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The Zig-Zag process is a piecewise deterministic Markov process, effi-
ciently used for simulation in an MCMC setting. As we show in this article,
it fails to be exponentially ergodic on heavy tailed target distributions. We
introduce an extension of the Zig-Zag process by allowing the process to
move with a nonconstant speed function s, depending on the current state
of the process. We call this process Speed Up Zig-Zag (SUZZ). We provide
conditions that guarantee stability properties for the SUZZ process, includ-
ing nonexplosivity, exponential ergodicity in heavy tailed targets and central
limit theorem. Interestingly, we find that using speed functions that induce
explosive deterministic dynamics may lead to stable algorithms that can even
mix faster. We further discuss the choice of an efficient speed function by pro-
viding an efficiency criterion for the one-dimensional process and we support
our findings with simulation results.
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1. Introduction. Piecewise deterministic Markov processes (PDMP) have recently
emerged as a new way to construct MCMC algorithms. Traditional MCMC algorithms em-
ploy discrete time Markov chains to generate samples from a target distribution which is in-
variant for the chain, and subsequently use these samples to numerically estimate intractable
expectations of functions of interest. By construction, standard MCMC algorithms like Ran-
dom Walk Metropolis [40], MALA [2], etc. are time-reversible with respect to their target
distribution. However, there is by now substantial evidence that reversible MCMC methods
can be significantly outperformed (in terms of mixing times and variances of estimators) by
nonreversible ones (see, e.g., [3, 15, 19, 20, 29, 35, 47]). Some PDMPs such as the Bouncy
Particle Sampler [13] and the Zig-Zag sampler [6] can be implemented directly and free from
numerical error, providing a source of genuinely nonreversible MCMC algorithms.

The one-dimensional Zig-Zag algorithm appeared in [10] as a scaling limit of the lifted
Metropolis–Hastings (see [19, 49]) applied to the Curie–Weiss model (see [36]), although a
simpler version of the process was introduced in [28] as the telegraph process (see also [25,
26, 32]). The process was later extended in higher dimensions in [6] and has been proposed
as a PDMP which can be used as an MCMC algorithm to target posterior distributions (see
also [23, 51]). In [6], the authors also introduce some variants of the algorithm that use the
technique of subsampling, improving computational efficiency when the target distribution is
obtained from a Bayesian analysis involving a large data set. Further literature on the topic
includes [4, 5, 7–9, 12].

[11] proves ergodicity and exponential ergodicity of the Zig-Zag process in arbitrary di-
mension. A crucial assumption required for exponential ergodicity in that work is that the
target density has exponential or lighter tails. This paper will demonstrate the converse: the
Zig-Zag sampler fails to be exponentially ergodic when the target distribution has tails thicker
than any exponential distribution, that is, it is a heavy tailed. In fact, polynomial rates of con-
vergence have been proven in [1] for the process in arbitrary dimension, while [53] proves
tight polynomial rates of convergence in the total variation distance, for the one-dimensional
process, when the target has tails that decay like a Student distribution.

In order to address the problem of slow mixing on heavy tails, we introduce a variant of
the Zig-Zag process, called Speed Up Zig-Zag (SUZZ). The idea behind the process has
a similar spirit to the work of [38] and [44]. In our case, instead of only permitting the
process to move with unit speed, we allow it to have a positive position-dependant speed.
This assists the exploration of the tails and subsequent return to the high density areas of
the distribution more rapidly. We note that if the speed function is large enough, the solution
to the ODE that governs the behaviour of the SUZZ process may potentially explode in
finite time. A large part of the theory in this article focuses on proving that such dynamics
are mathematically acceptable in the context of MCMC. Furthermore, for carefully chosen
speed functions, these ODEs and the induced SUZZ process can be numerically simulated
exactly. Although explosive deterministic dynamics have been mentioned in the past (see,
e.g., Example 2.1.3 of [45]), to the best of our knowledge, this is the first use of explosive
dynamics within the literature of PDMPs for MCMC.

The rest of this paper is organised as follows. In Section 2 we recall the definition of the
Zig-Zag process and we prove its lack of exponential ergodicity on heavy tails. Motivated by
this slow convergence result, in Section 3 we define the Speed Up Zig-Zag (SUZZ) process
and we establish stability and convergence properties. Theorem 3.1 proves that under certain
conditions on the speed function, the process is nonexplosive. Theorem 3.2 proves that the
process has the distribution of interest as invariant. Theorem 3.3 proves that the process is
exponentially ergodic and Theorem 3.4 that it satisfies a central limit theorem. Theorem 3.5
proves that when the target has light tails, the SUZZ process is exponentially ergodic, essen-
tially under the same conditions as in the original Zig-Zag, while Proposition 3.1 proves ex-
ponential ergodicity of the SUZZ process for a family of heavy tailed distributions, with some
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specific, practical choices of speed functions. Corollary 3.1 proves exponential ergodicity of
the original Zig-Zag on light tailed targets, relaxing the assumptions of [11]. Furthermore,
focusing on the one-dimensional SUZZ process, Theorem 3.6 proves that under explosive
deterministic dynamics the process is uniformly ergodic and provides weaker assumptions to
prove that the process is exponentially ergodic. In Section 4 we focus on the one-dimensional
process and discuss how the choice of the speed function can improve algorithmic efficiency.
Using Proposition 4.1 we write the asymptotic variance of the one-dimensional process as a
function of the speed function, which allows us to introduce a minimisation problem char-
acterising the optimal speed function for one-dimensional SUZZ within an MCMC context.
Finally in Section 5 we describe some numerical results, comparing the efficiency of differ-
ent algorithms on one-dimensional and twenty-dimensional distributions. The Appendices
contain the proofs of the main results along with some other useful information (e.g., how
to formally construct the process or how to solve the deterministic ODE and construct the
deterministic paths of the process).

2. The original Zig-Zag process. Here we give a brief introduction to the Zig-Zag pro-
cess (which in this article we will refer to as original Zig-Zag), recalling some basic properties
and proving it has a subexponential convergence rate for heavy-tailed distributions. The d-
dimensional original Zig-Zag process (Zt )t≥0 = ((Xt ,�t))t≥0 is a PDMP with state space
E = R

d × {±1}d . One can think of the process as a particle moving in R
d along one of 2d

possible straight lines. When the process is at point (x, θ) ∈ E the particle is at point x ∈ R
d

and moves with constant velocity θ ∈ {±1}d . This means that the process moves according
to the ODE

(1)

⎧⎪⎪⎨
⎪⎪⎩

dXt

dt
= θ,

d�

dt
= 0.

To each of the d coordinates, we let Ti denote the first event of a nonhomogeneous Poisson
process of rate mi(t) = λZZ

i (x + θt, θ), for i = 1, . . . , d and for some function λZZ
i : E →

[0,+∞). We assume that all mi are locally integrable. Let T = mini∈{1,...,d} Ti and j =
arg mini∈{1,...,d}{Ti}. The process moves with velocity θ until time T at which time its velocity
changes to Fj (θ) ∈ {±1}d , where

(2)

{
Fj (θ)j = −θj ,

Fj (θ)i = θi for i �= j,

and proceeds to move again with constant velocity Fj (θ) until it switches again, etc. (see
Figure 1 for traceplots of the process).

In [6] the goal was to target a probability measure on E of the form

(3) μ(dx, dθ) = 1

2dH
exp
{−U(x)

}
dx dθ

for some U ∈ C1 with H = ∫
Rd exp{−U(x)}dx < ∞. It is proven that the original Zig-Zag

process has μ as invariant distribution when the rate functions are chosen according to

(4) λZZ
i (x, θ) = [θi∂iU(x)

]+ + γi(x, θ−i),

where we write ∂i to denote the operator of the partial derivative on the i coordinate, a+ =
max{a,0} and γi is a nonnegative function that does not depend on the i component of θ .
The special case where γi(x, θ−i) = 0 for all x, i is known as the canonical Zig-Zag.
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FIG. 1. Trace plots of original Zig-Zag process, ran until time T , targeting one-dimensional Cauchy distribu-
tion.

REMARK 2.1. We note that in many MCMC applications the goal is to target a measure

(5) π(dx) = 1/H exp
{−U(x)

}
dx

in R
d . Technically, the original Zig-Zag process targets a measure μ on E = R

d ×{−1,+1}d ,
whose marginal distribution on R

d is π and whose marginal distribution on {−1,+1}d is the
uniform. One can then use the projection of the process on R

d to generate samples from the
measure of interest π . Throughout this work we shall denote π the measure of interest in R

d

and μ the measure on E given by (3).

Bierkens Roberts and Zitt [11] demonstrates that assuming that U grows at least linearly
in the tails and appropriate smoothness conditions hold, the original Zig-Zag process (Zt )t≥0
converges to μ exponentially fast, that is, there exist M : E → [1,+∞) and ρ < 1 such that
for any (x, θ) ∈ E

(6)
∥∥Px,θ (Zt ∈ ·) − μ(·)∥∥TV ≤ M(x, θ)ρt .

If (6) holds, we say that the process is exponentially ergodic.
However, [11] does not cover the case where U grows sublinearly. In this scenario tradi-

tional MCMC algorithms based on random walk or Langevin proposals are known to con-
verge at subexponential rates; see, for example, [30, 39, 46]. We will observe similar be-
haviour for the original Zig-Zag sampler. Figure 2 provides the Q-Q plots of one-dimensional

FIG. 2. Q-Q plots of canonical Zig-Zag for three Student distributions with increasing degrees of freedom. With
Student(ν) we denote the Student distribution with ν degrees of freedom. Each algorithm runs until N = 104

switches of direction occur. The closer the curve is to the diagonal line, the better the algorithm approximates the
distribution. Clearly, the approximation is better when the target has higher degrees of freedom, that is, lighter
tails.
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canonical Zig-Zag processes, targeting Student distributions with three different degrees of
freedom. Each algorithm runs until N = 104 switches of direction occur. The figure indi-
cates that the process is less stable when targeting a Student distribution with lower degrees
of freedom, which has more mass at the tails. This instability is characterised by infrequent
and unstable (heavy-tailed) excursions. In this article we will be mainly dealing with dis-
tributions that assign more mass at the tails than any exponential distribution. We give the
following definition.

DEFINITION 2.1. We say that a measure π on R
d is heavy-tailed if for any a > 0, if

B(0,R) is the ball of radius R, centred at 0, then

(7) lim
R→+∞π

(
B(0,R)c

)
exp{aR} = +∞.

The following simple negative result for the original Zig-Zag sampler on heavy-tailed
distributions was made known to us in personal correspondence with Professor Anthony Lee.

THEOREM 2.1 (Nonexponential ergodicity). Suppose that the original Zig-Zag targets a
heavy tailed distribution. Then the process is not exponentially ergodic.

PROOF OF THEOREM 2.1. Suppose that the original Zig-Zag starts from x = 0, θ ∈
{−1,+1}d . For any t > 0, let At = {x : ‖x‖2 > t} be the complement of the ball of radius
t and let us fix a time t > 0. Note that the process will always move with some velocity
η ∈ {−1,+1}d , and note that for any such η we have ‖η‖2 = √

d . Since the process moves
with constant speed equal to

√
d , the original Zig-Zag will not have hit A√

dt by time t .
Therefore,∥∥P0,θ (Xt ∈ ·) − π(·)∥∥TV ≥ ∣∣P0,θ (Xt ∈ A√

dt ) − π(A√
dt )
∣∣= π(A√

dt ) = π
(
B(0,

√
dt)c
)
.

So if we were to have exponential ergodicity, we would have that there exists M > 0 and
ρ < 1 such that for all t > 0,

π
(
B(0, t)c

)≤ ∥∥P0,θ (X√
d

−1
t
∈ ·) − π(·)∥∥TV ≤ M

(
ρ

√
d

−1)t
,

which creates a contradiction as π has heavy tails. �

Note that the same proof can be used for any other algorithm with constant speed function
such as the Bouncy Particle Sampler with refreshing velocities taken from the unit sphere.
Since these processes move with constant speed, they will not be able to explore the tails
of the distribution sufficiently, which will result in a bad estimation of a target distribution
that has heavy tails. Constant velocities are used mainly for the simplicity of the deterministic
paths they provide. However, there are other types of deterministic paths that we can simulate
exactly which do not move with unit speed. This raises the question why not allow the original
Zig-Zag process to move with nonconstant velocities. We introduce this algorithm in the
following section.

3. Speed Up Zig-Zag.

3.1. Definition of the algorithm. In order to address the problem of slow mixing on heavy
tails we introduce a variant of the original Zig-Zag process. Instead of allowing the process to
move with unit velocity, we allow it to have a positive speed depending on the current posi-
tion. Since in high dimensions this might create a system of ODEs that is nonimplementable,
we only allow the process to move in directions {±1}d as the original Zig-Zag does.
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The state space will, again, be E = R
d × {±1}d . However, when the process is at point

(x, θ) ∈ E, it will move along the path {x + θt, t ≥ 0} with speed function s that depends
on the current position. Typically, this speed will increase the further the process is from the
mode. After a random time that will depend on a Poisson process, as in the original Zig-Zag,
the process will stop, one of the coordinates of θ will switch sign and the process will start
moving again in the new direction. This will create excursions that tend to leave the area of
high density and visit the tails quite often. At the same time, when the process is at the tails
of the distribution, it can speed up and return to the centre fast enough. We shall call this
process Speed Up Zig-Zag (SUZZ), with state space E ∪{∂} (where ∂ is a graveyard state that
is needed for technical reasons), with C2 speed function s : Rd → (0,∞) and rate functions
λi : E → [0,+∞) for all i ∈ {1, . . . , d}.

The SUZZ process starting from (x, θ) ∈ E evolves as follows. Consider the following
ODE system:

(8)

⎧⎪⎪⎨
⎪⎪⎩

dXt

dt
= θs(Xt), X0 = x,

d�t

dt
= 0, �0 = θ.

The procedure to solve (8) will be given in Appendix B. When the speed function is superlin-
ear, the solution to (8) explodes in finite time t∗(x, θ). Let (Xt ,�t) denote the solution to (8)
until time t∗(x, θ) ∈ (0,+∞]. For each coordinate i ∈ {1, . . . , d}, we let T i

1 denote the first
event of a nonhomogeneous Poisson process of rate mi(t) = λi(Xt , θ), for i = 1, . . . , d . Let
T1 = mini∈{1,...,d} T i

1 and j = arg mini∈{1,...,d}{T i
1 }. The SUZZ process is defined until time

T1 to be the solution (Xt ,�t)t≤T1 to (8). At time T1 the direction/velocity �T1 of the process
switches from θ to Fj (θ), as in (2). In the case where T1 > t∗(x, θ), the process is defined as
the solution to (8) until t∗(x, θ) and then it moves to the graveyard state ∂ . If T1 < t∗(x, θ),
the process starts again from the new starting point (XT1,Fj [θ ]) and evolves as before until
time T2 when the velocity switches again. Then the process starts again from the new position
etc. This inductively defines the process until time

(9) ξ = lim
n→+∞Tn.

In the case where ξ < ∞, ξ is the first time that the process has had infinitely many switches
of direction and the process moves to the graveyard state at time ξ .

A different way to describe the process is through its generator. We will later see that
the class of functions with compact support and continuous first derivative, C1

c , is contained
in the domain of the strong generator of the SUZZ process and for any f ∈ C1

c the strong
generator is given by

Lf (x, θ) :=
d∑

i=1

θis(x)∂if (x, θ) + λi(x, θ)
(
f
(
x,Fi(θ)

)− f (x, θ)
)
.

The process is therefore defined as a piecewise deterministic process in [18] would be. The
difference is that we allow the deterministic dynamics to have a finite explosion time, which
Davis in [18] does not. We therefore need to be more careful in the analysis of the process.
Let Om be the ball of radius m centred around the origin 0. We define

(10) ζm = inf{t ≥ 0 : Xt /∈ Om}
and let

(11) ζ = lim
m→∞ ζm.
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The two random variables ξ and ζ quantify two types of explosion that can occur for the
process. The first is that the process could have infinitely many switches in finite time and the
second, that the process might diverge to infinity in finite time.

An algorithmic description of the process is given in Section 1 of the Supplementary Ma-
terial (Vasdekis and Roberts (2023), [54]) and a more formal construction of the process is
given in Appendix A.

3.2. Stability and convergence properties. In this section we will study the process in
more detail and provide some convergence results to the distribution of interest. We will
ultimately provide assumptions that ensure exponential ergodicity of the process.

Similar to the original Zig-Zag case, we will assume that we are trying to target the mea-
sure μ introduced in (3) using a SUZZ with speed function s. Throughout this article we will
assume that the rates are of the form

(12) λi(x, θ) = [θiAi(x)
]+ + γi(x, θ−i),

where γi is a nonnegative, locally bounded, integrable function that does not depend on the
ith component of θ and

(13) Ai(x) = s(x)∂iU(x) − ∂is(x).

Note that if we use the constant speed function s ≡ 1, we retrieve the original Zig-Zag rates
when targeting μ. We will later prove that if the rates satisfy (12) and some extra regularity
conditions hold, the SUZZ process leaves the measure μ in (3) invariant.

Before we focus more on whether the SUZZ process targets the right distribution, we first
need to consider some explosivity issues the process might have. Even in one dimension,
picking a large enough speed function s can lead to deterministic dynamics that explode in
finite time. On a first glance, following deterministic dynamics that explode in finite time
seems to be nonimplementable, therefore nondesirable. However, as will be proven in Theo-
rem 3.1, frequent direction changes will almost surely rule out trajectories actually reaching
∞. Moreover, since the deterministic dynamics can reach infinity in finite time, when one
reverses the time, the dynamics “come down from infinity” in finite time. This means that the
time it takes to return to areas of high density may be independent of where the process starts
from. This paves the way for the SUZZ algorithm to be uniformly ergodic.

One can allow the deterministic dynamics to be explosive, as long as a switching Poisson
process is also introduced, having a very large intensity that will switch the direction of the
process before it reaches the explosion time. We will provide conditions, the rates should
satisfy, for the process to be a.s. nonexplosive, even if the deterministic dynamics themselves
are explosive.

Before that, we need to properly define how can the process explode.

DEFINITION 3.1. Let ζ be as in (11). The process is called nonexplosive if ζ = +∞ a.s.

We begin with the most essential assumption for the speed function.

ASSUMPTION 3.1 (Speed growth). lim‖x‖→∞ exp{−U(x)}s(x) = 0.

REMARK 3.1. We are imposing Assumption 3.1 in order to ensure that the process will
have switched the deterministic dynamics before they reach the explosion time. To see an ex-
ample of how things could go wrong, consider a one-dimensional SUZZ with speed function
s targeting a distribution that has U as minus log-likelihood. Assume that there exists a x0
such that for all x ≥ x0, (U(x) − log s(x))′ > 0, as would typically be the case.
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Suppose that the process starts from (x,+1), x ≥ x0. The process evolves under the deter-
ministic dynamics given in (8) until the explosion time t∗ = t∗(x,+1). Consider the Poisson
process with rate {m(t) = λ(Xt , θ), t ≥ 0}. Then∫ t∗

0
m(t) dt =

∫ t∗

0
λ(Xt ,+1) dt

=
∫ +∞
x

λ(u,+1)
1

s(u)
du

=
∫ +∞
x

U ′(u) − s′(u)

s(u)
du

= lim
u→+∞U(u) − log s(u) − (U(x) − log s(x)

)
.

Therefore, assuming that Assumption 3.1 does not hold and let us say that s(u)×
exp{−U(u)} u→+∞−−−−→ a > 0 we get that

lim
u→+∞U(u) − log

(
s(u)
)= log

(
a−1)< ∞,

and therefore

Px,+1
(
no switches until time t∗(x,+1)

)= exp
{
−
∫ t∗(x,+1)

0
m(t) dt

}
> 0.

Therefore, if t∗(x,+1) < ∞ then the process has a positive probability to explode. The same
situation is experienced in higher dimensions assuming that for all coordinates i, ∂i(U(x) −
log s(x)) > 0 for all x = (x1, . . . , xd) for which xi is positive and very large. Furthermore,
as we will see in Proposition D.1, assuming that Assumption 3.1 holds, forces the SUZZ
process to a.s. switch direction before it reaches the explosion time. This forces us to adopt
Assumption 3.1.

We will, also, make the following assumption.

ASSUMPTION 3.2. Assume that for the refresh rates there exists γ̄ such that for all
i ∈ {1, . . . , d}, (x, θ) ∈ E, γi(x, θ−i) = γi(x) ≤ γ̄ .

Furthermore, assume that there exists R > 0 and A > 0 so that for all x /∈ B(0,R)

(14)
d∑

i=1

∣∣Ai(x)
∣∣> A > max

{
3dγ̄ ,4d(d − 1)γ̄

}
.

REMARK 3.2. When all refresh rates are zero, then γ̄ = 0 and (14) means that the overall
switching rate is bounded away from zero, which seems essential in order to gain exponential
ergodicity. More generally, the Ai ’s describe the intention of the algorithm to switch from a
direction leading to lower density areas, while the γi’s describe the intention of the algorithm
to switch direction randomly. Large values of γi would lead the algorithm to a random walk
behaviour (see also [5]) and might decrease the convergence rate. Therefore, (14) could be
seen as a quantitative upper bound for the refresh rate.

We also have to assume the following.

ASSUMPTION 3.3. If we iteratively define the functions hn : [0,+∞) → [0,+∞) such
that

(15) h0(x) = x
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and for n ≥ 1

(16) hn(x) = log
(
1 + hn−1(x)

)
,

then there exists an n ∈ N such that

(17) lim‖x‖→∞
hn(s(x)‖∇(U(x) − log s(x))‖1)

U(x) − log s(x)
= 0.

REMARK 3.3. Recall that, due to Assumption 3.1, we have that U(x)− log s(x)
|x|→∞−−−−→

+∞. Therefore, in practice Assumption 3.3 will almost always hold.

Finally, we make one more assumption.

ASSUMPTION 3.4. For all j ∈ {1, . . . , d}, Aj ∈ C1 and for any δ > 0,

(18) lim‖x‖→∞

d∑
i=1

d∑
j=1

s(x)∑d
k=1 |Ak(x)|

|∂iAj (x)|
(1 + |Aj(x)|)(1 + log(1 + δ|Aj(x)|)) = 0.

REMARK 3.4. This is a technical assumption used to prove the results of this section
and it can be quite difficult to verify in practice for multidimensional targets. We believe,
however, that it is not necessary for the results to hold. For example, in Section 3.3 the desired
properties for the SUZZ process are directly proved for a family of targets and with speed
functions that do not satisfy Assumption 3.4.

We note, however, that Assumption 3.4 generalises one made in [11] to prove exponential
ergodicity of the original Zig-Zag. Indeed, when s(x) = 1, Assumption 3.4 writes

lim‖x‖→∞

d∑
i=1

d∑
j=1

1

‖∇U(x)‖1

|∂i∂jU(x)|
(1 + |∂jU(x)|)(1 + log(1 + δ|∂jU(x)|)) = 0

for all δ > 0. This is weaker than

lim‖x‖→∞
‖Hess(U)(x)‖

‖∇U(x)‖1
= 0,

assumed in [11]. The reader can see Example 5.2.9 of [52] for one-dimensional examples
where the target has tails asymptotically similar to those of a Student distribution and it is
verified that (18) holds.

Our first main result is the following.

THEOREM 3.1 (Nonexplosion). Assume that s ∈ C2 is strictly positive, the rates satisfy
(12) and Assumptions 3.1, 3.2, 3.3 and 3.4 hold. Then the process is nonexplosive, meaning
that if ζ as in (11), then ζ = +∞ a.s. Furthermore, if ξ as in (9), then ξ = +∞ a.s.

Furthermore, if we pick the switching rates according to (12), then our nonexplosive pro-
cess leaves the target distribution of interest invariant. For this we need to make the following
assumption in the case where the deterministic dynamics of the process are explosive.

ASSUMPTION 3.5.

(19) lim‖x‖→∞‖x‖d−1s(x) exp
{−U(x)

}= 0.
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REMARK 3.5. This is a stronger assumption than Assumption 3.1, since it imposes a
more strict upper bound on the growth of the speed functions we can use. However, it still
allows a lot of flexibility on the growth of s. Consider for example, a d-dimensional Student
distribution with ν degrees of freedom, that is, π(x) = exp{−U(x)} ∼ 1/|x|d+ν , where we
write a(x) ∼ b(x) to denote that lim|x|→∞ a(x)

b(x)
= c for a constant c > 0. Assumption 3.5 im-

plies that s(x)/|x|1+ν |x|→∞−−−−→ 0. Therefore, if s(x) ∼ |x|1+k , we have to impose the condition
that k < ν.

As will be seen in the proof of Theorem 3.2, this assumption is only needed in the case of
explosive deterministic dynamics.

We then have the following.

THEOREM 3.2 (Invariant measure). Assume that the rates satisfy (12) and Assump-
tions 3.2, 3.3, 3.4 and 3.5 hold. Assume that s ∈ C2 is strictly positive. Then the SUZZ process
has the measure μ in (3) as invariant.

Crucially, under some further conditions on the speed function s, the SUZZ process is
exponentially ergodic even when targeting some heavy tailed distributions.

THEOREM 3.3 (Exponential ergodicity of SUZZ). Let (Zt )t≥0 = (Xt ,�t)t≥0 be a SUZZ
process with strictly positive speed function s ∈ C2. Suppose that the rates satisfy (12) and
Assumptions 3.2, 3.3, 3.4 and 3.5 hold. Assume further that the function U − log s ∈ C3

and has a nondegenerate local minimum, that is, there exists an x0 ∈ R
d local minimum

for U − log s such that the Hessian matrix Hess(U − log s)(x0) is strictly positive definite.
Finally, assume that μ introduced in (3) is a probability measure. Then the SUZZ process is
exponentially ergodic, that is, there exists some M : E → [1,+∞) and ρ < 1 such that for
any (x, θ) ∈ E,

(20)
∥∥Px,θ (Zt ∈ ·) − μ(·)∥∥TV ≤ M(x, θ)ρt .

An immediate result due to Theorem 2 of [14] is the following CLT.

THEOREM 3.4 (Central limit theorem). Suppose that all the assumptions of Theorem 3.3
hold. Let {Yn,n ≥ 0} be any skeleton of the SUZZ process (i.e., for some δ > 0, Yn = Znδ for
all n ∈ N) and let f : E →R such that there exists an ε > 0 with Eμ[f 2+ε] < ∞. Then there
exists a γ 2

f ∈ [0,∞) such that

(21)

∑n
k=1(f (Yk) − μ(f ))√

n

n→∞−−−→
D

Z

for some Z ∼ N (0, γ 2
f ).

Finally, in the case where the target has lighter tails (such that the gradient of the log-
likelihood does not decay to zero) we can prove the convergence results for SUZZ under
conditions that can be easily verified.

ASSUMPTION 3.6. Assume that U − log s ∈ C2 and there exists an M̃ > 0 such that the
refresh rates γi(x) of the SUZZ process satisfy γi(x) ≤ M̃s(x) for all x ∈ R

d . Assume further
that for some n ∈ N, if hn as in (16),

lim‖x‖→∞
hn(‖∇(U(x) − log s(x))‖)

U(x) − log s(x)
= 0,

lim‖x‖→∞
‖Hess(U(x) − log s(x))‖
‖∇((U(x) − log s(x))‖ = 0,
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and that there exists R > 0 and A > 0 so that for all x /∈ B(0,R)

(22)
∥∥∇(U(x) − log s(x)

)∥∥
1 > A > max

{
3dM̃,4d(d − 1)M̃

}
.

THEOREM 3.5. Let (Zt )t≥0 = (Xt ,�t)t≥0 be a SUZZ process with speed function s ∈
C2 bounded away from 0.

• Assume that the rates satisfy (12) and Assumptions 3.1 and 3.6 hold. Then the SUZZ pro-
cess is nonexplosive.

• Assume further that either Assumption 3.5 holds or the deterministic dynamics are nonex-
plosive. Then the SUZZ process has the measure μ in (3) as invariant.

• Assume further that the function U − log s ∈ C3 and has a nondegenerate local minimum,
in the sense of Theorem 3.3. Finally, assume that μ introduced in (3) is a probability
measure. Then the SUZZ process is exponentially ergodic.

• Assuming the assumptions of the previous bullet, let {Yn,n ≥ 0} be any skeleton of the
SUZZ process (i.e., for some δ > 0, Yn = Znδ for all n ∈ N) and let f : E → R such that
there exists an ε > 0 with Eμ[f 2+ε] < ∞. Then the CLT result of (21) holds.

The conditions of Theorem 3.5 can be seen as direct generalisations of assumptions made
in [11] for the original Zig-Zag. Therefore, Theorem 3.5 guarantees that for reasonable speed
functions, the convergence properties of the original Zig-Zag carry over in SUZZ. This allows
one to see the speed function as a tuning parameter for the original Zig-Zag, which could
potentially increase the efficiency of the algorithm even in cases where the original Zig-Zag
works well.

3.3. Stability and convergence for practical choices of speed functions. Assumption 3.4
used in Theorems 3.1, 3.2, 3.3 and 3.4 can be difficult or impossible to verify for some
practical choices of speed functions. For this reason, in this section we will focus our attention
on these particular, practical speed functions and we will establish convergence properties for
a class of targets, some of which we will also use in simulations in Section 5.

We will consider two speed functions, namely

(23) s(x) = (1 + ‖x‖2
2
) 1+k

2

for k = 0 and k = 1. We will refer to the SUZZ algorithms induced by these two functions
as SUZZ(0) and SUZZ(1) respectively. Note that SUZZ(0) has nonexplosive deterministic
dynamics, while SUZZ(1) has explosive ones, since the speed function grows super-linearly.

We have the following.

PROPOSITION 3.1. Assume that the target is of the form

(24) π(x) = 1

H
exp
{−(1 + ‖x‖2

2
)a/2}

for some a ∈ (0,1) or of the form

(25) π(x) = 1

H

(
1 + 1

ν
‖x‖2

2

)− ν+d
2

for some ν satisfying

(26) ν >
27

2
d3 + 2 − d.

Assume also that s is as in (23) for k = 0 or k = 1. Then the SUZZ process with refresh rates
γi ≡ 0 is nonexplosive, has μ as invariant, is geometrically ergodic and satisfies the CLT as
in Theorem 3.4.
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REMARK 3.6. Following the proof of Proposition 3.1 in Appendix H, we can more gen-
erally have the conclusion of Proposition 3.1 when the speed function is such that there exists
a K > 0 and M0 > 0 such that for all ‖x‖2 ≥ K , s(x)

‖x‖2
≥ M0 and the target is such that for all

‖x‖2 ≥ K ,

Ai(x) = c(x)(B · x)i,

where B is a positive definite matrix such that for all i ∈ {1, . . . , d}, bii −∑j �=i |bij | ≥ m > 0

and if M = max{∑d
j=1 |bij |, i = 1, . . . , d}, then c satisfies for all ‖x‖2 ≥ K

c(x)
‖x‖2

2

s(x)
>

27

2

M

m
d3.

3.4. Comparison with results on the original Zig-Zag. In this section we will translate
the assumptions and the results of Section 3.2 in the case of the original Zig-Zag process,
which arises when we use the constant speed function s(x) = 1. In this setting, we will see
that all the assumptions made in Section 3.2 are weaker versions of assumptions made in
[11]. This will serve as a way to justify our assumptions and at the same time will allow us to
prove exponential ergodicity of the original Zig-Zag process under weaker assumptions than
the ones of Theorem 2 of [11].

Our first observation is that in the original Zig-Zag case where s ≡ 1, Assumption 3.5 is
implied by the following growth condition.

ASSUMPTION 3.7. There exists ε > 0, c′ ∈ R such that for all x ∈ R
d , U(x) ≥ (d +

ε) log(‖x‖) − c′.

REMARK 3.7. Assumption 3.7 is Growth Condition 2 of [11], assumed in order to prove
nonevanescence of the original Zig-Zag process.

Second, we observe that in the setting of the original Zig-Zag, Assumption 3.2 is the
following.

ASSUMPTION 3.8. Assume that for the refresh rates there exists γ̄ such that for all
i ∈ {1, . . . , d}, (x, θ) ∈ E, γi(x, θ−i) = γi(x) ≤ γ̄ .

Furthermore, assume that there exists R > 0 and A > 0 so that for all x /∈ B(0,R)∥∥∇U(x)
∥∥

1 > A > max
{
3dγ̄ ,4d(d − 1)γ̄

}
.

REMARK 3.8. We observe that this is a weaker version of Growth Condition 3 of [11],
necessary for proving exponential ergodicity of the original Zig-Zag process. Instead of ask-
ing that lim‖x‖→∞ ‖∇U(x)‖1 = +∞, we only ask that the limit is bounded below by a con-
stant that may depend on the dimension of the space. Note as well that in the canonical
Zig-Zag case, γ̄ = 0, so we only ask for ‖∇U‖1 to be bounded away from zero at the tails.

Furthermore, in the case of the original Zig-Zag, Assumption 3.3 is the following.

ASSUMPTION 3.9. If h0(x) = x and for all n ∈ N, hn is defined as in (16), then there
exists an n ∈ N such that

(27) lim‖x‖→∞
hn(‖∇U(x)‖1)

U(x)
= 0.
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REMARK 3.9. We note that Assumption 3.9 is almost always true in any practical setting
where U ∈ C1. Furthermore, it is a relaxed version of Growth Condition 3 of [11].

Finally, in the case of the original Zig-Zag, Assumption 3.4, is equivalent to the following.

ASSUMPTION 3.10. U ∈ C2 and for all δ > 0

(28) lim‖x‖→∞
1

‖∇U(x)‖1

d∑
j=1

∑d
i=1 |∂i∂jU(x)|

(1 + |∂jU(x)|)(1 + log(1 + δ|∂jU(x)|)) = 0.

REMARK 3.10. As mentioned in Remark 3.4, Assumption 3.10 is weaker than Growth
Condition 3 of [11].

Using these assumptions, we see that an immediate corollary of Theorem 3.3 is the fol-
lowing.

COROLLARY 3.1 (Exponential ergodicity of original Zig-Zag). Let (Zt )t≥0 = (Xt ,

�t)t≥0 be a d-dimensional original Zig-Zag process. Assume that U ∈ C3, and has a nonde-
generate local minimum. Assume further that Assumptions 3.7, 3.8, 3.9 and 3.10 hold. Then
the original Zig-Zag process is exponentially ergodic, that is, there exist M : E → [1,+∞),
and ρ < 1 such that for any (x, θ) ∈ E,

(29)
∥∥Px,θ (Zt ∈ ·) − μ(·)∥∥TV ≤ M(x, θ)ρt .

3.5. Space transformation and uniform ergodicity. When we focus on the one-dimensio-
nal process, we can prove that it is a space transformation of an original, one-dimensional
Zig-Zag process. We have the following.

PROPOSITION 3.2 (One-dimensional SUZZ as space transformation). Consider a one-
dimensional SUZZ process Zt = (Xt ,�t)t≥0 with strictly positive speed function s ∈ C2,
targeting a measure μ as in (3). Assume that the rates satisfy (12) and let

(30) f (x) =
∫ x

0

1

s(u)
du

and

(31) ±M± = lim
x→±∞f (x) ∈R∪ {−∞,+∞}.

Then the process (Yt ,�t)t≥0, where Yt = f (Xt), is a one-dimensional original Zig-Zag
process, defined on (−M−,M+) × {−1,+1}. If the SUZZ process is nonexplosive, then
(Yt ,�t)t≥0 has invariant measure ν where

(32) ν(dy, dθ) = 1

H̃
exp
{−Ũ (y)

}
dy dθ

and

(33) Ũ (y) = U
(
f −1(y)

)− log s
(
f −1(y)

)
.

Using Proposition 3.2, we can prove that the one-dimensional SUZZ process with explo-
sive deterministic dynamics is uniformly ergodic. This means that it is exponentially ergodic
and the mixing time can be bounded by a quantity that does not depend on the starting point.
This is a consequence of the fact that explosive deterministic dynamics have ∞ as entrance
boundary. Our current proof, presented in Appendix I, heavily relies on the fact that the one-
dimensional process is a space transformation of an original Zig-Zag.
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FIG. 3. Figure explaining why a two-dimensional SUZZ is not in general a space transformation φ of an original
Zig-Zag process. The figure on the left shows two possible SUZZ paths from x1 to x4, passing via either x2 or
x3 and switching directions there. Assuming that the SUZZ process was a space transformation of an original
Zig-Zag, via a function φ, the figure on the right shows the two paths of the space transformed original Zig-Zag
process, from φ(x1) to φ(x4), via either φ(x2) or φ(x3). The times T1 and T2 to traverse the two paths from x1 to
x4 on the left figure, depending on the speed function, do not have to be the same. The same times, T1, T2, would
also be the times to traverse the two paths from φ(x1) to φ(x4) on the φ-transformed right figure. However, if the
φ-transformed right figure was an original Zig-Zag, moving with constant unit speed, these two times would had
to be the same.

THEOREM 3.6 (Exponential and uniform ergodicity in one dimension). Consider a one-
dimensional SUZZ process Zt = (Xt ,�t)t≥0 with strictly positive speed function s ∈ C2.
Assume that the rates satisfy (12) and Assumptions 3.1 and 3.2 hold. Then the process is
nonexplosive, it has μ defined in (3) as invariant and is exponentially ergodic. Assume further,
that for some x ∈ R and for any θ = ±1 the deterministic flow of the process {�t(x, θ), t ≥ 0}
has a finite explosion time t∗(x, θ). Then the process is uniformly ergodic, that is, there exists
a M > 0 and ρ < 1 such that for any (x, θ) ∈ E and t ≥ 0,∥∥Px,θ (Zt ∈ ·) − μ(·)∥∥TV ≤ Mρt .

We emphasise, however, that the SUZZ algorithm cannot necessarily be written as a space
transformation of an original Zig-Zag in dimension higher than 1. In Figure 3 we illustrate the
contradiction that may occur if such a space transformation were to exist. We consider a d = 2
case, and assume (to reach a contradiction) that there does exist such a transformation φ. The
left figure represents the movement of a two-dimensional SUZZ process starting from x1 and
ending at x4. The right figure represents the movement of the φ-space transformed process,
assumed to be an original Zig-Zag, starting from φ(x1) and ending at φ(x4). There are two
paths from x1 to x4, passing through and switching at x2 or x3 respectively. If the speed
function s(x) takes smaller values on the path via x2, then the process arrives at x4 faster
via the x3 path rather than via the x2 path. The same thing must hold for the φ-transformed
process, that is, the process arrives to φ(x4) faster via φ(x3) rather than φ(x2). However,
the transformed process moves with constant unit speed, as it is an original Zig-Zag process.
Furthermore, the two paths from φ(x1) to φ(x4), passing either via φ(x2) or via φ(x3) have
the same length. Therefore the time it takes for the transformed process to traverse either of
the two paths from φ(x1) to φ(x4) is the same. This gives a contradiction and establishes that
the SUZZ process cannot be spaced transformed to an original Zig-Zag process in dimension
d ≥ 2.

As a result of this discussion, we cannot rely on the existence of such a transformation
between SUZZ and original Zig-Zag, so results for SUZZ cannot easily be obtained from
those for original Zig-Zag by simple transformation arguments. This also means that we do
not currently have a way to extend the uniform ergodicity result of Theorem 3.6 to higher
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dimensions, since the proof heavily relies on the space transformation property of the one-
dimensional SUZZ process. Simulation results, however, seem to suggest that the starting
position does not heavily influence the algorithmic performance, and we suspect the uniform
ergodicity holds for higher dimensions as well.

4. Choice of speed function. A natural objective is to choose the speed function that
generates an algorithm which is as efficient as possible. To get some intuition into how to
achieve this, consider the one-dimensional SUZZ process (Xt ,�t)t≥0 with speed function
s and f as given in (30). From Proposition 3.2, (Yt ,�t) = (f (Xt),�t) is an original Zig-
Zag process, targeting a measure with negative log-density given by Ũ (y) = U(f −1(y)) −
log s(f −1(y)), defined on a subset of R. Therefore, instead of using SUZZ, one could equiv-
alently use the original Zig-Zag (Yt ,�t), target the potential Ũ and then use the path of
f −1(Yt ) as a way to sample from the measure of interest. This is very similar in spirit to
the work of [31]. In summary, in the one-dimensional case, the goal of choosing the most
efficient s, boils down to choosing an invertible space transformation f , and analysing an
original Zig-Zag algorithm on the transformed potential

Ũ (y) = U
(
f −1(y)

)− log s
(
f −1(y)

)= U
(
f −1(y)

)+ logf ′(f −1(y)
)
.

A natural candidate suggested by this is the choice s(x) = H exp{U(x)} leading to the
space transformation

f (x) =
∫ x

0

1

H
exp
{−U(u)

}
du = F(x) − π

(
(−∞,0]),

where F is the CDF of π . Using this SUZZ is equivalent to running an original Zig-Zag on the
measure with negative log-density Ũ ≡ 0 (i.e., the Lebesgue measure) and then transforming
the values back according to the function f −1(y). There are similarities here with inverse
CDF sampling. However, this choice of s is precluded by Assumption 3.1 as it leads to an
explosive SUZZ, corresponding to the transformed Zig-Zag process eventually hitting the
boundary of the transformed space (either f (+∞) or f (−∞)).

This discussion suggests that we might obtain an efficient method by picking s such that
s(x) exp{−U(x)} decays to zero as |x| → ∞ slowly. While the equivalence of the SUZZ
to an original Zig-Zag with appropriate transformation is only valid in the one-dimensional
case, this strategy for choosing s can be applied quite generally in multidimensional settings.

4.1. A computational efficiency criterion in the one-dimensional case. Computational ef-
ficiency of the algorithm goes far beyond qualitative convergence results such as exponential
ergodicity. The actual cost of implementing MCMC algorithms is controlled by the number
of computational operations that need to be performed to obtain a desirable amount of sam-
ples from the target distribution. In our setting the computational cost comes largely from
evaluating the gradient of the log-likelihood of the target, which is needed in order to sample
the direction switches. Therefore, in order to understand the algorithmic efficiency, we must
study the number of the gradient log-likelihood evaluations needed to be performed until
we get enough samples from the target. This section will try to answer this question for the
one-dimensional SUZZ process.

In an ideal setting, using Poisson thinning in a perfect way (see [37]), and for any choice
of speed function, the number of gradient log-likelihood evaluations (and therefore the com-
putational cost) would be equal to the number of switches of direction. In practice, the actual
number of gradient log-likelihood evaluations depends on the tightness of the bounds used
in this Poisson thinning operation and is therefore difficult to use as a consistent metric.
Therefore we shall instead use the number of direction switches as a unit for measuring the
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implementation cost of the algorithm. Our goal now is to define a quantity that depends on
the speed function and provides a way to measure the performance of the algorithm per im-
plementation cost.

For the remainder of this section, we focus on dimension one and closely follow [5].
Let NT be the expected number of switches until time T , that is, the average implemen-

tation cost of the algorithm. Then NT = E[∫ T0 λ(Xs,�s) ds]. Since the process is Harris
recurrent, we have a law of large numbers and

N0 := lim
T →∞

NT

T
=
∫

λ(x, θ) dμ(x, θ)

= 1

2H

∑
θ=±1

∫
R

exp
{−U(x)

}
λ(x, θ) dx(34)

= 1

2H

∫
R

exp
{−U(x)

}∣∣s(x)U ′(x) − s′(x)
∣∣dx.

Consider a functional of interest g ∈ L2(μ), whose integral under μ we are trying to approx-
imate. Let (Zt )t≥0 be a SUZZ process targeting μ. Assume without loss of generality that
μ(g) = 0 and consider the estimator

(35) gT = 1

T

∫ T

0
g(Zs) ds.

If the process satisfies a CLT then there exists an asymptotic variance γ 2
g ∈ [0,+∞) such that

(36) lim
T →+∞T · Var(gT ) = γ 2

g .

A way to measure the efficiency of the algorithm is the effective sample size (ESS) (see [50])
which approximates the number of independent samples the algorithm has generated from
the target until time T . It is defined as

(37) ESS(T ) = Varμ(g)

Var(gT )
.

Since the cost of implementing the algorithm is the average number of switches, it seems
natural to consider the quantity of ESS per average number of direction switches in order to
evaluate the efficiency of the algorithm. Combining (34), (36) and (37) we get

(38) lim
T →∞

ESS(T )

NT

= Varμ(g)

γ 2
g N0

.

Therefore, in order to choose the optimal s that makes the algorithm the most efficient we
need to minimize the quantity γ 2

g N0 over different speed functions. N0 is written in terms
of s in (34). We will now present a proposition that describes the asymptotic variance γ 2

g in
terms of s. Before that, we need to make an assumption. Let

(39) V (x, θ) = exp
{
aU(x) − a log s(x) + 1

2
δ
∣∣Ai(x)

∣∣hn

(∣∣Ai(x)
∣∣)},

where hn as in (16), and a, δ > 0 small enough so that if L is the operator defined for all
f ∈ C1(E) as

(40) Lf (x, θ) = θs(x)f ′(x, θ) + ([θU ′(x)
]+ + γ (x)

)(
f (x,−θ) − f (x, θ)

)
,

then there exist c, b > 0 and a compact set C, such that for all (x, θ) ∈ E,

(41) LV (x, θ) ≤ −cV (x, θ) + b1(x,θ)∈C.

The fact that (41) holds for a, δ small enough will be later proved in Appendix D, in the proof
of Theorem 3.1. We now assume the following.
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ASSUMPTION 4.1. Let L be the operator in (40). Let V be defined as in (39) for a, δ > 0
small enough such that (41) holds. Assume that there exists a C > 0 such that for all g ∈
L1(E) satisfying |g(x, θ)| ≤ V (x, θ) for all (x, θ) ∈ E, there exists a φ such that

−Lφ = g

and such that for all (x, θ) ∈ E ∣∣φ(x, θ)
∣∣≤ CV (x, θ).

This assumption is a result proven in [27] in the case where L is the extended generator of
a process, in the sense that for any f ∈ C1(E) the process

Mt = f (Xt) − f (X0) −
∫ t

0
Lf (Xs) ds

is a martingale. However, since we allow the process to have explosive deterministic dy-
namics, we can only guarantee that Mt is a local martingale. We note here that in [27] the
authors claim that Assumption 4.1 holds in our case as well, that is, when L only induces
a local martingale. However, to the best of our knowledge this is not something proven in
the literature. Therefore, we make this assumption here and we present the following result
under Assumption 4.1. This result describes the asymptotic variance γ 2

g in terms of the speed
function s.

PROPOSITION 4.1. Assume that the rates satisfy (12) and Assumptions 3.1, 3.2, 3.3 and
3.4 hold. Let g : E → R in the domain of L, with μ(g) = 0 and assume that |g(x, θ)| ≤
V (x, θ) for all (x, θ) ∈ E, where V is the function defined in (39) for some a < 1, δ >

0 small enough such that (41) holds. Finally, assume that Assumption 4.1 holds. Then, if
Zt = (Xt ,�t) is the one-dimensional SUZZ process with speed function s, starting from the
invariant measure μ, we have

1√
T

∫ T

0
g(Zs) ds

T →∞−−−→ N
(
0, γ 2

g

)
in distribution where

(42) γ 2
g = 1

2H

∫
R

∣∣s(x)U ′(x) − s′(x)
∣∣ 1

s2(x) exp{−U(x)}k
2(x) dx

and

(43) k(x) =
∫ +∞
x

(
g(y,+1) + g(y,−1)

)
exp
{−U(y)

}
dy.

Proposition 4.1 and equations (34) and (38) indicate that for a given function g : E → R,
satisfying the assumptions of Proposition 4.1, we need to pick a speed function s in order to
minimize the quantity

(44) J [r] := γ 2
g N0 =

∫
R

∣∣r ′(x)
∣∣dx

∫
R

|r ′(x)|
r2(x)

k2(x) dx,

where

r(x) = s(x) exp
{−U(x)

}
,

and we need to impose the condition

lim|x|→∞ r(x) = 0,

so that Assumption 3.1 holds.
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We will call the functional J the inverse algorithmic efficiency. Note that J is invariant
under constant scaling of function s. This is in accordance to the fact that we do not gain or
lose any efficiency by speeding up Zig-Zag with a constant speed, for example, by having
velocities of the form {±2}.

REMARK 4.1. The result of Proposition 4.1 can be generalised in the case where μ(g)

is not necessarily zero. In the general case, the function k in (43) used to define J [r] would
be

k(x) =
∫ +∞
x

(
g(y,+1) + g(y,−1) − 2μ(g)

)
exp
{−U(y)

}
dy.

In practice, μ(g) is not a known quantity. Then one can use the asymptotically unbiased
estimator gT in (35) instead of μ(g) to calculate an approximation of the inverse efficiency J .

Ideally, we would like to pick a speed function such that r minimises (44). Note, how-
ever, that minimising (44) is not a well-posed problem. Indeed, let r0 be a function such that
J [r0] < ∞, r0(0) = 1 and lim|x|→∞ r0(x) = 0. For any n ∈ N let

(45)

⎧⎪⎪⎨
⎪⎪⎩

rn(x) = 1 |x| ≤ n,

rn(x) = r0(x − n) x > n,

rn(x) = r0(x + n) x < −n.

Then J [rn] n→∞−−−→ 0. At the same time, the only functions that satisfy J [r] = 0 are the con-
stant ones and since we impose the condition that lim|x|→∞ r(x) = 0, the only function r that
satisfies J [r] = 0 is the function r ≡ 0.

Note, however, that the nth term of the minimising sequence rn is equal to 1 on [−n,n]
and this means that s(x) = exp{U(x)} for x ∈ [−n,n]. Heuristically, and as discussed in the
beginning of Section 4, one could expect good performance in the ideal case where s(x)

could be set equal to exp{U(x)} for x ∈ [−n,n] for some large n.
In Table 1 we present some examples, comparing the efficiency of different algorithms. As

target distribution we consider a normal with mean zero and variance one, an exponential with
parameter one, symmetrically extended to the negative reals (Laplace), a Student distribution
with 3 degrees of freedom, and a distribution of the form

π(x) = 1

H
exp
{−(1 + x2)1/4}

,

which we will call subexponential, since it has tails heavier than any exponential, but it does
not decay polynomially fast. For each of these densities, except for the Student(3), we are

TABLE 1
J values, as introduced in (44), for various SUZZ algorithms targeting various distributions; SUZZ(k) denotes the
SUZZ algorithm with speed function of the form s(x) = (1 + x2)(1+k)/2; Smallest value for every column in bold

Algorithmic inverse efficiency in one dimension

Algorithms Normal Exponential Subexponential(0.5) Student(3)

Original Zig-Zag 16 80 57,044 34.2457
SUZZ(0) 4.9817 26.3397 3,536 7.9736
SUZZ(1) 4.4259 7.1017 45,948 2.4708
SUZZ(2) 14.9568 19.0364 1,315,827 11.7397
SUZZ(3) 45.6342 30.0839 24,623,975,012 –
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estimating the expectation of the distribution, that is, we set g(x, θ) = x. For the Student(3)
we are estimating the expectation the function g(x) = sgn(x) log(1+|x|). This is to guarantee
that the function g verifies the growth assumptions of Proposition 4.1. Regarding the speed
function, we use the original Zig-Zag (i.e., s(x) = 1), and we also use the speed functions

(46) s(x) = (1 + x2)(1+k)/2

for k = 0,1,2,3. These algorithms will be denoted by SUZZ(k), where k is the parameter in
the exponent of the speed function. Choosing k = 0 induces nonexplosive deterministic dy-
namics, whereas choosing k > 0 induces explosive ones. We will verify the assumptions used
in Theorem 3.6 for these speed functions is Appendix K. In Table 1 we compare the inverse
efficiencies of all the algorithms for all four targets. In order to numerically estimate the inte-
grals arising in the definition of J [r] we use the integrate function and the polyroot
library of R. We should emphasize that since we do not take into account some normalisa-
tion constants and since in the case of Student(3) distribution we are estimating a different
observable, the comparison in Table 1 should only be made column-wise (i.e., for a given
distribution compare different algorithms).

For any target distribution, the algorithms SUZZ(0) and SUZZ(1) provide better results
than the original Zig-Zag algorithm. Furthermore, for all targets except for the subexpo-
nential, the SUZZ(2) algorithm performs better than the original Zig-Zag. SUZZ(3) does
not seem to perform that well and it only has better efficiency than the original Zig-Zag on
the exponential target. Note that we do not present an efficiency value for SUZZ(3) on the
Student(3) target since this algorithm does not satisfy Assumption 3.1 and will in fact ex-
plode in finite time a.s. It is also worth noting that for all the targets, with the exception of the
subexponential one, the inverse efficiency function of the algorithms seems to be “quadratic”
with respect to k and seems to be minimised when k = 1.

Finally, we should note that the notion of inverse algorithmic efficiency is so far restricted
to one-dimensional setting. Generalising this to higher dimensions would involve solving the
Poisson equation of the multidimensional SUZZ process and is subject to further research.

5. Numerical simulations. In this section we will present some computational results
that aim to highlight the behaviour of SUZZ and compare it with original Zig-Zag. We will
present results for one-dimensional and twenty-dimensional targets. As already suggested in
Section 4.1, the one-dimensional SUZZ can vastly outperform the original Zig-Zag. How-
ever, it will be seen that there are significant advantages in using a speed function in higher
dimensions as well.

First, we present numerical results on a one-dimensional Student target with three de-
grees of freedom, denoted by Student(3), that is, a target with density given by π(x) =
1
H

(1 + 1
3x2)−2. We used the Zig-Zag algorithm (ZZ) along with SUZZ(0) and SUZZ(1) al-

gorithms, where SUZZ(k) indicates the SUZZ algorithm with speed function given by (46).
We emphasise here that even though the deterministic dynamics of SUZZ(1) explode in finite
time, the process will a.s. not explode due to Theorem 3.6. Finally, we also used a Random
Walk Metropolis algorithm on a transformed state space, introduced in [31] as a method that
is geometrically ergodic even on heavy tailed targets. The proposal distribution is a one-
dimensional Normal(0,1) and the parameters of the space transformation are tuned using
the guidance of the discussion in [31]. We will be referring to this algorithm as Transformed
Random Walk Metropolis (TRWM). For each of the four algorithms presented, we simulated
25 independent realisations of each process, until N = 104 switches of direction occurred
for the ZZ or SUZZ algorithms. In the case of TRWM we simulated for N = 104 steps. To
construct a sample from the ZZ and the SUZZ algorithms, we used the position of the process
every δ time units (δ-skeletons). Here δ is different for each algorithm and it is chosen in the
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following way. For each algorithm, we first run an initial run, which created a path of time
length S(N). Then we fixed δ = S(N)

N
so that for this run, the size of the skeleton was equal to

N = 104. We used this fixed δ for all other runs of the algorithm, expecting each future skele-
ton to have a size roughly equal to N = 104, which was indeed the case. This was done in
order to guarantee fairness between the performance evaluation across all algorithms. More
precisely, since we use the number of switches (N = 104) as a unit to measure computational
cost, it would make sense for all the algorithms that run for the same number of switches
to produce roughly the same number of samples. For TRWM, since we run the algorithm
for N = 104 steps, the sample generated had a size of N = 104. To analyse the performance
of the algorithms we have used the effective sample size (ESS) (see [17]), computed using
coda from R. The ESSs were calculated after we transformed the sample via the function

(47) f (x) = sgn(x) log
(
1 + |x|),

so that we can guarantee that the variance of the ESS is finite. All simulations were performed
using MATLAB in a computer with i7-8550U CPU and 1.80 GHz.

We present our results in Table 2. We present average and median ESS across 25 real-
izations (standard deviation in parenthesis). We also report the median ESS per likelihood
evaluation and per minute of implementation time. The best performance is highlighted in
bold letters. It is clear that both SUZZ algorithms outperform both the original Zig-Zag and
the TRWM, in all criteria based on ESS, (ESS per switches, per likelihood evaluations and
per implementation time). It is also interesting that the algorithm with the explosive determin-
istic dynamics seems to perform the best. This is consistent with Table 1 where the inverse
algorithmic efficiency of SUZZ(1) is the smallest of all algorithms targeting the Student(3).

As a second example, we used two SUZZ algorithms and ZZ to target a one-dimensional
Cauchy distribution (i.e., π(x) = 1

H
(1 + x2)−1). For the SUZZ algorithms we used speed

functions of the form

(48) s(x) = max
{
1, |x|1+k}

for k = 0 and k = 0.5, denoted by SUZZ(0) and SUZZ(0.5). In Figure 4 we present the Q-Q
plots for these three algorithms against the Cauchy target. All the algorithms run for N = 104

number of switches. It is clear that the SUZZ algorithms far outperform the original Zig-Zag
process and the SUZZ algorithm with explosive deterministic dynamics (k = 0.5) seems to
have the optimal performance.

TABLE 2
SUZZ, ZZ and TRWM algorithms targeting a one-dimensional Student(3) distribution. For SUZZ(k), we use the
speed function as in (46). The algorithms ran until N = 104 switches (or steps for the TRWM) occurred and the
average ESS (with standard deviation in a parenthesis) along with the median ESS are presented. The median
ESS per average likelihood evaluations and per average minutes of implementation time is also presented. All

ESSs are calculated after we transform the sample via the function f as in (47). The best performance is
highlighted with bold letters

One-dimensional Student(3), number of switches N = 104

Algorithms ESS(SD) Median ESS ESS/Lik.Eval. ESS/min

ZZ 5272.9 (1274.0) 5675.6 1.5 · 10−4 15,765.6
SUZZ(0) 20,755.8 (718.1) 20,779.2 3.0 · 10−2 31,483.6
SUZZ(1) 46,346.2 (3154.6) 46,397.8 3.4 · 10−2 154,659.3
TRWM 29.8 (14.0) 22.8 0.2 · 10−2 3257.1
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FIG. 4. Q-Q plots of various one-dimensional SUZZ algorithms targeting a Cauchy distribution. The algorithms
have run until N = 104 switches of direction have occurred. The sample is created using the δ-skeleton of the
process for δ = 0.1. As SUZZ(k) we denote the SUZZ algorithm with speed function of the form (48) and k the
parameter appearing in the equation.

Next, we present results on two twenty-dimensional targets. The first target is a twenty-
dimensional distribution with density of the form

(49) π(x) = 1

H
exp
{−(1 + ‖x‖2

2
)1/4}

,

which we will call Subexponential(0.5), since the tails decay like exp{−‖x‖0.5
2 }, slower than

any exponential target but faster than any polynomial.
The second target is a twenty-dimensional Student distribution, with 3 degrees of freedom

(denoted by Student(3)), with scale matrix given by B where

B(i, j) = 5, i �= j, B(i, i) = 30, i = 1,2,3,

B(i, i) = 20, i = 4,5, and B(i, i) = 10, i = 6, . . . ,20.
(50)

This means that

(51) π(x) = 1

H

(
1 + 1

3
xT B−1x

)−23/2
.

The first target is in the setting of Proposition 3.1, therefore we know that SUZZ will be
exponentially ergodic. Even though the second target is not in the setting of that proposition
and no theoretical guarantees are established for the rate of convergence, we will see that
the SUZZ process leads to numerical gains for both targets, compared to the original Zig-
Zag and to TRWM algorithm, introduced in the one-dimensional simulations. We conjecture
that some of the assumptions made in this document might not be necessary and the class of
targets on which SUZZ can work well could be larger.

For both distributions we used four different algorithms to target them and we compare
their performances. First of all, we used an original Zig-Zag process (ZZ). We also used two
SUZZ processes, SUZZ(0) and SUZZ(1), where SUZZ(k) denotes the SUZZ process with
speed function given by (23). Note that SUZZ(0) has nonexplosive deterministic dynamics,
while SUZZ(1) has explosive ones. We present a general way to construct the deterministic
dynamics for this type of speed functions in Appendix B. Finally, we also used the Trans-
formed Random Walk Metropolis (TRWM) algorithm, described in the one-dimensional sim-
ulations. The proposal distribution we used was a twenty-dimensional normal with identity
covariance matrix and the parameters of the space transformation were tuned using the guid-
ance of the discussion in [31]. For each of the four algorithms presented, we simulated 25
independent realisations of each process, until N = 106 switches of direction occurred for
the ZZ or SUZZ algorithms. In the case of TRWM we simulated for N = 106 steps. Having
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TABLE 3
SUZZ, ZZ and TRWM algorithms targeting a twenty-dimensional Subexponential(0.5) distribution, with density
given by (49). For SUZZ(k), we use the speed function as in (23). The algorithms ran until N = 106 switches (or

steps for the TRWM) occurred and the average ESS (with standard deviation in a parenthesis) along with the
median ESS is presented. The median ESS per average likelihood evaluations and per average minutes of

implementation time is also presented. All ESS concern the first coordinate of the twenty-dimensional process
and are calculated after we transform the sample via the function f as in (47). An estimation of probabilities
assigned to various squares of R20 by the target distribution is also presented. The square denoted by “Sq a”

means that target assigns probability a inside the square. The best performance is highlighted with bold letters

20-dimensional subexponential(0.5), number of switches N = 106, with space transformation.

Algorithms ESS(SD) Median ESS Sq. 0.9 Sq. 0.99 Sq. 0.999 ESS/Lik.Eval. ESS/min

ZZ 103,661.4 (6347.7) 104,665.5 0.9008 0.9905 0.9991 0.3 · 10−3 124.9
SUZZ(0) 142,663.2 (1511.3) 142,382.6 0.8998 0.9899 0.9990 3.9 · 10−3 2847.7
SUZZ(1) 134,561.8 (2453.4) 134,140.1 0.8982 0.9897 0.9990 6.3 · 10−3 4471.3
TRWM 2767.0 (68.5) 2753.5 0.8994 0.9902 0.9992 2.8 · 10−3 1966.8

simulated a continuous time path, in order to construct a sample from the ZZ and the SUZZ
algorithms we used the same procedure as in the one-dimensional simulations. We used the
δ-skeleton of the process, where δ was chosen after an initial run of the algorithm such that
the sample size was roughly equal to the number of direction switches (N = 106). As men-
tioned in the one-dimensional simulations, setting δ this way guarantees fairness between the
performance evaluation across all algorithms. For TRWM, since we run the algorithm for
N = 106 steps, the sample generated had a size of N = 106. All simulations were performed
using MATLAB in a computer with i7-8550U CPU and 1.80 GHz.

We present our results in Tables 3, 4 and 5. In Tables 3 and 4 we report results on the
subexponential(0.5) target, while in Table 5 we report results concerning the Student(3) tar-
get. We present average and median ESS across 25 realizations (standard deviation in paren-
thesis) and empirical probabilities of squares centered around 0, containing 0.9, 0.99 and
0.999 of the mass of the target and denoted Sq. 0.9, Sq 0.99 and Sq. 0.999 respectively.
These squares were estimated using mvtnorm and adaptMCMC of R. We also report the
median ESS per likelihood evaluation and per minute of implementation time. For all al-
gorithms, we consider the ESS of the first coordinate of the process, computed using the
routine coda of R, but we note here that we recovered similar results when using the rou-
tine mcmcse to estimate the multivariate ESS of the twenty-dimensional algorithms. For the

TABLE 4
SUZZ, ZZ and TRWM algorithms targeting a twenty-dimensional Subexponential(0.5) distribution, with density
given by (49). For SUZZ(k), we use the speed function as in (23). The algorithms ran until N = 106 switches (or

steps for the TRWM) occurred and the average ESS (with standard deviation in a parenthesis) along with the
median ESS are presented. The median ESS per average likelihood evaluations and per average minutes of

implementation time are also presented. All ESS concern the first coordinate of the twenty-dimensional process
and are calculated without transforming the sample. The best performance is highlighted with bold letters

20-dimensional subexponential(0.5), number of switches N = 106, no space transformation.

Algorithms ESS(SD) Median ESS ESS/Lik.Eval. ESS/min

ZZ 54,925.7 (3113.5) 55,460.3 0.1 · 10−3 66.2
SUZZ(0) 80,123.7 (1067.4) 80,015.9 2.2 · 10−3 1600.3
SUZZ(1) 92,356.6 (1459.1) 92,214.6 4.3 · 10−3 3073.8
TRWM 2162.5 (56.7) 2162.6 2.2 · 10−3 1544.7
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TABLE 5
SUZZ, ZZ and TRWM algorithms targeting a twenty-dimensional Student(3) distribution with scale matrix given
by (50). For SUZZ(k), we use the speed function as in (23). The algorithms ran until N = 106 switches (or steps
for the TRWM) occurred and the average ESS (with standard deviation in a parenthesis) along with the median

ESS are presented. The median ESS per average likelihood evaluations and per average minutes of
implementation time are also presented. All ESS concern the first coordinate of the twenty-dimensional process
and are calculated after we transform the sample via the function f as in (47). An estimation of probabilities
assigned to various squares of R20 by the target distribution is also presented. The square denoted by “Sq a”

means that target assigns probability a inside the square. The best performance is highlighted with bold letters

20-dimensional Student(3), number of switches N = 106, with space transformation.

Algorithms ESS(SD) Median ESS Sq. 0.9 Sq. 0.99 Sq. 0.999 ESS/Lik.Eval. ESS/min

ZZ 16,095.0 (717.8) 16,151.2 0.8980 0.9888 0.9989 0.3 · 10−3 734.1
SUZZ(0) 25,882.6 (421.6) 25,943.5 0.8978 0.9892 0.9986 1.4 · 10−3 1005.6
SUZZ(1) 23,002.8 (511.0) 23,052.3 0.8994 0.9898 0.9989 1.1 · 10−3 1746.4
TRWM 1153.3 (80.6) 1158.5 0.8996 0.9902 0.9991 1.2 · 10−3 827.5

Student(3) distribution (Table 5), the ESSs were calculated after we transformed the sample
via the function (47) so that we can guarantee that the variance of the ESS is finite, and the
computation of ESS consistent across all 25 realisations of the chains. We did the same for
the subexponential(0.5) distribution (Table 3), but for that target we also present the ESS
without any transformation of the sample (Table 4), since the variance of the ESS is finite
when estimating the expectation of this target.

All four algorithms provided a decent estimation of the probabilities of the squares, which
can increase our trust that all algorithms converged to the right distribution. In terms of ESS,
we observe that all SUZZ algorithms vastly outperformed the ZZ algorithm in terms of every
criterion we used, that is, ESS per number of switches, per number of likelihood evaluations
and per implementation minutes. This shows that using a speed function in the context of
PDMP algorithms can lead to significant benefits. Furthermore, the SUZZ algorithms can
compare favourably to a state of the art algorithm like the TRWM in all three criteria (ESS per
switches, ESS per likelihood evaluations and ESS per implementation minutes). For example,
the SUZZ(1) algorithm has twice better ESS per implementation time than the TRWM on
the Student target. Notably, if the criterion is ESS per number of switches, which gives a
theoretical upper bound on the ESS per likelihood evaluations for the SUZZ algorithm, the
SUZZ algorithms perform at least 20 times better than the TRWM.

We also note that although in our simulations the TRWM takes a lot less time to be imple-
mented, there does not seem to be enough space to further reduce the implementation time of
the TRWM code. On the other hand, the code of SUZZ is quite more complicated and a more
qualified programmer could probably reduce the implementation time even further. More
specifically, most of the simulation time was spent in finding the maximum of the rate func-
tion over a specific time horizon in order to perform Poisson thinning. If one could reduce the
time spent in this type of maximisation subroutines, one could significantly reduce the imple-
mentation time of SUZZ. Furthermore, while the likelihood evaluations of TRWM are always
equal to the number of steps of the algorithm, one could try to further reduce the number of
likelihood evaluations of the SUZZ algorithm if one has access to extra information on the
structure of the target. One could also use ideas from [48], for example, by adapting the time
horizon over which the optimisation of the rate takes place, taking into account the previous
switching times. This can be done without losing any theoretical guarantees since any choice
of time horizon leads to stochastically identical algorithms. Furthermore, one can use ideas
from [16] to further optimise the Poisson thinning procedure and the implementation time,
for example, with the use of automatic differentiation schemes.
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Finally, we should note that we tested SUZZ algorithms on targets where Assumption 3.1
is not verified and the process will a.s. explode in finite time. Specifically, we targeted a one-
dimensional Cauchy π(x) = 1

Z
(1 + x2)−1 with SUZZ(1), that is, speed function s(x) = 1 +

x2. Very quickly there were numerical issues, with MATLAB reporting NaN. A diagnostic
test we propose for one to check possible explosivity is to construct a large square (e.g.,
[−108,108]d for a d-dimensional target) and change the process so that whenever it hits the
boundary of that square, a switch of direction occurs. Meanwhile one can count the number
of times the process hit the boundary of the square. If the proportion of direction switches due
to hitting the boundary over the overall number of switches is large, there is a good chance
that the algorithm explodes and should not be used.

APPENDIX A: A FORMAL CONSTRUCTION OF THE SUZZ PROCESS

Formally, the SUZZ process is constructed as follows.
Let (Ẽn)n∈N be i.i.d. exponential random variables with mean 1 and (un)n∈N be i.i.d.

uniform in [0,1] random variables, independent of the Ẽn’s. Suppose that the process starts
from (x, θ) ∈ E. Let {�t(x, θ)}t≥0 be the flow on R

d that solves the ODE system

(52)

⎧⎨
⎩

d�t(x, θ)

dt
= θs
(
�t(x, θ)

)
t ∈ [0, t∗(x, θ)),

�0(x, θ) = x,

where t∗(x, θ) = sup{t ≥ 0 : �t(x, θ) ∈ R
d} is the explosion time of the flow, with the con-

vention that if the flow does not explode this is set t∗(x, θ) = +∞. As we will see in Ap-
pendix B, if s ∈ C1, the ODE system (52) has a unique solution, and this solution flow moves
in a straight line parallel to θ ∈ {±1}d . We define for all (y, η) ∈ E

(53) λ(y, η) =
d∑

i=1

λi(y, η).

Let

τ1 = inf
{
t ∈ [0, t∗(x, θ)) :

∫ t

0
λ
(
�u(x, θ), θ

)
du ≥ Ẽ1

}
,

where we will always use the convention that inf∅= +∞. Let T1 = τ1.
If τ1 = ∞ we set (Xt ,�t) = (�t (x, θ), θ) for all t < t∗(x, θ) and (Xt ,�t) = ∂ for t ≥

t∗(x, θ).
If τ1 < ∞, we define i1 to be the a.s. unique i ∈ {1, . . . , d} that satisfies

u1 ∈
[∑i−1

k=1 λk(�τ1(x, θ), θ)

λ(�τ1(x, θ), θ)
,

∑i
k=1 λk(�τ1(x, θ), θ)

λ(�τ1(x, θ), θ)

]
.

We set (Xt ,�t) = (�t(x, θ), θ) for all 0 ≤ t < T1. Then set (XT1,�T1) = (�τ1(x, θ),

Fi1(θ)), where Fi1(θ) ∈ {±1}d as in (2).
We then continue the construction inductively, for any n ∈N. If Tn < ∞ and assuming that

the process is constructed until time Tn, we then consider the flow {�t(XTn,�Tn)}t≥0, we let

(54) τn+1 = inf
{
t ∈ [0, t∗(XTn,�Tn)) :

∫ t

0
λ
(
�u(XTn,�Tn),�Tn

)
du ≥ Ẽn+1

}
,

and set Tn+1 = Tn + τn+1.
If τn+1 = ∞, we set (XTn+t ,�Tn+t ) = (�t(XTn,�Tn),�Tn) for all t < t∗(XTn,�Tn) and

(XTn+t ,�Tn+t ) = ∂ for t ≥ t∗(XTn,�Tn).
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If τn+1 < ∞, we define in+1 to be the a.s. unique i ∈ {1, . . . , d} that satisfies

un+1 ∈
[∑i−1

k=1 λk(�τn+1(XTn,�Tn),�Tn)

λ(�τn+1(XTn,�Tn),�Tn)
,

∑i
k=1 λk(�τn+1(XTn,�Tn),�Tn)

λ(�τn+1(XTn,�Tn),�Tn)

]
.

Then set (XTn+t ,�Tn+t ) = (�t (XTn,�Tn),�Tn) for all 0 ≤ t < Tn+1 − Tn. Then set
(XTn+1,�Tn+1) = (�τn+1(XTn,�Tn),Fin+1(�Tn)).

This defines the process until time ξ as in (9). In the case where ξ < ∞, ξ is the first time
that the process has had infinitely many switches of direction. We set (Xt ,�t) = ∂ for all
t ≥ ξ .

APPENDIX B: SOLUTION OF ODE (8)

Here we explain why the ODE system (8) has a unique solution when s ∈ C1. Note
that the solution flow {�t(x, θ), t ≥ 0}, representing the solution after time t when start-
ing from (x, θ), must move in a straight line in R

d , parallel to θ ∈ {±1}d . Therefore, if the
process starts from (x, θ) = (x1, . . . , xd; θ1, . . . , θd), then at time t the position �t(x, θ) =
(X1(t), . . . ,Xd(t)) satisfies for all i,

(55) Xi(t) = xi + θ1θi

(
X1(t) − x1

)= yi + θ1θiX
1(t),

where

yi = xi − θ1θix1,

and where we omit including the dependence of Xi(t) on (x, θ) for notation convenience.
Therefore, as long as we solve {X1(t), t ≥ 0}, we will have completely identified the solu-

tion {�t(x, θ), t ≥ 0}. Also, from (8) and (55) we get that X1(t) satisfies

dX1(t)

dt
= θ1s

(
X1(t), y2 + θ1θ2X

1(t), . . . , yd + θ1θdX1(t)
)
.

Separating the variables we get that X1(t) satisfies

θ1t =
∫ X1

t

x1

1

s(u, y2 + θ1θ2u, . . . , yd + θ1θdu)
du,

which has a unique solution

(56) X1(t) = f −1(f (x1) + θ1t
)
,

where

f (a) =
∫ a

0

1

s(u, y2 + θ1θ2u, . . . , yd + θ1θdu)
du

is invertible since it is continuous and strictly increasing. The solution is defined until the
explosion time

(57) t∗(x, θ) = θ1

∫ θ1·∞
x1

1

s(u, y2 + θ1θ2u, . . . , yd + θ1θdu)
du ∈ (0,+∞],

where we use the convention θ1 · ∞ to denote +∞ if θ1 = +1 and −∞ if θ1 = −1.
A natural family of speed functions, for which the ODE (8) can be solved analytically is

s(x) = (1 + xT Bx
) 1+n

2 ,

where n = 0,1,2,3, . . . and B a positive definite matrix. For n = 0, the ODE solution is
nonexplosive for all starting value (x, θ) ∈ R

d × {−1,+1}d , while for n > 0, the solution
explodes in finite time. Here we will present two specific examples of speed functions that are
used throughout the numerical simulations, along with the solution to the ODE they induce.
More details can be found in Section 5.8.2 of [52].
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• Nonexplosive deterministic dynamics: A natural speed function to use is

s(x) = (1 + xT x
)1/2

.

The solution to the ODE (8) starting from (x, θ) ∈ E, is given by (55), where

X1(t) = b2(t) − a

2b(t)
− c

d
, t ∈ [0,+∞),

and

b(t) =
(
Y0 +
√

Y 2
0 + a
)

· exp{√dθ1t}, Y0 = x1 + c

d
,

a = 1 + ‖y‖2
2

d
− c2

d2 , c = θ1(y · θ), yi = xi − θ1θix1.

• Explosive deterministic dynamics: We use the speed function

s(x) = (1 + xT x
)
.

The solution to the ODE (8) starting from (x, θ) ∈ E, is given by (55), where

X1(t) = −c1 + c2 tan
(

arctan
(

x1 + c1

c2

)
+ θ1c2 dt

)
, t ∈ [0, t∗(x, θ)),

and

c2 =
√

1 + y2
2 + · · · + y2

d

d
− c2

1, c1 = (y · θ)

d
θ1, yi = xi − θ1θix1,

and where the explosion time is

t∗(x, θ) =
π
2 − θ1 arctan (x1+c1

c2
)

c2d
.

APPENDIX C: THE GENERATOR

PROPOSITION C.1. Let (Zt )t≥0 = (Xt ,�t)t≥0 be a SUZZ process with strictly positive
speed function s ∈ C2. For any function f ∈ C1(E) and any (x, θ) ∈ E,

lim
t→0

Ex,θ [f (Zt)] − f (x, θ)

t

= Lf (x, θ)

:=
d∑

i=1

θis(x)∂if (x, θ) + λi(x, θ)
(
f
(
x,Fi(θ)

)− f (x, θ)
)
.

(58)

Before we prove Proposition C.1 we need the following technical results.

DEFINITION C.1. Let m ∈ N. We denote with Om the ball in R
d , centred around 0,

having radius m. Recall that ζm = inf{t ≥ 0 : Xt /∈ Om} is the first exit time of the Om for the
SUZZ process and ζ = limm→∞ ζm is the explosion time of the process. Finally, recall that
T1, T2, . . . are the switching times of the process and ξ = limn→∞ Tn.

LEMMA C.1. Assume that the speed function s ∈ C1 is strictly positive and the rate
functions λi are locally bounded for all i. Then almost surely ζm < ξ for all m ∈ N. Therefore,
a.s. ζ ≤ ξ .
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PROOF OF LEMMA C.1. Let λ be as in (53) and let m ∈ N. Let λ̄ be an upper bound
of λ on Om and let Ẽ1, Ẽ2, . . . be a configuration of the i.i.d. exponential random variables,
with expectation 1, used to construct the (Xt ,�t)t≥0 process, such that ξ ≤ ζm. We will show
that the event of such a configuration has probability zero. In that configuration, for all t < ξ ,
we have t < ζm, therefore Xt ∈ Om. By the definition of the switching times Tk in (54) (and
writing T0 = 0) we get

∞∑
k=1

Ẽk =
∞∑

k=1

∫ Tk

Tk−1

λ(Xt ,�t) dt ≤ ξ λ̄,

and therefore

P
({ξ < ∞} ∩ {ξ ≤ ζm})≤ P

( ∞∑
k=1

Ẽk ≤ ξ λ̄ < ∞
)

= 0.

Let tm be the maximum time it takes for a flow that starts from inside Om and solves (8)
to exit Om. For any n, on the event {Ẽn ≥ λ̄tm}, if the process has not escaped the ball Om

until the n − 1th switch, it does so following the dynamics before the nth switch occurs.
Since P(Ẽn ≥ λ̄tm) = a > 0 we have for all n, P(ζm > Tn) ≤ (1 − a)n and therefore P(ζm =
+∞) = 0.

Overall this gives

P(ξ ≤ ζm) = P
({ξ ≤ ζm} ∩ {ξ < ∞})+ P

({ξ ≤ ζm} ∩ {ξ = ∞})≤ P(ζm = ∞) = 0,

which concludes the proof. �

LEMMA C.2. If the speed function s ∈ C1 and the rate functions are locally bounded,
then for all x ∈ R

d and any neighbourhood Ux of x there exists a time t > 0 such that for any
θ ∈ {±1}d if the SUZZ starts from (x, θ), then Xs ∈ Ux for all 0 ≤ s ≤ t .

PROOF OF LEMMA C.2. Let x ∈ R
d and consider a small neighbourhood Ux of x. Let s̄

be an upper bound for s on Ux . Take t small enough so that t
√

ds̄ < dist(x, ∂Ux), where dist
denotes the Euclidean distance between a point and a set. This way, any path starting from x,
and following a straight line, with speed function s in each coordinate, for time less than t ,
will not have exit Ux . Then any path moving in directions {±1}d , with speed function s(x)

in each component, that switches direction finitely many times, will not have exit Ux . From
Lemma C.1, a.s. the original Zig-Zag process will switch direction finitely many times until
it exits the bounded set Ux and this proves that the process a.s. stays inside Ux until time t .
�

PROOF OF PROPOSITION C.1. Fix a starting point (x, θ) ∈ R
d . We know from

Lemma C.2 that for some neighbourhood Ux of x and for small t0, if the process starts
from (x, θ), then a.s. Xs ∈ Ux for all s ∈ [0, t0]. Therefore, the quantity Ex,θ [f (Zs)] is well-
defined for all s ∈ [0, t0] so the limit makes sense. For the rest of the proof we will always
assume that t ≤ t0.

Write Si(t) = {the i coordinate switches before time t and is the first coordinate to switch},
for i = 1, . . . , d and S0(t) = { no coordinate switches until time t}. Note that if the process
starts from (x, θ) and if Ti is the first arrival time of the Poisson process with intensity t →
λi(�t(x, θ), θ), then P(Ti ≥ t) = exp{− ∫ t0 λi(�u(x, θ), θ) du} therefore the density of Ti is

fTi
(t) = λi

(
�t(x, θ), θ

)
exp
{
−
∫ t

0
λi

(
�u(x, θ), θ

)
du

}
.
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For f ∈ C1(E), conditioning on the coordinate which was the first to switch before t (or
whether no switch occurred), we write

Ex,θ [f (Xt ,�t)] − f (x, θ)

t

= Px,θ

(
S0(t)
)f (�t(x, θ), θ) − f (x, θ)

t
(59)

+
d∑

i=1

Ex,θ [(f (Xt ,�t) − f (x, θ))1Si(t)]
t

.

If we write λ(x, θ) =∑d
i=1 λi(x, θ) then we observe that

Px,θ

(
S0(t)
)= exp

{
−
∫ t

0
λ
(
�u(x, θ), θ

)
du

}
t→0−−→ 1

therefore

(60) lim
t→0

Px,θ

(
S0(t)
)f (�t(x, θ), θ) − f (x, θ)

t
=

d∑
i=1

θis(x)∂if (x, θ).

Furthermore, for all i ∈ {1, . . . , d}, conditioning on the first switch occurring at time u ≤ t

and being of the ith coordinate, we have

Ex,θ

[(
f (Xt ,�t) − f (x, θ)

)
1Si(t)

]
=
∫ t

0
E�u(x,θ),Fi(θ)

[
f (Xt−u,�t−u) − f (x, θ)

]
× Px,θ (no switches until time u for any component j �= i)

· fTi
(u) du

=
∫ t

0
E�u(x,θ),Fi(θ)

[
f (Xt−u,�t−u) − f (x, θ)

]
λi

(
�u(x, θ), θ

)
× exp

{
−
∫ u

0
λ
(
�u′(x, θ), θ

)
du′
}

du

(61)

=
∫ t

0
E�u(x,θ),Fi(θ)

[
f (Xt−u,�t−u) − f

(
x,Fi(θ)

)]
λi

(
�u(x, θ), θ

)
× exp

{
−
∫ u

0
λ
(
�u′(x, θ), θ

)
du′
}

du

+
∫ t

0

(
f
(
x,Fi(θ)

)− f (x, θ)
)
λi

(
�u(x, θ), θ

)
× exp

{
−
∫ u

0
λ
(
�u′(x, θ), θ

)
du′
}

du.

Let ε > 0. Since f ∈ C0 we can assume that the neighbourhood Ux is small enough such
that if y ∈ Ux , then |f (y,Fi(θ)) − f (x,Fi(θ))| < ε

4 . From Lemma C.2 we know that if the
process starts from (x, θ), then for any path that switches direction finitely many times by
time t , we have for all u′ ≤ t , Xu′ ∈ Ux . Therefore, for any u ≤ t , if the process starts from
(�u(x, θ),Fi(θ)), then Xt−u ∈ Ux a.s. Let M be such that for any y ∈ Ux and η ∈ {−1,+1}d ,
|f (y, η)| ≤ M . Then, for any u ≤ t ,

E�u(x,θ),Fi(θ)

[∣∣f (Xt−u,�t−u) − f
(
x,Fi(θ)

)∣∣]
≤ P�u(x,θ),Fi(θ)(no switch by time t − u)

∣∣f (�t−u

(
�u(x, θ),Fi(θ)

)
,Fi(θ)

)
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− f
(
x,Fi(θ)

)∣∣
+ P�u(x,θ),Fi(θ)(switch occurs by time t − u)2M <

ε

4
+ ε

4
= ε

2
,

when t is small enough since λ is bounded on Ux . Therefore, since λi ∈ C0 for all i and
�u(x, θ) is continuous over u, we get

1

t

∣∣∣∣
∫ t

0
E�u(x,θ),Fi(θ)

[
f (Xt−u,�t−u) − f

(
x,Fi(θ)

)]
λi

(
�u(x, θ), θ

)
× exp

{
−
∫ u

0
λ
(
�u′(x, θ), θ

)
du′
}

du

∣∣∣∣(62)

≤ ελi(x, θ).

Furthermore, from the fundamental theorem of calculus,

1

t

∫ t

0

(
f
(
x,Fi(θ)

)− f (x, θ)
)
λi

(
�u(x, θ), θ

)
exp
{
−
∫ u

0
λ
(
�u′(x, θ), θ

)
du′
}

du

t→0−−→ (f (x,Fi(θ)
)− f (x, θ)

)
λi(x, θ).

(63)

Combining (61), (62) and (63) we get that

lim
t→0

Ex,θ [(f (Xt ,�t) − f (x, θ))1Si(t)]
t

= λi(x, θ)
(
f
(
x,Fi(θ)

)− f (x, θ)
)

for all i ∈ {1, . . . , d}, which combined with (59) and (60) proves the result. �

APPENDIX D: PROOF OF NONEXPLOSIVITY OF SUZZ (THEOREM 3.1)

Before we prove nonexplosivity of the process, we prove the following useful result, which
is of independent interest. The result states that under Assumption 3.1, independently of the
starting point, the process cannot follow the deterministic dynamics until the explosion time,
but has to switch direction beforehand. Naturally, this is strongly connected with the notion
of nonexplosion and justifies the existence of Assumption 3.1.

PROPOSITION D.1. Assume that s ∈ C2 is strictly positive, the rates satisfy (12) and
Assumption 3.1 hods. For any starting point (x, θ), let t∗(x, θ) be the explosion time of the
deterministic flow solving the ODE (52), and let T1 be the first switching time of the process.
Then Px,θ (T1 < t∗(x, θ)) = 1.

PROOF OF PROPOSITION D.1. Suppose that the process starts from (x, θ) = (x1, . . . ,

xd; θ1, . . . , θd). As proven in Appendix B, for any t < T1 we have Xt = (X1
t , . . . ,X

d
t ) with

Xi
t as in (55).
Consider the Poisson process with rate {m(t) = λ(Xt , θ) =∑d

i=1 λi(Xt , θ), t ≥ 0}. If yi as
in (55), then using the fact that a+ ≥ a for any a ∈ R, and using the notation θ1 · ∞ to denote
+∞ if θ1 = +1 or −∞ when θ1 = −1, we get∫ t∗(x,θ)

0
m(t) dt

=
∫ t∗(x,θ)

0
λ
(
X1

t , y2 + θ1θ2X
1
t , . . . , yd + θ1θdX1

t

)
dt

=
∫ θ1·∞
x1

λ(u, y2 + θ1θ2u, . . . , yd + θ1θdu)
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× 1

s(u, y2 + θ1θ2u, . . . , yd + θ1θdu)
θ1 du

≥
∫ θ1·∞
x1

d∑
i=1

θ1θi∂iU(u, y2 + θ1θ2u, . . . , yd + θ1θdu)

− θ1θi

∂is(u, y2 + θ1θ2u, . . . , yd + θ1θdu)

s(u, y2 + θ1θ2u, . . . , yd + θ1θdu)
du

=
∫ θ1·∞
x1

d

du

[
U(u,y2 + θ1θ2u, . . . , yd + θ1θdu)

− log s(u, y2 + θ1θ2u, . . . , yd + θ1θdu)
]
du

= lim
u→θ1·∞

U(u, c2 + θ1θ2u, . . . , cd + θ1θdu)

− log s(u, c2 + θ1θ2u, . . . , cd + θ1θdu) − C = +∞
by Assumption 3.1. Therefore, Px,θ (T1 ≥ t∗(x, θ)) = exp{− ∫ t∗(x,θ)

0 m(t) dt} = 0. �

To prove that the process will not explode, we use standard techniques from [42] which
depend on the generator of the process. Although we can define the operator L in (58), we
cannot immediately conclude that this is the strong generator of the process. This is because
the strong generator is defined through uniform convergence and we only defined L in (58) as
a point-wise limit. This complicates the proof. However, the techniques in [42] only require
us to use the generator of the process restricted in a bounded domain, which we introduce
now.

DEFINITION D.1. Let Om be the ball of radius m centered around 0 and let Em =
Om × {−1,+1}d . Starting from (x, θ) ∈ E we define the stopped m-process as the restric-
tion of the SUZZ on Om, stopped when exiting Om, that is, (Zm

t )t≥0 = (Xm
t ,�m

t )t≥0 =
(Xt∧ζm,�t∧ζm)t≥0.

Since the switching rate of Zm is bounded as the process is defined on a bounded set and
λi are locally bounded, we have that for any T > 0, if NT is the number of switching events
before time T , then Ex,θ [NT ] < ∞ for any (x, θ) ∈ Em. Therefore Zm is a PDMP that can
be seen in the setting of [18] and we have the following as a result of Theorem 5.5 of [18].

PROPOSITION D.2. Let L be the operator defined in (58). The extended generator Lm

for Zm has domain D(Lm) ⊃ C1(E) and for any function f ∈ C1(E) we have

Lmf (x, θ) = Lf (x, θ)1x∈Om.

Let n ∈ N such that (17) holds. Let Ai be as in (12). For some a ∈ (0,1) and δ > 0, consider
the function

(64) V (x, θ) = exp

{
aU(x) − a log s(x) +

d∑
i=1

φ
(
θiAi(x)

)}
,

where

(65) φ(s) = 1

2
sgn(s)hn+1

(
δ|s|),

and hn+1 as in (16). The proof of nonexplosion relies on the following lemma.
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LEMMA D.1. Assume that the rates satisfy (12) and Assumptions 3.1, 3.2, 3.3 and 3.4
hold. Let L be the operator defined in (58). Then there exist a ∈ (0,1) and δ > 0 for which V

introduced in (64) is a norm-like function, that is, lim‖x‖→∞ V (x, θ) = +∞ and there exists
a compact set C and b, c > 0 such that for all (x, θ) ∈ E

(66) LV (x, θ) ≤ −cV (x, θ) + b1(x,θ)∈C.

PROOF OF LEMMA D.1. One can verify that V ∈ C1 therefore V ∈ D(L). Note that

V
(
x,Fi(θ)

)− V (x, θ) = V (x, θ)
(
exp
{
φ
(−θiAi(x)

)− φ
(
θiAi(x)

)}− 1
)
.

We then calculate

LV (x, θ)

V (x, θ)
=

d∑
i=1

{
θiaAi(x) +

d∑
j=1

θiθj s(x)∂iAj (x)φ′(θjAj (x)
)

+ [(θiAi(x)
)+ + γi(x)

](
exp
{
φ
(−θiAi(x)

)− φ
(
θiAi(x)

)}− 1
)}

.

(67)

Note that

exp
{
φ(−u) − φ(u)

}= (1 + hn

(
δ|u|))− sgn(u)

and

φ′(u) = δ

2

1

(1 + δ|u|)
n∏

k=1

1

1 + hk(δ|u|) ≤ δ

2

1

(1 + δ|u|)(1 + log(1 + δ|u|)) .

Consider the ith component of the sum in the RHS of (67) and the following cases.
Case 1: θiAi(x) ≥ 0. Then the ith component of the sum in the RHS of (67) can be written

as

a
∣∣θiAi(x)

∣∣+ d∑
j=1

θiθj s(x)∂iAj (x)φ′(θjAj (x)
)

+ (∣∣θiAi(x)
∣∣+ γi(x)

)( 1

1 + hn(δ|Ai(x)|) − 1
)

(68)

≤ ∣∣Ai(x)
∣∣[a − 1 + 1

1 + hn(δ|Ai(x)|)
]

+
d∑

j=1

θiθj s(x)∂iAj (x)φ′(θjAj (x)
)
,

where we used that γi(x) ≥ 0.
Case 2: θiAi(x) < 0. Then the ith component of the sum in the RHS of (67) can be written

as

aθiAi(x) +
d∑

j=1

θiθj s(x)∂iAj (x)φ′(θjAj (x)
)

+ [(θiAi(x)
)+ + γi(x)

]
log
(
1 + · · · log︸ ︷︷ ︸

n

(
1 + δ
∣∣Ai(x)

∣∣) · · · )

≤ −a
∣∣Ai(x)

∣∣+ γ̄ log
(
1 + · · · log︸ ︷︷ ︸

n

(
1 + δ
∣∣Ai(x)

∣∣) · · · )

+
d∑

j=1

θiθj s(x)∂iAj (x)φ′(θjAj (x)
)
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≤ ∣∣Ai(x)
∣∣(−a + γ̄ δ) +

d∑
j=1

θiθj s(x)∂iAj (x)φ′(θjAj (x)
)
,

where we used that log(1 + x) ≤ x. Combining the two different cases, we get overall that,

LV (x, θ)

V (x, θ)
≤

d∑
i=1

∣∣Ai(x)
∣∣max
{
a − 1 + 1

1 + hn(δ|Ai(x)|) ,−a + δγ̄

}

+
d∑

i=1

d∑
j=1

θiθj s(x)∂iAj (x)φ′(θjAj (x)
)
.

(69)

Let us set ε = γ̄ > 0, if γ̄ > 0 or 0 < ε < A/(2d2), if γ̄ = 0. Since we have assumed that
A > 3dγ̄ in Assumption 3.2, we get that A

d
> γ̄ + 2ε. We will choose δ > 0 small enough to

be specified later and given δ, we set a = δγ̄ + δε. Then the second part of the maximum of
(69) is equal to −δε < 0.

Consider the function

f (z) = max
{
−δε, δε + δγ̄ − 1 + 1

1 + hn(δz)

}
,

so that the first term of the RHS of (69) is equal to

d∑
i=1

∣∣Ai(x)
∣∣f (∣∣Ai(x)

∣∣).
Our goal will be to show that

∑d
i=1 |Ai(x)|f (|Ai(x)|) < 0 for ‖x‖ large enough. One can

verify that

f (A) < 0 ⇐⇒ A ≥ P(δ) = 1

δ
h−1

n

(
δε + δγ̄

1 − δε − δγ̄

)

and

f (A) = −δε ⇐⇒ A ≥ M(δ) = 1

δ
h−1

n

(
2δε + δγ̄

1 − 2δε − δγ̄

)
,

where hn as in (16). Now, from L’Hôpital’s rule,

lim
δ→0

M(δ) = γ̄ + 2ε, lim
δ→0

P(δ) = γ̄ + ε

so if we choose δ small enough, we have M(δ) < A/d . Suppose k = arg max{|Ai(x)| : i =
1, . . . , d} so that

∣∣Ak(x)
∣∣≥ ∑d

i=1 |Ai(x)|
d

>
A

d
> M(δ).

Therefore

(70)
∣∣Ak(x)

∣∣f (∣∣Ak(x)
∣∣)≤ −∣∣Ak(x)

∣∣δε ≤ −
∑d

i=1 |Ai(x)|
d

δε.

For any other coordinate i, the contribution to the sum
∑d

i=1 |Ai(x)|f (|Ai(x)|) will be posi-
tive if and only if |Ai(x)| ≤ P(δ). Then, using that 1

1+hn(δz)
≤ 1, we can bound

f (z) ≤ δε + δγ̄
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for z ≥ 0, and therefore

(71)
d∑

i �=k

∣∣Ai(x)
∣∣f (∣∣Ai(x)

∣∣)≤ (d − 1)P (δ)(δε + δγ̄ ).

Recall that when γ̄ > 0, we have picked ε = γ̄ , so due to (14) we get

(72) A > d(d − 1)
(γ̄ + ε)2

ε
.

On the other hand, if γ̄ = 0 we have picked ε < A/(2d2) so (72) holds in this case as well.
Therefore

lim
δ→0

1∑d
i=1 |Ai(x)|(d − 1)(γ̄ + ε)P (δ) − ε

d
= 1∑d

i=1 |Ai(x)|(d − 1)(γ̄ + ε)2 − ε

d
< 0.

Combining this with (70) and (71) we get

d∑
i=1

∣∣Ai(x)
∣∣f (∣∣Ai(x)

∣∣)= ∣∣Ak(x)
∣∣f (Ak(x)

)+∑
i �=k

∣∣Ai(x)
∣∣f (∣∣Ai(x)

∣∣)

≤ δ

d∑
i=1

∣∣Ai(x)
∣∣[− ε

d
+ 1∑d

i=1 |Ai(x)|(d − 1)(γ̄ + ε)P (δ)

]
(73)

≤ −c

d∑
i=1

∣∣Ai(x)
∣∣

for some c > 0, assuming δ is small enough.
To finish the proof of the drift condition (66), let us consider the last term of the RHS in

(69). Here, due to (18) and assuming that x /∈ C for some compact set large enough, we can
write

d∑
j=1

θiθj s(x)∂iAj (x)φ′(θjAj (x)
)

≤
d∑

i,j=1

δ

2

s(x)|∂iAj (x)|
(1 + δ|Aj(x)|)(1 + log(1 + δ|Aj(x)|))

=
(

d∑
k=1

∣∣Ak(x)
∣∣)1

2

d∑
i=1

d∑
j=1

s(x)|∂iAj (x)|∑d
k=1 |Ak(x)|(74)

× 1

(δ−1 + |Aj(x)|)(1 + log(1 + δ|Aj(x)|))

≤
d∑

i=1

∣∣Ai(x)
∣∣c
2
.

Then, combining (69), (73) and (74) we get for x /∈ C,

LV (x, θ)

V (x, θ)
≤ −c

2

d∑
i=1

∣∣Ai(x)
∣∣≤ −c

2
A,

and this proves (66) since V and LV are bounded on C.
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Finally, we need to prove that lim‖x‖→∞ V (x, θ) = +∞. For this, we can find C,C′ > 0
such that for all ‖x‖ large enough,

V (x, θ) ≥ C exp

{
aU(x) − a log s(x) −

d∑
i=1

1

2
hn+1
(
δ
∣∣Ai(x)

∣∣)}

≥ C exp
{
aU(x) − a log s(x)

} d∏
i=1

(
1 + hn

(
δ
∣∣Ai(x)

∣∣))−1/2

≥ C exp
{
aU(x) − a log s(x)

}(
1 + hn

(
s(x)
∥∥∇(U(x) − log s(x)

)∥∥
1

))−d/2

≥ C′((U(x) − log s(x)
)(

1 + hn

(
s(x)
∥∥∇(U(x) − log s(x)

)∥∥
1

))−1)d/2

‖x‖→∞−−−−−→ +∞,

due to (17) and Assumption 3.1, and where we used that δ ≤ 1 in the third inequality. This
completes the proof. �

PROOF OF THEOREM 3.1. Under the assumptions of Theorem 3.1, we get from
Lemma D.1 and Proposition D.2 that there exists a norm-like function V and constants
c, b > 0 such that LmV (x, θ) ≤ cV (x, θ)+ b for all m ∈ N. The assumptions of Theorem 2.1
in [42] are satisfied and this proves that the process is nonexplosive, that is, if ζ as in (11)
then ζ = +∞ a.s. Finally, from Lemma C.1 if ξ as in (9) then ξ = +∞ a.s. �

APPENDIX E: PROOF OF THEOREM 3.2 (INVARIANT MEASURE)

For this section, we first recall the definition of the strong generator of the process.

DEFINITION E.1. Let (P t )t≥0 be the transition semigroup of the process. We define
D(A) to be the set of all the Borel functions f such that the limit

lim
t→0

P tf − f

t

exists in the uniform norm (over (x, θ) ∈ E). We define the strong generator as the operator
A, acting on any f ∈ D(A) as

Af (x, θ) = lim
t→0

P tf (x, θ) − f (x, θ)

t
.

We begin by formally proving that a large class of functions belong to the domain of the
strong generator of the SUZZ process and for these functions the strong generator is given by
the operator L introduced in (58).

LEMMA E.1. Let us assume that the rates satisfy (12), that Assumptions 3.2, 3.3, 3.4 and
3.5 hold and that (Zt )t≥0 is a SUZZ process with speed function s. If f ∈ C1

c (E) then f is in
the domain of the strong generator A of Z and Af = Lf , where L is the operator defined
in (58). This means that∣∣∣∣Ex,θ [f (Xt ,�t)] − f (x, θ)

t
−Lf (x, θ)

∣∣∣∣ t→0−−→ 0

uniformly in (x, θ) ∈ E.
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PROOF OF LEMMA E.1. Let K be a compact set that contains the support of f and let

K ′ = {(x, θ) : there exists a y,with ‖x − y‖ < ε, (y, θ) ∈ K
}= K + εB(0,1)

for some ε > 0. Let s̄ be an upper bound on the speed function s on K ′. Then for all t < t1 =
ε/(

√
ds̄), if the process starts from any (x, θ) /∈ K ′, then the process will not have hit K until

time t , and since the support of f is contained in K , P tf (x, θ) = Ex,θ [f (Xt)] = 0, for all
(x, θ) /∈ K ′. Note also that for all (x, θ) /∈ K ′, Lf (x, θ) = 0 and f (x, θ) = 0.

Now, let us focus on (x, θ) ∈ K ′. Pick

K ′′ = K ′ + εB(0,1)

and let ¯̄s be an upper bound of s on K ′′. Then for all t ≤ t2 = ε/(
√

d ¯̄s) < t1, the process
starting from K ′ will not have exited K ′′ by time t and if we cover K ′′ by some Om for some
large m, then a.s. Z(t) = Zm(t) for all t ≤ t2 as long as we start from somewhere in K ′. Then,
for any (x, θ) ∈ K ′ and any t < t2

Ex,θ [f (Zt)] − f (x, θ)

t
−Lf (x, θ) = Ex,θ [f (Zm

t )] − f (x, θ)

t
−Lmf (x, θ),

so overall for all t < t2

sup
(x,θ)∈E

∣∣∣∣Ex,θ [f (Zt)] − f (x, θ)

t
−Lf (x, θ)

∣∣∣∣
≤ sup

(x,θ)∈K ′

∣∣∣∣Ex,θ [f (Zm
t )] − f (x, θ)

t
−Lmf (x, θ)

∣∣∣∣ t→0−−→ 0,

where the convergence can be seen to hold using the proof of Proposition 15b of [21]. �

We also have the following.

LEMMA E.2. Assume that the assumptions of Lemma E.1 hold. If f ∈ C1
c , then for all

t0 > 0, P t0f is differentiable along the deterministic flow of the SUZZ process, that is, for all
(x, θ) ∈ E there exists a function DP t0f : E →R such that for all (x, θ) ∈ E,

lim
t→0

P t0f (�t(x, θ), θ) − P t0f (x, θ)

t
= DP t0f (x, θ).

PROOF OF LEMMA E.2. Fix t0 > 0 and let’s write g = P t0f for notational convenience.
Due to Lemma E.1, f is in the domain of the strong generator of the SUZZ process, therefore,
using standard results (see, e.g., [22]), g is also in the domain of the strong generator of the
SUZZ process. From the proof of Proposition C.1, rewriting (59) we get

Px,θ

(
S0(t)
)g(�t(x, θ), θ) − g(x, θ)

t

= Ex,θ [g(Xt ,�t)] − g(x, θ)

t
−

d∑
i=1

Ex,θ [(g(Xt ,�t) − g(x, θ))1Si(t)]
t

.

The first term of the RHS is finite since g is in the domain of the strong generator of SUZZ
and the second term can be seen to be finite using the same argument as in the proof of
Proposition C.1. Since limt→0 Px,θ (S0(t)) = 1, we get the result. �

The following lemma is the stepping stone to prove Theorem 3.2.
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LEMMA E.3. Assume that the rates satisfy (12), Assumptions 3.2, 3.3, 3.4 and 3.5 hold
and the (Zt )t≥0 is a SUZZ process with speed function s. Let (P t )t≥0 be the transition semi-
group of a SUZZ process with speed function s and let A be the strong generator of the SUZZ
process. If f ∈ C1

c (E) then for all t0 > 0, P t0f ∈ D(A) and

(75)
∫
E
AP t0f (x, θ)μ(dx, dθ) = 0.

If we could guarantee that for any f ∈ C1
c (E), for all t0 > 0, P t0f ∈ C1

c (E), then
Lemma E.3 would be easy to verify, using similar calculations to the proof of Proposition 5
of [10]. In our setting, due to the fact that we allow explosive deterministic dynamics, we
cannot guarantee that P t0f ∈ C1

c . However, Lemma E.2 guarantees that the function P t0f

must have a derivative along lines parallel to the vectors {−1,+1}d . Therefore, the funda-
mental theorem of calculus and an integration by parts can be used along such lines. When
we will integrate AP t0f over the ball Om, we may do the integration over many different
lines parallel to some vector {−1,+1}d and apply the integration by parts technique in each
of these lines to get the result. This is the main idea of the following proof.

PROOF OF LEMMA E.3. We begin by noticing that, since f ∈ D(A), P t0f ∈ D(A) as
well (see, e.g., Proposition 1.1.5 of [22]). If Em = Om × {±1}d then∣∣∣∣

∫
Em

AP t0f (x, θ)μ(dx, dθ) −
∫
E
AP t0f (x, θ)μ(dx, dθ)

∣∣∣∣ m→∞−−−−→ 0,

since Em ↗ E and AP t0f = P t0Af = P t0Lf is bounded, due to that Lf is bounded. There-
fore, it suffices to prove that

(76) lim
m→∞

∫
Em

AP t0f (x, θ)μ(dx, dθ) = 0.

From now on, let us write g = P t0f for notational convenience. From Lemma E.2 we get
that g has a derivative along the deterministic dynamics of the SUZZ process. This means
that there exists a function Dg : E → R such that if Xt satisfies ODE (8) with starting point
(x, θ) then for all t ≥ 0

g(Xt , θ) − g(x, θ) =
∫ t

0
Dg(Xu, θ) du.

Furthermore, using the same argument as in the proof of Proposition C.1 we get that for all
(x, θ) ∈ Em,

Ag(x, θ) = Dg(x, θ) +
d∑

i=1

λi(x, θ)
(
g
(
x,Fi(θ)

)− g(x, θ)
)
.

Our goal is to use an integration by parts technique to control the first part of the sum of the
generator. We fix a θ ∈ {−1,+1}d . We use a linear, invertible transformation A on R

d such
that Aθ = √

de1, AOm = Om and |detA| = 1 and let e1 = (1,0, . . . ,0) ∈ R
d . We use the

transformation y = (y1, . . . , yd) = Ax. Also, given y2, y3, . . . , yd with y2
2 + · · · + y2

d < m2

we write

y∗
1 = θ1

√
m2 − y2

2 − · · · − y2
d,

and we omit the dependence on y2, . . . , yd and θ1 for ease of notation. We also write x0 =
A−1(−y∗

1 , y2, . . . , yd)′.
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We further consider the solution Xt to the ODE (8) starting from (x0, θ) and we write Yt =
(Y 1

t , . . . , Y d
t ) = AXt so that Yt starts from (−y∗

1 , y2, . . . , yd) and solves the ODE dYt/dt =√
ds(A−1Yt )e1. Also write t∗ such that Y 1

t∗ = y∗
1 . Then we can write,∫

Om

Dg(x, θ) exp
{−U(x)

}
dx

=
∫
Om

Dg
(
A−1y, θ

)
exp
{−U
(
A−1y

)}
dy

=
∫ m

−m

∫ √m2−y2
2

−
√

m2−y2
2

· · ·
∫ y∗

1

−y∗
1

Dg
(
A−1y, θ

)
exp
{−U
(
A−1y

)}
dy1 dyd · · ·dy2

=
∫ m

−m

∫ √m2−y2
2

−
√

m2−y2
2

· · ·
∫ t∗

0
Dg
(
A−1Yt , θ

)
exp
{−U
(
A−1Yt

)}
s
(
A−1Yt

)√
d dt dyd · · ·dy2.

Having fixed y2, . . . , yd , write z1 = (−y∗
1 , y2, . . . , yd), z2 = (y∗

1 , y2, . . . , yd) ∈ ∂Om and y =
(y1, . . . , yd) and using integration by parts we get∫ t∗

0
Dg
(
A−1Yt , θ

)
exp
{−U
(
A−1Yt

)}
s
(
A−1Yt

)√
d dt

= g
(
A−1z2, θ

)
exp
{−U
(
A−1z2

)}
s
(
A−1z2

)√
d − g

(
A−1z1, θ

)
× exp

{−U
(
A−1z1

)}
s
(
A−1z1

)√
d

−
∫ t∗

0
g
(
A−1Yt , θ

) d
dt

[
exp
{−U
(
A−1Yt

)}
s
(
A−1Yt

)]√
d dt

= g
(
A−1z2, θ

)
exp
{−U
(
A−1z2

)}
s
(
A−1z2

)√
d − g

(
A−1z1, θ

)
× exp

{−U
(
A−1z1

)}
s
(
A−1z1

)√
d

−
∫ t∗

0
g
(
A−1Yt , θ

)
exp
{−U
(
A−1Yt

)}

×
d∑

i=1

{−∂iU
(
A−1Yt

)
θis
(
A−1Yt

)+ ∂is
(
A−1Yt

)
θi

}
s
(
A−1Yt

)√
d dt

= g
(
A−1z2, θ

)
exp
{−U
(
A−1z2

)}
s
(
A−1z2

)√
d − g

(
A−1z1, θ

)
× exp

{−U
(
A−1z1

)}
s
(
A−1z1

)√
d

−
∫ y∗

1

−y∗
1

g
(
A−1y, θ

)
exp
{−U
(
A−1y

)}

×
d∑

i=1

(−∂iU
(
A−1y

)
θis
(
A−1y

)+ ∂is
(
A−1y

)
θi

)
dy1.

Overall ∑
θ∈{±1}d

∫
Om

Dg(x, θ) exp
{−U(x)

}
dx

= ∑
θ∈{±1}d

∫ m

−m

∫ √m2−y2
2

−
√

m2−y2
2

· · ·
∫ √m2−y2

2−···−y2
d−1

−
√

m2−y2
2−···−y2

d−1

g
(
A−1z2, θ

)
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× exp
{−U
(
A−1z2

)}
s
(
A−1z2

)√
d dyd · · ·dy3 dy2

− ∑
θ∈{±1}d

∫ m

−m

∫ √m2−y2
2

−
√

m2−y2
2

· · ·
∫ √m2−y2

2−···−y2
d−1

−
√

m2−y2
2−···−y2

d−1

g
(
A−1z1, θ

)(77)

× exp
{−U
(
A−1z1

)}
s
(
A−1z1

)√
d dyd · · ·dy3 dy2

+ ∑
θ∈{±1}d

∫
Om

g(x, θ) exp
{−U(x)

} d∑
i=1

(
θi∂iU(x)s(x) − θi∂is(x)

)
dx.

On the other hand, rearranging the sum over θ (see also the proof of Proposition 5 of [10]),
we get

d∑
i=1

∑
θ∈{±1}d

∫
Om

λi(x, θ)
(
g
(
x,Fi(θ)

)− g(x, θ)
)
exp
{−U(x)

}
dx

= −
d∑

i=1

∑
θ∈{±1}d

∫
Om

g(x, θ) exp
{−U(x)

}(
λi(x, θ) − λi

(
x,Fi(θ)

))
dx.

(78)

Recall that since the rates satisfy (12), we have

λi(x, θ) − λi

(
x,Fi(θ)

)= θi∂iU(x)s(x) − θi∂is(x).

When we integrate
∫
Em

Ag dμ, we get the sum of the RHS of equations (77) and (78). On
this sum, only the boundary parts remain and we have∣∣∣∣2dH

∫
Em

Ag(x, θ)μ(dx, dθ)

∣∣∣∣
=
∣∣∣∣ ∑
θ∈{±1}d

∫
Om

exp
{−U(x)

}
Ag(x, θ) dx

∣∣∣∣

≤ ∑
θ∈{±1}d

∫ m

−m

∫ √m2−y2
2

−
√

m2−y2
2

· · ·
∫ √m2−y2

2−···−y2
d−1

−
√

m2−y2
2−···−y2

d−1

∣∣g(A−1z2, θ
)

× exp
{−U
(
A−1z2

)}
s
(
A−1z2

)√
d
∣∣dyd · · ·dy3 dy2

+ ∑
θ∈{±1}d

∫ m

−m

∫ √m2−y2
2

−
√

m2−y2
2

· · ·
∫ √m2−y2

2−···−y2
d−1

−
√

m2−y2
2−···−y2

d−1

∣∣g(A−1z1, θ
)

× exp
{−U
(
A−1z1

)}
s
(
A−1z1

)√
d
∣∣dyd · · ·dy3 dy2

≤ 2
√

d‖g‖∞ sup
x∈∂Om

{
exp
{−U(x)

}
s(x)
} ∫

x∈∂Om

1dx

≤ C2
√

d‖g‖∞ sup
x∈∂Om

{
exp
{−U(x)

}
s(x)
}
md−1 m→∞−−−−→ 0,

where the convergence holds due to Assumption 3.5. Here ‖g‖∞ is well-defined since g =
P t0f is bounded since f is bounded. This completes the proof. �

Now, we can conclude with the proof of invariance.
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PROOF OF THEOREM 3.2. Let (P t )t≥0 be the transition semigroup of the process and
L the operator defined in (58). Let f ∈ C1

c (E). From Lemma E.1, Lf = Af is the strong
generator of f . Because of Dynkin’s formula, for any t > 0,

P tf (x, θ) − f (x, θ) =
∫ t

0
AP t0f (x, θ) dt0.

Since s and λ are bounded on compact sets, for any f ∈ C∞
c (E) we have that Lf is bounded

and after integrating both sides over μ and using Fubini’s theorem, we get∫
E

P tf (x, θ)μ(dx, dθ) −
∫
E

f (x, θ)μ(dx, dθ)

=
∫
E

∫ t

0
AP t0f (x, θ) dt0μ(dx, dθ)

=
∫ t

0

∫
E
AP t0f (x, θ)μ(dx, dθ) dt0 = 0,

where the last equality follows from Lemma E.3. Therefore, for all f ∈ C∞
c

(79)
∫

P tf (x, θ)μ(dx, dθ) =
∫

f (x, θ)μ(dx, dθ).

Since, as a simple application of Stone–Weierstrass, C∞
c is dense in Cc, (79) holds for all

f ∈ Cc. This further extends to all bounded measurable functions f from Lusin’s theorem
[24]. This proves the result. �

REMARK E.1. It can be seen from the proof of Lemma E.3 that Assumption 3.5 was
only used in order to ensure that the boundary terms appearing in the integration by parts
will decay as ‖x‖ goes to infinity. If the deterministic dynamics are nonexplosive, the path of
the process until time t0 has a bounded length, therefore the function g = P t0f has compact
support and all the boundary terms disappear as ‖x‖ → ∞. This means that when the deter-
ministic dynamics are nonexplosive we do not need to make Assumption 3.5, as long as we
still impose Assumption 3.1.

APPENDIX F: PROOF OF THEOREM 3.3 (EXPONENTIAL ERGODICITY)

We first recall some stability notions of a Markov process. For more details see [41, 43].

DEFINITION F.1. A Markov Process X with state space E is φ-irreducible if there exists
a nontrivial measure φ such that for any point z and any set A of positive φ-measure, there
exists a t with Pz(Xt ∈ A) > 0. We call φ an irreducibility measure.

A set C is petite if there exists a probability measure ν, a c > 0 and a distribution a on R+
such that for any z ∈ C and A ∈ B(E)

(80) Ka(z,A) =
∫ +∞

0
Pz(Xt ∈ A)a(dt) ≥ cν(A).

A set C is called small for a continuous or a discrete time Markov process/chain Xt , if
there exists a probability measure ν, a c > 0 and t > 0 such that for any z ∈ C and A ∈ B(E)

(81) Pz(Xt ∈ A) ≥ cν(A).

Furthermore, the process is called strongly aperiodic if there exists a petite set C and a
T > 0 such that for any z ∈ C and t ≥ T , Pz(Xt ∈ C) > 0.
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The process is called a T -process if there exists a probability density a on [0,+∞) and
a kernel K : E × B(E) → [0,+∞) such that for all A ∈ B(E) the function z → K(z,A) is
lower semicontinuous and for all z ∈ E, K(z,E) > 0 and∫ +∞

0
Pz(Xt ∈ ·)a(dt) ≥ K(z, ·).

Additionally, a φ-irreducible process is Harris recurrent if for all z ∈ E and A such that
φ(A) > 0 we have Pz(

∫+∞
0 1A(Xt) = +∞) = 1. If the invariant measure of the process is

finite the process is called positive Harris recurrent.
Finally the process with invariant measure μ is called ergodic if for all z ∈ E∥∥Pz(Xt ∈ ·) − μ(·)∥∥TV

t→+∞−−−−→ 0.

For the proof of Theorem 3.3 we will use the following result (Theorem 6.1 in [42]).

THEOREM F.1 (Meyn–Tweedie 1993). Assume that a Markov process (Zt )t≥0 on E is
càdlàg, and all compact subsets of E are petite for some skeleton chain of Z. Assume further
that if Lm is the extended generator of the process (Zm

t )t≥0, which is the process Z, stopped
upon exiting Om, then there exists a function V : E → [1,+∞) and c, b > 0 and a compact
set C such that for all m ∈ N and z ∈ E,

(82) LmV (z) ≤ −cV (z) + b1C(z).

Then there exists a constant M > 0 and ρ < 1 such that for all z ∈ E∥∥Pz(Zt ∈ ·) − π(·)∥∥TV ≤ MV (z)ρt ,

which means that the process Z is exponentially ergodic.

From the proof of nonexplosivity we have that the function V introduced in (64) satisfies
the drift condition (82) for some compact set C. Therefore, in order to prove Theorem 3.3
we need to prove that the SUZZ process has all the compact sets as petite for some skeleton
chain. The focus of this section is to prove this property.

In order to do this we need to establish the reachability property, introduced in [11].
Given a speed function s, generating the family of deterministic flows {�t(x, θ), t ≥ 0} for

every (x, θ) ∈ E, we define as control sequence an object u = (t, ι), where t = (t0, . . . , tm) ∈
(0,+∞)m+1, ι = (i1, . . . , im) ∈ {1, . . . , d}m for some m ∈ N. Starting from (x, θ) ∈ E, a
control sequence u gives rise to a SUZZ trajectory (Xt ,�t) as follows: Start from (x, θ)

and follow direction θ for t0 time, that is, set Xt = �t(x, θ), �t = θ for t ∈ [0, t0). Then,
switch the i1th component of θ to Fi1(θ) and follow that direction for t1 time, that is, set
Xt = �t−t0(�t0(x, θ),Fi1(θ)), �t = Fi1(θ) for t ∈ [t0, t0 + t1). Continue similarly until time
t0 + · · · + tm. Write τk =∑k−1

i=0 ti for the time of the kth switch and denote the final position
(Xτm+1,�τm+1) of the path by �u(x, θ).

DEFINITION F.2. Given a starting point (x, θ) ∈ E, a control sequence u = (t, ι) is ad-
missible if for all k ∈ {1, . . . ,m} we have λik (Xτk

,�τk
) > 0.

Given two points (x, θ), (y, η) ∈ E we say that (y, η) is reachable from (x, θ) and
write (x, θ) → (y, η) if there exists a control sequence u admissible from (x, θ) such that
�u(x, θ) = (y, η).

We write (x, θ) � (y, η) if (x, θ) → (y, η) and for an admissible sequence u = (t, ι) con-
necting the two points, we have that every index of {1, . . . , d} appears in ι.
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We now focus on proving that for any two points (x, θ), (y, η) ∈ E we have (x, θ) →
(y, η). Note that we can assume without loss of generality that the SUZZ has minimal rates
(i.e., γi ≡ 0 for all i ∈ {1, . . . , d}) as higher rates make admissible paths more likely. In the
case of original Zig-Zag there is the following result (Theorem 4 of [11]).

THEOREM F.2 (Bierkens–Roberts–Zitt 2019). Assume that U ∈ C3, lim‖x‖→∞ U(x) =
+∞ and there exists an x0 local minimum for U such that Hess(U)(x0) is strictly positive
definite. Then the original Zig-Zag process targeting the potential U satisfies that for all
(x, θ), (y, η) ∈ E, (x, θ) � (y, η).

We can then generalise these results on the SUZZ using the following Lemma.

LEMMA F.1. Suppose s ∈ C2 and s(x) > 0 for x ∈ R
d . Then, for any (x, θ), (y, η) ∈ E,

(x, θ) → (y, η) in a SUZZ with speed s, targeting a potential U with minimal rates if and
only if (x, θ) → (y, η) in an original Zig-Zag, targeting a potential U − log s with minimal
rates.

PROOF OF LEMMA F.1. Consider an original Zig-Zag process targeting the potential
U − log s with minimal rates. The rates of this process for the i coordinate are λ0

i (x
′, θ ′) =

[θ ′
i ∂i(U(x′) − log s(x′))]+.
On the other hand, a SUZZ process with minimal rates targeting the potential U has rates

for the i coordinate given by

λi

(
x′, θ ′)= [θ ′

i

(
s
(
x′)∂iU

(
x′)− ∂is

(
x′))]+ = s

(
x′)λ0

i

(
x′, θ ′).

Therefore for any (x′, θ ′) ∈ E and any i ∈ {1, . . . , d}
(83) λi

(
x′, θ ′)> 0 ⇐⇒ λ0

i

(
x′, θ ′)> 0.

Assume (x, θ) → (y, η) with some admissible control sequence u = (t, ι) = (t0, . . . , tm, i1,

. . . , im) for the original Zig-Zag process, targeting the potential U − log s with minimal rates.
Let (Xt ,�t) be the configuration of that original Zig-Zag path and let τk =∑k−1

i=0 ti be the
times of the switches. We have λ0

ik
(Xτk

,�τk
) > 0 for all k.

Note that since s is continuous and strictly positive, for any (x′, θ ′) ∈ E, limt→+∞ ‖�t(x
′,

θ ′)‖ = +∞. Therefore, there exists an s0 > 0 such that �s0(x, θ) = x + t0θ = Xτ1 . Likewise,
there exists an s1 > 0 such that �s1(Xτ1,�τ1) = Xτ2 and via induction we can construct for
all k ∈ {0, . . . ,m} an sk such that �sk(Xτk

,�τk
) = Xτk+1 . Then the control sequence ũ =

(s, ι) = (s0, . . . , sm, i1, . . . , im) is an admissible sequence starting from (x, θ) for the SUZZ
targeting the potential U with minimal rates. Furthermore, the ending point of ũ starting from
(x, θ) is (y, η).

The other way around, that is, that an admissible path for the SUZZ process targeting U

implies existence of an admissible path for the ZZ process targeting U − log s follows using
similar arguments. �

Combining Theorem F.2 and Lemma F.1 we can prove the following.

PROPOSITION F.1. Assume that s ∈ C2 is a strictly positive function such that Assump-
tion 3.1 holds, U − log s ∈ C3 and there exists an x0 ∈ R

d such that U − log s has a lo-
cal minimum in x0 with Hess(U − log s)(x0) being strictly positive definite. Then, for every
(x, θ), (y, η) ∈ E, (x, θ) � (y, η).
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As in [11] we can use this to prove that from any starting point and given any other point
z ∈ E, the process has a positive probability of visiting a neighbourhood of z. The following
lemma is the same as Lemma 8 in [11].

LEMMA F.2 (Continuous component). Assume that (x, θ) � (y, η) and the rates λi are
continuous. Then there exist Ux,Vx ⊂ R

d open with x ∈ Ux , y ∈ Vx and ε, t0, c > 0 such that
for all x′ ∈ Ux , t ∈ [t0, t0 + ε]
(84) Px′,θ (Xt ∈ ·,�t = η) ≥ c Leb(· ∩ Vx),

where Leb is the Lebesgue measure on R
d .

The proof is very similar in spirit to the proof of Lemma 8 (Continuous component) of
[11], therefore we do not present it here but we present it in Section 2 of the Supplementary
Material [54]). The main idea is that since there is an admissible path from (x, θ) � (y, η),
the process has a positive probability to follow some path very close to the admissible path.
Therefore there is a positive probability that starting from somewhere close to (x, θ) the
process ends up somewhere close to (y, η).

Lemma F.2 allows us to prove stability properties for the process.

PROPOSITION F.2. Let (Zt )t≥0 = (Xt ,�t)t≥0 be a SUZZ process with strictly positive
speed function s ∈ C2. Assume that the process is nonexplosive and has μ as invariant. As-
sume that for all (x, θ), (y, η) ∈ E, (x, θ) � (y, η). Then the process is T , φ-irreducible and
strongly aperiodic. If in addition the invariant measure μ is a probability measure then all
compact sets are petite, they are also small for some skeleton chain and the process is positive
Harris recurrent and ergodic.

PROOF OF PROPOSITION F.2. The fact that the SUZZ process under the assumptions of
Proposition F.2 is T -process, φ-irreducible and strongly aperiodic can be proven using the
same proof as in Theorem 5 of [11].

Now, we prove that every compact set is petite. A standard argument as in [11] shows that
for μ-almost all starting points (x, θ) we have Px,θ (limt→+∞ ‖Xt‖ = +∞) = 0. Indeed, for
any compact set K , 1{Xt eventually leaves K} = lim inft→+∞ 1Xt /∈K and by Fatou’s lemma

Pμ(Xt eventually leaves K) ≤ lim inf
t→+∞ Pμ(Xt /∈ K) = 1 − μ(K).

By exhausting E with compact sets we get Pμ(limt→+∞ ‖Xt‖ = +∞) = 0. More specifi-
cally, there exists (x, θ) ∈ E such that Px,θ (limt→+∞ ‖Xt‖ = +∞) < 1. From Theorem 4.1
in [43] all compact sets are petite if and only if the process is T and φ-irreducible. The result
follows.

Furthermore, the process is positive Harris recurrent from an application of Theorem 4.4
of [42].

The proof of the fact that some skeleton of the process is irreducible is the same as in
Theorem 5 of [11].

From Theorem 6.1 of [43] we get that the process is ergodic.
Finally, all compacts are small for some skeleton chain from Proposition 6.1 in [43]. �

PROOF OF THEOREM 3.3. From Theorems 3.1 and 3.2 we know that the process is
nonexplosive and μ introduced in (3) is invariant for the SUZZ. By Proposition F.1 for all
(x, θ), (y, η) ∈ E we have (x, θ) � (y, η) and therefore, by Proposition F.2 the process is
φ-irreducible, aperiodic and all compact sets are small for some skeleton chain. Also, from
Lemma D.1, V as in (64) satisfies the drift condition (66). All the conditions of Theorem F.1
are satisfied and the result follows. �
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APPENDIX G: PROOF OF THEOREM 3.5

PROOF OF THEOREM 3.5. The proof will rely on the following simple observation. As-
sume that L is as in (58) the extended generator of the SUZZ process targeting μ with refresh

rate γ (x) and LŨ
ZZ is the strong generator of the original Zig-Zag process, with refresh rate

γ (x)
s(x)

targeting the measure ν(dx, dθ) = 1
H̃

exp{−Ũ (x)}, where Ũ (x) = U(x)− log s(x), that

is, for all f ∈ C1,

LŨ
ZZf (x, θ)

=
d∑

i=1

θi∂if (x, θ) +
([

θi∂i

(
U(x) − log s(x)

)]+ + γ (x)

s(x)

)(
f
(
x,Fi(θ)

)− f (x, θ)
)
,

then

Lf (x, θ) = s(x)LŨ
ZZf (x, θ).

Let us consider the Zig-Zag process, having generator LŨ
ZZ and targeting the measure ν.

This is a special case of a SUZZ process where the speed function is equal to 1 everywhere
and where the potential function U we have used throughout the document is replaced by
Ũ . Due to Assumption 3.6, the potential Ũ along with the constant speed function, equal
to 1, satisfy all the assumptions of Lemma D.1. Furthermore, since by Assumption 3.6,
γ (x) ≤ M̃s(x), the refresh rate of the Zig-Zag process is bounded. Therefore the function
V introduced in (64) satisfies that there exists a compact set C and c, b > 0 such that

LŨ
ZZV (x, θ) ≤ −cV (x, θ) + b1x∈C.

Therefore,

(85) LV (x, θ) ≤ −s(x)cV (x, θ) + s(x)b1x∈C ≤ −c′V (x, θ) + b′1x∈C

since s is assumed to be bounded away from 0 and bounded on compact sets. Using Theo-
rem 2.1 in [42], in the same way as in the conclusion of the proof of Theorem 3.1, we get that
the process is nonexplosive.

For the other three bullet points, given that we have found a function V satisfying the drift
condition (85), the proofs of Theorems 3.2 and 3.3 carry over here and we get the CLT result
as a consequence of Theorem 2 of [14]. �

APPENDIX H: PROOF OF PROPOSITION 3.1

PROOF OF PROPOSITION 3.1. We will consider the case where

s(x) = 1 + ‖x‖2
2.

The case s(x) =
√

1 + ‖x‖2
2 follows using a similar argument. We begin by noting that we

can write

(86) Ai(x) = s(x)∂iU(x) − ∂is(x) = c(x)xi,

where if π as in (24) then

c(x) = a
(
1 + ‖x‖2

2
) a

2 − 2
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and if π as in (25) then

c(x) = (ν + d)
1 + ‖x‖2

2

ν + ‖x‖2
2

− 2.

Given that a > 0 or ν satisfies (26), we see that for both targets, there exists a K > 0 such
that for all ‖x‖2 ≥ K

(87) c(x) ≥ c >
27

2
d3.

We set b = (3
2)1/π and we consider the function

(88) V (x, θ) =
d∑

i=1

(
1 + x2

i

)
barctan(θixi ).

First of all, V ∈ C1 therefore V ∈ D(L). Furthermore, lim‖x‖→∞ V (x, θ) = +∞ and
V (x, θ) ≥ db−π/2 > 0. Let ‖x‖2 ≥ K . We write

LV (x, θ) =
d∑

i=1

2θixib
arctan(θixi )

(
1 + ‖x‖2

2
)︸ ︷︷ ︸

term ai

+ (1 + ‖x‖2
2
)

log(b)barctan(θixi )︸ ︷︷ ︸
term bi

+
d∑

i=1

c(x)[θixi]+(1 + x2
i

)
barctan(θixi )

(
b−2 arctan(θixi ) − 1

)︸ ︷︷ ︸
term ci

.

Our goal is to show that V satisfies the drift condition (66). Let η > 0 be small enough (to
be determined later), and having fixed η, let ε > 0 be small enough (to be determined later).
For any δ > 0, consider the set Eδ = Eδ(x) = {i ∈ {1, . . . , d} : |xi |‖x‖2

≥ δ√
d
}. Set

(89) δ =
(

(2 + η)d

c(1 − b−π)

)1/2
=
(

3
(2 + η)d

c

)1/2
,

where c as in (87). We first note that for any i ∈ {1, . . . , d}, if θixi ≤ 0 then ci = 0 and ai ≤ 0
so ai + ci ≤ 0.

If θixi > 0 and i ∈ Eδ , then for ε > 0 small enough and assuming that K is large enough
(given ε), for any ‖x‖2 ≥ K ,

ai + ci ≤ |xi |2b
π
2 (1 + ε)‖x‖2

2 − c(x)|xi ||xi |2b π
2 −ε(1 − b−π+2ε)

≤ |xi |bπ
2

(
2(1 + ε)‖x‖2

2 − c(x)b−ε(1 − b−π+2ε)‖x‖2
2

d
δ2
)

≤ |xi |bπ
2 ‖x‖2

2

(
2(1 + ε) − cb−ε(1 − b−π+2ε)δ2

d

)
< 0,

from the definition of δ. Here we have used that if i ∈ Eδ , then |xi | ≥ ‖x‖2
δ√
d

.
On the other hand, if θixi > 0 and i /∈ Ed then ci ≤ 0 so

ai + ci ≤ ai ≤ |xi |2b
π
2 (1 + ε)‖x‖2

2 ≤ 2(1 + ε)b
π
2

δ√
d

‖x‖3
2,

where we have used the fact that |xi | ≤ ‖x‖2
δ√
d

when i /∈ Eδ .
Now consider j = arg max{|xi |, i = 1, . . . , d}. Combining all the results above, we then

get

(90)
∑
i �=j

ai + ci ≤ ∑
i �=j,i /∈Eδ,θixi>0

ai + ci ≤ (d − 1)2(1 + ε)b
π
2

δ√
d

‖x‖3
2.
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Now let us consider the quantity aj + cj . Since |xj | = max{|xi |, i = 1, . . . , d} we have
|xj | ≥ ‖x‖2√

δ
, that is, j ∈ E1. We distinguish between the following cases.

Case 1: θjxj > 0. In this case, from the previous calculations

aj + cj ≤ |xj |‖x‖2
2b

π
2

(
2(1 + ε) − cb−ε(1 − b−π+2ε)1

d

)

≤ −‖x‖3
2

1√
d

b
π
2

(
cb−ε(1 − b−π+2ε)1

d
− 2(1 + ε)

)
.

Case 2: θjxj ≤ 0. In this case, cj = 0 so

aj + cj = −2|xj |b− arctan(|xj |)(1 + ‖x‖2
2
)≤ −2‖x‖3

2
1√
d

b− π
2 ,

where we have used that xj ≥ ‖x‖2√
d

. In any case

(91) aj + cj ≤ −‖x‖3
2b

π
2

1√
d

min
{
cb−ε(1 − b−π+2ε)1

d
− 2(1 + ε),2b−π

}
.

Overall, combining (90) and (91) we have

d∑
i=1

ai + ci ≤ ‖x‖3
2
b

π
2√
d

[
(d − 1)2(1 + ε)δ

− min
{
cb−ε(1 − b−π+2ε)1

d
− 2(1 + ε),2b−π

}]
,

(92)

where δ as in (89) for a small value of η. Our goal is to show that the term in the square
bracket on the RHS is negative for small values of ε and η. To do this, it suffices to show that

(93) (d − 1)2δ < c
(
1 − b−π )1

d
− 2

and that

(94) (d − 1)2δ < 2b−π ,

where δ as in (89) for η small enough. We will first establish (93). To do this, it suffices to
prove that

(d − 1)2
(

2d

c(1 − b−π)

)1/2
< c
(
1 − b−π )1

d
− 2

⇐⇒ 23/2(d − 1)d1/2c−1/231/2 + 2 <
c

3d

since bπ = 3/2. To prove the last inequality, it suffices to prove that

2 <
1

2

c

3d

and that

23/2d3/2c−1/231/2 <
1

2

c

3d
.

The first equation is equivalent to asking that c > 12d which holds due to (87). The second
equation is equivalent to asking that c > 25/33d5/3 which also holds due to (87). This verifies
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(93). In order to prove (94) for small enough η, it suffices to establish that

d

(
2d

c(1 − b−π)

)1/2
< b−π ⇐⇒ 21/2d3/2c−1/231/2 <

2

3

⇐⇒ c >
27

2
d3,

which holds from (87). This confirms that the term in the square bracket on the RHS of (92)
is negative for small values of ε and η. Overall, from (92) we get that there exist K,k > 0
and such that for any ‖x‖2 ≥ K ,

(95)
d∑

i=1

ai + ci ≤ −k‖x‖3
2.

Furthermore, one can bound for any ‖x‖2 ≥ K ,

d∑
i=1

bi ≤ 2d log(b)bπ/2‖x‖2
2,

therefore, by increasing K appropriately, for any ‖x‖2 ≥ K ,

LV (x, θ) =
d∑

i=1

ai + bi + ci ≤ −k

2
‖x‖3

2.

Finally, one can bound V for all ‖x‖2 ≥ K by

V (x, θ) ≤ bπ/2‖x‖2
2 + bπ/2d,

so overall, by further appropriately increasing K , we get that for all ‖x‖2 ≥ K ,

(96) LV (x, θ) ≤ −k

4
‖x‖2V (x, θ),

while on {x : ‖x‖2 < K}, LV is bounded. This proves that V satisfies the drift condition
(66). The rest of the proof can be concluded using the same arguments as in Appendices D,
E and F.

The case where s(x) = (1 + ‖x‖2
2)

1/2 can be treated in a similar way.
Finally, one can prove Remark 3.6 by considering the function

V (x, θ) =
d∑

i=1

(
1 + (Bx)2

i

)
barctan(θi (Bx)i),

where B as in the Remark 3.6, and prove that V satisfies the drift condition (66) using similar
arguments. �

APPENDIX I: PROOF OF RESULTS IN SECTION 3.5

PROOF OF PROPOSITION 3.2. Introduce the space transformation f (x) = ∫ x0 1/s(u) du

and let M+ = limx→+∞ f (x) ∈ (0,+∞] and −M− = limx→−∞ f (x) ∈ [−∞,0). Consider
the process (Yt ,�t)t≥0, where Yt = f (Xt), defined on (−M−,M+) × {−1,+1}. When the
process starts from (y, θ) = (f (x), θ), it follows deterministic dynamics

dYt

dt
= f ′(Xt)

dXt

dt
= 1

s(Xt)
�ts(Xt) = �t,
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and

d�t

dt
= 0.

Furthermore, the random time T when the sign of �t changes, is the same time when the
direction changes for the (Xt ,�t)t≥0 process. Therefore,

P(T ≥ t) = exp
{
−
∫ t

0
λ(Xu, θ) du

}
= exp

{
−
∫ t

0
λ
(
f −1(Yu), θ

)
du

}
.

This proves that (Yt ,�t)t≥0 is a one-dimensional original Zig-Zag with unit speed function
and intensity rates λY given by

λY (y, θ) = λ
(
f −1(y), θ

)
= [θ(s(f −1(y)

)
U ′(f −1(y)

)− s′(f −1(y)
))]+

= [θ((U (f −1(y)
)− log s

(
f −1(y)

))′)]+ = [θŨ ′(y)
]+

,

where Ũ (y) = U(f −1(y)) − log s(f −1(y)). The result follows from standard results for the
original Zig-Zag process (see [6]). �

PROOF OF THEOREM 3.6. From Proposition 3.2 we know that if f (x) = ∫ x0 1/s(u) du,
then the process (Yt ,�t)t≥0 = (f (Xt),�t)t≥0 is an original Zig-Zag. From a separation of
variables technique (see Appendix B), the solution of the ODE

(97)

⎧⎨
⎩

dXt

dt
= θs(Xt),

X0 = x,

satisfies

(98) Xt = f −1(f (x) + θt
)
.

Let limx→+∞ f (x) = M+ ∈ (0,+∞] and limx→−∞ f (x) = −M− ∈ [−∞,0). Then the
ODE has finite explosion time when starting from some (x,+1) if and only if M+ < ∞,
whereas it has finite explosion time when starting from some (x,−1) if and only if M− < ∞.
This further means that if the deterministic dynamics starting from some (x, θ) explode in
finite time, then the deterministic dynamics starting from any other (x′, θ) explode in fi-
nite time too. We also note that the Zig-Zag process (Yt ,�t)t≥0 is defined on the space
(−M−,M+) × {±1}.

We will begin by proving that the process (Xt ,�t) is nonexplosive.
Let us first consider the case where the deterministic flow explodes when starting both

from (x,+1) and (x,−1). In that case the Zig-Zag process (Yt ,�t) is defined on the bounded
interval (−M−,M+). Due to Assumption 3.1 and due to Proposition D.1 we see that the pro-
cess a.s. cannot start from some point (x′, θ) and reach infinity without the occurrence of a
direction switch. This means that if ξ and ζ are as in (9) and (11), then ξ ≤ ζ . Therefore, the
only way for the process to explode is for ξ < ∞. Let us consider the event that ξ < ∞ in
order to show that it has probability zero. Let T1 < T2 < · · · be the switching times and let
limn→∞ Tn = ξ < ∞. The Tn’s are also the switching times of the Zig-Zag (Yt ,�t) process,
which is defined on the bounded interval (−M−,M+). Let YT1, YT2, . . . be the switching
points of the Zig-Zag process. Since these points lie in a bounded interval, there exists a sub-
sequence of these points that converges to some point z ∈ [−M−,M+]. Assume for contra-
diction that there exists a second accumulation point z′ �= z of the elements of {YT1, YT2, . . .}.
Since the Zig-Zag process moves with unit speed, it takes at least |z−z′|

2 time to get from a
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small neighbourhood of one accumulation point to a neighbourhood of the other. On the other
hand, we have assumed that the switching times Tn converge to a finite time ξ , therefore the
difference between successive switching times must converge to zero and there is not enough
time for the process to travel from one accumulation neighbourhood to the other. Therefore,
there exists a unique accumulation point z, meaning that limn→∞ YTn = z.

We distinguish between two cases for z. Assume first that z ∈ (−M−,M+). Since λ ∈ C0,
it is bounded in a neighbourhood of z. Using the same argument as in the proof of Lemma C.1
we see that the probability that there are infinitely many switches in finite time in a small
neighbourhood of z is zero. On the other hand, let us consider the case where z ∈ {−M−,M+}
and let us assume without loss of generality that z = M+. Combining Assumptions 3.1 and
3.2, we have lim infx→+∞(U(x) − log s(x))′ ≥ 0. This means that for large values of x,

λ(x,−1) = [s(x)U ′(x) − s′(x)
]− + γ (x)

= s(x)
[(

U(x) − log s(x)
)′]− + γ (x) = γ (x) ≤ γ̄ .

Therefore, there exists an ε > 0 such that if y ∈ (M+ − ε,M+) then

λY (y,−1) = λ
(
f −1(y),−1

)≤ γ̄ .

On the event that M+ is the accumulation point of switching times there are two possibilities.
Either the Y -process switches from −1 to +1 infinitely many times in finite time inside the
interval (M+ − ε,M+) or it does not. Since the process has a rate λY (y,−1) that is bounded
above in (M− − ε,M+) the first event has probability zero. The other event is that only
finitely many switches from −1 to +1 occur inside (M+ − ε,M+) until time ξ . In that case,
since M+ is an accumulation point for the switching times of Y , there are infinitely many
switches from +1 to −1 inside (M+ − ε

2 ,M+) in finite time. Each of these switches has to be
followed by a switch from −1 to +1. Since only finitely many will occur in (M+ − ε,M+),
this means that in finite time there will be infinitely many switches from +1 to −1 inside
(M+ − ε

2 ,M+) that have a successor switch from −1 to +1 outside (M+ − ε,M+). This
means that between any of these two successive switches the process has travelled from
M+ − ε

2 to M+ − ε without switching and since the process moves with unit speed this takes
at least ε

2 time. Therefore, there cannot be infinitely many switches of this form in finite time.
Therefore, we reach a contradiction assuming the second possibility. Overall this proves that
the process is not explosive.

The case where the flow starting from (x,+1) explodes in finite time but the one starting
from (x,−1) does not (and vice versa) can be handled in a similar way. In the case where
the flow does not explode either in direction +1 or −1, the SUZZ algorithm is by definition
nonexplosive. This finishes the proof of nonexplosivity.

We then observe that given nonexplosivity, for the proof of Theorem 3.2, only Assump-
tion 3.5 (which is equivalent to Assumption 3.1 in dimension one) is needed. We therefore
conclude that the process has μ as in (3) as invariant.

Let us now assume that the flow starting from any (x, θ) explodes in finite time. Following
the same argument as in the proof of Lemma 15 of [10] for the one-dimensional original Zig-
Zag, we get that the entire state space (−M−,M+) × {−1,+1} is petite for the transformed
Zig-Zag process. Therefore, the transformed Zig-Zag is uniformly ergodic and we get that
there exists a constant M > 0 and ρ < 1 and a measure ν such that for all f (x) ∈ (−M−,M+)

and any θ ∈ {±1}, ∥∥Pf (x),θ

((
f (Xt),�t

) ∈ ·)− ν(·)∥∥TV ≤ Mρt .

Since f is 1 − 1 we get that for all x ∈ R, θ ∈ {±1},∥∥Px,θ (Zt ∈ ·) − ν
(
f −1(·), ·)∥∥TV ≤ Mρt .
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Since μ is invariant for the process Zt , we get ν(f −1(·), ·) = μ(·). This means that for any
(x, θ) ∈ E, ∥∥Px,θ (Zt ∈ ·) − μ(·)∥∥TV ≤ Mρt,

which proves the uniform ergodicity result.
Let us now assume that both the flows starting from (x,+1) and (x,−1) do not explode

so the Zig-Zag Y -process is defined on R× {−1,+1}. Combining Assumptions 3.1 and 3.2,
as previously done in this proof we get that

lim inf
x→+∞λ(x,+1) = lim inf

x→+∞
∣∣s(x)U ′(x) − s′(x)

∣∣+ γ (x) ≥ A + γ (x),

where A as in (14). At the same time

lim sup
x→+∞

λ(x,−1) = γ (x).

Therefore

lim inf
x→+∞λ(x,+1) > lim sup

x→+∞
λ(x,−1),

and since λY (y, θ) = λ(f −1(y), θ) we get

lim inf
y→+∞λY (y,+1) > lim sup

y→+∞
λY (y,−1).

Using the same argument when x → −∞ we get that

lim inf
y→−∞λY (y,−1) > lim sup

y→−∞
λY (y,+1).

From Lemma 16 of [10] the last two inequalities imply that the Zig-Zag process Y is expo-
nentially ergodic. Using the same argument as when we concluded that the SUZZ process
with explosive dynamics is uniformly ergodic, we conclude now that the SUZZ process with
nonexplosive dynamics is exponentially ergodic.

The case where the flow (x,+1) explodes and the one from (x,−1) does not (and vice
versa) can be treated using a similar argument. �

APPENDIX J: PROOF OF PROPOSITION 4.1

PROOF OF PROPOSITION 4.1. The existence of φ such that φ(x, θ) ≤ CV (x, θ) and
such that Lφ(x, θ) = −g(x, θ) is guaranteed by Assumption 4.1. Consider

Mt = φ(Zt) − φ(Z0) +
∫ t

0
g(Zs) ds,

which is a local martingale by Dynkin’s formula. Assume that Z starts from the invariant
measure μ. Under Pμ, Mt is also a martingale since for any t > 0 and any s ≤ t , we have

Eμ

[|Ms |]≤ Eμ

[∣∣φ(Zs)
∣∣]+Eμ

[∣∣φ(Z0)
∣∣]+ ∫ s

0
Eμ

[∣∣g(Zs)
∣∣]ds

≤ 2Eμ

[|φ|]+ tEμ

[|g|]< ∞.

Furthermore Mt has stationary increments. From Theorem 2.1 of [34] we have

Mt√
t

t→∞−−−→ N
(
0,E
[
M2

1
])
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in distribution under Pμ. Also, under Pμ

φ(Zt) − φ(Z0)√
t

t→+∞−−−−→ 0,

since φ(Zt) has the same law as φ(Z0) and Eμ[φ[Zt ]] = Eμ[φ[Z0]] < ∞. Therefore

1√
T

∫ T

0
g(Zs) ds

T →∞−−−→ N
(
0,EZ0∼μ

[
M2

1
])

under Pμ. It suffices to prove that EZ0∼μ[M2
1 ] admits the expression in (42). Let Kt be the

number of switches before time t and let T1, T2, . . . be the times of the switches. We write

Mt = φ(Zt) − φ(Z0) −
∫ t

0
Lφ(Zs) ds

=
∫ t

0
�ss(Xs)φ

′(Zs) ds +
Kt∑
i=1

φ
(
Z(Ti)

)− φ
(
Z
(
T −

i

))

−
∫ t

0
�ss(Xs)φ

′(Zs) + λ(Zs)(φ(Xs,−�s) − φ(Xs,�s) ds

=
Kt∑
i=1

φ(XTi
,�Ti

) − φ(XTi
,−�Ti

) +
∫ t

0
λ(Zs)

(
φ(Xs,�s) − φ(Xs,−�s)

)
ds

and therefore (see [33], Theorem 23.6) the predictable quadratic variation of M is

〈M〉t =
∫ t

0
λ(Zt)

(
φ(Xs,�s) − φ(Xs,−�s)

)2
ds = 4

∫ t

0
λ(Zt)

(
ψ(Xs)

)2
ds,

where ψ(x) = 1
2(φ(x,+1) − φ(x,−1)). Therefore, from the definition of predictable

quadratic variation, under Pμ,

(99) γ 2
g = EZ0∼μ

[
M2

1
]= EZ0∼μ〈M〉1 = 4

∫
E

λ(x, θ)ψ2(x) dμ(x, θ).

It remains to write ψ in terms of g. This can be done since for all (x, θ) ∈ E, Lφ(x, θ) =
−g(x, θ) and therefore

θs(x)φ′(x, θ) + λ(x, θ)
(
φ(x,−θ) − φ(x, θ)

)= −g(x, θ).

Writing down the two equations for θ = ±1 and adding them up we get

s(x)
(
φ′(x,+1) − φ′(x,−1)

)− (λ(x,+1) − λ(x,−1)
)(

φ(x,+1) − φ(x,−1)
)

= −(g(x,+1) + g(x,−1)
)

and therefore

s(x)ψ ′(x) − (s(x)U ′(x) − s′(x)
)
ψ(x) = −g(x,+1) + g(x,−1)

2
.

Solving this first order linear ODE we get

ψ(x) = 1

2 exp{−U(x)}s(x)

∫ +∞
x

(
g(y,+1) + g(y,−1)

)
exp
{−U(y)

}
dy,

which when combined with (99) gives (42). �
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APPENDIX K: VERIFICATION OF ASSUMPTIONS FOR ONE-DIMENSIONAL
SIMULATED TARGETS

Here we will check that using the speed function (46) leads to exponentially or uniformly
ergodic algorithms when targeting some of the one-dimensional distributions in Section 4.1,
where we calculate the inverse algorithmic efficiency, and in Section 5, where we present
numerical simulations. In all cases we used SUZZ algorithms with refresh rate γ (x) = 0,
therefore, the upper bound constant γ̄ appearing in Assumption 3.2 is γ̄ = 0.

• d = 1, π(x) = 1
H

(1 + 1
3x2)−2, with speed s(x) = (1 + x2)

1+k
2 , k = 0,1,2. This Student(3)

target is used in Sections 4.1 and 5. Assumption 3.1 is easily verified since

lim|x|→∞π(x)s(x) = 0, for k = 0,1,2.

Furthermore, here U(x) = − logπ(x) = 2 log(1 + 1
3x2) + logH and U ′(x) = 4 x

3+x2 .

Straightforward calculations show that for |x| > 1 large enough such that 1+x2

3+x2 > 1 − 1
10 ,∣∣A(x)

∣∣= ∣∣s(x)U ′(x) − s′(x)
∣∣

= |x|(1 + x2) k−1
2

(
4

1 + x2

3 + x2 − 1 − k

)

≥ |x|(1 + x2) k−1
2

(
4 − 4

1

10
− 1 − k

)
≥ 6

10
√

2
> 0

since k ∈ [0,2] and |x|(1 + x2)−1/2 ≥ 1√
2
. Therefore Assumption 3.2 is satisfied for k =

0,1,2, with A = 6
10

√
2
.

Therefore, the assumptions of Theorem 3.6 are verified. Using similar calculations, we
conclude that the assumptions are verified for any Student target with ν degrees and speed

function of the form s(x) = (1 + x2)
1+k

2 as long as k < ν. The SUZZ(0) algorithm is then
exponentially ergodic and the SUZZ(k) algorithm with k > 0 is uniformly ergodic, due to
Theorem 3.6.

• d = 1, π(x) = 1
H

exp{−(1 + x2)1/4}, with speed s(x) = (1 + x2)
1+k

2 , k = 0,1,2,3. This
subexponential(0.5) target is used in Section 4.1. Assumption 3.1 is easily verified since

lim|x|→∞π(x)s(x) = 0, for k = 0,1,2,3.

Furthermore, here U(x) = − logπ(x) = (1+x2)1/4 + logH and U ′(x) = 1
2x(1+x2)−3/4.

Therefore,∣∣A(x)
∣∣= ∣∣s(x)U ′(x) − s′(x)

∣∣= |x|(1 + x2) k−1
2

(
1

2

(
1 + x2) 14 − (1 + k)

) |x|→∞−−−−→ +∞,

which verifies Assumption 3.2. Therefore, the assumptions of Theorem 3.6 are verified.
The SUZZ(0) algorithm is then exponentially ergodic and the SUZZ(k) algorithm with
k = 1,2,3 is uniformly ergodic.

• The d = 1 Exponential and Normal targets appearing in Section 4.1 can be shown to verify
the assumptions of Theorem 3.6 in similar way.
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