
The Annals of Applied Probability
2023, Vol. 33, No. 6A, 4366–4394
https://doi.org/10.1214/22-AAP1921
© Institute of Mathematical Statistics, 2023

RANKING-BASED RICH-GET-RICHER PROCESSES

BY PANTELIS P. ANALYTIS1,a
 iD, ALEXANDROS GELASTOPOULOS1,b

 iD AND

HRVOJE STOJIC2,c
 iD

1Department of Business and Management, University of Southern Denmark, apantelis@sam.sdu.dk, balex@sam.sdu.dk
2Department of Economics and Business, Pompeu Fabra University, chrvoje.stojic@upf.edu

We study a discrete-time Markov process Xn ∈ Rd for which the distri-
bution of the future increments depends only on the relative ranking of its
components (descending order by value). We endow the process with a rich-
get-richer assumption and show that, together with a finite second moments
assumption, it is enough to guarantee almost sure convergence of Xn/n. We
characterize the possible limits if one is free to choose the initial state and we
give a condition under which the initial state is irrelevant. Finally, we show
how our framework can account for ranking-based Pólya urns and can be
used to study ranking algorithms for web interfaces.

1. Introduction. Wealthy individuals tend to become even wealthier [52], popular web-
sites become even more popular [7], and highly cited papers overshadow less cited ones,
gaining more future citations [54, 55]. Social and technological systems that preserve and
amplify existing inequalities are said to be characterized by rich-get-richer dynamics [46, 54,
59]. In these systems, initial conditions and randomness early in time drastically affect the
course of future events—advantages obtained by agents early on are conserved and reinforced
[4, 16]. The above can result in socially objectionable outcomes, such as pervasive inequal-
ity in the distribution of wealth, and unfair outcomes where talented people or promising
technologies cannot compete with already established ones [49].

In many systems, and increasingly in the online world, the rich-get-richer dynamics de-
pend on the ranks of the various objects (people, options, institutions, etc.) in terms of some
quantity of interest. For example, companies or academic institutions might receive job ap-
plications based on some status ranking, which in turn can help these institutions retain their
status by employing qualified individuals [53]. Similarly, scientists might submit their work
to journals by taking into account the journal’s relative rank in terms of impact factor or some
other metric, thus highly ranked journals are more likely to publish work of good quality and
retain their position in the ranking [28, 40]. Last but not least, users of online interfaces are
more likely to click on entries that appear at the top of the screen, hence making these entries
appear more relevant to other users [33, 57]. In all of these cases, it is the ranking of the
different entities that confers an advantage to the more successful ones and thus drives the
rich-get-richer dynamics.

Although examples of systems characterized by ranking-based rich-get-richer dynamics
abound, we still do not understand their dynamics and long-term behavior. There are a couple
of lines of research that touch upon ranking-based processes. Hill et al. [27] study the case
of a Pólya urn with balls of d = 2 colors, one ball added at a time, and allow the probability
of adding a red ball to be a function of the proportion of red balls. In other words, there
is some function f : [0,1] → [0,1], such that the probability of the next ball being red is
f (Xn/n), where Xn denotes the number of red balls at time n. If f is taken to be constant in
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[0, 1
2) and in (1

2 ,1], then we get a ranking-based urn. In [27] it is shown that Xn/n converges
a.s., and then some results are given regarding the support of the limit (see also Section 3.2).
Importantly, a subset of the results in [27] allows a nowhere dense set of discontinuities for
f , so they apply to the ranking-based case. It is not obvious though how to generalize these
results to Pólya urns with more colors or other types of processes.

The usual generalization to d ∈ N is to have the probability of adding a ball of color i be
proportional to a function of the count (or proportion) of balls of that color only, thus not
allowing comparison of the counts of balls of different colors (for recent examples see [10,
12, 41]—see also [51, 60] for surveys of results). A notable exception is the work of Arthur
et al. [5], where the probabilities are allowed to depend on the whole vector of proportions of
balls of each color. More precisely, there is an urn function

(1) f : �d−1 → �d−1 where �d−1 :=
{
x ∈ [0,1]d,

∑
i

xi = 1

}
,

which takes as argument the vector of proportions of balls of each color, and its ith component
gives the probability of adding a ball of color i. The authors generalize some of the results in
[27] to any d ∈ N. In particular they show that under mild conditions on f the process Xn/n

(where Xn is now a vector) has positive probability of converging to any point θ ∈ �d−1 that
is a stable fixed point of f . According to the definition of stability used, in the ranking-based
case all fixed points whose coordinates are all distinct are necessarily stable (see Section 3.2
for details). However, it is not claimed that the stable fixed points of f are the only possible
limits for Xn/n. Also, convergence of Xn/n is shown only for certain special cases that do
not cover ranking-based urns.

Even in the cases where the above results are applicable to ranking-based systems, their
main limitation is that they are restricted to simple Pólya-type processes, that is, processes
whose components increase one at a time and the increments are binary. But in many sys-
tems with ranking-dependent dynamics (e.g., journal impact factors, university rankings) the
quantity of interest can take continuous values and the various components may change si-
multaneously. Thus, a more general setting is needed to model the dynamics of such systems.

In this work, we treat the problem in the context of (discrete-time) Markov processes, with
the dynamics depending explicitly on the ranking. Specifically, we consider a nonhomoge-
neous random walk in Rd , for which the distribution of the steps depends only on the ranking
of its components (descending order of their values). Thus, in between changes of ranking,
the process is an ordered random walk [18], which is a special case of a random walk in a
cone [14, 15, 17, 23, 24]. The literature on this topic provides estimates on the exit time of a
random walk from a ranking (cone) in the case that this time is almost surely finite, that is,
the ranking is bound to eventually change. Here, instead of focusing on exit times, we find
conditions under which the ranking eventually stabilizes, and we characterize the support of
the limit ranking. Given that the applications that we are interested in are systems with rich-
get-richer dynamics, the condition that we find for the ranking to stabilize is a ranking-based
reinforcement condition (Assumption 2.5), and it is a weaker version of the following state-
ment: conditioned on Xi

n > X
j
n , the difference Xi

n+1 −Xi
n has a larger mean than X

j
n+1 −X

j
n .

Our results can be summarized as follows: under the abovementioned ranking-based re-
inforcement assumption and a finite second moments assumption, we show that in the limit
n → ∞ the ranking of the components of the process stops changing almost surely (Theo-
rem 2.7). Independently of Assumption 2.5, we characterize the possible limits for the rank-
ing (Theorem 2.10). By “possible limit” we mean that the probability of converging to this
value is positive for some initial condition (distribution of X0). Proposition 2.20 gives a con-
dition under which the probability of converging to any of the possible limits is positive for
any initial condition.
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We also study the long-term behavior of Xn given that the ranking stabilizes. Conditioned
on retaining the same ranking for all n ≥ n0 ∈ N, in the limit n → ∞ the process behaves like
a regular random walk, satisfying the strong law of large numbers and central limit theorem
that one would expect (Propositions 2.14 and 2.16). We note that, although intuitive, the
validity of at least the central limit theorem is not trivial, since the finite-time conditional
distributions of Xn differ from the (unconditional) ones for the corresponding regular random
walk. Our results strengthen one of the few known results for random walks in cones with
possibly infinite exit time [24], Proposition 5.1.

In Section 3 we consider applications to rankings in web interfaces; in Section 3.1 we
show in detail how a commonly used recommendation algorithm gives rise to a ranking-
based process, and in Section 3.2 we specialize our results to ranking-based Pólya urns and
compare them to previously known results.

1.1. Ranking-based processes without rich-get-richer dynamics. Two more lines of re-
search have studied ranking-based processes, but focus on regimes that exclude rich-get-
richer dynamics.

Kemperman [39] studies the oscillating random walk, that is, a random walk in Rd whose
increment distribution changes on either side of a hyperplane that passes through the origin.
In the case of d = 1, this is equivalent to a ranking-based process with two components (by
setting Y = X1 − X2). The author finds necessary and sufficient conditions for the random
walk to be recurrent, which are nontrivial when some second moment does not exist. See
also [37], Section 2, [38], and [45], Section 5.3. As the name “oscillating” suggests, this
literature is concerned more with the recurrent case. This means that, if the first moments of
the increment distributions on both sides of 0 are finite, they must point towards 0. This is
quite the opposite of the rich-get-richer dynamics that we are interested in, since we want
the drift to change (when the ranking changes) in the direction that the random walk moves.
We are also not aware of any generalization of the oscillating random walk to d > 1 that can
account for the ranking of multiple items.

In the continuous-time case, there is some related literature started by Banner et al. [6] (see
also [29, 30, 32, 50] and references therein), which studies the case of Brownian particles with
rank-dependent drifts and diffusion coefficients, that is, processes satisfying

(2) dXi(t) = δri(t) dt + σri(t) dBi(t),

where ri(t) is the rank of component i at time t , and the δi’s and σi ’s are constants. This
literature studies the limit behavior of the spacings X(i) − X(i+1) of the rank statistics, under
some assumption that guarantees that they do not escape to infinity. For example, in [6] the
authors assume that

(3)
1

k
·

k∑
i=1

δi <
1

d − k
·

d∑
i=k+1

δi,

that is, the average drift of the largest k components is smaller than that of the smallest
d − k components, for all k, which is a necessary and sufficient condition for the process
(X(1) −X(2), . . . ,X(d−1) −X(d)) to be tight and converge to a stationary distribution [50]. As
in the case of the oscillating random walk in the previous paragraph, this is in stark contrast
with rich-get-richer dynamics, where being ranked higher should be beneficial. For the sake
of comparison, the analogue of our Assumption 2.5 in the above setting would be to require
δ1 > · · · > δd .
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2. Main results. We begin by defining what we mean by ranking (Section 2.1) and
ranking-based processes (Section 2.2). Sections 2.3 and 2.4 contain our two main results:
convergence of ranking and characterization of terminal rankings. In Section 2.5 we look at
the limit behavior of the process Xn itself and in Section 2.6 we consider the role of the initial
condition.

2.1. Rankings. For a finite set S, we denote by |S| its cardinality and by [S] =
{1, . . . , |S|} the set of the first |S| positive integers.

DEFINITION 2.1. Let S be a finite set. A ranking of S is a function r : S → [S] with the
property that for each a ∈ S,

(4) card
{
b ∈ S : r(b) < r(a)

} = r(a) − 1.

We will say that a is ranked higher than b if r(a) < r(b). Equation (4) requires that, for
each a ∈ S, exactly r(a) − 1 elements are ranked higher than a. Thus, we will call r(a) the
position or rank of a in the ranking r . Note that two elements a, b ∈ S, a �= b, can have the
same position in r , that is, we may have r(a) = r(b). In this case we will say that these ele-
ments are equally ranked by r . In Appendix A we show that rankings of a set S are equivalent
to weak orderings on S.

Any bijection r : S → [S] satisfies Eq. (4), hence it is a ranking. Such rankings will be
called strict. That is, strict rankings are such that no two elements of S are equally ranked.

Given a vector x = (x1, . . . , xd) ∈ Rd , we denote by rk(x) the unique ranking r on the
set [d] = {1, . . . , d} that satisfies r(i) < r(j) if and only if Xi > Xj , for any i, j ∈ [d]. It is
easy to check that there is indeed a unique such ranking, given by r(i) = card{j ∈ [d] : Xj >

Xi} + 1. The folk name for this map is the standard competition ranking.
We will denote by R(d) the set of all rankings of the set [d].

2.2. Ranking-based processes. Let (�,F,P) be a probability space and {Fn}n∈N a fil-
tration on it. Let ν be a probability distribution on Rd with finite second moments, and for
each r ∈ R(d) let μr be a probability distribution on Rd , also with finite second moments.
We consider a time-homogeneous Markov process Xn ∈ Rd , adapted to {Fn}n, with initial
distribution ν and with the law of its increments being μr , where r is the current ranking.
More precisely, the transition kernel μ is given by

(5) μ(x,B) = μrk(x)(B − x), x ∈ Rd,B ∈ B
(
Rd)

,

where B(Rd) denotes the Borel σ -algebra of Rd and B − x = {y ∈ Rd : y + x ∈ B} denotes
the translation of B by the vector −x. We will call such a process a (d-dimensional) ranking-
based process.

Equation (5) implies that for any B ∈ B(Rd),

(6) P(�Xn+1 ∈ B | Fn) = μrk(Xn)(B) a.s.,

where �Xn+1 = Xn+1 − Xn. In particular, the process is space-homogeneous within subsets
of Rd that correspond to a fixed ranking, that is, subsets of the form {x ∈ Rd : rk(x) = r},
for r ∈ R(d) (but it is not space-homogeneous in general). Equation (6) also implies that,
conditioned on the ranking at time n, �Xn+1 is independent of Fn, that is,

(7) �Xn+1 ⊥⊥
rk(Xn)

Fn.

We will use the shorthand notation μr(xi > xj ) to mean μr({x ∈ Rd : xi > xj }) and simi-
larly for other events that involve comparisons of components of x.
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For each r ∈ R(d), we denote by Zr = (Zr
1, . . . ,Z

r
d) a random variable with distribution

μr . This will be especially useful when considering differences of the form �Xi
n+1 −�X

j
n+1,

whose distribution cannot be directly expressed via μr . Note that conditioned on rk(Xn),
�Xi

n+1 − �X
j
n+1 has the distribution of Z

rk(Xn)
i − Z

rk(Xn)
j , that is, for each B ∈ B(Rd)

(8) P
(
�Xi

n+1 − �X
j
n+1 ∈ B

∣∣ rk(Xn)
) = P

(
Z

rk(Xn)
i − Z

rk(Xn)
j ∈ B

)
.

We denote by qr
i the mean of the ith component of the distribution μr , that is, qr

i = E[Zr
i ].

We will also use the vector notation qr = (qr
1, . . . , qr

d).
For the rest of the paper, we fix d ∈ N and a d-dimensional ranking based process Xn

adapted to {Fn}n, with the associated μr ’s, μ, Zr ’s, and qr
i ’s. Strictly speaking, the Markov

process X is described by the pair (ν,μ). However, we will often abuse terminology and
talk about a single process X while allowing the initial distribution ν to vary. We will use the
notation Pν for probabilities of events that depend on the initial distribution, but we will often
omit the subscript ν otherwise (as in Eq. (8)). Both the distributions μr and initial distribution
ν will always be assumed to have finite second moments.

We will also suppress the integer d in the notation for the set of all rankings of [d] and
write R = R(d).

2.3. Convergence of ranking. As n → ∞, the ranking of Xn may keep changing or it
might converge to some particular ranking r ∈ R (where R is endowed with the discrete
topology). We have the following definition.

DEFINITION 2.2. Let X be a ranking-based process. We say that rk(Xn) converges to
r ∈ R and write rk(Xn) → r (or limn→∞ rk(Xn) = r), if rk(Xn) = r for all sufficiently large
n, that is,

(9)
{
rk(Xn) → r

} = ⋃
n0∈N

∞⋂
n=n0

{
rk(Xn) = r

} = lim inf
n

{
rk(Xn) = r

}
.

We say that a ranking r ∈ R is terminal (for the transition kernel μ), if there exists some
initial distribution ν, such that

(10) Pν

(
rk(Xn) → r

)
> 0.

Otherwise, we say that r is transient.

Knowing that the ranking converges is useful because then we can predict the long-term
behavior of the process (see Section 2.5). We will therefore seek conditions under which the
ranking is guaranteed to converge.

As a first step, we ask the following question: if we know that Xi
n0

> X
j
n0 occurs for some

n0 ∈N, is it likely that Xi
n > X

j
n for all n > n0? The following definition and proposition give

a sufficient condition for the probability of this event to be positive and bounded away from
zero.

DEFINITION 2.3. Let {Xn}n∈N be a d-dimensional ranking-based process with the asso-
ciated distributions μr and means qr

1, . . . , qr
d , and let i, j ∈ [d].

• We say that i quasi-dominates j , if for any ranking r such that r(i) < r(j) we have either
qr
i > qr

j or μr(xi �= xj ) = 0.
• We say that i dominates j if we further have that for any ranking r such that r(i) = r(j),

either μr(xi > xj ) > 0 or μr(xi �= xj ) = 0.
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Note the relation between quasi-dominance and the (loosely defined) concept of rich-get-
richer dynamics: if i quasi-dominates j , then Xi

n increases on average faster than X
j
n when-

ever Xi
n is already larger (or they vary in exactly the same way). The extra condition for

dominance says that Xi
n has a nonzero probability of passing ahead after a tie (or, again, the

two components vary in exactly the same way).

PROPOSITION 2.4. Let i, j ∈ [d].
1. If i quasi-dominates j , then there exists some ε > 0 such that for any initial distribution

ν and any Fn-stopping time s, we have

(11) Pν

( ∞⋂
n=s

{
Xi

n > Xj
n

} ∣∣∣∣ Fs

)
≥ ε a.s. on {s < ∞} ∩ {

Xi
s > Xj

s

}
.

2. If i dominates j , we further have

(12) Pν

( ∞⋂
n=s

{
Xi

n ≥ Xj
n

} ∣∣∣∣ Fs

)
≥ ε a.s. on {s < ∞} ∩ {

Xi
s ≥ Xj

s

}
.

For a concrete case, if we take the a.s. constant stopping time s = n0, then Eq. (11) implies
in particular that

(13) Pν

( ∞⋂
n=n0

{
Xi

n > Xj
n

} ∣∣∣∣ Xi
n0

> Xj
n0

)
≥ ε,

whenever the expression on the left hand side makes sense (i.e., whenever Pν(X
i
n0

> X
j
n0) >

0).
We postpone the proof in order to get to our main result for this section. For ease of

reference we state the condition for that theorem separately:

ASSUMPTION 2.5 (Ranking-based reinforcement). For any pair of indices i, j ∈ [d],
either one of them dominates the other, or they quasi-dominate each other.

Note that it is possible for both i and j to dominate each other; the above assumption would
still be satisfied. This means that the “dominance” relation does not have to be trichotomous.
It does not have to be transitive either. However, a transitive trichotomous relation (i.e., a
strict total order) on [d] would satisfy Assumption 2.5.

EXAMPLE 2.6. Let Xn = (X1
n, . . . ,X

d
n) give the number of balls of each of d colors in

an urn. At each time step, a single ball is added, with probabilities for each color depending
on the ranking. Note that in this case qr

i is equal to the probability of adding a ball of color
i when the ranking is r (see also the first paragraph of Section 3.2). These probabilities will
be determined as follows: Each color has a propensity ai ≥ 0 to be chosen. Moreover, there
are real numbers λ1 > · · · > λd ≥ 0, with λi denoting an additive bonus to the propensity of
the color(s) currently ranked ith. More specifically, the probability of adding a ball of color
i, given that the current ranking is r , is

(14) qr
i = ai + λr(i)∑d

j=1(aj + λr(j))
.

We claim that this process satisfies Assumption 2.5. To see this, let i, j ∈ [d] and suppose
without loss of generality that ai ≥ aj . We have the following cases:
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• ai = aj : By Eq. (14) we have that qr
i > qr

j whenever i is ranked higher than j and vice
versa. That is, i and j quasi-dominate each other.

• ai > aj : We similarly get that color i quasi-dominates color j . Moreover, when i and j are
ranked equally (i.e., r(i) = r(j)), Eq. (14) gives qr

i > qr
j , that is, it is more likely for color

i to be chosen. This shows that i dominates j .

Thus our claim is proved.

We now state and prove our main theorem for this section.

THEOREM 2.7 (Convergence of ranking). Let Xn be a ranking-based process satisfying
Assumption 2.5. Then, rk(Xn) converges a.s., for any initial distribution ν.

PROOF. It is enough to show that for each pair of indices i, j , the relative ranking of
Xi

n and X
j
n eventually stops changing with probability 1. So let i �= j and, without loss

of generality, assume that i quasi-dominates j (see Assumption 2.5). Define s0 = 0 and
inductively tm = inf{n > sm−1 : Xi

n > X
j
n} and sm = inf{n > tm : Xi

n ≤ X
j
n}. Notice that

{sm = ∞} = ⋂∞
n=tm

{Xi
n > X

j
n}. Therefore, Proposition 2.4 applied to s = tm implies that

there exists some ε, not depending on m, such that

(15) Pν(sm = ∞ | Ftm) ≥ ε > 0, a.s.

on {tm < ∞,Xi
tm

> X
j
tm} = {tm < ∞}. In particular, if Pν(tm < ∞) > 0, then

(16) Pν(sm = ∞ | tm < ∞) ≥ ε

and

(17)

Pν(sm < ∞) = Pν

({tm < ∞} ∩ {sm < ∞})
= Pν(tm < ∞) · Pν(sm < ∞ | tm < ∞)

≤ (1 − ε) · Pν(tm < ∞)

≤ (1 − ε) · Pν(sm−1 < ∞).

Although we have assumed Pν(tm < ∞) > 0, Eq. (17) continues to hold even if Pν(tm <

∞) = 0, because then Pν(sm < ∞) = 0 as well.
By Eq. (17) and induction we have Pν(sm < ∞) ≤ (1 − ε)m, therefore

(18) Pν

( ⋂
m∈N

{sm < ∞}
)

= 0.

Hence, with probability 1, either Xi
n ≤ X

j
n finitely often (henceforth abbreviated f.o.) or

Xi
n > X

j
n f.o. If Xi

n ≤ X
j
n f.o., then Xi

n > X
j
n for all sufficiently large n, so we are done. Now

assume that Xi
n > X

j
n f.o. and separate two cases, according to Assumption 2.5:

• j also quasi-dominates i: We get similarly that either Xi
n ≥ X

j
n f.o. or Xi

n < X
j
n f.o. As

before, in the first case we are done. In the second case, we have both Xi
n < X

j
n and

Xi
n > X

j
n f.o., so that Xi

n = X
j
n for all sufficiently large n.

• i dominates j : Using the second part of Proposition 2.4 we get that either Xi
n < X

j
n f.o. or

Xi
n ≥ X

j
n f.o. The situation is identical to the first case. �
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To give some more intuition on Assumption 2.5, let us demonstrate how it might fail. One
way for this to happen is if a higher rank is harmful for the mean rate of increase. Then,
it could be the case, for example, that X1

n increases more slowly than X2
n whenever 1 
r 2

and vice versa, hence neither of the indices 1 or 2 would quasi-dominate the other. That
would describe a situation opposite to that of rich-get-richer dynamics, and more similar to
the oscillating random walk discussed in Section 1.1.

But the above is not the only case in which Assumption 2.5 can fail. The next example
describes a scenario in which being ranked higher is never harmful (everything else being
equal), but Assumption 2.5 still fails.

EXAMPLE 2.8. Suppose that there are two types of people in a population, denoted by
A and B , in proportions p > 0.5 and 1 − p respectively, and d = 3 types of items. People of
type A always prefer items 1 and 2 over item 3, while people of type B always prefer item
3 over the other items. Between items 1 and 2, everyone always prefers the most popular
one (and let’s say they prefer item 1 in case of a tie). At every step, we randomly pick an
individual from the population and ask them to choose among the three items. If we denote
by Xi

n the number of times that item i has been chosen up to individual n, then Xn can be
easily seen to be a ranking-based process. Since Xi

n increases by 1 whenever i is chosen, qr
i is

equal to the probability that item i is the most preferred one by a randomly picked individual,
given that rk(Xn) = r .

In particular, if X3
n > X1

n > X2
n, then there is a chance p that the randomly picked (n+1)th

agent is of type A and they will choose item 1, while with probability 1 −p the agent will be
of type B and they will choose item 3. Since p > 1 − p, for the ranking 3 
r 1 
r 2 we have
that qr

1 > qr
3 , implying that item 3 does not quasi-dominate item 1.

On the other hand, if X2
n > X1

n > X3
n, then item 3 is again chosen with probability 1−p (if

the next agent is of type B), while item 1 cannot be chosen, because an agent of type A would
prefer item 2. Therefore, for the ranking 2 
r 1 
r 3, we have that qr

1 < qr
3 , showing that 1

does not quasi-dominate item 3 either. Since neither of the indices 1 or 3 quasi-dominates the
other, Assumption 2.5 is not satisfied.

Given that there are natural examples of systems that do not satisfy Assumption 2.5, it is
worth considering whether this assumption is not only sufficient for the a.s. convergence of
rk(Xn) for any initial distribution (Theorem 2.7), but also necessary, or whether a similar but
weaker condition can be found that is both necessary and sufficient.

Let us consider the case d = 2 first and for simplicity let’s assume that μr(x1 > x2) > 0
and μr(x2 > x1) > 0 for all rankings r ∈ R. Then, Assumption 2.5 reduces to requiring that
index 1 quasi-dominates index 2 or vice-versa. Denote by id and −id the rankings 1 
id 2 and
2 
-id 1, respectively. It is clear that, if q id

1 ≤ q id
2 and q-id

1 ≥ q-id
2 both hold, then the process

will oscillate between X1
n > X2

n and X1
n < X2

n (see also [39], Corollary 4.7). Therefore, q id
1 >

q id
2 or q-id

1 < q-id
2 is necessary for convergence of rk(Xn). But this is exactly the definition

of quasi-dominance, hence in this case Assumption 2.5 is both necessary and sufficient for
rk(Xn) to converge, for any or all initial distributions.

The situation is different, though, for d > 2. For example, in Example 2.8 rk(Xn) con-
verges a.s., no matter the initial distribution, even though Assumption 2.5 is not satisfied. For
a more transparent case, consider the following example with d = 3:

• If component 3 is ranked third, then �Xn+1 = (2,1,0) a.s.
• In any other case, �Xn+1 = (1,2,0) a.s.

Here neither index 1 quasi-dominates index 2, nor vice versa. However, it is clear that, no
matter the initial distribution, eventually component 3 will be ranked third, hence �Xn+1 =
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(2,1,0) for all sufficiently large n, which implies that rk(Xn) converges a.s. to the ranking
1 
r 2 
r 3. Both of these examples show that Assumption 2.5 is not necessary for a.s.
convergence of rk(Xn) for every initial distribution ν.

What these examples suggest is that, in determining the long-term behavior of rk(Xn), the
distributions μr for some rankings r are irrelevant, because these rankings cannot be accessed
or they cannot be accessed infinitely often. However, the problem of figuring out which rank-
ings cannot be accessed infinitely often is intertwined with the long-term behavior of rk(Xn)

itself, which we want to characterize. For this reason, the task of finding a necessary and suf-
ficient condition for a.s. convergence of rk(Xn) in terms of the distributions μr is nontrivial,
and we leave it as an open question.

We now turn to the proof of Proposition 2.4. We will need the following lemma, which
generalizes a property of biased random walks to the case when the transition probabilities
are not constant, but vary in a finite set. Its proof is given in Appendix B. A related result is
obtained in [45], Theorem 2.5.12, by different methods.

LEMMA 2.9. Let (�,G,P) be a probability space. Let S be a finite set and for each
r ∈ S let νr be a distribution on R such that it either has positive mean or νr({0}) = 1. Let
{Rn}n∈N be a sequence of random elements in S and {Yn}n∈N a sequence of random variables
with Y0 = 0. Suppose that �Yn+1 is conditionally independent of {(Yk,Rk)}k≤n conditioned
on Rn, with distribution νRn . In other words, for any A ∈ B(R), n ∈ N,

(19) P
(
�Yn+1 ∈ A

∣∣ {
(Yk,Rk)

}
k≤n

) = νRn(A) a.s.

Then,

(20) P
( ⋂

n∈N
{Yn ≥ 0}

)
≥ ε > 0,

where ε depends only on the distributions νr , r ∈ S.

We note that if |S| = 1, then Lemma 2.9 reduces to the well-known result that a biased
one-dimensional random walk with positive mean has positive probability of never admitting
negative values (see [35], Corollary 9.17).

PROOF OF PROPOSITION 2.4.

1. Let s and ν be given and define τ = min{n ≥ s : Xi
n ≤ X

j
n} and

(21) Yn = Xi
τ∧n − X

j
τ∧n.

Note that Yn > 0 for all n ≥ s implies Xi
n > X

j
n for all n ≥ s. Therefore, it is enough to show

that, for some ε > 0 that does not depend on s or ν,

(22) Pν

( ∞⋂
n=s

{Yn > 0}
∣∣∣ Fs

)
≥ ε a.s. on {Ys > 0}.

We have

(23) �Yn+1 = 1τ>n · (
�Xi

n+1 − �X
j
n+1

)
,

where 1A denotes the indicator function of the set A. It follows that conditioned on rk(Xn)

and 1τ>n, �Yn+1 is independent of Fn (see Eq. (6)). Moreover, its conditional distribution is
equal to that of Z

rk(Xn)
i −Z

rk(Xn)
j in the case τ > n (by Eq. (8)), while �Yn+1 = 0 identically

otherwise.
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Let F ∈ Fs be any event with P(F ) > 0 and consider the probability measure Pν,F (·) =
Pν(· | F). We apply Lemma 2.9 for this measure and the sequence {Yn+s − Ys}n∈N, with
S =R � {α} (where α is an arbitrary new element) and

(24) Rn =
{
rk(Xn+s) if τ > n + s,

α otherwise.

The distributions νr in Lemma 2.9 are equal to the distributions of Zr
i − Zr

j for r ∈ R, while
να is the singular probability measure satisfying να({0}) = 1. Lemma 2.9 thus gives

(25) Pν

( ⋂
n∈N

{Yn+s − Ys ≥ 0}
∣∣∣ F

)
≥ ε > 0,

where ε depends only on the μr ’s (distributions of Zr ’s). Since F was arbitrary, we get

(26) Pν

( ⋂
n∈N

{Yn+s − Ys ≥ 0}
∣∣∣ Fs

)
≥ ε a.s.,

from where Equation (22) follows.
2. Let τ ′ = inf{n ≥ s : Xi

n �= X
j
n}. We may assume that Xi

s = X
j
s and τ ′ < ∞, since on

{Xi
s > X

j
s } part (a) applies, while on {τ ′ = ∞} the result holds trivially. On {Xi

s = X
j
s , τ ′ <

∞} we have
⋂∞

n=s{Xi
n ≥ X

j
n} = ⋂∞

n=τ ′ {Xi
n ≥ X

j
n} and τ ′ ≥ s + 1; it is therefore enough to

show that

(27) Pν

( ∞⋂
n=τ ′

{
Xi

n > Xj
n

} ∣∣∣ Fτ ′−1

)
≥ ε a.s.

or, by part (a),

(28) Pν

(
Xi

τ ′ > X
j

τ ′ | Fτ ′−1
) ≥ ε′ a.s.,

for some ε′ > 0 that does not depend on ν or s.
Let R′ = {r ∈ R : r(i) = r(j),μr(xi > xj ) > 0} be the subset of rankings that rank i and

j equally, but that give positive probability to i to pass ahead on the next step. Since by
assumption all other rankings with r(i) = r(j) satisfy μr(xi �= xj ) = 0, rk(Xn) must take a

value in R′ before we can have Xi
n �= X

j
n . That is, rk(Xτ ′−1) ∈ R′ a.s., hence also

(29)

P
(
Xi

τ ′ > X
j

τ ′ | Fτ ′−1
) = P

(
�Xi

τ ′ > �X
j

τ ′ | Fτ ′−1
)

= μrk(Xτ ′−1)(xi > xj )

≥ min
r∈R′ μ

r(xi > xj ) > 0 a.s.,

where the second equality follows from Eq. (6). �

2.4. Terminal rankings. Theorem 2.7 says that Assumption 2.5 guarantees convergence
of rk(Xn), but it doesn’t say anything about the possible limits. In this section we deal with
the question of what the possible limit rankings are. Recall that a ranking is terminal if
Pν(rk(Xn) → r) > 0 for some probability distribution ν (Definition 2.2). Our main result
in this section is the following:

THEOREM 2.10 (Terminal rankings). Let Xn be a d-dimensional ranking-based process
with the associated distributions μr and means qr

1, . . . , qr
d . A ranking r is terminal if and only

if, for any i, j ∈ [d]:
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• If r(i) = r(j) then μr(xi �= xj ) = 0.
• If r(i) < r(j) then either qr

i > qr
j or μr(xi �= xj ) = 0.

Let us give some intuition behind Theorem 2.10. If rk(Xn) → r , then there exists some
n0 ∈ N such that rk(Xn) = r for all n ≥ n0, so �Xn+1 is distributed according to μr for all
n ≥ n0. In particular, for any i ∈ [d], the �Xi

n+1’s behave like i.i.d. random variables with
mean qr

i and finite variance, hence Xi
n/n → qr

i (see also Proposition 2.14). Therefore, if r

ranks i higher than j , for the ranking to remain equal to r , we must have that qr
i > qr

j . Note

that in particular qr
i = qr

j is not enough. An exception to the latter is if �Xi
n+1 = �X

j
n+1 a.s.

(equivalently μr(xi �= xj ) = 0), so that the two components change in exactly the same way.
On the other hand, if i and j are ranked equally, then we must necessarily have �Xi

n+1 =
�X

j
n+1 a.s. for the ranking not to change. The above theorem says that these conditions are

not only necessary, but are also sufficient for the ranking to have a positive probability to
remain the same for all n ≥ n0.

Theorem 2.10 characterizes all terminal rankings by an easy to check criterion. Note that it
does not require Assumption 2.5. However, without that assumption rk(Xn) is not guaranteed
to converge (see Theorem 2.7). Also note that even if we know that r is terminal, we don’t
know whether Pν(rk(Xn) → r) > 0 for a specific initial distribution ν. This is the topic of
Section 2.6 (see in particular Proposition 2.20).

If we can exclude the case μr(xi �= xj ) = 0, then we get the following simplification of
Theorem 2.10.

COROLLARY 2.11. Suppose that μr(xi �= xj ) > 0 for all i, j ∈ [d] and all r ∈ R. Then,
a ranking r is terminal if and only if it is a strict ranking and

(30) qr
r−1(1)

> qr
r−1(2)

> · · · > qr
r−1(d)

,

where r−1 denotes the inverse of r .

PROOF. The case μr(xi �= xj ) = 0 is excluded by assumption, so by Theorem 2.10 a
ranking is terminal if and only if for any i, j with r(i) < r(j) we have qr

i > qr
j , or equiva-

lently, if for any i < j , qr
r−1(i)

> qr
r−1(j)

. �

For the proof of Theorem 2.10 we are going to need a construction that will be used again
later on. Specifically, given a ranking-based process Xn and a ranking r ∈ R, we construct
another process Yn that is identical to Xn up to some point n0 ∈N, and it has i.i.d. increments
afterwards with distribution μr . It has the additional property that it remains equal to Xn as
long as their common ranking remains equal to r . The benefit of this is that we can work with
the simpler process Yn and then transfer results to Xn.

LEMMA 2.12. For any r ∈ R and any n0 ∈ N, there exists a process Yn ∈ Rd and a
filtration Gn ⊃ Fn such that:

i. Yn = Xn for all n ≤ n0.
ii. {�Yn}n≥n0+1 is a sequence of i.i.d. random vectors with distribution μr . Moreover,

Yn ∈ Gn for each n ∈ N, and �Yn+1 ⊥⊥ Gn for each n ≥ n0.
iii. For any n > n0, on both

⋂n−1
k=n0

{rk(Xk) = r} and
⋂n−1

k=n0
{rk(Yk) = r} we have Yk = Xk

a.s. for k = 0,1, . . . , n. In particular, on both
⋂∞

k=n0
{rk(Xk) = r} and

⋂∞
k=n0

{rk(Yk) = r} we
have Yn = Xn a.s. for all n ∈N.
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A process Yn that satisfies the above properties (for some filtration Gn) will be said to
(r, n0)-mimic Xn.

PROOF. Let {Un}n∈N be a sequence of i.i.d. random vectors in Rd with distribution μr ,
independent of F∞, and let Gn = σ(U1, . . . ,Un,Fn) and τ = min{n ≥ n0 : rk(Xn) �= r}.
Define

(31) Yn = Xτ∧n +
n∑

m=τ+1

Um

with the convention that the sum is 0 if τ + 1 > n. Property (i) follows from the fact that
τ ≥ n0. For property (ii), note that since {τ ≤ n} is Fn-measurable, we get Yn ∈ Gn. Moreover,

(32) �Yn+1 = 1τ>n · �Xn+1 + 1τ≤n · Un+1.

In particular, for any n ≥ n0 and any S ∈ B(Rd), on {τ > n} we have

(33) Pν(�Yn+1 ∈ S | Gn) = Pν(�Xn+1 ∈ S | Gn) = μrk(Xn)(S) = μr(S) a.s.,

where the second equality follows from Eq. (6). Also, on {τ ≤ n} we have

(34) Pν(�Yn+1 ∈ S | Gn) = Pν(Un+1 ∈ S | Gn) = Pν(Un+1 ∈ S) = μr(S) a.s.

Combining the last two equations we get

(35) Pν(�Yn+1 ∈ S | Gn) = μr(S) a.s., n ≥ n0, S ∈ B
(
Rd)

.

Therefore, the sequence {�Yn+1}n≥n0 is i.i.d. and, for each n ≥ n0, �Yn+1 has distribution
μr and is independent of Gn, which completes the proof of (ii).

For property (iii), let m ≤ n and note that on the set {Ym �= Xm} we have τ < m < ∞
and by definition τ ≥ n0, Yτ = Xτ , and rk(Yτ ) = rk(Xτ ) �= r . Therefore, the intersection of
{Ym �= Xm} with both

⋂n−1
k=n0

{rk(Xk) = r} and
⋂n−1

k=n0
{rk(Yk) = r} is empty a.s. �

PROOF OF NECESSITY FOR THEOREM 2.10. Let r be a terminal ranking. Then, there
exists some initial distribution ν and some n0 ∈N such that Pν(A) > 0, where

(36) A =
∞⋂

n=n0

{
rk(Xn) = r

}
.

Let Yn (r, n0)-mimic Xn. By Lemma 2.12(iii) we have

(37)
∞⋂

n=n0

{
rk(Yn) = r

} =
∞⋂

n=n0

{
rk(Xn) = r

} = A.

Fix some i, j ∈ [d] and note that the sequence dn = Y i
n − Y

j
n , n ≥ n0, performs a random

walk, starting at dn0 = Y i
n0

− Y
j
n0 = Xi

n0
− X

j
n0 , and with the step �dn+1 = dn+1 − dn having

the same distribution as Zr
i − Zr

j (see Eq. (8)). In particular, for any n ≥ n0,

(38) Pν(�dn+1 �= 0) = P
(
Zr

i �= Zr
j

) = μr(xi �= xj )

and

(39) Eν[�dn+1] = E
[
Zr

i − Zr
j

] = qr
i − qr

j .

If μr(xi �= xj ) �= 0, then the random walk is nontrivial, and in particular
⋂∞

n=n0
{Y i

n =
Y

j
n } = ⋂∞

n=n0
{dn = 0} has probability 0. If r(i) = r(j), this means that

⋂∞
n=n0

{rk(Yn) = r}
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has probability 0, contradicting the fact that Pν(A) > 0. We conclude that if r(i) = r(j), then
μr(xi �= xj ) = 0.

For the second assertion, assume that in addition to μr(xi �= xj ) �= 0, we also have
qr
i ≤ qr

j . This means that either dn → −∞ or the random walk is recurrent. In either

case, Pν(
⋂∞

n=n0
{Y i

n > Y
j
n }) = Pν(

⋂∞
n=n0

{dn > 0}) = 0. Therefore, if r(i) < r(j), then
Pν(

⋂∞
n=n0

{rk(Yn) = r}) = 0, again contradicting the fact that Pν(A) > 0. We conclude that
if r(i) < r(j), then either μr(xi �= xj ) = 0 or qr

i > qr
j . �

For the sufficiency part of Theorem 2.10, we are going to prove the following more general
result.

LEMMA 2.13 (Terminal rankings sufficient condition). Let r ∈ R and define A =
{(i, j) ∈ [d] × [d] : r(i) < r(j)} and A′ = {(i, j) ∈ [d] × [d] : r(i) = r(j)}. Assume that for
any (i, j) ∈ A, either qr

i > qr
j or μr(xi �= xj ) = 0, and that for any (i, j) ∈ A′, μr(xi �= xj ) =

0. Then, there exists some M > 0, such that for any initial distribution ν and any n0 ∈ N that
satisfy

(40) Pν

( ⋂
(i,j)∈A

{
Xi

n0
> Xj

n0
+ M

}
,

⋂
(i,j)∈A′

{
Xi

n0
= Xj

n0

})
> 0,

we have

(41) Pν

( ∞⋂
n=n0

{
rk(Xn) = r

})
> 0.

PROOF. Consider the collection of random variables {Ui
n}i∈[d]

n∈N , independent of F∞, such
that for each i, {Ui

n}n are i.i.d. with distribution equal to that of Zr
i . For any pair (i, j) ∈ A,

Ui
n − U

j
n is either identically zero (if μr(xi �= xj ) = 0) or it has positive mean and finite

variance (if qr
i − qr

j > 0). In the latter case, by the strong law of large numbers,
∑n

m=1(U
i
m −

U
j
m) → ∞ a.s. as n → ∞. Therefore, in both cases,

∑n
m=1(U

i
m − U

j
m) is bounded below a.s.

Hence, there exists some M > 0, such that for any pair (i, j) ∈ A,

(42) P

(
min
n∈N

n∑
m=1

(
Ui

m − Uj
m

) ≤ −M

)
<

1

d2 .

Now let the initial distribution ν and n0 ∈ N satisfy Eq. (40) for the value of M specified in
Eq. (42), that is, Pν(D) > 0, where

(43) D = ⋂
(i,j)∈A

{
Xi

n0
> Xj

n0
+ M

} ∩ ⋂
(i,j)∈A′

{
Xi

n0
= Xj

n0

}

We want to show that Pν(
⋂∞

n=n0
rk(Xn) = r) > 0. Let Yn be a process that (r, n0)-mimics Xn

(see Lemma 2.12) and note that Eq. (43) implies

(44) D = ⋂
(i,j)∈A

{
Y i

n0
> Yj

n0
+ M

} ∩ ⋂
(i,j)∈A′

{
Y i

n0
= Y j

n0

}
.

For any (i, j) ∈ A′, n ≥ n0, we have Pν(�Y i
n+1 �= �Y

j
n+1) = μr(xi �= xj ) = 0 by Lem-

ma 2.12(ii) and by assumption, hence on the set D we have

(45) Y i
n = Y j

n for all (i, j) ∈ A′, n ≥ n0.
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We further define

(46)

B(i,j) = ⋂
n≥n0

{(
Y i

n − Y j
n

) − (
Y i

n0
− Y j

n0

)
> −M

}
, (i, j) ∈ A,

B = ⋂
(i,j)∈A

B(i,j).

Note that on the set D ∩B(i,j) we have Y i
n > Y

j
n for all n ≥ n0 and any (i, j) ∈ A. Combining

this with Eq. (45), we get that on the set D ∩ B , it holds that rk(Yn) = r for all n ≥ n0,
which implies rk(Xn) = r for all n ≥ n0 (Lemma 2.12(iii)). It is therefore enough to show
that Pν(D ∩ B) > 0.

Note that for each (i, j) ∈ A, {(Y i
n+n0

−Y
j
n+n0

)− (Y i
n0

−Y
j
n0)}n∈N has the same distribution

as {∑n
m=1(U

i
m − U

j
m)}n∈N, therefore Eq. (42) implies that Pν(B(i,j)) > 1 − 1/d2, and since

card(A) < d2, we get Pν(B) > 0. By assumption we also have Pν(D) > 0. Finally observe
that by Lemma 2.12(ii), D ∈ Gn0 and B ⊥⊥ Gn0 , hence Pν(D∩B) = Pν(D) ·Pν(B) > 0, which
completes the proof. �

PROOF OF SUFFICIENCY FOR THEOREM 2.10. By assumption r satisfies the conditions
of Lemma 2.13. Let M be as in that lemma and define the initial distribution ν as follows:
Xi

0 = (d − r(i)) · (M + 1) a.s. Then, r(i) = r(j) implies Xi
0 = X

j
0 a.s., while r(i) < r(j)

implies Xi
0 > X

j
0 +M a.s. That is, ν satisfies Eq. (40) with n0 = 0, hence Pν(

⋂∞
n=0{rk(Xn) =

r}) > 0, in particular r is terminal. �

2.5. Limit theorems for Xn. In this section we prove a number of results regarding the
long-term behavior of the process Xn, if we know that rk(Xn) eventually stabilizes. Note that
as long as rk(Xn) remains constant and equal to r , Xn behaves like a regular random walk
with increment distribution μr . We thus expect the standard limit laws to apply. One has to
be careful, however, because the distribution of the paths of Xn changes when conditioned
on the event

⋂∞
n=n0

{rk(Xn) = r}. Still, it turns out that in the limit Xn behaves as expected.

PROPOSITION 2.14 (Strong law of large numbers). For any r ∈R,

(47) lim
n→∞

Xn

n
= qr a.s. on the set

{
lim

n→∞ rk(Xn) = r
}
.

PROOF. Since by definition {rk(Xk) → ∞} = ⋃
n0∈N

⋂
k=n0

{rk(Xk) = r}, it is enough
to show that

(48) lim
n→∞

Xn

n
= qr a.s. on the set

⋂
k=n0

{
rk(Xk) = r

}

for any n0 ∈ N that satisfies Pν(
⋂

k=n0
{rk(Xk) = r}) > 0. Fix such an n0 and let Yn be a

process that (r, n0)-mimics Xn (see Lemma 2.12). Since {�Yn}n≥n0+1 is an i.i.d. sequence
with mean qr , we have by the strong law of large numbers that Yn/n → qr a.s. Hence,
Equation (48) follows from Lemma 2.12(iii). �

We also have the following partial converse.

PROPOSITION 2.15. If Xn/n → x ∈ Rd and the components of x are all distinct, then
rk(Xn) → rk(x) and x = qrk(x).



4380 P. P. ANALYTIS, A. GELASTOPOULOS AND H. STOJIC

PROOF. Let i, j ∈ [d] and assume without loss of generality that xi > xj . Then, for large

enough n, Xi
n > X

j
n , so rk(Xn) ranks i higher than j . Since this is true for all pairs i, j , we

get that for large enough n, rk(Xn) = rk(x), hence rk(Xn) → rk(x). By Proposition 2.14,
Xn/n → qrk(x). �

Next we state some central limit theorem-type results. We denote by ξ r a centered multi-
variate normal distribution on Rd with covariance matrix equal to that of μr .

PROPOSITION 2.16 (Central limit theorem - 1). Let ν be some initial distribution, r ∈ R,
and n0 ∈N, such that Pν(

⋂∞
k=n0

{rk(Xk) = r}) > 0. Then, for any A ∈ B(Rd),

(49) lim
n→∞Pν

(
Xn − n · qr

√
n

∈ A

∣∣∣∣
∞⋂

k=n0

{
rk(Xk) = r

}) = ξ r(A).

In particular, if Pν(limk→∞ rk(Xk) = r) > 0, then

(50) lim
n→∞Pν

(
Xn − n · qr

√
n

∈ A

∣∣∣∣ lim
k→∞ rk(Xk) = r

)
= ξ r(A).

We postpone the proof in order to state the following corollary, which strengthens Propo-
sition 5.1 in [24].

COROLLARY 2.17 (Central limit theorem - 2). For any initial distribution ν, A ∈ B(Rd),
n0 ∈N, and r ∈ R,

(51)

lim
n→∞Pν

(
Xn − n · qr

√
n

∈ A,

n⋂
k=n0

{
rk(Xk) = r

})

= Pν

( ∞⋂
k=n0

{
rk(Xk) = r

}) · ξ r(A).

For the sake of comparison, Proposition 5.1 in [24] gives only an exponential rate for
the quantity Pν(

|Xn−n·qr |√
n

∈ A,
⋂n

k=0{rk(Xk) = r}), for sets A of a certain type, and under a

nondegeneracy assumption on μr . See also [22], Corollary, for a related result.

PROOF. Since
⋂n

k=n0
{rk(Xk) = r} → ⋂∞

k=n0
{rk(Xk) = r}, we have

(52)

lim
n→∞Pν

(
Xn − n · qr

√
n

∈ A,

n⋂
k=n0

{
rk(Xk) = r

})

= lim
n→∞Pν

(
Xn − n · qr

√
n

∈ A,

∞⋂
k=n0

{
rk(Xk) = r

})
.

The result now follows from Eq. (49). �

For the proof of Proposition 2.16 we are going to need a couple of lemmas whose proofs
are given in Appendix B.

LEMMA 2.18. Let An, n ∈ N, and A be measurable sets in a probability space, each
with positive probability, and suppose that An → A a.s. (i.e., P((An\A) ∪ (A\An)) → 0).
Then, P(S | An) → P(S | A) uniformly in S ∈ F .
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LEMMA 2.19. Let am,n ∈ R, m,n ∈ N, and suppose that limm→∞ am,n = an ∈ R uni-
formly in n, and limn→∞ am,n = a ∈R for all m ∈ N. Then, limn→∞ an = a.

PROOF OF PROPOSITION 2.16. Let Yn be a process that (r, n0)-mimics Xn (see
Lemma 2.12). Since {�Yn}n≥n0+1 is a sequence of i.i.d. random vectors with distribution
μr , we have by the central limit theorem,

(53) Pν

(
Yn − n · qr

√
n

∈ A

)
→ ξ r(A).

In fact, Eq. (53) can be strengthened: since �Yn+1 ⊥⊥ Fm for any n ≥ m ≥ n0, we have that
for any m ≥ n0 and any x ∈R,

(54) Pν

(
Yn − n · qr

√
n

∈ A

∣∣∣∣
m⋂

k=n0

{
rk(Xk) = r

}) n→∞→ ξ r(A).

Furthermore, since
⋂m

k=n0
{rk(Xk) = r} m→∞−→ ⋂∞

k=n0
{rk(Xk) = r}, Lemma 2.18 implies that

(55)

Pν

(
Yn − n · qr

√
n

∈ A

∣∣∣∣
m⋂

k=n0

{rk(Xk) = r

)

m→∞→ Pν

(
Yn − n · qr

√
n

∈ A

∣∣∣∣
∞⋂

k=n0

{
rk(Xk) = r

})

uniformly in n. Combining this with Eq. (54) and Lemma 2.19 we get

(56) Pν

(
Yn − n · qr

√
n

∈ A

∣∣∣∣
∞⋂

k=n0

{
rk(Xk) = r

}) → ξ r(A),

as n → ∞. By Lemma 2.12(iii), this is equivalent to Eq. (49). Equation (50) now follows
from Eq. (49) and Definition 2.2. �

2.6. Terminal rankings and initial distributions. Although Theorem 2.10 gives the pos-
sible limits of the ranking for a ranking-based process in principle, it doesn’t say for which
pairs of initial distributions ν and terminal rankings r we have Pν(rk(Xn) → r) > 0. To see
that for the same terminal ranking r it is possible to have Pν(rk(Xn) → r) > 0 for some
initial distributions ν and not for others, consider a deterministic system with d = 2 and such
that

(57)
P

(
�Xn+1 = (1,0) | rk(Xn) = id2

) = 1 and

P
(
�Xn+1 = (0,1) | rk(Xn) �= id2

) = 1,

where id2 is the identity function on the set {1,2}. In words, if X1
n > X2

n, then X1
n increases

by 1 and X2
n remains constant. If X1

n ≤ X2
n, then X2

n increases by 1 and X1
n remains constant.

Clearly, if we start at X0 = (0,0), rk(Xn) → r a.s., where r(1) = 2, r(2) = 1, while if we
start at X0 = (1,0), rk(Xn) → id2 a.s.

From the above example it might seem that the only reason that a strict ranking r satisfying
qr
r−1(1)

> qr
r−1(2)

> · · · > qr
r−1(d)

might fail to satisfy Pν(rk(Xn) → r) > 0 is that it is not

reachable from the given initial distribution, in the sense that Pν(
⋃∞

n=1{rk(Xn) = r}) = 0.
However, this is not the only case. For example, let d = 3, and suppose that

(58)

P
(
�Xn+1 = (5,−2,0) | rk(Xn) = id3

) = 1/2,

P
(
�Xn+1 = (−3,3,0) | rk(Xn) = id3

) = 1/2 and

P
(
�Xn+1 = (0,0,1) | rk(Xn) �= id3

) = 1.
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In words, whenever X1
n > X2

n > X3
n, with probability 1/2 the first component will increase

by 5 and the second will decrease by 2, and also with probability 1/2 the first component will
decrease by 3 and the second will increase by 3, while the last component remains constant
a.s. For any other ranking, the third component increases by 1 and the rest remain constant
a.s.

Now suppose we begin at X0 = (2,1,0) a.s., so that rk(X0) = id3 a.s. Clearly, after the
first step the ranking will necessarily change and after that �Xn = (0,0,1) deterministically,
so that for large n we will have either X3

n > X1
n > X2

n or X3
n > X2

n > X1
n. We see that despite

the fact that rk(X0) = id3 and q
id3
1 > q

id3
2 > q

id3
3 , for the specific initial distribution ν we get

Pν(rk(Xn) → id3) = 0.
The above examples might seem discouraging. We have the following positive result,

which states that such situations do not arise if a certain condition is satisfied. The condition
roughly says that, no matter the ranking, there is some positive probability for any component
to increase faster than the rest, and for the increments of the rest to follow any given nonstrict
order.

PROPOSITION 2.20. Suppose that for any permutation σ of [d] and any r ′ ∈ R,

(59) μr ′
(xσ1 > xσ2 ≥ xσ3 ≥ · · · ≥ xσd

) > 0.

Then, for any initial distribution ν and any terminal ranking r ,

(60) Pν

(
rk(Xn) → r

)
> 0.

REMARK 2.21. The condition of Proposition 2.20 implies that μr(xi �= xj ) > 0 for all
i, j ∈ [d] and r ∈ R, which in particular implies the condition of Corollary 2.11. Conse-
quently, under the condition of Proposition 2.20, only strict rankings may be terminal.

EXAMPLE 2.22. In a ranking-based Pólya urn, with probability one, exactly one of the
components of �Xn+1 is 1 and the rest are 0 (see also Section 3.2). Therefore, Eq. (59) is
satisfied if and only if for any ranking there is positive probability of adding a ball of any
given color. In Example 2.6, this is equivalent to either λd > 0 or ai > 0 for all i ∈ [d].

More generally, for processes that change one component at a time, Eq. (59) is satisfied if
and only if, for any ranking, every component has nonzero probability of increasing.

PROOF OF PROPOSITION 2.20. By Remark 2.21 we may assume that r is a strict rank-
ing. Also, by renaming the indices, we may assume that r is the identity map on [d], that is,
r(i) = i for all i ∈ [d]. Let M > 0 be as in Lemma 2.13 and define

(61)

Cj
n = {

Xj
n > Xj+1

n + M
}
, j ∈ [d − 1], n ∈ N,

Bi
n =

d−1⋂
j=i

Cj
n, i ∈ [d − 1], n ∈ N,

and Bd
n = �, n ∈ N. By Lemma 2.13, it is enough to show that Pν(

⋃
n∈N B1

n) > 0. We will
use (backwards) induction on i to show that Pν(

⋃
n∈N Bi

n) > 0 for all i ≤ d , with the base
case i = d being trivially true. Suppose then that Pν(

⋃
n∈N Bi+1

n ) > 0 or, equivalently, that
there exists some n ∈N such that Pν(B

i+1
n ) > 0. Fix such an n. From Eq. (59) and continuity,

there exists some ε > 0 such that μr ′
(Ai) > 0 for all r ′ ∈ R, where

(62) Ai = {
x ∈ Rd : xi − ε ≥ xi+1 ≥ xi+2 ≥ · · · ≥ xd

}
.
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For any j ∈ [d − 1] and k ∈ N, define

(63) D
j
m,k = {

X
j
m+k − Xj

m ≥ X
j+1
m+k − Xj+1

m

}
and

(64) D
j
m,k(ε) = {

X
j
m+k − Xj

m − ε ≥ X
j+1
m+k − Xj+1

m

}
.

In particular, D
j
m,1 = {�X

j
m+1 ≥ �X

j+1
m+1}, and similarly for D

j
m,1(ε). Therefore, from

Eq. (6) we get that for any m ∈ N,

(65)
Pν

(
Di

m,1(ε),

d−1⋂
j=i+1

D
j
m,1

∣∣∣∣ Fm

)
= μrk(Xm)(Ai)

≥ min
r ′∈Rμr ′

(Ai) > 0 a.s.

Let K ∈ N be such that

(66) Pν

(
FK ∩ Bi+1

n

)
> 0,

where

(67) FK = {
Xi

n − Xi+1
n > M − Kε

}
.

This is always possible, since
⋃

K∈N FK = � and Pν(B
i+1
n ) > 0 by assumption. Applying

Eq. (65) for m = n,n + 1, . . . , n + (K − 1) and using D
j
m,1 ∈ Fm+1, it easily follows that

(68) Pν

(
Di

n,K(Kε),

d−1⋂
j=i+1

D
j
n,K

∣∣∣∣ Fn

)
> 0 a.s.

Observe that

(69)
Cj

n ∩ D
j
n,K ⊂ C

j
n+K, j = i + 1, . . . , d − 1

FK ∩ Di
n,K(Kε) ⊂ Ci

n+K.

Combining these two relations and the definition of Bi
n we get

(70)

Pν

(
Bi

n+K

) = Pν

(
d−1⋂
j=i

C
j
n+K

)

≥ Pν

(
d−1⋂

j=i+1

(
Cj

n ∩ D
j
n,K

)
,FK,Di

n,K(Kε)

)

= Pν

(
FK,Bi+1

n ,Di
n,K(Kε),

d−1⋂
j=i+1

D
j
n,K

)

= Pν

(
FK,Bi+1

n

) · Pν

(
Di

n,K(Kε),

d−1⋂
j=i+1

D
j
n,K

∣∣∣∣ FK,Bi+1
n

)

> 0,

with the last line following from Eqs. (66) and (68). This concludes the inductive proof. �
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3. Applications. A crucial setting where we expect the ranking-based reinforcement as-
sumption (Assumption 2.5) to hold is when modeling the dynamic interaction between peo-
ple’s choices and algorithms in online interfaces such as search engines, online marketplaces,
newspapers, and discussion forums. The algorithms implemented in these venues rank the
available content for the users to facilitate their access to information [42]. People, in return,
pay more attention to and interact more (download, click, buy) with content that appears
higher on ranked lists [25, 33]. In the past two decades, several behavioral models have been
proposed in economics, management, marketing, and computer science to capture the effect
of rank on people’s choices [3, 9]. In our first application (Section 3.1), we describe the dy-
namics produced by a commonly used ranking algorithm and a standard behavioral model in
computer science. In a separate paper [3] we show how a similar framework can be used to
study dynamics under a variety of behavioral models from the economics literature.

In Section 3.2 we focus on a class of models that can be described as ranking-based Pólya
urns and that lie on the intersection of our framework and that of [5, 27]. After specializing
our results to this type of models, we compare them to the previously known results.

3.1. Ranking items in online interfaces. One of the most fundamental and commonly
employed ranking algorithms places the options on the screen according to their popularity,
that is the number of clicks, sales, citations, or upvotes that different options have obtained so
far. The rank-by-popularity algorithm is very simple to implement, and many popular web-
sites have relied on it in the past or use some version of it at present. (For example, Reddit
used to order comments by the number of upvotes, Google scholar used to order articles by
the number of citations—and still offers that possibility when looking at a profile—, Ama-
zon offers the possibility to order options by the number of reviews, Goodreads orders user
comments by the number of likes, etc.) We will use a staple computer science model for the
probability of clicking on a link, called the position-based model [9], p. 10. We note that al-
though we will refer to clicks, the model can also be used to describe downloads and citations
of papers, purchases of products, likes of comments, etc.

In the position-based model, a link is first examined by the user and then clicked if its
content is considered to be relevant. This can be stated as

(71) Ci
n = Ei

n ∩ Di
n,

where

(72)

Ei
n = {n-th user examines link i},

Di
n = {link i is relevant to the nth user},

Ci
n = {nth user clicks on link i}.

We are interested in the vector Xn = (X1
n, . . . ,X

d
n), where Xi

n is the number of users that
have clicked on link i, up to the nth user. Clearly, we have �Xi

n+1 = 1 if Ci
n+1 occurs, and

�Xi
n+1 = 0 otherwise.

The probability that a link is examined depends only on the position where it appears, and
typically decreases for later positions. Assuming that results appear according to the rank-by-
popularity algorithm, that is, by descending number of clicks so far (and randomly breaking
ties), this factor depends only on (a) the current rank of result i with respect to the number of
clicks and (b) the number of links that are ranked equally with it. For our purposes, we may
allow the probability that a link is examined to depend on the full ranking (i.e., how all of the
links are ranked), so we will denote

(73) ar
i = P

(
Ei

n+1 | rk(Xn) = r
)
.
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The expression on the right hand side makes sense whenever {rk(Xn) = r} has positive prob-
ability. We will be making this assumption below whenever similar expressions appear, with-
out further mention.

We also assume that links that appear higher are more likely to be examined, that is, if
r(i) < r(j), then ar

i > ar
j . Finally, we assume that ar

i > 0 for all i ∈ [d], r ∈ R, so that there
is always positive probability of clicking on any of the links.

The probability of link i being relevant to the user depends only on the link itself, that is,
Di

n+1 is independent of {Ej
n+1}j∈[d], {Dj

n+1}j �=i , and rk(Xn). We denote

(74) ui = P
(
Di

n+1
)

and assume that ui ∈ (0,1).
The number ui can be considered a measure of objective quality of the link (not necessarily

known to the ranking algorithm). Combining Eqs. (71), (73), and (74) we get

(75)

qr
i = P

(
�Xi

n+1 = 1 | rk(Xn) = r
)

= P
(
Ci

n+1 | rk(Xn) = r
)

= P
(
Ei

n+1 ∩ Di
n+1 | rk(Xn) = r

)
= P

(
Ei

n+1 | rk(Xn) = r
) · P(

Di
n+1 | Ei

n+1, rk(Xn) = r
)

= P
(
Ei

n+1 | rk(Xn) = r
) · P(

Di
n+1

)
= ar

i · ui.

Since we are assuming that ar
i > 0 for all i ∈ [d], r ∈ R, and ui ∈ (0,1) for all i ∈ [d], we

also have qr
i ∈ (0,1) for all i ∈ [d], r ∈ R. Moreover, using the fact that the D

j
n+1’s are

independent of everything else and P(D
j
n+1) < 1 for all j ∈ [d], we get

(76)

P
(
�Xi

n+1 = 1,�X
j
n+1 = 0 for all j �= i | rk(Xn) = r

)
≥ qr

i · ∏
j �=i

P
((

D
j
n+1

)c)
> 0,

for any i ∈ d, r ∈ R.
Now let i �= j and suppose (without loss of generality) that ui ≥ uj . Recall that, by as-

sumption, for any ranking r that ranks i higher than j , we have ar
i > ar

j , hence Eq. (75) gives
qr
i > qr

j . That is, i quasi-dominates j . By Eq. (76), μr(xi �= xj ) > 0 for all r ∈ R, therefore
i actually dominates j , hence Assumption 2.5 is satisfied.

Theorem 2.7 now says that rk(Xn) converges a.s. Equation (76) also implies that the con-
ditions of Corollary 2.11 and Proposition 2.20 are satisfied, therefore the possible limits for
rk(Xn) are those strict rankings r for which qr

r−1(1)
> · · · > qr

r−1(d)
. Note that in general there

will be more than one ranking r satisfying this condition, especially if the effect of the posi-
tion is strong (ar

i decreases quickly with the position of i in the ranking r). Thus, it is likely
that links of smaller objective quality ui will end up being ranked higher in the long-term
(thus getting more clicks) than links of higher quality. This is an important consequence, be-
cause it implies that in general people will be directed towards links that are less likely to
be relevant to them, and it reveals an inherent drawback of algorithms that rank results by
popularity.

Our framework can be generalized to other models of user behavior. For example, we could
allow the probability ar

i of examining a link to depend on the ranking in an arbitrary way
(subject to Assumption 2.5 being satisfied). In particular the model applies to cases where the
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position of other links also affects the probability of examining a link at a certain position,
such as in the cascade model in computer science [13] or satisficing models in economics [8].
More generally, the assumption that links are first examined and then independently judged
to be relevant or not can be discarded altogether; it is enough to require that the links possess
some objective quality ui , and whenever link i is ranked higher than j and ui > uj , it is
more likely for i to be clicked (i.e., qr

i > qr
j ). For example, the qr

i ’s can be described by a
multi-attribute utility model [36], where the link position is one of the attributes and ui is a
summary of the rest of the attributes.

In a similar vein, we can relax assumptions related to the ranking algorithm. For instance,
more sophisticated ranking algorithms may not rank the links based on their number of clicks
only, but according to some calculated score that takes into account several other features
[42, 48]. The conceptual framework we developed in this section still applies, as long as the
popularity ranking is taken into account in calculating the score. Further, recent algorithmic
approaches estimate the objective utility or relevance ui of different items by debiasing the
number of clicks from attention imbalances [1, 34]. Even for these algorithms, however,
ranking-based rich-get-richer dynamics can be at play if a link’s actual or perceived utility
for the users depends on the object’s popularity [4, 47]. For example, when ranking social
networking applications, the rank may convey information about their utility, therefore some
form of advantage may persist even when correcting for attention disparities.

3.2. Ranking-based Pólya urns and urn functions. Several of the models that have been
used to study the dynamics of popularity rankings in online interfaces can be expressed as
ranking-based Pólya urns [11, 21, 25], that is ranking-based processes Xn ∈ Rd where �Xn ∈
{0,1}d and

∑d
i=1 �Xi

n = 1 a.s. Note that in this case we have

(77) q
rk(Xn)
i = E

[
�Xi

n+1 | rk(Xn)
] = P

(
�Xi

n+1 = 1 | rk(Xn)
)
,

that is, qr
i is the probability of adding a ball of color i, when the ranking is r . Such models

are special cases of both our framework and that of [5, 27]. In this section we specialize our
results to this class of models and compare them to the previously known results.

In references [5, 27], the results are stated in terms of the fixed points of the urn function.
The urn function f : �d−1 → �d−1, where

(78) �d−1 :=
{
x ∈ [0,1]d,

∑
i

xi = 1

}

is the standard (d − 1)-dimensional simplex, takes as argument the vector of proportions of
balls of each color, and its ith component fi gives the probability of the next ball being of
color i. For a ranking-based urn, f (x) must be constant in regions of constant ranking, that
is, its value may only depend on rk(x). With our notation we have

(79) fi(x) = P
(
�Xi

n = 1 | rk(Xn) = rk(x)
) = q

rk(x)
i .

The next proposition uses our results from Section 2 to relate the fixed points of f with
the limiting behavior of Xn.

PROPOSITION 3.1. Consider a ranking-based Pólya urn with urn function f and let A

be the set of fixed points of f whose coordinates are all distinct, that is,

(80) A = {
x ∈ �d−1 : f (x) = x, xi �= xj for all i �= j

}
.
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Then:

1. For any x ∈ A, there is some ν such that Pν(Xn/n → x) > 0. If qr
i > 0 for all i ∈

[d], r ∈ R, then Pν(Xn/n → x) > 0 holds for all ν.
2. If qr

i > 0 for all i ∈ [d], r ∈ R and furthermore Assumption 2.5 is satisfied, then for any
initial distribution ν, limn→∞ Xn/n ∈ A a.s. (in particular Xn/n converges a.s.).

3. Conditioned on limn→∞ Xn/n = x ∈ A, Xn−n·x√
n

converges to a centered multivariate

normal distribution ξσ with covariance matrix (σij ), where σii = xi(1−xi) and σij = −xixj ,
i �= j . More precisely, for any initial distribution ν, x ∈ A, and B ∈ B(Rd),

(81) Pν

(
Xn − n · x√

n
∈ B

∣∣∣∣ lim
k→∞

Xk

k
= x

)
→ ξσ (B)

whenever Pν(limk→∞ Xk

k
= x) > 0.

PROOF.

1. Let x = (x1, . . . , xd) ∈ A and denote r = rk(x), so that xr−1(1) > · · · > xr−1(d). Then,
f (x) = qr (Eq. (79)). Since x is a fixed point of f , we get qr = x, hence also qr

r−1(1)
> · · · >

qr
r−1(d)

. By Theorem 2.10 r is terminal, so Pν(rk(Xn) → r) > 0 for some initial distribution
ν. By Proposition 2.14, Pν(Xn/n → x) = Pν(Xn/n → qr) ≥ Pν(rk(Xn) → r) > 0. If qr

i > 0
for all i ∈ [d], r ∈ R, then the condition of Proposition 2.20 is satisfied, therefore r being
terminal implies Pν(rk(Xn) → r) > 0 for any initial distribution ν.

2. By Theorem 2.7 rk(Xn) converges a.s. and by Corollary 2.11 the limit R has to be a
strict ranking, in particular qR

i �= qR
j for all i �= j a.s. By Proposition 2.14 Xi

n/n → qR and

by Proposition 2.15 qR = qrk(qR), which is a fixed point of f by Eq. (79), thus qR ∈ A.
3. Denote r = rk(x). By Propositions 2.14 and 2.15, x = qr and

(82)
{

lim
k→∞Xk/k = x

}
=

{
lim

k→∞ rk(Xk) = r
}

a.s.

Hence, by Proposition 2.16,

(83) Pν

(
Xn − n · x√

n
∈ B

∣∣∣∣ lim
k→∞

Xk

k
= x

)
→ ξ r(B) a.s.,

where ξ r is a centered multivariate normal distribution with covariance matrix equal to that
of μr . The result follows once we recall that each component of μr describes a Bernoulli
random variable with mean qr

i = xi and that no two of these components can be positive
simultaneously. �

We now compare our results to the ones that appear in [5, 27]. We are going to restrict
ourselves to ranking-based Pólya urns with the urn function being constant in n ∈ N (in [5]
the urn function is allowed to be a function of n).

Part 1 of Proposition 3.1, in particular the case qr
i > 0 for all i ∈ [d], r ∈ R, agrees with

Theorem 5.1 in [5]. In that theorem, the authors show that Xn/n has positive probability of
converging to any point θ ∈ �d−1 that is a stable fixed point of f , in the sense that f (θ) = θ

and there is a neighborhood U of θ and a positive-definite matrix C such that

(84)
〈
C

(
x − f (x)

)
, x − θ)

〉
> 0 for all x ∈ �d−1 ∩ U,x �= θ.

Note that in the ranking-based case, where f is piecewise constant, any fixed point θ with all
coordinates being distinct (i.e., θ ∈ A) is always stable, since then f (x) = θ identically in a
neighborhood of θ , so the above condition is satisfied if we take C to be the identity matrix.
The result in [5] is more general than part 1 of Proposition 3.1, because it also applies to fixed
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points whose coordinates are not distinct. On the other hand, there are no analogues of parts
2 and 3 of our Proposition 3.1 in [5] that apply to the ranking-based case (but Theorem 3.1 in
that reference is an analogue of part 2 for continuous urn functions f ).

As mentioned in the Introduction, in [27] the case d = 2 is studied and it is shown that
Xn/n converges a.s. Note that we have shown this only if qr

i > 0 for all i ∈ [d], r ∈ R, and
Assumption 2.5 is satisfied. In [27] no such assumption is made. However, the proof there
relies on properties of the real line (when d = 2, the process is described by X1

n alone, because
X2

n = n − X1
n), thus it is not obvious how to generalize to d ∈ N.

Regarding the support of the limit, Theorem 4.1 in [27] is similar to part 2 of our Proposi-
tion 3.1: assuming that d = 2 and qr

i > 0 for all i ∈ [d], r ∈ R, if A contains a single point,
then the two results coincide. Part 2 of Proposition 3.1 also applies when A contains more
than one (i.e., two) points, while Theorem 4.1 in [27] does not. On the other hand, if A is
empty, which (in the case d = 2 with qr

i > 0 for all i ∈ [d], r ∈ R) is equivalent to Assump-
tion 2.5 not being satisfied, part 2 of Proposition 3.1 does not apply, while Theorem 4.1 in
[27] implies that Xn/n → 1/2.

We emphasize that the above is a comparison of results in the special case of ranking-
based Pólya urns (and in the case of [27], when d = 2). However, both our results and those
in [5, 27] apply to more general settings: our results apply to more general (ranking-based)
processes than Pólya urns, while those in [5, 27] apply to nonranking-based Pólya urns.

4. Discussion. We have developed a mathematical framework for describing systems
characterized by ranking-based rich-get-richer dynamics. Specifically, we defined a ranking-
based process as a discrete-time Markov process in Rd whose increment distributions de-
pend only on the current ranking of the components of the process. Under a ranking-based
reinforcement assumption (Assumption 2.5), we showed that the ranking converges (Theo-
rem 2.7) and proved a strong law of large numbers and central limit theorem-type results
for the process itself (Propositions 2.14 and 2.16). We also found conditions in terms of the
Markov transition kernel that can be used to check whether a particular ranking is a possible
limit ranking (Theorem 2.10). In some cases we were able to characterize the support of the
limit of the ranking independently of the initial distribution (Proposition 2.20). We also trans-
lated our results in terms of urn functions for the special case of ranking-based Pólya urns, in
order to compare them with previous results with which they partially overlap (Section 3.2).
Finally, we described an application to rank-ordered web interfaces (Section 3.1).

Models of systems with rich-get-richer dynamics have been commonplace in the social,
behavioral, and computer sciences, and they have been used to describe the observed dynam-
ics in a wide variety of settings. So far, there have been two main families of such models.
The first family goes back to Gibrat’s law [26], which states that firms grow proportionally
to their current size, and independently of the performance of their competitors. Variations of
the notion of proportional growth have been applied across disciplines, for example in models
of citation growth [2] and city growth [19, 20]. Models based on Gibrat’s law are inherently
unsuitable for capturing ranking-based dynamics, because of their assumption that growth is
independent of any competitors.

The second family of rich-get-richer models builds on the notion of preferential attach-
ment [58], which assumes that entities grow when new units “attach” to them, but these new
units are more likely to attach to entities that are already larger. Such models are usually de-
scribed mathematically as Pólya urns or one of their many generalizations [43, 51]. What is
common in almost all of these generalized Pólya urns, and relevant to us, is the fact that the
number of added balls of a given color is chosen from a finite set, with probabilities that are
each a continuous function of the proportion of balls of a single color, except that they are
normalized to sum to one. Although this allows for some form of competition among colors,
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it precludes direct comparison of the proportions of balls of different colors, so it does not
allow for the modeling of systems in which growth rates depend on the differences between
the sizes of different entities, let alone their ranking. Two exceptions are the works of Arthur
et al. [5] and of Hill et al. [27], which allow arbitrary comparisons of proportions of balls of
different colors, but they only treat the simplest type of Pólya urn processes. These works do
not specifically focus on ranking-based competition, but they partially cover them as extreme
cases, with a subset of their results applying to them. See the Introduction and Section 3.2 for
details.

Compared to these existing approaches, our work differs in two main ways. First, our ap-
proach is at a more abstract level; the literature related to preferential attachment and Gibrat’s
law usually starts with a specific model, with the goal of reproducing some empirically ob-
served phenomena, such as outcome unpredictability and skewed popularity distributions.
Our approach in contrast is model-independent; we have identified conditions that are suffi-
cient to lead to certain rich-get-richer phenomena, that is, conditions that when satisfied by
any model, regardless of the exact assumptions made, lead to the stated results. This is illus-
trated in Section 3.1, where we point out that ranking-based rich-get-richer dynamics could
be set in motion under a wide array of behavioral or algorithmic assumptions, as long as As-
sumption 2.5 is satisfied. In this respect, our work is similar in spirit to the work of Arthur et
al. [5]. Such a model-free approach is more suitable for explaining the universality of certain
properties of real-world rankings [31].

The second and perhaps more distinctive difference of our work, is the fact that it covers the
opposite end of the spectrum of rich-get-richer dynamics. The distributions of the increments
of the various components, instead of depending (continuously) on the current level of each
of the components separately, they are piecewise constant with respect to the current levels,
with discontinuities occurring when the ranking of the components changes. In other words,
we focus explicitly on the role of ranking-based competition. However, our framework does
not incorporate other types of competition, nor does it allow for any explicit dependence of
the increments on the current level of the process, other than through the ranking.

The above delineates a promising future research direction: one could envisage a general
mathematical theory of Markov rich-get-richer processes that encompasses all of the above
cases, by allowing for an arbitrary dependence of the increments’ distribution on the current
level of the whole vector of the process, subject to the minimal conditions for rich-get-richer
dynamics. The work of Arthur et al. [5] is in this direction for the case of simple Pólya urn
processes, but no such framework currently exists for more general processes.

APPENDIX A: RANKINGS ARE EQUIVALENT TO WEAK ORDERINGS

The following proposition says that rankings are equivalent to weak orderings. A weak
ordering on a set is like a total ordering, except that it allows for “ties”. More precisely, a
weak ordering “�” on S is a binary relation that is transitive and strongly complete, that is,
that for any two elements a, b ∈ S, at least one of the relations a � b or b � a holds [56].
Recall that we would get a total order if we further required that a � b and b � a implies
a = b.

PROPOSITION A.1. There is a bijection between rankings of a finite set S and weak
orderings on S, given by r �→�r , where

(85) a �r b whenever r(a) ≤ r(b).

The above map satisfies

(86) r(a) = card{b ∈ S : a �r b} + 1.

The ranking r is strict if and only if �r is a total order on S.
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PROOF. It is easy to check that �r , as defined by Eq. (85), is a weak ordering on S. Using
Eq. (85), Eq. (86) can be rewritten as

(87) r(a) = card
{
b ∈ S : r(b) < r(a)

} + 1,

which is equivalent to Eq. (4), so it holds by definition. By Eq. (86), r is uniquely determined
by �r , so the map r �→�r is one-to-one. To show that it is onto, let “�” be a weak ordering
on S and define r : S → [S] by

(88) r(a) = card{b ∈ S : a � b} + 1.

We claim that r(b) ≤ r(a) is equivalent to b � a. First note that if b � a, then by transitivity
{c ∈ S : b � c} is a subset of {c ∈ S : a � c}, hence r(b) ≤ r(a). For the converse, assume
that b � a. Then we must have a � b, and we get as above that {c ∈ S : a � c} is a subset of
{c ∈ S : b � c}, but this time it is a proper subset, because a belongs to the latter. Therefore
r(a) < r(b), which completes the proof of our claim. Hence, by Eq. (85), � is the same
relation as �r , which shows that the mapping r �→�r is onto.

The last assertion follows from the fact that a �r b and b �r a hold simultaneously if and
only if r(a) = r(b). �

APPENDIX B: SUPPORTING PROOFS

Here we give the proofs of Lemmas 2.9, 2.18, and 2.19. For ease of reference, we repeat
each statement before the proof.

LEMMA 2.9. Let (�,G,P) be a probability space. Let S be a finite set and for each
r ∈ S, νr a distribution on R such that it either has positive mean or νr({0}) = 1. Let {Rn}n∈N
be a sequence of random elements in S and {Yn}n∈N a sequence of random variables with
Y0 = 0. Suppose that �Yn+1 is conditionally independent of {(Yk,Rk)}k≤n conditioned on
Rn, with distribution νRn . In other words, for any A ∈ B(R), n ∈ N,

(89) P
(
�Yn+1 ∈ A

∣∣ {
(Yk,Rk)

}
k≤n

) = νRn(A) a.s.

Then,

(90) P
( ⋂

n∈N
{Yn ≥ 0}

)
≥ ε > 0,

where ε depends only on the distributions νr , r ∈ S.

PROOF. Let {Ur
n}r∈S

n∈N be a collection of independent random variables, independent of
{(Yn,Rn)}n∈N, and such that Ur

n ∼ νr for all r ∈ S, n ∈ N, where the relation ∼ means equal-
ity in distribution. Define Y ′

0 = Y0 = 0 and for each n ∈ N,

(91) Y ′
n+1 = Y ′

n + URn
n .

Clearly, for any A ∈ B(Rd),

(92) P
(
�Y ′

n+1 ∈ A
∣∣ {(

Y ′
k,Rk

)}
k≤n

) = P
(
URn

n ∈ A | Rn

) = νRn(A),

therefore {Y ′
n}n∈N ∼ {Yn}n∈N. It is hence enough to show that Eq. (90) holds for the sequence

Y ′
n instead of Yn.

For each r ∈ S, define τ r
0 = −1 and inductively τ r

n = inf{k > τr
n−1 : Rk = r}. Note that

each Yn is a sum of terms of the form Ur
τk

, for k = 1, . . . ,mr , where mr ∈ N, r ∈ S. Therefore,

(93)
⋂
n∈N

{
Y ′

n ≥ 0
} ⊃ ⋂

r∈S

⋂
n∈N

{
n∑

k=1

Ur
τr
k

≥ 0

}
,

with the convention Ur
τr
k

= 0 when τ r
k = ∞.
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Since τ r
k ⊥⊥ {Ur

n}n∈N, if the τ r
k ’s were all finite a.s., it would easily follow that Ur

τr
k

has the

same distribution as Ur
1 , k ∈ N, and since τ r

k is strictly increasing in k we would even get that
{Ur

τr
k
}k∈N is i.i.d. To deal with the case τ r

n = ∞, we define the random times σ r
n as follows:

Let vr = sup{n ∈ N : τ r
n < ∞} and

(94) σ r
n = τ r

n · 1n≤vr + (
τ r
vr + n − vr

) · 1n>vr .

The σ r
n ’s are almost surely finite and distinct for fixed r ∈ S, and {σ r

n }r∈S
n∈N ⊥⊥ {Ur

n}r∈S
n∈N. There-

fore, by [44], Theorem 2.1, we get that {Ur
σr

n
}r∈S
n∈N ∼ {Ur

n}r∈S
n∈N. (In [44] it is assumed that the

σ r
n ’s are all distinct a.s., even for different r’s, but this assumption can be substituted by the

fact that the sequences {Ur
n}n∈N are independent for different r’s and the proof goes through.)

Now observe that σ r
k = τ r

k on {τ r
k < ∞}, therefore, by Eq. (93),

(95)
⋂
n∈N

{
Y ′

n ≥ 0
} ⊃ ⋂

r∈S

⋂
n∈N

{
n∑

k=1

Ur
σr

k
≥ 0

}
.

Consequently,

(96)

P
( ⋂

n∈N

{
Y ′

n ≥ 0
}) ≥ P

(⋂
r∈S

⋂
n∈N

{
n∑

k=1

Ur
σr

k
≥ 0

})

= ∏
r∈S

P

( ⋂
n∈N

{
n∑

k=1

Ur
k ≥ 0

})
> 0,

because {Ur
k }k∈N is an i.i.d. sequence of random variables that are either identically 0 or they

have a positive mean. �

LEMMA 2.18. Let An, n ∈ N, and A be measurable sets in a probability space, each
with positive probability, and suppose that An → A a.s. (i.e., P((An\A) ∪ (A\An)) → 0).
Then, P(S | An) → P(S | A) uniformly in S ∈ F .

PROOF. We have

(97)

∣∣P(S | A) − P(S | An)
∣∣

=
∣∣∣∣P(S ∩ A)

P(A)
− P(S ∩ An)

P(An)

∣∣∣∣
=

∣∣∣∣P(S ∩ An) + P(S ∩ A\An) − P(S ∩ An\A)

P(A)
− P(S ∩ An)

P(An)

∣∣∣∣
≤ P(S ∩ An) ·

∣∣∣∣ 1

P(A)
− 1

P(An)

∣∣∣∣ + |P(S ∩ A\An) − P(S ∩ An\A)|
P(A)

≤
∣∣∣∣ 1

P(A)
− 1

P(An)

∣∣∣∣ + P(A\An) + P(An\A)

P(A)
.

The quantity in the last line does not depend on S and, by assumption, it converges to 0 as
n → ∞. �

LEMMA 2.19. Let am,n ∈ R, m,n ∈ N, and suppose that limm→∞ am,n = an ∈ R uni-
formly in n, and limn→∞ am,n = a ∈R for all m ∈ N. Then, limn→∞ an = a.

PROOF. Let ε > 0 and let m0 ∈ N be such that |am0,n − an| < ε for all n ∈ N. Now let
n0 ∈N be such that |am0,n − a| < ε for all n ≥ n0. It follows that |an − a| < 2ε for all n ≥ n0.

�
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