vein, on Galton–Watson trees one
can also easily prove that Vu ∩ Bp percolates for p large enough, see Remark 2.3. In [28],
the proof of stability of Iu to perturbation by small quenched noise involves some local
connectivity result for random interlacements, which can also be used to prove transience of
the interlacements set [27], or of Iu ∩ Bp , see [28]. It turns out that, although our proof of
Theorem 1.2 is entirely different from that of [28], it can also be employed to show transience
of Iu ∩ Bp , or of E≥h ∩ Bp at small, but positive, levels, under some additional assumptions
on the conductances.

THEOREM 1.3. Assume (1.1), (1.2) and that, conditionally on the nonweighted graph T ,
(λx,y)x∼y∈T are i.i.d. conductances with compact support in (0,∞). Then for all u > 0, there
exists p ∈ (0,1) such that Iu ∩ Bp contains almost surely a transient connected component.
Moreover, there exist h > 0 and p ∈ (0,1) such that E≥h ∩ Bp contains almost surely a
transient connected component.

For the reader’s convenience we refer to the discussion above (6.1) for the precise def-
inition of what it means in our context that, conditionally on the nonweighted graph T ,
(λx,y)x∼y∈T are i.i.d. conductances with compact support in (0,∞)—which, in fact, is ar-
guably the “natural” way of endowing a tree with i.i.d. random conductances, but less general
when compared to (1.2).

Let us finish this subsection with some comments on percolation for the vacant set of
random interlacements, and the finiteness of h∗. The random interlacements set Iu always
percolates since the trace of a transient random walk is an unbounded connected set; one
may, however, wonder if the same holds true for its complement the vacant set Vu when the
intensity parameter varies.
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Denoting by u∗ the critical parameter associated to the percolation of Vu, u > 0, the iso-
morphism between random interlacements and the Gaussian free field, see Proposition 2.5
below (which can be used in our context in view of Proposition 5.8), implies similarly as in
[21], Theorem 3, that

(1.6) h∗ ≤√2u∗.
The inequality (1.6) combined with Theorem 1.1 implies u∗ > 0, but note that the inequality
u∗ > 0 could be proved via easier means, see Remark 2.3. Let us note here that in the special
case of unitary conductances, an explicit formula for u∗ has been derived in [36]. The proof
of [36], Theorem 1, can be adapted to random conductances as long as (λx,y)x∼y∈T are
i.i.d. conductances conditionally on the nonweighted graph T . In particular, u∗ < ∞ under
the same conditions, and thus h∗ < ∞ as well by (1.6). However, if we allow the weights
(λx,y)x∼y∈T to not be i.i.d. conditionally on the nonweighted graph T —but still satisfying
the usual setup of (1.2)—one can find Galton–Watson trees where h∗ = ∞, see (3.4).

The weak inequality (1.6) can actually be improved to h∗ <
√

2u∗ on d-regular trees,
d ≥ 3, see [35]. In [3], the authors provide general enough conditions to obtain h∗ <

√
2u∗

on transient trees, and in particular for Galton–Watson trees with unitary conductances this
strict inequality holds under additional hypotheses on exponential moments of the offspring
distribution, see [3], Theorem 5.4. They also provide an example, namely the tree where
each vertex has an offspring size equal to its distance to the root, where actually 0 = h∗ =√

2u∗. Note that this entails that Theorem 1.1 does not hold when removing the assumption
EGW[λx,+] < ∞ from (1.2), as well as the assumption that the distribution of the number of
children does not depend on the generation.

1.2. Outline of the proof. We now comment on the proofs of Theorems 1.1, 1.2 and
1.3 in more detail. Let us first elaborate on the fact that Theorem 1.2 is useful to obtain
Theorem 1.1. The isomorphism between random interlacements and the Gaussian free field,
see Proposition 2.5, implies that for each u > 0, random interlacements and the Gaussian free
field on T can be coupled in such a way that

(1.7) almost surely, Iu ⊂ E≥−√
2u.

This implies in particular that E≥−√
2u percolates for all u > 0, and taking u ↓ 0 we infer

that h∗ ≥ 0. Note that the validity of the inclusion (1.7) requires some condition on the tree to
be fulfilled—see (2.20)—but we will actually show in Proposition 5.8 that this condition is
always satisfied in our context. In [12, 13], an extension of the inclusion (1.7) to a continuous
metric structure associated with the discrete graph, the so-called cable system, was used to
lift the inclusion (1.7)—when the field was taking not too high values—to level sets of the
Gaussian free field at positive levels, which then yielded the desired strict inequality h∗ > 0.
Here, we follow a simpler approach, that is, we use an extension of the inclusion (1.7), see
Proposition 2.5 below, which includes information about the exact values of the free field, as
well as the local times of random interlacements. Proposition 2.5 is proven using the cable
system, cf. [21] for further details. The proposition readily implies that there exists a coupling
such that for each u > 0,

(1.8) almost surely, Iu ∩ Au ⊂ Ê≥√
2u,

where Ê≥√
2u has the same law as E≥√

2u, see (1.3), and

(1.9) Au := {
x ∈ T : Ex > 4uλx or |φx | > 2

√
2u
}
,

for some i.i.d. exponential random variables (Ex)x∈T with parameter one, independent of
the Gaussian free field φ and the interlacements set Iu. Note that Au increases a.s. to T as



GENERATING GW TREES USING RANDOM WALKS AND PERCOLATION FOR THE GFF 2849

u → 0, and one can thus interpret the intersection with Au as applying a small quenched
noise. Theorem 1.2 then suggests that Iu ∩ Au might percolate for u small enough, which
again would imply Theorem 1.1 by (1.8).

However, one cannot directly use Theorem 1.2 for proving Theorem 1.1 for two reasons:
first, the variables {x ∈ Au}, x ∈ T , are not independent, and second, the probability that
x ∈ Au depends on the parameter u of the interlacements set, and thus, contrary to p in
Theorem 1.2, it cannot be taken arbitrarily close to one for a fixed u. The first problem
will be essentially solved by lower bounding the probability that x ∈ Au conditionally on
{y ∈ Au}, y �= x, using the Markov property of the free field, see (5.25). To solve the second
problem, we will make the dependency of p on u in Theorem 1.2 explicit, that is, we find a
function p(u), with p(u) ↑ 1 as u → 0, such that Iu ∩ Bp(u) percolates for all u > 0, and we
show that the probability that x ∈ Au is larger than p(u) for u small enough, see the proof of
Proposition 5.7.

Therefore, in order to obtain Theorem 1.1, it is essentially enough to show that Iu ∩ Bp(u)

percolates, where p(u) is smaller than the probability that x ∈ Au for u small enough. The
main difficulty is that, when u is small, there are two competing effects at play in this perco-
lation problem. On the one hand, in the u > 0 small regime, the interlacements set Iu consists
of few trajectories, and hence is less well connected; that is, intersecting Iu with Bp might
break its infinite connected components into finite pieces. This is particularly problematic
when m is close to one, since the tree tends to contain long stretches which locally look like
Z, and hence the connectivity of such components turns out to be sensitive to an independent
noise. On the other hand, as u → 0, for each x ∈ T , the probability that x is in Au tends to
one, and it thus becomes less likely to break a fixed connected component of Iu into finite
pieces when intersecting with Bp(u). The proof of Theorem 1.1 therefore requires a subtle
comparison of the influences of these two opposite effects as u → 0. We now provide a short
explanation of how this is done.

The probability that a vertex x is contained in Ac
u can be easily upper bounded by u3/2λ

3/2
x ,

see (5.25) below, and we can thus take p(u) = 1 − u3/2λ
3/2
x for u small enough. To prove

percolation of Iu ∩ Bp(u), we use a description of the trajectories in Iu via their highest (i.e.,
minimal distance to the root) visited vertex, Theorem 2.2, which can be seen as a general-
ization of [37], Theorem 5.1. This description entails that Iu can be generated by starting,
for each vertex x ∈ T , an independent Poissonian number �x of random walks starting at
x going down the tree. Here, the Poisson distribution underlying �x has parameter uqeT (x),
where qeT (x)—see (2.16)—is a parameter depending on the subtree rooted at x, which bears
some similarity with the square of the conductance from x to infinity.

Now in the simpler case where each vertex in the tree T always had at least two children
and the conductances were bounded, one could finish the proof by first conditioning on T
and by then proceeding as follows. One can under these conditions easily show that qeT (x)

is of constant order, uniformly in x ∈ T . Thus, when �x ≥ 1, with high probability, starting
a random walk at x going down the tree up to the first time it has visited C/u vertices,
for a large constant C, there are at least two vertices y with �y ≥ 1 which are not visited
by the walk, but children of vertices visited by the walk (the existence of such vertices is
guaranteed by the fact that each vertex visited by the walk has at least two children). We
will say that such a point y corresponds to a free point, see (4.12). Moreover, again with
high probability as u → 0, all the vertices visited by this walk are contained in Bp(u), with

p(u) = 1 − u3/2λ
3/2
x , and in particular there is a path between x and y in Iu ∩ Bp(u). One

can now iterate this procedure starting a new trajectory at each y corresponding to a new
free point, and show that the tree of free points contains a d-ary tree, see Proposition 5.5. In
particular it percolates, which directly implies the percolation of Iu ∩ Bp(u) also.
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In this approach, we thus first generate T , and then construct an infinite cluster in
Iu ∩ Bp(u) on the now fixed tree T . However, when the mean offspring number m is close
to one, or the conductances are not bounded, then the tree T will contain some connected
components of vertices, each with exactly one child, with size more than C/u, on which the
above approach is bound to fail. Note, however, that as u → 0, condition (1.2) in combination
with the Marcinkiewicz–Zygmund law of large numbers implies that these bad sequences in
T become rarer when the tree is generated, see (5.7). In order to benefit from this infor-
mation, we are going to generate the interlacements set Iu and the Galton–Watson tree T
simultaneously. Generating the two processes at the same time is of considerable importance
as it allows us to operate with the interlacements process without being forced to generate the
whole tree beforehand.

To generate these two processes at the same time, we will explore the Galton–Watson tree
using random walks, in the form of an object that we will call watershed, as is explained
in Section 4 in more detail. The previously mentioned description of random interlacement
trajectories via their highest visited vertex then implies that for each vertex x, if a Poisson
random variable with parameter u takes the value at least one, one can start a watershed at
x, that is a walk starting at x and exploring the tree below x, which is included in random
interlacements at level u/e{x},Tx (x), see Proposition 4.2; here, e{x},Tx is the equilibrium mea-
sure of the set {x} for the subtree Tx of T rooted in x, see (2.12). Now, for each vertex x,
we will first generate a portion of the tree to make sure that e{x},Tx (x) ≥ ce for some constant
ce, see (5.19), and then start a watershed at x if a Poisson random variable with parameter
u is at least one, which will thus be included in random interlacements at level u/ce, see
Proposition 5.6. We can now use the additional randomness of the tree—which in particular
entails that with high probability there are no large components of vertices each with exactly
one child—to show that, for u > 0 small enough, the intersection of all the watersheds and
Bp(u/ce) percolates for each m > 1, and thus E≥h percolates for h small enough as well; see
Section 5 for details.

Finally, in order to prove Theorem 1.3, we note that, for uniformly bounded weights, the
trace of a random walk on the watersheds is essentially a coarse-grained random walk on the
tree of free points with a drift, see (6.4). Using an argument from [10], we deduce that such a
random walk is transient, which finishes the proof using the isomorphism (1.8) again.

The structure of the article is as follows: in Section 2 we will define the main objects and
set up notation. In Section 3 we provide a short and simple proof of Theorem 1.1 under the
additional assumption m > 2—this will turn out instructive for the proof of the general result
also. Furthermore, we provide examples of Galton–Watson trees with h∗ = ∞. In Section 4
we will introduce the exploration of the Galton–Watson tree through random walks, which
is used in Section 5 to prove Theorems 1.1 and 1.2. In Section 6, we use similar methods to
prove Theorem 1.3. Finally, we prove in the Appendix that h∗ is deterministic in our setting.

2. Notation and definitions. In Sections 2.1 and 2.2 we introduce the Galton–Watson
trees which we will be considering. Subsequently, Sections 2.3 and 2.4 are then devoted to
random walks, the Gaussian free field, as well as random interlacements on trees. In Sec-
tion 2.5 we introduce the isomorphism theorem between random interlacements and the
Gaussian free field.

2.1. Galton–Watson trees. We will investigate trees using the Ulam–Harris labeling. For
this purpose, consider the space

(2.1) X :=
∞⋃
i=0

Ni ,
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where N is the set of positive integers, N0 the set of nonnegative integers and N0 is defined as
{∅}. For i, j ∈ N as well as x, y ∈ X such that x = (x1, . . . , xi) ∈ Ni and y = (y1, . . . , yj ) ∈
Nj , we define the concatenation of x and y as xy = (x1, . . . , xi, y1, . . . , yj ) ∈ Ni+j ⊆ X .
Moreover, for A ⊆ X and x ∈ X we introduce x · A := {xy : y ∈ A}; note that in con-
trast to pointwise concatenation we put an additional dot for aesthetic reasons. For all x =
(x1, . . . , xi) ∈ X , i ∈ N, we define x− := (x1, . . . , xi−1), the parent of x, with the convention
() = ∅. For a set A ⊆ X we define its (interior) boundary as ∂A := {x ∈ A : �y ∈ A,y− = x}.
Note that this is not exactly the natural topological boundary, but this slightly modified def-
inition will turn out useful for our purposes. We moreover introduce, for A ⊆ X and x ∈ A,
the set of children of x in A as

(2.2) GA
x := {

y ∈ A|y− = x
}
.

We call T ⊂X a tree if for each x ∈ T \ {∅}, we have x− ∈ T and |GT
x | < ∞. We then say

that x ∈ T \ {∅} is a child of y ∈ T if x− = y. If the tree T under consideration is clear from
the context, for all x, y ∈ T , we write x ∼ y if either x = y− or y = x−. One can also view a
tree T as a graph with edges between x and y if and only if x ∼ y. On this graph, we denote
by dT (x, y) the usual graph distance. We say that T is a weighted tree if each edge between
x and y is endowed with a symmetric conductance λx,y = λy,x ∈ (0,∞). For x ∈ T we also
define λx,+ as in (1.2). Since weights are not encoded in X , a weighted tree is not a subset
of X . However, to simplify notation, we will often implicitly identify a weighted tree with its
set of vertices, a subset of X . Note that most of the previous notation depends on the choice
of the tree T , which will always be clear from the context. For x ∈ T , we write Tx for the
subtree of T consisting of x and all descendants of x, endowed with the same conductances
as in the underlying tree T . In this article, we think of trees as growing from top to bottom,
so we sometimes refer to the points in the subtree Tx as the points below x. A priori, Tx may
consist of finitely many nodes only, but with a standard pruning procedure, we will actually
soon reduce ourselves to the case of infinite Galton–Watson trees, see Section 2.2.

We now explain how to define a Galton–Watson tree with random weights as a random
weighted tree T . We consider a probability measure ν on [0,∞)N, which will form a canon-
ical probability space, in order to describe the offspring distribution as well as the associated
conductances. More precisely, we consider ν such that if the sequence (λi)i∈N on [0,∞)N

has law ν, then there exists d ∈N such that ν-a.s., λi > 0 for all i < d and λi = 0 for all i ≥ d .
We will soon use ν to assign weights to the edges of the tree by means of a vector (λx,xi)

∞
i=1,

distributed according to ν for each vertex x. Throughout this article, except in Section 3, we
moreover assume that the law of the conductances satisfies

(2.3) Eν[λ+] < ∞, where λ+ =∑
i

λi;

essentially, this is just a reformulation of the second condition in (1.2). Note that we do not
assume the conductances to be bounded away from zero or infinity, nor that the conductances
λi , i ∈ N, are independent under ν. Defining the function π : [0,∞)N → N0 via (λi)i∈N �→
|{i ∈ N : λi > 0}|, we introduce the pushforward probability measure

(2.4) μ := ν ◦ π−1

on N0. As it corresponds to the law of the number of edges with conductances different from
0, it will play the role of the offspring distribution. We will assume from now on that the
mean of the offspring distribution satisfies

(2.5) m :=
∞∑
i=0

iμ(i) > 1,

which will correspond to the case of supercritical Galton–Watson trees.



2852 A. DREWITZ, G. GALLO AND A. PRÉVOST

On some rich enough probability space we define the Galton–Watson tree T by construct-
ing T ∩ Nk(⊂ X ), endowed with conductances on the (undirected) edges with the vertices
in T ∩ Nk−1, recursively in k. For k = 0, we simply start with the vertex ∅ ∈ N0 ⊆ X
called the root. For k ≥ 0, once the tree T has been generated up to generation k, for
each vertex x ∈ Nk ∩ T we generate independently a random vector (λx,xi)i∈N with law
ν. The vertex x has π((λx,xi)i∈N) children, and we endow the edge from x to its child xi,
1 ≤ i ≤ π((λx,xi)i∈N), with the conductance λx,xi ∈ (0,∞). This defines T ∩ Nk+1 and its
conductances with vertices in T ∩Nk . The union over k ∈ N0 of these sets, endowed with the
respective conductances, is denoted by T , the weighted Galton–Watson tree. Note that the
structure of the tree is completely determined by the weights λ, and that an edge between two
vertices is present if and only if the conductance between them is nonzero. Under our stand-
ing assumption (2.5), the tree becomes extinct with probability q < 1 (cf. for instance the
discussion below [23], Proposition 5.4). Hence, it has a positive probability to survive indef-
initely, and in order to avoid trivial situations, we will always condition the Galton–Watson
tree on this event of survival in what follows. We denote by PGW the probability measure
underlying the Galton–Watson tree constructed above, conditioned on survival.

Let us also define here already the canonical σ -algebras that we consider throughout the ar-
ticle, and which only become relevant at later points in this article. The set X is endowed with
the σ -algebra σ({x}, x ∈X ), and the space of subsets of X is endowed with the σ -algebra
generated by the coordinate functions A �→ 1{x∈A}, x ∈ X . If T ⊂ X , we will often regard
(λx,y)x∼y∈T ∈ (0,∞){x,y∈T :x∼y} as an element of [0,∞)X×X , endowed with the product of
the Borel-σ -algebras, by taking λx,y = 0 if either x /∈ T or y /∈ T , or else if x and y are not
neighbors in T .

2.2. Pruning of the tree. In this subsection we describe a useful pruning procedure for the
tree conditioned on survival, which corresponds to chopping all finite branches of the tree—
the remaining subtree is known as the reduced subtree in the literature, see, for example, [23].
In order to simplify our investigations, we will then observe that the conditioned chopped
Galton–Watson tree can also be constructed as a Galton–Watson tree with modified offspring
distribution and which then survives almost surely, see (2.6). For this purpose, we define the
reduced subtree T ∞ of T as consisting of those vertices of T which have an infinite line of
descendants:

T ∞ := {x ∈ T : Tx is infinite},
where we recall that the notation Tx has been introduced in the paragraph below (2.2).

Then [23], Proposition 5.28 (i), entails that T ∞, which can be seen as a tree in X , has—
possibly after relabeling and conditionally on survival—the same law as a Galton–Watson
tree T ∗ with offspring distribution μ∗. The latter is characterized by its probability generating
function

f ∗(s) = f (q + s(1 − q)) − q

1 − q
, where q is the probability that T is finite, and

f is the probability generating function of μ.

(2.6)

Note that f ∗(0) = 0, hence μ∗(0) = 0, that is, points in T ∗ have zero probability of generat-
ing no children, and that μ∗ has the same mean m as the law μ associated to T .

The behavior of the law of the conductances under pruning is slightly more involved.
Indeed, conditionally on T and for each x ∈ T , conditionally on its number of children |GT

x |,
the weights (λx,y)y∼x are independent of the event {x ∈ T ∞}. Therefore, one can find a
probability measure ν∗ on [0,∞)N with ν∗ ◦ π−1 = μ∗ such that the weighted tree T ∞
has—after relabeling—the same law conditionally on survival as a weighted Galton–Watson
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tree T obtained from the probability ν∗. The law of ν∗ is the same as the law of ν restricted
to P positive coordinates chosen uniformly at random among the K +P positive coordinates
of ν, where P has law μ∗ and K has the law of the number of children of the root which do
not survive, given that the root has P surviving children (its probability generating function
is described in [23], Proposition 5.28 (iv)).

Note that even under ν∗ it holds true that Eν∗[∑i∈N λi] < ∞. Indeed, we first condition
on survival which is an event of positive probability, and then we delete those points not
belonging to T ∞, which can only decrease the respective expected conductance.

We already remark at this point that the above pruning procedure does not change the criti-
cal parameter h∗ we are interested in, as the Gaussian free field restricted to T ∞ has the same
law on the pruned tree, and similarly for random interlacements. In particular, Theorems 1.1,
1.2 and 1.3 can be proven equivalently on the initial tree or on the pruned tree, and we refer
to Remark 2.4 for further details.

Therefore, without loss of generality, from now on we always work under the standing
assumption that

(SA)
ν is a probability measure such that π((λi)i∈N) ≥ 1 ν-a.s.;

that is, under PGW all x ∈ T have a.s. an infinite line of descendants.

In particular, under (SA), PGW is the law of a Galton–Watson tree without conditioning on
survival, since survival occurs with probability one.

2.3. Gaussian free field. Let us now define one of our main objects of interest, the Gaus-
sian free field. We start with some general definitions related to random walks. Let T be
a weighted tree with positive weights (λx,y)x∼y∈T . For x0 ∈ T we define a random walk
(Xn)n∈N0 on T under P T

x0
as the Markov chain on its canonical space N0 starting in x0 with

transition probabilities

(2.7) P T
x0

(Xn+1 = y|Xn = x) = λx,y

λx

for all x ∼ y ∈ T ,

where the total weight λx at x is defined as

(2.8) λx = ∑
y∼x

λxy;

note that the total weight, unlike λx,+ in (1.2), sums over the conductance λx,x− also. For a
set U ⊆ T , the hitting and return times of X, respectively, are denoted by

HU(X) := HU := inf{n ≥ 0 : Xn ∈ U} and

H̃U (X) := H̃U := inf{n ≥ 1 : Xn ∈ U},(2.9)

respectively, with the convention inf∅ = ∞. In the case of a single point U := {x}, we will
write Hx and H̃x in place of H{x} and H̃{x}.

In this section, we assume that the random walk X on T is transient, an assumption which
will in particular be satisfied for supercritical Galton–Watson trees conditioned on survival,
see Proposition 2.1. For U ⊂ T , the Green function associated to X, killed upon exiting U

under P T· , is given by

(2.10) gT
U(x, y) := 1

λy

ET
x

[HT \U−1∑
k=0

1{Xk=y}
]

for all x, y ∈ T .
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In particular, we note that gT
U(x, y) = 0 if either x /∈ U or y /∈ U . In addition, we write

gT (x, y) := 1
λy

ET
x [∑∞

k=0 1{Xk=y}], where x, y ∈ T , for the Green function associated to X on
T .

Then gT is symmetric positive definite, and we can hence consider a probability measure
PG

T on RT endowed with the canonical σ -algebra generated by the coordinate maps (φx)x∈T

such that

(φx)x∈T is a centered Gaussian field with covariance given by

EG
T [φxφy] = gT (x, y), x, y ∈ T .

We call φ the Gaussian free field on the tree T . Let us now recall the Markov property for
φ, see, for instance [33], Proposition 2.3. For a finite set K ⊆ T and U := T \ K , define for
all z ∈ T ,

(2.11) βU
z := ET

z [φXHK
1{HK<∞}] and ψU

z := φz − βU
z .

Then(
ψU

z

)
z∈T is a centered Gaussian field with covariance function EG

T

[
ψU

z ψU
w

]= gT
U(z,w),

which vanishes in K and is independent of σ(φz, z ∈ K). Note moreover that βU is σ(φz, z ∈
K)-measurable, and thus independent of ψU .

Putting the previous general considerations in our context of interest, we note that for
almost all realizations of a weighted Galton–Watson tree T , under PGW the Green function
gT is finite since the random walk is transient: the proof in [18], Proposition 2.1, can be
straightforwardly adapted to our case, that is, the case where for each x ∈ X , the family
(λx,y)y∼x , is not necessarily independent. This yields the following result.

PROPOSITION 2.1 ([18]). PGW-almost surely, the random walk on the tree T with con-
ductances (λx,y)x,y∈T ,x∼y is transient.

Hence, for almost all realizations of the Galton–Watson tree T , we can define the Gaussian
free field on T as the field φ under PG

T .

2.4. Random interlacements. The random interlacements process has been introduced
by Sznitman [31] for Zd (see [15] and [8] for introductory texts) and it has subsequently
been generalized to transient weighted graphs in [37]. For a transient weighted tree T with
conductances (λx,y)x∼y∈T , we define the equilibrium measure and capacity of a finite set
K ⊆ T as

(2.12) eK,T (x) := 1{x∈K}λxP
T
x (H̃K = ∞) and capT (K) := ∑

x∈K

eK,T (x).

We also define the capacity of an infinite set F ⊆ T as the limit of the capacity of Fn as
n → ∞, where (Fn)n∈N is a sequence of finite sets increasing to F ; we refer for instance to
the end of [14], Section 2.2, for as to why this limit exists and does not depend on the choice
of the exhausting sequence (Fn)n∈N. We further introduce the set

−→
Z T := {−→w : N0 → T |−→w n ∼ −→w n+1 for all n ≥ 0 and dT (∅,−→w n) → ∞ as n → ∞}

of transient nearest neighbor trajectories on T as well as the set

(2.13)

←→
Z T := {←→w : Z → T |←→w n ∼ ←→w n+1 for all n ∈ Z and

dT (∅,←→w n) → ∞ as n → ±∞}
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of doubly infinite transient nearest neighbor trajectories. In the literature, the set
←→
Z T in

(2.13) is usually denoted by W ; in this article, however, in a self-suggestive manner, we
reserve W for the notion of watersheds, a key object which will be defined in Section 4.
Denote by

←→
X the identity map on

←→
Z T , and we indicate with

−→
X and

←−
X the forward and

backward trajectories

(
−→
X n)n∈N0 := (

←→
X n)n∈N0 and (

←−
X n)n∈N0 := (

←→
X −n)n∈N0 .

Let
−→Z T and

←→Z T be the associated σ -algebras on
−→
Z T and

←→
Z T generated by the coordinate

functions. On (
←→
Z T ,

←→Z T ) we consider the family of measures QT
K , K ⊆ T finite, which is

characterized by the identities

(2.14)
QT

K

(
(
←−
X n)n∈N ∈ A,X0 = x, (

−→
X n)n∈N ∈ B

) = P T
x (A, H̃K = ∞)λxP

T
x (B)1{x∈K}

(2.12)= P T
x (A|H̃K = ∞)eK,T (x)P T

x (B)

for all A,B ∈ −→Z T , x ∈ T ; here, H̃K is the return time to K defined in (2.9).
Following [37], one can then show that there exists a unique measure μT on the quotient

space Z∗
T of trajectories in

←→
Z T modulo time shift, whose restriction to the trajectories hitting

K is the pushforward of the measures QT
K by projection onto Z∗

T . Under some probability
measure PRI

T , the random interlacements process on T is then defined as the Poisson point
process

(2.15)
∑
i∈N

δ(w∗
i ,ui ) on Z∗

T × [0,∞) with intensity measure μT ⊗ λ,

where λ is the one-dimensional Lebesgue measure restricted to [0,∞). For u ∈ (0,∞) we
define the random interlacements process ωu at level u as the sum of δw∗

i
over all i ∈ N with

ui ∈ [0, u], and the random interlacements set Iu at level u as the subset of T visited by the
(equivalence classes of) random walks w∗

i in the support of ωu.
We now present an alternative construction of the random interlacements process on trees,

which will turn out useful for our purposes. It consists of partitioning the space
←→
Z T into

subsets according to the highest visited vertex of the contained trajectories. For this purpose,
for x ∈ T define the quantity

(2.16) qeT (x) := P T
x (H̃x = ∞,Hx− = ∞)λxP

T
x (Hx− = ∞),

where we recall that Hx and H̃x are the hitting and return times, respectively, of x, defined in
(2.9). If x = ∅, we take the convention that Hx− = ∞ occurs almost surely. We also define
the law of a doubly infinite random walk with the point x at smallest distance from the root
∅, and which is reached for the first time at time 0, by

(2.17)
Q

T

x

(
(
←−
X n)n∈N ∈ A, (

−→
X n)n∈N ∈ B

)
:= P T

x (A|H̃x = ∞,Hx− = ∞)P T
x (B|Hx− = ∞),

for all A,B ∈ −→Z T . Here, we use the convention Hx− = ∞ a.s. if x = ∅. Note that
qeT (∅)Q

T

∅ = QT
∅. We now show that this alternative construction provides us with a random

interlacements process as desired.

THEOREM 2.2. Denote by T a transient weighted tree with conductances (λx,y)x∼y∈T .
Let u > 0, and independently for each x ∈ T , let �x be a Poi(uqeT (x))-distributed random
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variable. Furthermore, let Xx,i , i ∈ N, be an independent i.i.d. family of doubly infinite ran-

dom walks on T with common law Q
T

x . Denote by X∗
x,i the trajectory Xx,i modulo time-shift.

Then ∑
x∈T

�x∑
i=1

δX∗
x,i

has the same law as ωu under PRI
T .

PROOF. For x ∈ T we denote by
←→
Z x,T the subset of

←→
Z T , see (2.13), which contains

only those doubly infinite trajectories with highest point equal to x, reached for the first time
at time 0, that is,

←→
Z x,T := {

X ∈ ←→
Z T : X0 = x,Hx−(

−→
X ) = Hx−(

←−
X ) = H̃x(

←−
X ) = ∞}

.

Write Z∗
x,T for the quotient space of

←→
Z x,T modulo time shift. Since trajectories on a tree

have a unique highest point, the family of sets Z∗
x,T , x ∈ T , forms a partition of Z∗

T .
For any measure M and measurable set A, write M|A for the restriction M(A ∩ ·) to A.

Recalling the definitions of QT
K , qeT and Q

T

x in (2.14), (2.16) and (2.17), we have for all

events A,B ∈ −→Z that

QT{x}|←→Z x,T

(
(
←−
X n)n∈N ∈ A, (

−→
X n)n∈N ∈ B

)
= P T

x (A,Hx− = ∞, H̃x = ∞)λxP
T
x (B,Hx− = ∞)

= qeT (x)P T
x (A|Hx− = ∞, H̃x = ∞)P T

x (B|Hx− = ∞)

= qeT (x)Q
T

x

(
(
←−
X n)n∈N ∈ A, (

−→
X n)n∈N ∈ B

)
.

Next, write (Q
T

x )∗ for the pushforward of Q
T

x into the quotient space. If a trajectory

Xx ∈ ←→
Z T is such that X∗

x ∈ Z∗
x,T , then QT{x}-a.s. we have Xx ∈ ←→

Z x,T , so we see that
1

qeT (x)
μT |Z∗

x,T
= (Q

T

x )∗. Hence, since �x is a Poisson random variable with parameter uqeT (x)

we deduce that

(2.18)
�x∑
i=1

δX∗
x,i

is a Poisson point process on Z∗
T with intensity measure uμT |Z∗

x,T
.

Using the restriction property and the mapping theorem for Poisson point processes in
order to first remove the trajectories with label bigger than u and then the labels themselves,
we see that the interlacements process ωu as defined below (2.15) has the law of a Poisson
point process with intensity measure uμT .

Furthermore, since the subsets Z∗
x,T , x ∈ T , form a partition of Z∗

T , due to the superposi-
tion theorem for Poisson point processes, taking the sum of (2.18) over x ∈ T yields the law
of a Poisson point process with intensity uμT , that is, of ωu, and the proof is complete. �

The representation of random interlacements via the highest vertex visited by its trajecto-
ries, Theorem 2.2, will be the base of our construction of the Galton–Watson tree via random
interlacements, cf. Proposition 4.2.

REMARK 2.3. Theorem 2.2 can be seen as a generalization of [37], Theorem 5.1. Indeed,
if x ∈ T is such that either x− ∈ Vu := (Iu)c or x = ∅, then x ∈ Vu if and only if there are
no trajectories in

←→
Z x,T in the support of ωu. By Theorem 2.2, this happens independently

for each x ∈ T with probability ¶�x = 0 = exp(−uqeT (x)). In other words, the cluster of ∅ in
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Vu has the same law as the cluster of ∅ when opening each vertex x of T independently with
probability exp(−uqeT (x)). Moreover, qeT (x) is equal to the function f∅(x) from [37], (5.1),
and [37], Theorem 5.1, follows readily after rerooting.

Similar to [37], this can be used to prove the PGW-a.s. inequality u∗(T ) > 0, where u∗(T )

is the critical parameter associated to the percolation of Vu under PRI
T . Indeed, this follows

from the following facts:

• the inequality qeT (x) ≤ λx ≤ λx,+ + λx−,+1{x �=∅}, and
• the fact that the cluster of ∅ for Bernoulli percolation on T with parameter e−2uC1{λx,+≤C},

x ∈ T , is a Galton–Watson tree since λx,+, x ∈ T , are i.i.d. random variables, which is
supercritical for first choosing C large enough and then u > 0 small enough.

Note that the inequality u∗(T ) > 0 can also be seen as a consequence of Theorem 1.1 as noted
below (1.6). One can furthermore also similarly prove that Vu ∩Bp—see (1.5) for notation—
percolates for u > 0 small enough and p ∈ (0,1) large enough, since it is minorized by
Bernoulli percolation on T with parameter pe−2uC1{λx,+≤C}, x ∈ T .

REMARK 2.4. Note that the trace random walk on T ∞ of the random walk on T is a
random walk on T ∞, as follows from instance from [33], Proposition 1.11. Therefore, as in
[3], (1.30), (1.31), the restriction of φ to T ∞ has the same law as the Gaussian free field on
T ∞, and so the critical parameters for level set percolation of the Gaussian free field on T
and T ∞ coincide—note that this remains true in the case of weighted trees. In particular,
one can substitute ν by ν∗ when proving Theorem 1.1. Moreover, one can easily prove that
Iu ∩ T ∞–where Iu is the random interlacements set on T —has the same law as the random
interlacements set on the graph T ∞ (note to this effect that λxP

T
x (A, H̃K = ∞) is equal to∑

y∈T ∞ λx,yP
T
y (A,HK = ∞) for each x ∈ K in (2.14)), and thus one can also substitute ν

by ν∗ when proving Theorems 1.2 and 1.3.

2.5. An isomorphism theorem. A key tool in our investigations is provided by certain
Ray–Knight isomorphism theorems relating the Gaussian free field to random interlacements.
Such results have a long history, dating back to Dynkin’s isomorphism theorem and, less
explicitly, even earlier work by Symanzik [30] as well as Brydges, Fröhlich and Spencer [5].
The exact isomorphism that we are going to use here has been developed in [21, 32, 35] and
then [14].

As before, we still assume some transient weighted tree T to be given. Recalling the defi-
nition below (2.15) of the random interlacements process ωu at level u, for x ∈ T and u > 0
let us denote by

Nx(u) the sum over all equivalence classes of trajectories w∗

in ωu of the total number of times w∗ visits x.

On some possibly extended probability space, let E (k)
x , x ∈ T and k ∈N, be an i.i.d. family of

exponential random variables with parameter one, independent of the random interlacements.
The local time (
x,u)x∈T , of random interlacements at level u can then be defined as

(2.19) 
x,u := 1

λx

Nx(u)∑
k=1

E (k)
x for all x ∈ T .

We can now state the isomorphism theorem; note that here and below, we use the convention
that H∅− = ∞ holds P T

x -almost surely for any tree T and x ∈ T .
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PROPOSITION 2.5. Assume that T is a transient tree verifying that for all x ∈ T ,

(2.20) capT

({Xi, i ∈N})= ∞, P T
x (·|Hx− = ∞)-a.s.

Then for each u > 0, there exists a coupling Qu
T of two Gaussian free fields φ and γ on T ,

a random interlacements process ωu on T at level u, and i.i.d. exponential random variables
E (k)

x , x ∈ T and k ∈ N, with parameter one such that φ, E (·)· and ωu are independent, and
Qu

T -a.s.,

(2.21) γx = −√
2u +

√
2
x,u + φ2

x for all x ∈ Iu,

where 
x,u is defined as in (2.19) and Iu as below (2.15).

PROOF. The isomorphism theorem on the so-called cable system, see [21], Proposi-
tion 6.3, or [32], (0.4), on general graphs, states that

(2.22) |γ̃x + √
2u| =

√
2
̃x,u + φ̃2

x for all x ∈ T̃ .

Here, T̃ denotes the cable system associated to T , and γ̃ , φ̃ and 
̃·,u correspond to Gaussian
free fields and local times of random interlacements on T̃ . We restrain from introducing the
cable system T̃ in this article, as this metric structure will be only used in this proof; see [21]
for references. We only note that T ⊂ T̃ , and that the restrictions γ , φ and 
·,u of γ̃ , φ̃ and

̃·,u to T have the same laws as the corresponding fields from Proposition 2.5. In order to
deduce (2.21) from (2.22), we note that

(2.23)
each trajectory w∗ of ωu is either included in a connected component of

{x ∈ T̃ : γ̃x > −√
2u} or of {x ∈ T̃ : γ̃x < −√

2u},
which is a simple consequence of [14], (3.19). Moreover, by [14], Theorem 1.1,(1), and
symmetry it holds that

(2.24) all the connected components of {x ∈ T̃ : γ̃x < −√
2u} have finite capacity.

Under hypothesis (2.20), for each trajectory w∗ of ωu, it follows from Theorem 2.2 that the
capacity of w∗ is PRI-a.s. infinite, and thus by (2.23) and (2.24), w∗ must be included in
{x ∈ T : γx > −√

2u}. The identity (2.21) then follows readily from (2.22). �

Actually Proposition 2.5 remains true on any locally finite graph, but we will only need
it on trees in this paper. We will prove that the hypothesis (2.20) holds when T = T is the
Galton–Watson tree introduced in Section 2.1, see Proposition 5.8. Therefore, in our context,
Proposition 2.5 will readily imply the inclusion (1.8) (defining Ê≥√

2u therein as the level sets
of the field γ ), which is the first step in the proof of Theorem 1.1 as explained in Section 1.2.

REMARK 2.6. Following the proof of [3], Proposition 5.2, one can easily show that a
version of the isomorphism (2.21) holds on Galton–Watson trees with unitary conductances
and finite mean offspring distribution m. They prove this isomorphism using conditions dif-
ferent from (2.20), namely that the sign clusters of the Gaussian free field on the cable system
are bounded and a certain boundedness condition of the Green function; in view of [14], The-
orem 1.1,(2), the boundedness of the sign clusters is actually sufficient. It turns out that in
the context of random conductances (and in particular, if the mean offspring distribution m is
infinite or if (λx,y)x∼y∈T are not i.i.d. conductances conditionally on the nonweighted graph
T ), it will be easier to deduce the isomorphism (2.21) from condition (2.20) instead. Indeed,
we will prove that condition (2.20) holds in Proposition 5.8 using tools very similar to the
proof Theorem 1.2.
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3. Warm up: A first proof in an easier setting. In this section we give a simple proof
of the inequality h∗(T ) > 0 under the stronger assumption that m > 2. Note that this is also
proved via different means in the setting of Galton–Watson trees with unit weights in [3]. The
proof in [3] could be adapted to the setting of random weights, but it is currently not clear to
us how to adapt it to the setting m ∈ (1,2]. Moreover, we believe that our proof in this section
for m > 2 is simpler, and at the same time it exhibits the difficulties that are showing up when
proving Theorem 1.1 for the case m ∈ (1,2]. What is more, our proof will also provide us
with an example of a weighted Galton–Watson tree where h∗ = ∞, see (3.4), showing that
the phase transition is not always nontrivial in our context.

In order to introduce our setup, we consider the weighted Galton–Watson tree T ⊆ X from
Section 2.1. Recall that the law of the weights below each vertex is a probability measure
ν on [0,∞)N, and these weights are chosen independently for different vertices, and that
the function π((λi)i∈N) denotes the number of offspring, with mean m, see (2.4) and (2.5).
Contrary to the rest of this article, in this section we do not make the usual assumption (2.3)
on the weights λ, but keep the assumption m > 1. In the following, by F we denote the
cumulative distribution function of a standard normal variable.

PROPOSITION 3.1. For all h ≥ 0 such that there exists M > 0 with

(3.1) Eν[π((λi)i∈N
)
1{∑i∈N λi≤M}

]
F(−h

√
2M) > 1,

we have h∗ ≥ h.

PROOF. In this proof, we use the construction of the Gaussian free field as in [1], Sec-
tion 2.1, through independent standard normal variables, extended to our case of nonregular
trees. Let (Zx)x∈X be a family of independent standard normal variables under P . Then, con-

ditionally on the realization of the tree T , define φ∅ :=
√

gT (∅,∅)Z∅ and, recursively in
the distance from the root, we set

φx := P T
x (Hx− < ∞)φx− +

√
gT
Tx

(x, x)Zx.

Using the Markov property (2.11) with U = Tx , one can check that the field (φx)x∈T defined
this way has the law of a Gaussian free field on T . Moreover, using the bound gT

Tx
(x, x) ≥ 1

λx
,

conditioned on the realization of the weighted tree T , the previous display then entails the
implication

(3.2) {Zx > h
√

λx,φx− > h} ⇒ {φx > h},
with the convention φx− > h a.s. if x = ∅.

We define now the random set S(h,M) ⊆ T as

S(h,M) := {∅} ∪ {x ∈ T \ {∅} : Zx− > h
√

2M,λx−,+ ≤ M
}
.

Note that on the event x ∈ T , the mean number of children the vertex x has in S(h,M)

satisfies

EGW ⊗ E
[∣∣GS(h,M)

x

∣∣|x ∈ T
]= EGW[π((λx,xi)i∈N

)
1{λx,+≤M}P(Zx > h

√
2M)|x ∈ T

]
= Eν[π((λi)i∈N

)
1{∑i∈N λi≤M}

]
F(−h

√
2M).

(3.3)

Moreover, for each x ∈ T , the number of children of x in S(h,M) only depends on (λx,xi)i∈N
and Zx , which are independent in x. Therefore, the connected component of ∅ in S(h,M)

has the law of a Galton–Watson tree with mean given by (3.3). Due to assumption (3.1), this
mean is strictly larger than one and thus this Galton–Watson tree has a positive probability
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to be infinite. Finally, it follows easily from (3.2) and the inequality λx ≤ λx,+ + λx−,+ that
φx− ≥ h for each x �= ∅ in the connected component of ∅ in S(h,M), and we can conclude.

�

Let us now present two interesting assumptions on the mean offspring m and on the distri-
bution of the weights (λi)i∈N, under which (3.3) is satisfied.

• Assume m > 2. We can find some M > 0 such that Eν[π((λi)i∈N)1{∑i∈N λi≤M}] > 2 since
the left hand side converges to m as M → ∞, and then a positive level h such that
F(−h

√
2M) is close enough to 1

2 , so that (3.3) is bigger than 1, providing us with h∗ > 0.
• Let N be a random variable taking values in N with infinite mean under ν. Define (λi)i∈N

via λi = 1/N for all i ≤ N and λi = 0 for all i > N . Then
∑

i∈N λi = 1 and m = ∞. Hence
for each h > 0 since F(−h

√
2) > 0 we have that the left-hand side of (3.1) is infinite for

M = 1, that is,

(3.4) h∗ = ∞.

Note that we have not taken advantage of the assumption (1.2) in this section; as a con-
sequence, the inequality h∗ > 0 from Theorem 1.1 holds when m > 2 even without this
assumption. It is not clear whether this assumption is necessary when m ∈ (1,2].

4. A simultaneous exploration of the tree via random interlacements. In this section
we introduce an explorative construction procedure for supercritical Galton–Watson trees via
random interlacements, which is tailor-made for our purposes. To the best of our knowl-
edge, previous approaches to problems related to random interlacements on random graphs
generated the random interlacements process only after having complete information on the
realization of the graph. In our setting, however—in order to gain a better control on both,
the Gaussian free field and the local times of random interlacements—we generate the un-
derlying graph T and the random interlacements process simultaneously. In some sense, this
construction provides us with independence properties that will turn out useful in creating
coarse-grained “good” parts of the interlacements set and the level sets of an independent
Gaussian free field.

In particular, in Section 4.1 we will first construct a “single small piece” of the tree. This
piece will consist of the trace of a finite random walk trajectory exploring the Galton–Watson
tree at each vertex visited by the walk. We will call a piece of the tree constructed in this way
a watershed. Repeating this procedure iteratively for boundary vertices of previously con-
structed watersheds, in Section 4.2 we will then patch together all watersheds constructed in
this way, as well as some remaining ends; the resulting object will be denoted by T W. It turns
out that T W will be a tree with the following properties: it is a weighted Galton–Watson tree,
and the random walk trajectories used to construct its watersheds can be interpreted as part
of a random interlacements process on T W. This last property will be shown in Section 4.3
with the help of Theorem 2.2.

4.1. Watersheds. We now introduce the notion of a watershed starting at a vertex x ∈
X \ {∅}, with parameters L ∈ N, L ≥ 2 and κ ∈ [0,∞), on which all the objects constructed
in this subsection will depend implicitly (the case x =∅ is excluded for technical reasons). A
watershed will form a finite subtree of a Galton–Watson tree, and it will be constructed as the
trace of a random walk that is visiting vertices starting at the root x of a subtree of X , until—
if successful—at least L vertices of the subtree are explored in a suitable way. The parameter
κ will represent the conductance of the edge between x and x−, which is thus fixed. In order
to facilitate readability, we will denote objects pertaining to watersheds by boldface letters
throughout.
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The watershed will be defined by means of a sequence of triplets (Tk, (λy,z)y∼z,y,z∈Tk
,

Xk)k∈N0 , such that, for each k ∈N0, we have that

• Tk ⊂ X is connected,
• the λy,z ∈ (0,∞) are (symmetric) weights on the edges {y, z} of Tk and
• Xk is a random variable with Xk ∈ Tk .

In order to construct this sequence, we first fix

(4.1)
(
λ

(k)
i

)
i∈N, k ∈ N0, an i.i.d. family of random variables with common law ν,

and proceed by induction. We start with T0 as being characterized uniquely by the specifica-
tion of its vertex set {x−, x} (mind that x− is well defined as we assumed x �= ∅), as well as
the conductance λx−,x := κ and the almost sure equality X0 := x.

We first define the the triplet (Tk, (λy,z)y∼z,y,z∈Tk
,Xk) until some stopping time ṼL(X),

that we will define in (4.3), and thus assume that this triplet is given for some nonnegative
integer k < ṼL(X). Recalling the definition below (2.1) of the boundary ∂T for a tree T , we
then define (Tk+1, (λy,z)y∼z,y,z∈Tk+1,Xk+1) as follows:

• If Xk ∈ ∂Tk , we proceed as follows. Let Nk := |{X0, . . . ,Xk}|, and construct the offspring
of Xk via λ(Nk). More precisely, in Ulam–Harris notation, define Tk+1 as the union of Tk

with the set of offspring of Xk , that is, with {Xki,1 ≤ i ≤ π((λ
(Nk)
i )i∈N)}, so Tk+1 again is a

tree. By definition, the number of offspring of Xk in Tk+1 has distribution μ. Furthermore,
the weights λ on Tk+1 are the same as on Tk , where in addition we now attribute weights
λXk,Xki := λ

(Nk)
i for 1 ≤ i ≤ π((λ

(Nk)
i )i∈N) to the edges which are contained in Tk+1 but

not in Tk .
• If Xk /∈ ∂Tk , then we set Tk+1 := Tk , and the weights λ on Tk+1 are the same as on Tk .

In both of the above cases, in order to construct Xk+1, we consider a random walk tran-
sition of Xk on Tk+1; hence, independently of everything else, we define the random vari-
able Xk+1 as a neighbor of Xk in Tk+1, which is equal to y ∼ Xk , y ∈ Tk+1, with prob-
ability λXk,y/λXk

, where λXk
is a normalizing constant defined similar to (2.8). Note that,

as long as x− is not reached by X, the event {Xk ∈ ∂Tk} above corresponds to the event
{Xk /∈ {X0, . . . ,Xk−1}}.

We iterate the above procedure in k until reaching the stopping time ṼL(X) that we are
about to define. For this purpose, set Hx−(X) to be the first hitting time of x− by X, defined
similarly as in (2.9), and

(4.2) VL := VL(X) := inf
{
k ≥ 0 : ∣∣{X0, . . . ,Xk}

∣∣≥ L
}∧ Hx−(X)

the first time at which the random walk X has visited L different vertices, or x− is hit. Then
let

(4.3) ṼL := ṼL(X) :=
{

inf
{
n ≥ VL : Xn = X−

VL

}
if VL(X) < Hx−(X),

Hx−(X) if VL(X) = Hx−(X),

where we always use the convention inf∅ = ∞. In words, ṼL(X) is the first time the par-
ent of XVL

is visited if Hx− > VL, and otherwise it equals Hx− . That is, we stop our re-
cursive construction the first time either x− is visited by X, or X has visited L vertices
at time VL, and then X−

VL
is hit. Note that it is possible that neither x−, nor X−

VL
after

time VL, are visited, and in this case ṼL = ∞, that is, we continue our recursive con-
struction indefinitely. Otherwise, we stop the recursion at time ṼL, and for each k ≥ ṼL

we define (Tk, (λy,z)y∼z,y,z∈Tk
,Xk) := (TṼL

, (λy,z)y∼z,y,z∈TṼL
,XṼL

). We also abbreviate
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(T,λ,X) := (Tk, (λy,z)y∼z,y,z∈Tk
,Xk)k∈N0 . This concludes the recursive construction of this

triplet.
The process (T,λ,X) is called watershed process, and we denote by

(4.4) Qκ,L
x the law of the watershed process (T,λ,X)

starting at x ∈X \ {∅}, with parameters L ∈ N and κ > 0. Similar to the above, if we replace
the evolving state space of X by a fixed tree T , under the law P T

x of the simple random walk
X from (2.7), we define ṼL = ṼL(X) similarly as in (4.3). In the following proposition, we
explain how the process (T,λ,X) can be considered a random walk exploration of the initial
Galton–Watson tree T from Section 2.1.

PROPOSITION 4.1. For all x ∈ X \ {∅}, κ > 0 and L ∈ N, the process (T,λ,X) under
Qκ,L

x has the same law as (T X
k∧ṼL

, (λy,z)y,z∈T X
k∧ṼL

,Xk∧ṼL
)k∈N0 under EGW[P T

x (·)|λx,x− =
κ, x ∈ T ], where:

• Conditionally on (T , (λy,z)y,z∈T ), the process (Xn) is the random walk on T defined in
Section 2.3.

• For k ∈ N, the set T X
k := {z ∈ T : z ∼ Xi for some i ≤ k − 1} is the subset of T adjacent

to the trace of {X1, . . . ,Xk−1}.

PROOF. At time k, for 1 ≤ k ≤ ṼL, we sample the offspring of Xk−1 independently of
everything else via their conductances according to ν if it is the first time Xk−1 was visited by
X; therefore, Tk is a Galton–Watson tree restricted to the offspring of the vertices explored
by X before time k − 1, union with the edge T0 = {x−, x}. After time ṼL (if it is finite), Tk

stays constant equal to TṼL
, and Xk constant equal to XṼL

.
Similarly, when X at time 1 ≤ k ≤ ṼL performs a jump, the offspring of the point Xk−1

has already been generated according to ν, either at step k or in a preceding step, and then
Xk−1 jumps to Xk with the probability

λXk−1,Xk

λXk−1

,

which is analogous to (2.7). Hence both X and X behave like a random walk on their respec-
tive trees until time ṼL, and ṼL corresponds for both walks to the first time either x− is hit,
or L different vertices have been visited by the walk, and then, denoting by y the last of these
L vertices, y− has been hit. One can easily conclude. �

Let us finish this section with an observation which will be essential in the proof of
Lemma 5.3 below. For this purpose, first define under Qκ,L

x the watershed W as the path
of X until VL − 1, that is,

(4.5) W := {X0, . . . ,XVL−1}.
Using the convention λy,yi = 0 if yi /∈ T, by (4.2), (4.3) and the construction of the weights
λy,z, y ∼ z ∈ Tk , we have under Qκ,L

x that

(4.6)
(λx,xi)i∈N = (

λ
(1)
i

)
i∈N, and if VL(X) < Hx−(X), then{

(λy,yi)i∈N : y ∈ W \ {x}}= {(
λ

(k)
i

)
i∈N : k ∈ {2, . . . ,L − 1}},

which follows simply from the fact that the conductances (λy,yi)i∈N are equal to (λ
(k)
i )i∈N if

y is the kth vertex visited by X.
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FIG. 1. (A finite subset of) the tree T W− , on the left, has some highlighted vertices, denoted by a coding â, at
which a new watershed is generated. Those points correspond to points in (a finite subset of) the tree of free points
F on the right, where they have a different coding a. For instance 7̂2 = 132,211. We highlighted with different
colors each a ∈ F on the right and on the left the corresponding point â and the path on T W− visited by the
random walk Xa , which generates the watershed below â. On the right, the points 5 and 6 are part of the tree
of free points, but the corresponding vertices 5̂ and 6̂ do not appear yet on the left since they are below the 6th
generation.

4.2. Patching together watersheds. In the previous subsection we explained how to con-
struct a watershed process (T,λ,X) starting at an arbitrary vertex. We will now iteratively
patch together watersheds at the endpoints of previously generated watersheds. The union
T W− of such watersheds will already constitute a transient subset of the random interlace-
ments set on the Galton–Watson tree. Embellishing T W− with some further “ends” will yield
a tree T W which has the law of the weighted Galton–Watson tree we are interested in.

We will now give an informal description of this procedure and provide mathematical
details below. To patch the watersheds together, we will introduce another tree F , the tree
of free points. This tree encodes the points at which watersheds will be patched together in
the construction outlined above, that is, F is a tree in X and, at the same time, to each free
point a ∈ F we associate another point â ∈ X—which will turn out to also be an element
of the tree T W to be constructed—at which we will start a new watershed. Patching up
the watersheds through their vertices corresponding to free points, we will then be able to
construct inductively the tree T W− . We refer to Figure 1 for an illustration.

We will define the weighted tree F with weights denoted by λF
a,a′ , a ∼ a′ ∈ F , through a

recursively defined sequence (Fk) of weighted trees, such that to each a ∈ Fk−1 we associate
a watershed (Ta,λa,Xa) starting in â as defined in the last subsection, and to each vertex
a ∈ Fk we associate another vertex â ∈X .

As explained above, this construction of F as well as the corresponding watersheds, will
depend on a parameter L ∈ N, that we fix for the rest of this section. We denote by PW

L the
probability measure under which these objects are constructed. For technical reasons, we will
start the first watershed in the point 1 instead of ∅.

First set F−1 := ∅, F0 := {∅} take ∅̂ = 1, and generate some weights (λW
∅,i)i∈N with

law ν. Now assume Fk−1 and Fk are given for some k ∈ N0, and that each point a ∈ Fk is
associated to a point â ∈ X . We define Fk+1 as follows. For each a ∈ Fk \ Fk−1, we generate

(4.7) an independent watershed (Ta,λa,Xa) with law Q
λF

a−,a
,L

â ,
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as defined in (4.4). Note that ∅− is not well defined, but for a = ∅ we will take the convention

(4.8) λF
a−,a := λW

∅,1.

The watershed (Ta,λa,Xa) will be used to encode the set of free points via the following
set:

(4.9) Fa := (
∂Ta

VL

) \ {Xa
VL

};
in other words, apart from Xa

VL
, the set Fa corresponds to the vertices on the boundary of the

tree Ta once the walk has either visited L vertices or hit â−. The vertex Xa
VL

is excluded from
this set since, by definition of VL, the first generation of the tree below Xa

VL
has already been

explored by Ta . Equivalently, the points in Fa are vertices not visited by the random walk
Xa

k , 1 ≤ k ≤ VL, but adjacent to its trace, and which have thus already been generated during
the construction of the watershed. We will then generate new watersheds from the vertices in
Fa . We can now define the next generation of the tree of free points

(4.10) Fk+1 := Fk ∪ ⋃
a∈Fk\Fk−1

|Fa |⋃
i=2

{ai}.

In other words, the sets of points Fa , a ∈ Fk \ Fk−1, are used to build the (k + 1)-st level of
the tree of free points, and we define âi as the ith element (in lexicographic order) of Fa for
each 1 ≤ i ≤ |Fa|. Note that the union over i starts at 2 for technical reasons, cf. property (ii)
in Definition 5.1, and the explanation in the second paragraph thereafter. In particular, â1 is
well defined but not part of the tree F , for instance 1̂ = 1111 in Figure 1.

We moreover define the conductance of the edge above the vertex ai for Fk+1 as

(4.11) λF
a,ai := λa

(âi)−,âi,

whereas the conductances on Fk ⊂ Fk+1 stay the same as before. This concludes the inductive
definition of the sequence (Fk), and the tree of free points is simply defined via

(4.12) F := ⋃
k∈N0

Fk,

endowed with the same conductances as the Fk , k ∈ N0.
Let us now explain how to construct a Galton–Watson tree by gluing together the water-

sheds (Ta,λa,Xa), a ∈ F . We first set

(4.13) T W− := {
2, . . . , π

((
λW
∅,j

)
j∈N

)}∪ ⋃
a∈F

Ta;

in other words, T W− consists of a first generation with weights (λW
∅,j )j∈N, and the union of the

watersheds Ta , a ∈ F ; note that the root ∅ belongs to T∅ by (4.7) and the convention ∅̂= 1,
cf. (4.8) also, and in particular ∅ ∈ T W− . One can view T W− as a tree in X , and we endow each
of its edges {x, y} such that x, y ∈ Ta for some a ∈ F with the conductance λa

x,y . Note that

each edge {x, y} of T W− is also an edge of Ta for some a ∈ F , and in fact, for each a ∈ F , Ta

and Ta−
have exactly one edge in common: {â−, â}. Moreover, in view of (4.7) and (4.11),

λa
â− ,̂a

= λF
a−,a

= λa−
â− ,̂a

, hence the conductances of the tree T W− are uniquely defined.

Observe that the tree T W− is not yet a Galton–Watson tree with the desired offspring dis-
tribution since for some vertices x ∈ T W− we did not construct their descendants: this is the
case if x = â1 for some a ∈ F (see (4.10)), or if x is in the boundary of Ta

ṼL
\ Ta

VL
(since no

vertices correspond to free points in this part of the watershed). Therefore, we now add some
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ends to those points in order to complete the construction of the Galton–Watson tree. More
precisely, define independently of everything else

(4.14)
an independent family of Galton–Watson trees

(
T x)

x∈X ,

each T x with the same law as x · T under PGW.

In other words, T x is a Galton–Watson tree rooted at x. We now define T W as the weighted
tree obtained from the union of T W− with the T x , x ∈ ∂T W− , endowed with their respective
conductances, and we denote by λW the conductances on T W. We then have that for all
L ∈ N,

(4.15) T W has the same law under PW
L as the Galton–Watson tree T under PGW;

indeed, it follows from Proposition 4.1 and (4.7) that, conditionally on Ta′
, a′ ∈ Fk−1, a

single watershed Ta , a ∈ Fk \ Fk−1, has the same law as a Galton–Watson tree restricted to
this watershed, conditionally on λa

â− ,̂a
= λF

a−,a
. Since λF

a−,a
= λa−

â− ,̂a
(= λa

â− ,̂a
) by (4.7) and

(4.11) we obtain that the conductances between each vertex x ∈ T W− \ ∂T W− and its offspring
are distributed independently according to ν. Note that, for each x ∈ ∂T W− , the subtree T W

x :=
(T W)x equals T x with the desired offspring distribution by definition in (4.14) and below,
and we conclude that (4.15) holds true.

4.3. Watersheds and random interlacements. In the previous subsections, we generated
simultaneously the Galton–Watson tree and random walks on it through the structure of wa-
tersheds. The next goal now is to interpret these random walks as a part of a random in-
terlacements process, which will essentially follow from Theorem 2.2 and some additional
conditions as in (4.18). Under some probability measure P�

ũ , ũ > 0, let

(4.16) (�x)x∈X be an i.i.d. family of Poi(ũ) random variables.

We denote by PW
L,ũ the product measure PW

L ⊗P�
ũ , under which the tree T W and the Poisson

random variables (�x)x∈X are independent. Furthermore, for a ∈ F let

(4.17) Wa := {
Xa

k : k ∈ {0, . . . , VL

(
Xa)− 1

}}
.

Recall the definition of eK,T from (2.12).

PROPOSITION 4.2. Let ũ, u > 0 and L ∈ N. On some extension of the probability space
corresponding to PW

L,ũ, one can couple T W defined in (4.15) and a set Iu in such a way that

conditionally on T W, the set Iu is an interlacements set at level u on T W, and for all a ∈ F ,
if

(4.18) �â ≥ 1, ṼL

(
Xa)= ∞, and u ≥ ũ

e{â},T W
â

(â)
,

where T W
â is the subtree of T W below â, then

Wa ⊂ Iu.

PROOF. Conditionally on T W, for each a ∈ F , define X
a

as a process on T W such that
X

a

k = Xa
k for 0 ≤ k ≤ ṼL(Xa), and such that, if ṼL(Xa) < ∞, the process X

a

k , k ≥ ṼL(Xa),
is a random walk on T W starting in Xa

ṼL(Xa)
. On some extension of the probability space

corresponding to PW
L,ũ, conditionally on T W, start independently from each x ∈ T W i.i.d.

random walks Xx,i , i ≥ 2, each with law P T W

x (·|Hx− = ∞), with the convention H∅− = ∞.
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Moreover, take Xx,1 = X
a

if x = â for some a ∈ F and Hâ−(X
a
) = ∞, and otherwise let

Xx,1 be some other independent walk with law P T W

x (·|Hx− = ∞). Taking advantage of the
thinning property for Poisson random variables and Proposition 4.1, one can easily prove
that, conditionally on T W and for each a ∈ F , the probability PW

L,ũ(�â ≥ 1,Hâ−(X
a
) = ∞)

is smaller than or equal to the probability that a Poi(ũP T W

â (Hâ− = ∞))-distributed random
variable is larger or equal to one. Noting that ṼL(Xa) = ∞ implies Hâ−(X

a
) = ∞, and taking

advantage of the equality

e{â},T W
â

(â)
(2.12)= λW

â,+P
T W

â
â (H̃â = ∞) = λW

â P T W

â (H̃â = ∞,Hâ− = ∞)

(2.16)= qeT W(â)

P T W

â (Hâ− = ∞)
,

one can construct conditionally on T W for each x ∈ T W a Poisson random variable �′
x with

parameter uqeT W(x) such that for each a ∈ F , the properties in (4.18) already entail that
� ′̂

a ≥ 1.

Moreover, conditionally on T W, introduce
←→
X x,i , i ≥ 1, as doubly infinite random walk

trajectories on T W, whose forward part is defined to be Xx,i , and whose backward part is
an independent random walk with law P T W

x (·|Hx− = ∞, H̃x = ∞) for each x ∈ T W. By

Proposition 4.1, conditionally on T W, the process
←→
X x,i has law Q

T W

x for each i ≥ 1, see

(2.17). We can now define Iu as the set of vertices visited by any of the trajectories
←→
X x,i ,

i ∈ {1, . . . ,�′
x} and x ∈ T W, which has the same law conditionally on T W as under PRI

T W

by Theorem 2.2. Since (4.18) implies � ′̂
a ≥ 1 and Xâ,1

k = Xa
k for each k ∈ N0, we can easily

conclude by the definition (4.17) of Wa . �

5. Percolation of the level set. In this section we prove Theorems 1.1 and 1.2. We first
define a set of “good” properties, see Definition 5.1 below, which can be satisfied by a vertex
a in the tree of free points F , as defined in Section 4.2. We will show in Lemma 5.3 that a

is good with not too small probability. Our notion of goodness is chosen so that on the one
hand, the watershed associated to each good free point is included in the interlacements set
Iu from Proposition 4.2, see Proposition 5.5, and also included in the set Au from (1.9) with
high probability, see Proposition 5.7; on the other hand, it also ensures that the tree of good
free points survives, see Proposition 5.5. We refer to the discussion below Definition 5.1 for
more details. This readily yields the percolation of the set Au ∩ Iu, and an application of the
inclusion (1.8), which follows from Proposition 2.5 and Proposition 5.8 below, completes the
proof of Theorems 1.1 and 1.2.

Let us now define the properties which make a free point good. For this purpose, recall
the watershed (Ta,λa,Xa) from (4.7), where a ∈ F , with F the tree of free points defined
in (4.12). We recall that in this watershed, Xa is a random walk stopped at time ṼL(Xa), see
(4.3), and for K ⊂ Ta we denote by HK(Xa) the hitting time of K for this stopped random
walk similar to (2.9). Recall also the definition of the set Wa from (4.17) and of the Poisson
random variable �â from (4.16). Also recall that when x ∈ ∂T W− , the tree T x , see (4.14), is
equal to the Galton–Watson tree below x in T W. Finally, recall that for a set A ⊂ X , by GA

x

we denote the set of children of x in A, see (2.2), and for a transient tree T , by gT we denote
the Green function on T , see below (2.10).

DEFINITION 5.1. Let ũ, B , cλ, C�, Cg be positive real numbers, L ∈ N and cf ∈ (0,1].
Under PW

L,ũ, we say that a ∈ F is (L,B, cλ,C�,Cg, cf )-good if the corresponding watershed
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(Ta,λa,Xa), the weighted tree T â1 and the Poisson random variable �â satisfy the following
properties:

(i) The Poisson variable �â satisfies �â ≥ 1.
(ii) The watershed satisfies

(5.1)
∣∣GTa

â

∣∣≥ 2,λa
â,̂a1 > cλ and

(
λa)

â,+ ≤ C�,

and the weighted tree T â1 satisfies

(5.2) gT â1
(â1, â1) ≤ Cg.

(iii) The trajectory Xa satisfies

H{â− ,̂a1}
(
Xa)= ṼL

(
Xa)= ∞.

(iv) The set of children of the vertex a in the tree of free points F satisfies∣∣{a′ ∈ GF
a : λF

a,a′ ≤ C�

}∣∣≥ cf L.

(v) The conductances λa on Wa satisfy

(5.3)
1

L
3
2

∑
y∈Wa

(
λa

y

) 3
2 < B.

We now explain how the good properties defined above can be combined in order to de-
duce the percolation of Au ∩Iu, see (1.9). The first three properties imply that the conditions
in (4.18) are verified, see the proof of Proposition 5.6, and so, in view of Proposition 4.2,
the set Wa of the watershed associated to a good free point a ∈ F is included in the coupled
interlacements set Iu. More precisely, property (i) implies the first condition in (4.18); prop-
erty (ii) will imply a lower bound on e{â},T W

â
(â), and thus that the third assumption in (4.18)

is satisfied for u of the same order as ũ, see (5.19); and property (iii) implies that the sec-
ond condition in (4.18) is satisfied. Property (iv) ensures the creation of many new free points
with bounded conductances to their parent, which will imply—using Lemma 5.4 below—that
the tree of good free points contains a d-ary tree for arbitrarily large d , see Proposition 5.5.
Finally, using (5.25), property (v) will provide us with a good bound on the probability that
Wa ⊂ Au. Combining these five properties we will thus obtain percolation of the free points
a ∈ F such that Wa ⊂ Au ∩ Iu, and thus percolation of Au ∩ Iu, see Proposition 5.7.

One of the main difficulties in the previous steps is to understand how property (ii) in our
notion of goodness is used to bound the equilibrium measure e{â},T W

â
(â) from below, which

implies that we can find ũ and u of the same order verifying the third assumption (4.18),
and, consequently, that there is a random interlacements trajectory starting in â when a is
good. When â1 is not visited by Xa , which is the case when a is good by property (iii), then
(̂a1) = â1, so no new watershed is generated starting from â1 in view of (4.10), and thus
â1 ∈ ∂T W− . Therefore, by the construction of the tree T W above (4.15), we obtain that if a

is good, then T â1 is the tree below â1 in T W. The bound on the Green function on T â1

combined with (5.1) in property (ii) will then imply the desired lower bound on e{â},T W
â

(â),
see (5.22) for details. In other words, the reason we excluded a1 from the tree of free points
in (4.10) is to make sure that T â1 is the tree below â1 in T W, and thus that we can use
the independent tree T â1 to bound e{â},T W

â
(â) without using any information on the other

watersheds in T W.
We now provide lower bounds on the probabilities of the previous properties in the follow-

ing lemma. Note that in items (ii) to (v) below we do not consider exactly the same kind of
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events as in Definition 5.1; they do, however, present the advantage of having more indepen-
dence and we will show in Lemma 5.3 (see, for instance (5.9)) that the probabilities of the
events from Definition 5.1 are larger than those of the events from Lemma 5.2. Recall that
(�x)x∈X are Poisson random variables with parameter ũ under of P�

ũ , see (4.16), that (λi)i≥0
under ν represents the law of the weights below any vertex, and that Qκ,L

x denotes the law of
the watershed introduced in Section 4.1, see (4.4). Recall also the definition of the (interior)
boundary ∂A of a set A ⊂ X from the paragraph below (2.1), and to simplify notation for
B ⊂ A we will write ∂A \ B for (∂A) ∩ Bc.

LEMMA 5.2. There exist positive constants cλ,C�,Cg, cV , cf ∈ (0,∞) such that for
each ε ∈ (0,1) and B > 0, there exists L0 = L0(B, ε) ∈ N such that for all x ∈ X \ {∅},
L ≥ L0, κ ≤ C� and ũ > 0, the following properties hold true:

(i) P�
ũ (�x ≥ 1) = 1 − exp(−ũ),

(ii) ν(π((λi)i∈N) ≥ 2, λ1 > cλ,λ2 > cλ,λ+ ≤ C�) ≥ 1
2(1 − μ(1)),

and PGW(gx1·T (x1, x1) ≤ Cg) ≥ 1
2 ,

(iii) EGW[ cλλx2,x21
2C�(2C�+λx2,+)

P T
x21(ṼL−2 = Hx2 = ∞)|x ∈ T , π((λx,xi)i∈N) ≥ 2] = cV ,

(iv) Qκ,L
x (|{y ∈ ∂TVL

\ {x1,XVL
} : λy,y− ≤ C�}| < cf L, ṼL(X) = ∞) ≤ ε,

(v) Qκ,L
x ( 1

L
3
2

∑
y∈W(λy)

3
2 ≥ B, ṼL(X) = ∞) ≤ ε.

PROOF.

(i) This is immediate from the definition in (4.16).
(ii) First note that ν(π((λi)i∈N) ≥ 2) = 1 − μ(1) by definition (2.4) of μ in combination

with our assumption (SA) in Section 2.2. Moreover, T is PGW-a.s. transient due to Proposi-
tion 2.1. Therefore, the Green function gx1·T (x1, x1) associated to the tree T rooted at x1 is
PGW-a.s. finite, and its law does not depend on the choice of x. Since probability measures
are continuous from below, by definition of the conductances in (1.2) and above, one can
find a small enough positive constant cλ as well as large enough finite constants C� and Cg ,
independent of x, such that (ii) holds uniformly in x ∈ X .

(iii) Note that for each y ∈ T \{∅}, since the subtree Ty− is a.s. transient, for almost all re-
alizations of T , the probability P T

y (Hy− = ∞) is strictly positive. Therefore, using the strong
Markov property at time VL−2—which is finite and larger than Hx2 with positive probability
under P T

x21, see its definition in (4.2)—and using the previous with y = XVL−2 , it follows
from the definition of ṼL−2 in (4.3) that the variable appearing in the PGW-expectation of
(iii) is a.s. positive, and we can conclude.

(iv) We will use twice the weak law of large numbers for the i.i.d. sequence of weights
(λ

(k)
i )i∈N, k ≥ 2, from (4.1). For this purpose, from the proof of (ii) we recall that

ν(π((λi)i∈N) ≥ 2) = 1 − μ(1) > 0. As a consequence, the sequence of random variables
|{k ∈ {2, . . . ,L} : π((λ

(k)
i )i∈N) ≥ 2}|/L, L ∈ N, converges to 1 − μ(1) in probability as

L → ∞ by (4.1). Fixing cf ∈ (0, (1 − μ(1))/2), we obtain for L large enough that

(5.4) Qκ,L
x

(∣∣{k ∈ {2, . . . ,L − 1} : π((λ(k)
i

)
i∈N
)≥ 2

}∣∣< 2Lcf

)≤ ε

2
.

Similarly, fixing C� large enough so that

ν

(∑
i

λi ≤ C�

)
> 1 − cf ,

we have by (4.1) that for L large enough

(5.5) Qκ,L
x

(∣∣∣∣{k ∈ {2, . . . ,L − 1} :∑
i∈N

λ
(k)
i ≤ C�

}∣∣∣∣< (1 − cf )L

)
≤ ε

2
.
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Recalling the notation W from (4.5), and that λy,+ =∑
i∈N λy,yi , see (1.2), our goal is now

to prove that, under Qκ,L
x ,

if
∣∣{y ∈ W \ {x} : λy,+ ≤ C�

}∣∣≥ (1 − cf )L and∣∣{y ∈ W \ {x} : ∣∣GTVL
y

∣∣≥ 2
}∣∣≥ 2Lcf , then∣∣{y ∈ ∂TVL

\ {x1,XVL
} : λy,y− ≤ C�

}∣∣≥ cf L;
(5.6)

indeed, in view of (4.6), on the event ṼL(X) = ∞, which implies VL(X) < Hx−(X), we can
take advantage of (5.6) in order to use (5.4) and (5.5) to upper bound the probability of the
event appearing in (iv) of Lemma 5.2, and we can conclude.

To prove (5.6), let us define A := {y ∈ W \ {x} : |GTVL
y | ≥ 2} the set of vertices in W \ {x}

with at least two children in TVL
. Observe that |∂TVL

\ G
TVL
x | ≥ |A| + 1, which can easily

be proved recursively on |W| starting at |W| = 2. In addition, for each y ∈ ∂TVL
\ G

TVL
x

we have y− ∈ W \ {x} and λy,y− ≤ λy−,+, and so λy,y− ≥ C� for at most cf L different

y ∈ ∂TVL
\ G

TVL
x on the first event of the first line of (5.6). Therefore, since the second event

in the first line of (5.6) implies |A| ≥ 2Lcf , we have at least cf L + 1 many vertices y ∈
∂TVL

\ G
TVL
x with λy,y− ≤ C�, which finishes the proof of (5.6).

(v) Here we can use the Marcinkiewicz–Zygmund law of large numbers, which states
that, if (Yk)k∈N is a sequence of i.i.d. random variables with E[|Y1|r ] < ∞ for some 0 < r <

1, then

1

n1/r

n∑
k=1

Yk
a.s.−−−→

n→∞ 0.

A proof of this classical result can be found in [20], Section 17.4, p.254. We can take

Yk := (
∑

i λ
(k)
i )

3
2 and r = 2

3 since the expectation of Y
2
3
k under Qκ,L

x is then equal to
Eν[∑i λi], which is finite by our assumption (1.2) (see also (2.3)). By (4.6), this then en-
tails that L−3/2∑

y∈W\{x} Yk converges a.s. to 0 as L → ∞, and hence for all ε ∈ (0,1) and
B > 0 there exists L0 = L0(B, ε) so that for all L ≥ L0,

(5.7) Qκ,L
x

(
1

L
3
2

L−1∑
k=1

(∑
i∈N

λ
(k)
i

) 3
2 ≥ B

6

)
≤ ε.

Our goal is now to prove that for L ≥ L0(B, ε),

(5.8) if
1

L
3
2

∑
y∈W

(λy,+)
3
2 <

B

6
, then

1

L
3
2

∑
y∈W

(λy)
3
2 < B;

indeed, in view of (4.6), on the event ṼL(X) = ∞, we can use (5.8) and then (5.7) to upper
bound the probability of the event appearing in (v) of Lemma 5.3, so that we can conclude.

To prove (5.8), we use the bounds (λy)
3
2 ≤ √

8((λy,+)
3
2 + (λy,y−)

3
2 ) for all y ∈ W, the bound

λy,y− ≤ λy−,+ for all y ∈ W \ {x}, the inequality λx,x− = κ ≤ C�, the fact that {y− : y ∈
W \ {x}} ⊂ W, and take L0(B, ε) much larger than C�/B2/3. �

Let us now show that the bounds obtained in Lemma 5.2 can be combined to lower bound
the probability that a vertex a ∈ F is good, see Definition 5.1. Recall that PW

L,ũ is the prob-
ability measure underlying our tree of free points constructed in Section 4.2, see also below
(4.16).
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LEMMA 5.3. Let cλ, C�, Cg and cf be as in Lemma 5.2. There exists cp > 0 such that
for all B > 0, there exists L0(B) ∈ N such that for all a ∈ X , L ≥ L0(B) and ũ > 0, on the
event {λF

a,a− ≤ C�} we have

PW
L,ũ

(
a is (L,B, cλ,C�,Cg, cf )-good|λF

a,a−, a ∈ F
)≥ cp

(
1 − e−ũ).

PROOF. We will check the properties of Definition 5.1. In the first part of the proof, we
show that the event appearing in Lemma 5.2 (iii) implies that Definition 5.1 (iii) is fulfilled
with positive conditional probabilities under the appropriate conditions. More precisely, we
have for all a ∈ F that

(5.9)

if λa
â,+ ≤ C�,λF

a,a− ≤ C� and λa
â,̂a2 > cλ

then P T W

â (H{â− ,̂a1} = ṼL = ∞) ≥ cλλ
a
â2,̂a21

2C�(2C� + λa
â2,+)

P T W

â21 (ṼL−2 = Hâ2 = ∞);

indeed, under the conditions from (5.9), noting that λa
â,̂a− = λF

a,a− by (4.11), and thus λa
â ≤

2C�, we have that

P T W

â (X2 = â21) = λa
â,̂a2λ

a
â2,̂a21

λa
â(λ

a
â,̂a2 + λa

â2,+)
≥ cλλ

a
â2,̂a21

2C�(2C� + λa
â2,+)

.

Therefore, (5.9) follows easily by using the Markov property at time 2, noting that, under
P T W

â and on the event {X2 = â21}, in view of (4.2) and (4.3), we have ṼL−2((Xk+2)k≥0) =
ṼL((Xk)k≥0). Furthermore, if â2 is never visited after time 2, then â1 and â− are never vis-
ited by X. Moreover, note that the random variable on the right-hand side of the inequality of
the second line of (5.9) is independent of T â1, �â , (λa

â,̂ai)i∈N and λF
a,a− . Combining Propo-

sition 4.1, (4.7), Lemma 5.2 (iii) and (5.9), we thus have on the intersection of the events
{λa

â,̂a2 > c�}, {λa
â,+ ≤ C�} and {λF

a,a− ≤ C�}, that

(5.10) PW
L,ũ

(
H{â− ,̂a1}

(
Xa)= ṼL

(
Xa)= ∞|�â,

(
λa

â,̂ai

)
i∈N,T â1, λF

a,a−, a ∈ F
)≥ cV .

In this second part of the proof, we aim at combining the estimates from Lemma 5.2 in
order to infer the general lower bound cp(1 − e−ũ) on the probability for a to be good.
Obtaining a lower bound on the intersection of the events (i), (ii) and (iii) in Definition 5.1 is
easy by independence, Lemma 5.2 and (5.10). More care is required for the other properties
though.

It is not difficult to combine Lemma 5.2 (iv) and (v), since the complements of the events
there happen with high probability, as we now explain. On the event {λF

a,a− ≤ C�}, using

the estimates from Lemma 5.2 (iv), (v) for ε = 1
3

cV (1−μ(1))
2 , and writing them in the form of

Definition 5.1—see (4.7), (4.9), (4.11) and the definition of the tree of free points from (4.10)
and below—we thus have for all L ≥ L0(B), with L0(B) = L0(B, ε) from Lemma 5.2 for
this choice of ε that

PW
L,ũ

⎛⎜⎜⎝
{∣∣{a′ ∈ GF

a : λF
a,a′ ≤ C�

}∣∣≥ cf L,L− 3
2
∑

y∈Wa

(
λa

y

) 3
2 < B

}c

,

H{â− ,̂a1}
(
Xa)= ṼL

(
Xa)= ∞

∣∣∣∣∣∣∣∣�â,T â1, λF
a,a− , a ∈ F

⎞⎟⎟⎠
≤ 2

3

cV (1 − μ(1))

2
.

(5.11)

Here, we used that both, the event H{â− ,̂a1}(Xa) = ṼL(Xa) = ∞ and the events in Defi-
nition 5.1 (iv) and (v), are (Ta,λa,Xa)-measurable, and thus independent of �â and T â1,
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and that {â : a ∈ GF
a } = ∂Ta

VL(Xa) \ {â1,Xa
VL(Xa)} when H{â− ,̂a1}(Xa) = ∞ in view of (4.9),

(4.10).
Now we can further combine (5.10) with the equation in the first line of (ii) of Lemma 5.2

(recall that the number of children |GTa
1

â | of â in Ta
1 is equal to π((λa

â,̂ai)i∈N)). One can
combine this with (5.11) thanks to the dependence of the bound (5.11) on cV (1 − μ(1))/2,
noting also that the event in the first line of Definition 5.1 (ii) is independent of �â and T â1,
to obtain that on the event {λF

a,a− ≤ C�}, for all L ≥ L0(B) we have

PW
L,ũ

⎛⎜⎜⎜⎝
∣∣{a′ ∈ GF

a : λF
a,a′ ≤ C�

}∣∣≥ cf L,L− 3
2
∑

y∈Wa

(
λa

y

) 3
2 < B,

H{â− ,̂a1}
(
Xa)= ṼL

(
Xa)= ∞,

∣∣GTa
1

â

∣∣≥ 2,λa
â,̂a1 > cλ,λ

a
â,+ ≤ C�

∣∣∣∣∣∣∣∣∣�â,T â1, λF
a,a− , a ∈ F

⎞⎟⎟⎟⎠
≥ 1

3

cV (1 − μ(1))

2
.

(5.12)

Finally, for the good events in (i) and the second line of (ii) in Definition 5.1, conditionally
on a ∈ F and λF

a,a− , the random variables �â and T â1 have respective laws P�
ũ (�â ∈ ·) and

PGW(â1 ·T ∈ ·), (see, respectively, below (4.16) and (4.14)), and are independent. Therefore,
the two estimates provided by Lemma 5.2 (i) and the second line of (ii), yield that for all
ũ > 0 one has

(5.13) PW
L,ũ

(
�â ≥ 1, gT â1

(â1, â1) ≤ Cg|λF
a,a−, a ∈ F

)≥ 1

2

(
1 − exp(−ũ)

)
.

Combining (5.12) and (5.13), we can readily conclude by taking cp = cV (1 − μ(1))/12. �

We now want to show that the set of good free points introduced in Definition 5.1 per-
colates with the help of Lemma 5.3. This set can be interpreted as a random subset in X ,
endowed with the σ -algebra introduced at the end of Section 2.1. Recall the definition GA

x of
the number of children of x in A ⊂ X from (2.2). In the following technical lemma, we say
that a tree is d-ary if it contains ∅ and every vertex has exactly d children. While it seems
like a standard result, we were not able to locate it in the literature and therefore provide a
proof here.

LEMMA 5.4. There exists a function d : [0,∞) → N0 such that d(t) → ∞ as t → ∞
and the following holds. Under some probability measure P, let S ⊂ X be a random set
containing ∅ almost surely, such that for some N ∈ N and p ∈ [0,1], for all x ∈X
(5.14) P

(∣∣GS
x

∣∣≥ N |Fx

)≥ p on the event {x ∈ S};
here, Fx = σ(1{y∈S}, y ∈ X \ (x · (X \ {∅}))) is the σ -algebra generated by the restriction
of S to vertices which are not descendants of x. Then, S contains with positive probability,
depending only on p and N , a d(Np)-ary tree.

PROOF. In this proof, we say that a random subset of X is a weightless Galton–Watson
tree with offspring distribution pδN + (1 − p)δ0 if, after possible reordering of the labels,
this set has the same law as the tree T seen as a subset of X (i.e., removing the weights),
introduced in Section 2.1 when the offspring distribution μ from (2.4) is pδN + (1 − p)δ0.
Note that since we discard the weights here, the law of this tree is entirely determined by its
offspring distribution.

Let us first show that we can couple S and a weightless Galton–Watson tree with offspring
distribution pδN + (1 − p)δ0, such that S is included in this tree. For this purpose, fix a
sequence x0, x1, . . . exhausting X and such that {x0, . . . , xk−1} ⊂ (xk ·X )c for each k ∈ N0.
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The result will follow once we have that, under some probability measure P̃, there exist an
i.i.d. family of Bernoulli random variables ζxk

, k ∈ N0 with parameter p, and random sets
S̃k , k ∈ N0, with the following properties: S̃k is an increasing sequence of sets, each with the
same law as Sk := {x ∈ S : x ∼ xi for some i ≤ k} under P, and if ζxk

= 1 and xk ∈ S̃k , then

|GS̃k
xk | ≥ N (in order to facilitate reading, the construction of these random variables will take

place in the last paragraph of the proof). Indeed, defining S̃ as the union of S̃k , k ∈ N0, one
obtains that S̃ has the same law as S under P. Furthermore, the tree T obtained recursively
by keeping exactly N children in S̃ of x ∈ S̃ each time ζx = 1, and keeping zero children
otherwise, is then a Galton–Watson tree with offspring distribution pδN + (1 − p)δ0, which
is contained in S̃.

In order to conclude, we still need to show that for each d̃ ∈ N0, there exists t = t (d̃) ∈
(0,∞) such that for each p ∈ [0,1] and N ∈ N with pN ≥ t , a weightless Galton–Watson tree
with offspring distribution pδN + (1 − p)δ0 contains with positive probability a d̃-ary tree,
and then take d(s) := sup{d̃ ∈ N0 : t (d̃) ≤ s} for all s > 0, with the convention sup∅ = 0.
This can be easily proven by noting that, if Gd̃ is the function from [23], Theorem 5.29, then
Gd̃(0) > 0 and Gd̃(1 − p/2) < 1 − p/2 if pN ≥ t for some t large enough. We leave the
details to the reader.

It therefore remains to construct construct the sequences S̃k and ζxk
, k ∈ N0. We have

x0 = ∅, and (5.14) applied to x = ∅ implies that one can indeed define a Bernoulli random
variable ζ∅ with parameter p and S̃0 such that S̃0 has the same law as {x ∈ S : x ∼ ∅},
and ζ∅ = 1 implies |GS̃0

∅ | ≥ N . Assume now that ζxi
, i ≤ k − 1 and S̃k−1 are constructed.

Let S̃k be the union of S̃k−1 and some children of xk , constructed so that, conditionally on
(ζxi

)i≤k−1 and S̃k−1, the law of S̃k is the same as law of Sk conditionally on Sk−1 = S̃k−1.

Then (5.14) implies that, conditionally on (ζxi
)i≤k−1 and S̃k−1, 1{|GS̃k

xk | ≥ N} stochastically
dominates a Bernoulli random variable with parameter p on the event {xk ∈ S̃k−1}. Hence,
up to extending the probability space P̃, we can define a Bernoulli random variable ζxk

with
parameter p, independent of ζxi

, i ≤ k − 1, and S̃k−1, and such that if ζxk
= 1 and xk ∈ S̃k−1

then |GS̃k
xk | ≥ N . This concludes the induction, and the proof that S̃ contains a.s. a weightless

Galton–Watson tree with offspring distribution pδN + (1 − p)δ0. �

We now prove that with positive probability, the tree of (L,B, cλ,C�,Cg, cf )-good free
points contains a d-ary tree for suitable choices of the parameters. To do so, observe that
on the one hand, the probability for a free point to be good is bounded from below due to
Lemma 5.3. On the other hand, property (iv) of Definition 5.1 will let us tune the parameter L

in such a way that a good free point has many children. We will then be able to use Lemma 5.4
in order to conclude.

PROPOSITION 5.5. Let cλ, C�, Cg and cf be as in Lemma 5.2, cp as in Lemma 5.3,
and the function d as in Lemma 5.4. For all B > 0, there exists L0(B) ∈ N such that for all
L ≥ L0(B) and ũ > 0, the set

(5.15) Fg := {∅} ∪ {a ∈ F \ {∅}|a− is (L,B, cλ,C�,Cg, cf )-good and λF
a,a− ≤ C�

}
contains with positive PW

L,ũ probability a d(Lq(ũ))-ary tree, where q(ũ) = cf cp(1 − e−ũ).

PROOF. Let B > 0. Fix cλ, C�, Cg , cf , and L0(B) as in Lemma 5.3, and fix L ≥ L0(B)

and ũ > 0. Throughout the proof we write “good” instead of “(L,B, cλ,C�,Cg, cf )-good”
to simplify notation, keeping the implicit dependence on the parameters in mind. Let us first
extend the definition of the weights λF from {{a, a−} : a ∈ F \ {∅}} to {{a, a−} : a ∈ X \{∅}}
by letting λF

a,a− = 0 if a ∈ X \ F . For each a ∈ X \ F , we also fix arbitrarily some â ∈ X ,
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so that â �= â′ for all a �= a′ ∈ X . This way, we can also define (Ta,λa,Xa), a ∈ X \ F ,

as a family of independent watersheds with law Q
λF

a−,a
,L

â , see (4.7). Note that for a /∈ F we
never actually use the additional watershed (Ta,λa,Xa) nor the notation â, they are however
necessary to define the following σ -algebra:

Wa := σ
(
�â,Xa,

(
λa

x,y

)
x∼y∈Ta ,

(
λâ1

x,y

)
x∼y∈T â1

)
for all a ∈ X ,

where λâ1 are the weights of the tree T â1 which was defined in (4.14); also recall that Xa ,
λa and λâ1 are random variables whose canonical σ -algebras on their respective state spaces
have been defined at the end of Section 2.1. By construction, (Ta−

,λa−
,Xa−

), T W
(â−)1

, the

weight λF
a−,a

= λa−
â,̂a− , see (4.11), as well as the event {a ∈ F } = {λF

a−,a
> 0} are Wa−

-
measurable. Therefore, in view of Definition 5.1

(5.16)
{
a ∈ Fg} ∈ Wa−

for all a ∈ X ,

where we recall Fg from (5.15), and with the convention W∅− := σ({∅}) is the trivial σ -
algebra. By (4.7), a watershed depends on the previous watersheds only through the weights
λF

a,a− , that is, Wa and Wa′
, a′ /∈ a ·X , are independent conditionally on λF

a,a− for all a ∈
F \ {∅}. Therefore, defining for each a ∈ X the σ -algebra

(5.17) Fg
a := σ

(
W(a′)−, a′ /∈ a · (X \ {∅}))= σ

(
Wa′

, a′ /∈ a ·X ),
we have that for all a ∈ F ,

(5.18) PW
L,ũ

(
a is good|Fg

a

)= PW
L,ũ

(
a is good|λF

a,a−, a ∈ F
)
,

with the convention λF
∅,∅− = 0. Note that, in view of (5.16), the σ -algebra Fg

a contains the σ -
algebra Fa from Lemma 5.4 when S = Fg . By property (iv) of Definition 5.1, we moreover
have |GFg

a | = |{a′ ∈ GF
a : λF

a,a′ ≤ C�}| ≥ cf L if a ∈ F is good. Thus since {λF
a,a− ≤ C�} ⊂

{a ∈ Fg} ∈Fg
a by (5.16) and (5.17), we have that on the event {a ∈ Fg},

PW
L,ũ

(∣∣GFg

a

∣∣≥ cf L|Fg
a

)≥ PW
L,ũ

(
a is good|Fg

a

)≥ cp

(
1 − e−ũ),

where we used Lemma 5.3 and (5.18) in the last inequality. Using (5.17) and Lemma 5.4 for
S = Fg , we can conclude. �

With the help of Proposition 4.2, we now show that for a suitable choice of the parameters
u, ũ > 0, under PW

L,ũ, for each (L,B, cλ,C�,Cg, cf )-good free point a ∈ F , one can include
the watershed Wa in the random interlacements set Iu from Proposition 4.2. For this purpose,
we need to verify that all the assumptions of (4.18) are verified for good free points.

PROPOSITION 5.6. Let u,B, cλ, c�,Cg, cf > 0, L ∈ N, a ∈ F and

(5.19) ũ = uce, where ce := cλ

cλCg + 1
.

Then, under the extension of the probability space PW
L,ũ from Proposition 4.2,

(5.20) Wa ⊂ Iu for all (L,B, cλ, c�,Cg, cf )-good vertices a ∈ F.

PROOF. Fix some (L,B, cλ, c�,Cg, cf )-good vertex a ∈ F . First note that by properties
(i) and (iii) of Definition 5.1, the first and second condition in (4.18) are satisfied, and thus
by Proposition 4.2,

(5.21) Wa ⊂ Iu once we show u ≥ ũ

e{â},T W
â

(â)
.



2874 A. DREWITZ, G. GALLO AND A. PRÉVOST

To bound the parameter e{â},T W
â

(â) from below we will use property (ii) of Definition 5.1. We
use the analogy to electrical circuits, and note that by Rayleigh’s monotonicity principle [23],

(2.5) and Sections 2.3 and 2.4, we have that gT W
â (â, â) ≤ g

T W
â,1(â, â), where T W

â,1 denotes

the subtree of T W
â consisting only of â and T W

â1 . Moreover, using a series transformation

[23], Section 2.3.I, equations (5.1) and (5.2) imply that g
T W

â,1(â, â) ≤ Cg + 1
cλ

since, on the

event Hâ1(Xâ) = ∞ which is implied by property (iii) of Definition 5.1, T â1 is the subtree
T W

â1 of T W below â1 as explained in the second paragraph below Definition 5.1. Thus, the
equilibrium measure at â for T W

â is bounded from below by

(5.22) e{â},T W
â

(â) = 1

gT W
â (â, â)

≥ cλ

cλCg + 1
=: ce.

We can conclude by combining (5.19), (5.21) and (5.22). �

If q(ũ)L is large enough, combining Propositions 5.5 and 5.6 provides us with an infinite
tree of good free points a satisfying Wa ⊂ Iu. Taking advantage of property (v) from Def-
inition 5.1, we are now ready to prove percolation for the set on the left-hand side of (1.8).
For each p ∈ (0,1), under some probability PE

p , let (Ex)x∈X be an independent family of
exponential random variables with parameter one, and (Bx)x∈X the independent family of
Bernoulli random variables defined above (1.5). Recall that φ is a Gaussian free field on T

under PG
T , see Section 2.3, that Iu is a random interlacements set on T under PRI

T , see Sec-
tion 2.4, that T is a Galton–Watson tree under PGW, see Section 2.1, and let Bp be as in (1.5)
and Au as in (1.9).

PROPOSITION 5.7. There exists u0 > 0 such that for each u ∈ (0, u0], there exists p ∈
(0,1) so that the set Au ∩ Bp ∩ Iu contains EGW[PRI

T ⊗ PG
T ⊗ PE

p(·)]-a.s. an unbounded
cluster.

PROOF. Under EW
L,ũ[PG

T W ⊗ PE
p(·)], for some L ∈ N and ũ > 0, consider the event

(5.23) AW
u := {

x ∈ T W : Ex > 4uλW
x or |φx | > 2

√
2u
}∩ {x ∈ T W : Bx = 1

}
.

For a ∈ F , we now evaluate the probability, conditioned on the value of φâ− , that Wa ⊂ AW
u

(recall (4.17)). For E and B, simple estimates for exponential and Bernoulli variables will
be sufficient, while for the Gaussian free field we take advantage of the Markov property
(2.11) applied to the set Ua := T W

â . For each y ∈ Ua , one can decompose the field as φy =
ψ

Ua
y + β

Ua
y ; here, ψ

Ua
y is a centered Gaussian field, independent of β

Ua
y and φâ− , and with

variance gT W

Ua
(y, y), which by (2.10) satisfies

gT W

Ua
(y, y) ≥ 1

λW
y

for all y ∈ Ua.

Thus, for all y ∈ Ua we have—using the symmetry and unimodality of the distribution of
ψ

Ua
y to obtain the first inequality—that

(5.24)

PG
T W

(|φy | ≤ 2
√

2u|φâ−
)= PG

T W

(∣∣ψUa
y + βUa

y

∣∣≤ 2
√

2u|φâ−
)

≤ PG
T W

(∣∣ψUa
y

∣∣≤ 2
√

2u
)≤ 4

√
2u√

2π/λW
y

.
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Therefore, for all a ∈ F ,

PG
T W ⊗ PE

p

(
Wa ⊂ AW

u |φâ−
)

(5.23)= ∏
y∈Wa

PE
p(By = 1)

(
1 − PG

T W ⊗ PE
p

( ⋃
y∈Wa

{|φy | ≤ 2
√

2u
}∩ {Ey ≤ 4uλW

y

}|φâ−
))

≥ pL

(
1 − ∑

y∈Wa

PG
T W

(|φy | ≤ 2
√

2u|φâ−
)
PE

p

(
Ey ≤ 4uλW

y

))

(5.24)≥ pL

(
1 − ∑

y∈Wa

4
√

2uλW
y√

2π

(
1 − e−4uλW

y
))

≥ pL

(
1 − 16√

π
u

3
2
∑

y∈Wa

(
λW

y

) 3
2

)
,

(5.25)

taking advantage of the inequality 1− e−x ≤ x for x > 0 in order to obtain the last inequality.
We now fix the parameters and start with choosing cλ,C�,Cg, cf , cp > 0 as well as

L0(B), with B to be fixed later on, as the parameters from Proposition 5.5, and ce as the
parameter from (5.19). Finally, for u > 0 define

(5.26)
ũ(u) := uce, L(u,B) :=

⌈
ce

3(1 − e−uce )

(√
π

32B

) 2
3
⌉

∨ L0(B) and

p(u,B) = 2− 1
L(u,B) .

Using the bound 1 − e−x ≥ x/2 for x > 0 small enough, we can now find u0 = u0(ce,B) > 0
such that

(5.27) L(u,B) ≤ 1

u

(√
π

32B

) 2
3

for all u ∈ (0, u0].

Then for all u ∈ (0, u0), under PW
L(u,B),ũ(u), for each (L(u,B),B, cλ,C�,Cg, cf )-good ver-

tex a ∈ F , we can continue the chain of inequalities in (5.25) to obtain

(5.28)

PG
T W ⊗ PE

p(u,B)

(
Wa ⊂ AW

u |φâ−
) (5.25)≥ p(u,B)L(u,B)

(
1 − 16√

π
u

3
2
∑

y∈Wa

(
λW

y

) 3
2

)
(5.3)≥ p(u,B)L(u,B)

(
1 − 16√

π
B
(
uL(u,B)

) 3
2

)
(5.26),(5.27)≥ 1

2
· 1

2
= 1

4
.

With our choice of parameters, see in particular (5.26), we can use Proposition 5.5 to show
that the set Fg from (5.15) contains with positive probability a d(cdB−2/3)-ary tree that we
denote by Fg0, where d(cdB−2/3) will be large (cf. (5.31)), and cd := cecpcf (

√
π/32)2/3/3.

Conditionally on the realization of the Galton–Watson tree T W, and on the event that Fg0

exists, we write

(5.29)
Fg1 := {∅} ∪ {a ∈ Fg0 \ {∅} : Wa− ⊂ AW

u

}
and

Fg1
a := σ

(
1{W(a′)−⊂AW

u }, a
′ ∈ (F \ Fa) ∪ {a})

for all a ∈ F , where Fa , the subtree below a, was defined in the paragraph below (2.2),
and where we use the convention W∅− = ∅. Taking advantage of the Markov property, see



2876 A. DREWITZ, G. GALLO AND A. PRÉVOST

(2.11) and below, under PG
T W and conditionally on φâ− , the field φ|Wa is independent of φ∅

and φ|W(a′)− for all a′ ∈ (F \ Fa) ∪ {a}. Thus, for all u ∈ (0, u0) and a ∈ X , on the event that

Fg0 exists and a ∈ Fg1 (which implies in particular that a is good), we have that

(5.30)
PG
T W ⊗ PE

p(u,B)

(∣∣GFg1

a

∣∣≥ d
(
cdB−2/3)∣∣Fg1

a , φ∅
)

= PG
T W ⊗ PE

p(u,B)

(
Wa ⊂ AW

u |φâ−
) (5.28)≥ 1

4
.

Therefore, conditionally on the realization of the Galton–Watson tree T W and on the event
that Fg0 exists, by Lemma 5.4, the set Fg1 contains with positive PG

T W ⊗ PE
p(u,B)(·|φ∅)-

probability (not depending on φ∅) a d(d(cdB−2/3)/4)-ary tree. Moreover, since

(5.31) d
(
d
(
cdB−2/3)/4

)→ ∞ as B → 0,

taking B small enough we get that, under EW
L(u,B),ũ(u)[PG

T W ⊗ PE
p(u,B)(·|φ∅)], the set Fg1

contains an infinite subtree with positive probability that we denote by δ, and which does not
depend on φ∅.

Write p(u) = p(u,B) and L(u) = L(u,B) for this choice of B . For each a ∈ Fg1, we
have Wa− ⊂ AW

u ∩ Iu by (5.15), (5.20) and (5.29). Since â ∈ Wa and â− ∈ Wa−
by con-

struction, and so Wa and Wa−
are adjacent in T W (i.e., min

x∈Wa−
,y∈Wa dT W(x, y) = 1) the

infinite connected tree in Fg1 yields an infinite connected subset
⋃

a∈Fg1 Wa in T W which
is included in AW

u ∩ Iu. Since (T W,AW
u ,Iu) under EW

L(u),ũ(u)[PG
T W ⊗PE

p(u)(·)] has the same

law as (T ,Au ∩ Bp(u),Iu) under EGW[PRI
T ⊗ PG

T ⊗ PE
p(u)(·)] by (1.9), (4.15) and (5.23), we

proved that the root is included in an unbounded connected component of Au ∩Bp ∩Iu with
positive probability.

In order to conclude, we still need to prove that percolation occurs almost surely. The
strategy will be to construct a Galton–Watson tree T Z such that there are conditionally inde-
pendent copies of the tree Fg1 from (5.29) whose associated watersheds can all be embedded
into T Z . Since each of these copies of Fg1 is infinite with probability at least δ, at least one
of them will be infinite a.s., and we can conclude. We now explain how to do this construction
in detail. Under some probability measure PZ

u , let (Zk)k∈N be an i.i.d. sequence of subtrees
in X , with the same law as the subtree

T W− ∪ ⋃
a∈F :ṼL(Xa)=Hâ1(Xa)=∞

T â1

of T W under PW
L(u),ũ(u), where T W− is defined in (4.13) and T x in (4.14). Since T W− is con-

structed by the use of watersheds, in a slight abuse of language we will also call watersheds
the respective subsets of Zk corresponding to watersheds in T W− , if no confusion is to arise
from this. Let us now define recursively a sequence of trees T Z

k , k ∈ N, with ∂T Z
k �= ∅, a.s. as

follows: first take T Z
1 = Z1. Note that ∂Z1 �= ∅ a.s. since either ṼL(X∅) = ∞, and then ∂Z1

contains any point of ∂(T∅ \ T∅
VL(X∅)

), which is a.s. nonempty; or otherwise if ṼL(X∅) < ∞
then ∅̂1 ∈ ∂Z1 (which does not always corresponds to ∅̂1) since we did not add the tree T ∅̂1

in the definition of Z1 and ∅̂1 ∈ ∂T W− by (4.10).
To define T Z

k recursively, assume that T Z
k−1 is defined with ∂T Z

k−1 �= ∅. Let xk be the first
vertex in ∂T Z

k−1 (in lexicographic order in Ulam–Harris notation). We then define T Z
k as the

union of T Z
k−1 and xk · Zk , which also verifies ∂T Z

k �= ∅.
Let T Z− be the union of T Z

k , k ∈ N, and T Z be the union of T Z− and some additional
independent Galton–Watson trees below each x ∈ ∂T Z− , each with the same law as x · T
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under PGW. Then, by construction, T Z has the same law as the usual Galton–Watson tree
T under PGW. Define F

g0
k and Wa

k , a ∈ F
g0
k , similarly as above (5.29) and in (4.17), but

corresponding to Zk , which are i.i.d. copies of Fg0 and Wa , a ∈ Fg0, in k ∈ N. Moreover,
under P Z

u := EZ
u [PG

T Z ⊗PE
p(u)(·)], define AZ

u similarly as in (5.23), but with T W replaced by

T Z , and for each k ∈ N, take F
g1
k = {a ∈ F

g0
k : xk · Wa−

k ⊂ AZ
u }, similarly as in (5.29). Then

by Markov’s property for the Gaussian free field, conditionally on φxk
, F

g1
k is independent of

F
g1
i , i < k, and thus for each u ∈ (0, u0) we have

(5.32) P Z
u

(∣∣Fg1
k

∣∣= ∞|Fg1
i , i < k

)= EZ
u

[
P Z

u

(∣∣Fg1
k

∣∣= ∞|φxk

)∣∣Fg1
i , i < k

]≥ δ;
here, the last inequality follows from the fact that, for each a ∈ R, the law of F

g1
k condi-

tionally on φxk
= a under P Z

u is the same as the law of Fg1 conditionally on φ∅ = a under
EW

L(u),ũ(u)[PG
T W ⊗ PE

p(u)(·)], and δ is the constant introduced below (5.30). Using the tower

property recursively on k ∈ N, one can easily show that (5.32) implies that there exists P Z
u -

a.s. k0 ∈ N such that |Fg1
k0

| = ∞. Note moreover that one can use Proposition 4.2 similarly

as in the proof of Proposition 5.6, to obtain an interlacements Iu on T Z with xk · Wa
k ⊂ Iu

for each a ∈ F
g0
k and k ∈ N. To this effect, note in particular that (5.22) still holds on T Z

since for each k ∈ N and a ∈ F
g0
k , the subtree T Z

xk ·̂a1 of T Z below xk · â1 is the copy T â1
k of

T â1 associated to Zk , translated by xk . Therefore, for each u ∈ (0, u0), the set F
g1
k0

is P Z
u -a.s.

infinite and its associated watersheds Wa
k0

, a ∈ F
g1
k0

, are included in Iu ∩ AZ
u , and we can

conclude. �

In order to deduce Theorem 1.1 from Proposition 5.7, we are going to use the isomorphism
(2.21) between the Gaussian free field and random interlacements. We first show that condi-
tion (2.20)—which entails the validity of the isomorphism (2.21) by Proposition 2.5—holds
PGW-a.s. for the Galton–Watson tree T .

PROPOSITION 5.8. PGW-almost surely we have that for all x ∈ T ,

P T
x (·|Hx− = ∞)-almost surely, capT

({Xi, i ∈ N})= ∞.

PROOF. Let x ∈ X and L ∈ N. Under some probability Q̃L
x , we now define a tree T̃, with

weights denoted by λ̃y,z, y, z ∈ T̃, y ∼ z, as some extension of the tree TVL
starting at x from

Section 4.1, by completing its remaining ends so that T̃ is a Galton–Watson tree conditioned
on x ∈ T̃. More precisely, first define T̃ \ T̃x , that is, the part of the tree T̃ which is not
below x, with the same law as T \ Tx under PGW(·|x ∈ T ), endowed with the corresponding

weights. Then, attach to x a copy of the tree TVL
with the same law as under Q

λ̃x−,x ,L
x , as

defined in Section 4.1. With a slight abuse of notation, we see TVL
as a subset of T̃. Finally for

each remaining point y ∈ ∂TVL
, attach to y an independent copy of y · T . Let X̃ be a process

with the same law as (Xk∧VL
)k∈N0 under Q

λ̃x−,x ,L
x , it follows easily from Proposition 4.1 that

(T̃, X̃) under Q̃L
x has the same law as (T , (Xk∧VL

)k∈N0) under EGW[P T
x (·)|x ∈ T ].

Similarly as in the proof of Lemma 5.2 (iv), one can show that there exist positive constants
cλ and cf so that, for each ε > 0, if L is large enough, then

Q̃L
x

(∣∣{y ∈ ∂TVL
: λ̃y,y− ≥ cλ}

∣∣< cf L,VL(X̃) < Hx−(X̃)
)≤ ε.

Indeed, this follows easily from (4.6) and a reasoning similar to the one in (5.4), (5.5) and
(5.6), replacing {∑i∈N λ

(k)
i ≤ C�} by {∃i ∈N : λ(k)

i ≥ c�}.
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Since, conditionally on TVL
, gT̃y (y, y), y ∈ ∂TVL

, are i.i.d. with the same law as
gT (∅,∅), by the law of large number and the bound on the Green function from Lemma 5.2
(ii) we deduce that for L large enough

Q̃L
x

(∣∣{y ∈ ∂TVL
: λ̃y,y− ≥ cλ, g

T̃y (y, y) ≤ Cg

}∣∣< cf

4
L,VL(X̃) < Hx−(X̃)

)
≤ 2ε.

Note that the event {λ̃y,y− ≥ cλ, g
T̃y (y, y) ≤ Cg} implies by a similar reasoning to the

above (5.22) that g
T̃y− (y−, y−) ≤ Cg + 1

cλ
. Let W̃ = {X̃0, . . . , X̃VL

}. Recalling the defini-
tion of the equilibrium measure from (2.12), we moreover have that eW̃,T̃(z) = e{z},T̃z

(z) =
(gT̃z(z, z))−1 for each z ∈ ∂W̃ \ {x}. Since y− ∈ ∂W̃ for each y ∈ ∂TVL

by construction, we
deduce that for L large enough

Q̃L
x

(
capT̃(W̃) <

cf

4(Cg + 1/cλ)
L,VL(X̃) < Hx−(X̃)

)
≤ 2ε.

Since W̃ has the same law under Q̃L
x (·,VL(X̃) < Hx−(X̃)) as the first L points visited by

X under EGW[P T
x (·,VL(X) < Hx−(X))|x ∈ T ], letting first L → ∞ and then ε → 0, and

noting that {VL(X) < Hx−(X)} decreases to {Hx−(X) = ∞}, we readily obtain (5.8). �

We can now deduce Theorem 1.1 from Proposition 5.7 using the isomorphism from Propo-
sition 2.5 combined with Proposition 5.8.

PROOF OF THEOREM 1.1. Consider the probability space Qu
T from Proposition 2.5.

Abbreviating Ex := E (1)
x , we have 
x,u ≥ λ−1

x Ex for all x ∈ Iu by (2.19). In view of Proposi-
tion 5.8, we can apply the isomorphism (2.21), and we get Qu

T -a.s. for all x ∈ Iu ∩ Au

γx = −√
2u +

√
2
x,u + φ2

x ≥ −√
2u +

√
2λ−1

x Ex + φ2
x

(1.9)≥ −√
2u + 2

√
2u = √

2u.

This yields (1.8) by defining Ê≥√
2u = {x ∈ T : γx ≥ √

2u}. By Proposition 5.7, for all u ∈
(0, u0) there is Qu

T -a.s. an unbounded component for Au ∩ Iu, and so also for the level set

Ê≥√
2u. This readily implies h∗ > 0 since Ê≥√

2u has the same law as E≥√
2u. �

REMARK 5.9. Rather surprisingly, our proof does not work anymore if one tries to re-
place the inclusion (1.8) by any of the simpler inclusions Iu ∩ {x : Ex > 4uλx} ⊂ Ê≥√

2u

or Iu ∩ {x : |φx | > 2
√

2u} ⊂ Ê≥√
2u. In other words, we need to use both the local times

of random interlacements and the Gaussian free field φ in the isomorphism (2.21), and not
just one of the two. Indeed, in view of Proposition 5.5, one needs to take L at least equal
to C/u for some large constant C < ∞ in order for Fg to percolate. For instance for con-
stant conductances and small enough u, the probability that Wa ⊂ {x : Ex > 4uλx} is at least
1 − CuL, and the probability that Wa ⊂ {x : |φx | > 2

√
2uλx} is of order 1 − C

√
uL in view

of (5.24), for some constant C < ∞. These bounds are not interesting for the previous choice
of L = C/u. However combining them gives that the probability that Wa ⊂ Au is of order
1 − Cu3/2L, see (5.25), which goes to one for the previous choice of L when u → 0.

PROOF OF THEOREM 1.2. The statement for random interlacements follows trivially
from Proposition 5.7 for u ≤ u0 by the inclusion Iu ∩ Au ∩ Bp ⊆ Iu ∩ Bp . Using the mono-
tonicity in u of interlacements we obtain the statement for all u > 0. The statement for the
Gaussian free field also follows from Propositions 5.7, 2.5 and 5.8 similarly as in the proof
of Theorem 1.1. �
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REMARK 5.10. An interesting open question is whether Theorem 1.2 is true in the whole
supercritical phase of the Gaussian free field, that is, for each h < h∗, does there exist p ∈
(0,1) such that E≥h ∩ Bp percolates, or is transient even?

6. Transience of the level sets. In this section we prove Theorem 1.3, that is, that both,
the interlacements set and the level sets of the Gaussian free field above small positive levels,
are transient—even when intersected with a small Bernoulli noise. More precisely, we prove
that the random walk on the tree of very good watersheds is transient, see Proposition 6.3, and
use arguments similar to the proof of Theorem 1.1 to conclude. The notion of very goodness
we use here is a refinement of the one introduced in Definition 5.1, see (iv)’ below, and is
adapted in order to ensure that the random walk on the tree of very good watersheds can be
compared to a random walk on a Galton–Watson with a constant drift, see (6.4). We then
follow the strategy of the proof of [10], Theorem 1, in order to deduce transience. In addition
to the usual assumption (1.2), we assume throughout this section that, conditionally on the
nonweighted tree T , the family (λx,y)x∼y∈T is i.i.d. and has compact support. In terms of
the construction of the Galton–Watson tree in Section 2.1, this is equivalent to assuming that,
under ν and conditionally on π((λj )j∈N), the family (λi)1≤i≤π((λj )i∈N) is i.i.d., that the law
of λ1 does not depend on π((λj )j∈N), and that there exist 0 < cλ < C� < ∞ such that ν-a.s.

(6.1) cλ < λi < C� for all 1 ≤ i ≤ π
(
(λj )j∈N

)
.

We use the independence of the conductances when referring to [18] in the proof of
Lemma 6.1, and the assumption (6.1) in (6.4). Note that (2.3) and (6.1) imply that the mean
offspring distribution m is finite.

Let us now define a notion of goodness which is stronger than the one introduced in Defini-
tion 5.1: in this section, we say that a point a ∈ F is (L,B,Cg, cf , cL)-very good if it verifies
the conditions (i) to (iii) with cλ = cλ and C� = C� (which simplifies these conditions in
view of (6.1)), and (v) of Definition 5.1, as well as

(iv)’ the set of children of the vertex a in the tree of free points F satisfies∣∣{a′ ∈ GF
a : dT W

(
â, â′)≥ cLL

}∣∣≥ cf L

2
,

where we recall that dT W denotes the graph distance within T W. Note that the inequal-
ity λF

a,a′ ≤ C� = C� is trivially satisfied under (6.1) by taking C� = C�, and thus (iv)’
is stronger than (iv) in Definition 5.1 (up to changing the constant cf ). We now follow a
strategy inspired by that of Section 5 in order to show that the tree of very good free points
contains a d-ary tree. We first evaluate the probability for a point to verify the property (iv)’,
analogously to Lemma 5.2 (iv). Recall the construction of the trees Tk , k ∈ N0, under the
probability measure Qκ,L

x from Section 4.1, as well as the stopping time VL(X) and ṼL(X)

from (4.2) and (4.3). In what follows we abbreviate VL = VL(X) to simplify notation.

LEMMA 6.1. Let cf be as in Lemma 5.2. There exists cL > 0 such that for all ε > 0,
there exists L0 = L0(ε) ∈N such that for all x ∈X , L ≥ L0 and κ ≤ C�,

Qκ,L
x

(∣∣{y ∈ ∂TVL
\ {x1,XVL

} : dTVL
(x, y) ≥ cLL

}∣∣< cf L/2, ṼL(X) = ∞)≤ ε.

PROOF. It is known, see [23], Theorem 17.13, that the speed of a random walk on a
Galton–Watson tree T with unit conductances is PGW-a.s. strictly positive and determin-
istic; that is, the limit v := limk→∞ dT (∅,Xk)

k
> 0 exists and is a constant. This result was

generalized in [18] to Galton–Watson trees with finite mean for the offspring distribution
and i.i.d. conductances verifying (1.2). In view of Proposition 4.1, the process X under
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Qκ,L
x (·, ṼL(X) = ∞) has the same law as a random walk X on T under P T

x (·, ṼL(X) =
∞|λx,x− = κ). Therefore, for all ε > 0 we can find a k0 = k0(ε) such that for all k > k0,
L ∈ N, x ∈X and κ ≤ C�, we have

(6.2) Qκ,L
x

(∃n ≥ k : dTṼL
(Xn, x) ≤ vk/2, ṼL(X) = ∞)≤ ε/3.

In order to find enough vertices in Fa at distance at least cL from x, we note that |Tk| ≤
|TVk

| =∑
x∈{X1,...,XVk

} |{x} ∪ G
TVk
x |, and that {GTVk

x : x ∈ {X1, . . . ,XVk
}} is an i.i.d. family

of cardinality k if ṼL = ∞, k ≤ L, similarly as in (4.6). Since m < ∞, by the weak law of
large number we can find CP > 0 such that for all ε > 0, there exists k0 ∈ N such that for all
k > k0, L ≥ k, x ∈ X and κ > 0

(6.3) Qκ,L
x

(|Tk| ≥ CP k, ṼL(X) = ∞)≤ ε/3.

Applying (6.2) and (6.3) with k = cf

2CP
L, for L large enough so that k ≥ k0, we obtain that

with probability at most 2ε/3, on the event ṼL(X) = ∞, there are more than cf L/2 points in
TVL

at distance less than cLL from x, where cL := vcf

4CP
. We can then conclude by combining

this with Lemma 5.2 (iv) for ε/3. �

Recall the definition of AW
u in (5.23). We can now prove analogously to the proof of Propo-

sition 5.7 that (L,B,Cg, cf , cL)-very good points, whose associated watershed is included
in AW

u , contain a supercritical Galton–Watson tree.

PROPOSITION 6.2. Let cλ = cλ, Cg and cf be as in Lemma 5.2, ce as in (5.19), and cL as
in Lemma 6.1. For each d ∈ N, there exist B > 0 and u0 > 0, such that, for each u ∈ (0, u0),
there exist L ∈ N and p ∈ (0,1), so that under EW

L,ũ[PG
T W ⊗PE

p(·|φ∅)], with ũ = uce, the tree

Fg1′ := {∅} ∪ {a ∈ F \ {∅} : a− is (L,B,Cg, cf , cL)-very good,

dT W
(
â, â−)≥ cLL and Wa− ⊆ AW

u

}
contains with positive probability, not depending on φ∅, a d-ary tree.

PROOF. Using Lemma 6.1 in place of Lemma 5.2 (iv), and adding the condition
dT W(â, â−) ≥ cLL in the definition (5.15)—which is possible in view of the condition (iv)’—
one can easily prove similarly as below (5.30) that for each B > 0 there exists u0 = u0(B),
such that for all u ∈ (0, u0), there exists L = L(u,B) and p = p(u,B) as in (5.26), so that
Fg1′

contains a d(d(cdB−2/3)/4)-ary tree, and we can conclude in view of (5.31). �

We prove now transience using the argument of [10], Theorem 1.

PROPOSITION 6.3. There exists B > 0, u > 0, L ∈ N and p ∈ (0,1), such that under
EW

L,uce
[PG

T W ⊗ PE
p(·|φ∅)], the connected component of ∅ in the tree with vertex set

T g1′ := ⋃
a∈Fg1′

Wa

is transient with positive probability, not depending on φ∅.

PROOF. Consider a random walk X on T g1′
starting in ∅. We proceed by contradiction,

and assume that T g1′
is recurrent, that is, the walk X comes back to the root almost surely.

We introduce the following color scheme: ∅ is white, and a vertex ai ∈ Fg1′
is white if a is

white and âi is visited by X in the interval [Hâ, inf{k ≥ Hâ : Xk = â−}]. We want to show
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that there is an infinite number of white vertices with positive probability; indeed, since then
there would in particular be an infinite connected component of white vertices, this would
constitute a contradiction as the watershed associated to each white vertex in the connected
component of ∅ is visited by X in the interval [H(W∅)c , inf{k ≥ H(W∅)c : Xk = ∅}] by defi-
nition.

For a fixed vertex ai ∈ Fg1′
, we evaluate the probability, starting from â, to visit âi before

returning to â−. Because of recurrence, for the computation of this probability, we can restrict
ourselves to the only path connecting â− to âi and we compute its effective conductance C
(see [23], (2.4)). Both the distances between â− and â, and the one between â and âi are at
least cLL by definition of Fg1′

, and at most L by definition of watersheds, see in particular
(4.2) and (4.9). Therefore, using the series law (see [23], Section 2.3.I) we obtain that the
probability of a random walk starting from â, to visit âi before returning to â−, is equal to

(6.4)
C(â ↔ âi)

C(â− ↔ â) + C(â ↔ âi)
=

(
∑

x∈(â,âi] 1
λx−,x

)−1

(
∑

x∈(â− ,̂a]
1

λx−,x
)−1 + (

∑
x∈(â,âi] 1

λx−,x
)−1

(6.1)≥ cλ

C�

cL

2
,

where (x, y] denotes the unique path connecting x to y, minus x. For each d ∈ N, it follows
from Proposition 6.2 that for an appropriate choice of B , u, L and p, the tree of white ver-
tices contains with positive probability a weightless Galton–Watson tree with mean offspring

distribution larger than d cλ

C�

cL
2 . Taking d = �4 C�

cλcL
�, this tree of white vertices is infinite with

positive probability, which concludes the proof. �

PROOF OF THEOREM 1.3. Similar to the proofs of Theorems 1.1 and 1.2 at the end of
Section 5, one can use the isomorphism (2.21), which holds by Proposition 5.8 similarly as
in the proof of Theorem 1.1, as well as Proposition 5.6 to show that the component of ∅

in the tree T g1′
from Proposition 6.3 can be included in Iu ∩ Bp or Ê≥√

2u ∩ Bp , proving
the transience of those sets with positive probability by Rayleigh’s monotonicity principle
(see [23], Section 2.4). To show that transience occurs almost surely for some component,
one can proceed similar to the end of the proof of Theorem 5.7 by considering the Galton–
Watson tree T Z on which there are infinitely many conditionally independent copies of T g1′

,
and thus one of these copies is transient a.s. �

APPENDIX: THE CRITICAL PARAMETER h∗ IS CONSTANT

In this section we prove that h∗(T ) does not depend on the realization of the Galton–
Watson tree T .

THEOREM A.1. T �→ h∗(T ) is constant PGW-almost surely.

This result is known in the case of deterministic unit conductances [3]. We provide here a
proof for the generalized case of random conductances. It proof is based on the 0–1 law for
inherited properties of [23], Proposition 5.6, which we shortly recall here. For this purpose,
we start with the following definition.

DEFINITION A.2. A property P (of trees) is called inherited if the following holds true:
When a tree T with root x has property P , then all the subtrees Ty , y ∈ GT

x , also satisfy
property P .

Let us now recall the 0–1 law from [23], Proposition 5.6, whose proof can easily be adapted
in our context of Galton–Watson trees with random conductances verifying (SA).



2882 A. DREWITZ, G. GALLO AND A. PRÉVOST

THEOREM A.3 ([Proposition 5.6 of [23]). If P is an inherited property, then

PGW(T has P) ∈ {0,1}.
Let us now take advantage of the previous theorem in order to prove that h∗ is constant.

For this purpose, we define for each h ∈ R the property Ph by saying that a tree T rooted at
x satisfies Ph if Ty is transient for all y ∈ T and

PG
T

(∣∣E≥h
x

∣∣= ∞)= 0,

where for y ∈ T we denote by E≥h
y the connected component of y in {z ∈ T : φz ≥ h}. We

now need to prove that the property Ph is inherited, which has been done in the setting of
unit conductances in [3], Lemma 5.1. For the reader’s convenience we now present a proof
in our setting inspired by [36].

LEMMA A.4. For each h ∈ R, the property Ph is inherited.

PROOF. Assume that T is a tree rooted at x verifying Ph. For any y ∈ T with y ∈ GT
x

we have

PG
T

(∣∣E≥h
x

∣∣= ∞)≥ PG
T

(∣∣E≥h
y ∩ Ty

∣∣= ∞, φx ≥ h
)≥ PG

T

(∣∣E≥h
y ∩ Ty

∣∣= ∞)
PG

T (φx ≥ h),

where the second inequality is a consequence of the finite-dimensional FKG inequality for
Gaussian fields, see [25], and a classical limiting procedure. Since the second factor on the
right-hand side is nonzero, PG

T (|E≥h
x | = ∞) = 0 implies for each y ∈ GT

x

PG
T

(∣∣E≥h
y ∩ Ty

∣∣= ∞)= 0.

What is left to do is to show that the previous equation holds also for the Gaussian free
field on the subtree Ty . By disintegration, we observe that for λ-almost all b ∈ R we have

PG
T

(∣∣E≥h
y ∩ Ty

∣∣= ∞|φy = b
)= 0.

From the Markov property applied to the set K = {y}, it follows that the restriction of the
Gaussian free field under PG

T (·|φy = b) to Ty has the same law as the Gaussian free field
under PG

Ty
(·|φy = b). Hence we obtain that for each y ∈ GT

x and λ-almost all b ∈ R we have

PG
Ty

(∣∣E≥h
y

∣∣= ∞|φy = b
)= 0.

Integrating again we obtain PG
Ty

(|E≥h
y | = ∞) = 0, proving that Ph is inherited. �

With the previous 0–1 law and the inherited property Ph, we can prove Theorem A.1.

THEOREM A.1. Since the property Ph is inherited by Lemma A.4, it follows from The-
orem A.3 that PGW(T has Ph) ∈ {0,1} for each h ∈ R. Moreover by Proposition 2.1 and
since Tx has the same law as x · T under PGW, see (SA), Tx is transient for all x ∈ T
PGW-a.s. Hence for every s ∈ Q, there exists an event As with PGW(As) = 1 such that
T �→ 1{PG

T (|E≥s
∅

|=∞)=0} is constant on As . Thus on the event A := ⋂
s∈Q As , all the func-

tions 1{PG
T (|E≥s

∅
|=∞)=0}, s ∈ Q, are constant. Now, since the function h �→ PG

T (|E≥h
∅ | = ∞) is

decreasing, the function

T �→ inf
s∈Q
{
PG
T
(∣∣E≥s

∅

∣∣= ∞)= 0
}= inf

h∈R
{
PG
T
(∣∣E≥h

∅

∣∣= ∞)= 0
}

is well defined and constant on A, and we can conclude by (1.4) and FKG inequality. �

Using an inherited property Pu similar to before but for the vacant set Vu, one can also
prove in our setting the constancy of the critical parameter u∗ for random interlacements.
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