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We study the problem of recovering a planted matching in randomly
weighted complete bipartite graphs Kn,n. For some unknown perfect match-
ing M∗, the weight of an edge is drawn from one distribution P if e ∈ M∗
and another distribution Q if e /∈ M∗. Our goal is to infer M∗, exactly or
approximately, from the edge weights. In this paper we take P = exp(λ) and
Q = exp(1/n), in which case the maximum-likelihood estimator of M∗ is the
minimum-weight matching Mmin. We obtain precise results on the overlap
between M∗ and Mmin, that is, the fraction of edges they have in common.
For λ ≥ 4 we have almost perfect recovery, with overlap 1 − o(1) with high
probability. For λ < 4 the expected overlap is an explicit function α(λ) < 1:
we compute it by generalizing Aldous’ celebrated proof of the ζ(2) conjec-
ture for the unplanted model, using local weak convergence to relate Kn,n

to a type of weighted infinite tree, and then deriving a system of differential
equations from a message-passing algorithm on this tree.
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1. Introduction. Consider a weighted complete bipartite graph Kn,n with an unknown
perfect matching M∗, where for each edge e the weight we is independently distributed ac-
cording to P when e ∈ M∗ and Q when e /∈ M∗. The goal is to recover the “hidden” or
“planted” matching M∗ from the edge weights.

This problem is inspired by the long history of planted problems in computer science,
where an instance of an optimization or constraint satisfaction problem is built around a
planted solution in some random way. As we vary the parameters used to generate these
instances, such as the size of a hidden clique or the density of communities in the stochastic
block model of social networks, we encounter phase transitions in our ability to find this
planted solution, exactly or approximately. In an inference problem, the instance corresponds
to some noisy observation, such as a data set produced by a generative model, and the planted
solution corresponds to the ground truth—the underlying structure we are trying to discover.

More concretely, we are motivated by the problem of tracking moving objects in a video,
such as flocks of birds, motile cells, or particles in a fluid. Figure 1, taken from [12], shows
two frames of such a video, where each particle has moved from its original position by some
amount. Our goal is then to find the most-likely matching between the two frames, assuming
some probability distribution of these displacements.

For many planted problems such as Hidden Clique (e.g., [10]) or community detection
in the stochastic block model (e.g., [1, 26]), there are two types of thresholds: information-
theoretic and computational. When these are distinct, the region in between them has the
interesting property that finding the planted solution, or at least approximating it better than
chance, is information-theoretically possible but (conjecturally) computationally hard. These
regions are also known as statistical-computational gaps.

In the planted matching problem, one obvious estimator to try is the minimum weight
matching (a.k.a. the linear assignment problem) which can be found in polynomial time.
The natural question is then, as a function of the distributions P and Q on the planted and

FIG. 1. On the left, the positions of particles in two frames of a video, with one frame red and the other blue.
On the right, an inferred matching, hypothesizing how each particle has moved from one frame to the next. Taken
from [12].
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unplanted edges, how much the minimum matching Mmin has in common with the planted
matching M∗. In general, we define the overlap of an estimator M ′ with M∗ as (assuming
that |M ′| = n)

(1.1) overlap
(
M∗,M ′)= 1 − 1

2n

∣∣M∗ � M ′∣∣= 1

n

∣∣M∗ ∩ M ′∣∣.
We say that M ′ achieves almost perfect recovery if E[overlap(M∗,M ′)] = 1−o(1), or equiv-
alently if overlap(M∗,M ′) = 1 − o(1) with high probability. We say that M achieves partial
recovery if E[overlap(M∗,M ′)] > 0 as n → ∞.

Chertkov et al. [12] studied the case where P = |N (0, κ)| is a folded Gaussian and Q is
the uniform distribution over [0, n]. When κ = O(1), the planted edges are competitive with
the lightest unplanted edges at each vertex, which have expected weight 1. This suggests a
phase transition in this regime, and indeed they predicted a transition from almost perfect
recovery to partial recovery at κ ≈ 0.17 using the cavity method of statistical physics.

We focus on exponential weight distributions, P = exp(λ) and Q = exp(1/n), so that the
planted and unplanted weights have expectation 1/λ and n respectively. For this family of
distributions we obtain exact results, proving a transition from almost perfect recovery to
partial recovery at λ = 4, and determining the expected overlap between M∗ and Mmin for
λ < 4.

Many of our results apply more generally for any distribution of unplanted edge weights
with density Q′(0) = 1/n, such as when Q is uniform in the interval [0, n]. However, our
assumption that the planted weights P are exponentially distributed is important for two rea-
sons. First, it makes possible to exactly analyze a message-passing algorithm, and obtain
precise results for the expected overlap. Second, it has the pleasing consequence of mak-
ing Mmin the maximum-likelihood estimator for M∗. To see this, note that all n! matchings
are equally likely a priori. Let G denote the observed complete bipartite graph with edge
weights W . The posterior probability for a given matching M ′, that is, P[M∗ = M ′ | G], is
proportional to the density

(1.2)

P
[
G | M ′]= ∏

e∈M ′
P(we)

∏
e/∈M ′

Q(we) ∝ ∏
e∈M ′

exp
(−(λ − 1/n)we

)
= exp

(
−(λ − 1/n)

∑
e∈M ′

we

)
.

Thus maximizing the likelihood is equivalent to minimizing the total weight of M ′.
Our main results are as follows.

• In Theorem 2.1, we show that the minimum matching Mmin achieves almost perfect recov-
ery with high probability whenever λ ≥ 4. This proof is a simple first-moment argument
using the expected number of augmenting cycles of each length.

• In Theorem 3.1, we compute the expected overlap between M∗ and Mmin for λ < 4, show-
ing that it is an explicit function α(λ) given by a system of differential equations.

The proof of Theorem 3.1 takes up most of the paper. Our proof is inspired by Aldous’
analysis of the minimum matching in the unplanted case where all edges have the same
weight distribution with Q′(0) = 1/n. Using the machinery of local weak convergence [2,
5, 6] Aldous gave a rigorous justification for the cavity method of statistical physics [25],
modeling Kn,n as a Poisson-weighted infinite tree (PWIT). The cost of matching a vertex
with one of its children then follows a probability distribution which is the fixed point of
a recursive distributional equation (RDE) which can then be transformed into an ordinary
differential equation (ODE). Solving this ODE proves the conjecture of Mézard and Parisi
[25] that the expected cost per vertex is ζ(2) = π2/6.
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Generalizing Aldous’ analysis to the planted case presents several challenges. We now
have an infinite weighted tree we call the planted PWIT with two types of edges and two
types of vertices, since the partner of a vertex in M∗ can be its parent or one of its children.
The cost of matching a vertex with a child follows a pair of probability distributions fixed by
a system of RDEs, which (when P is exponential) we can transform into a system of four
coupled ODEs. We use techniques from dynamical systems to show that this system has a
unique solution consistent with its boundary conditions, and express the expected overlap
α(λ) as an integral involving this solution.

While we focus on the case where P is exponential, we claim that a qualitatively similar
picture to Theorems 2.1 and Theorem 3.1 holds for other distributions of planted weights.
Indeed, much of our proof applies to any distribution P , including the general framework
of a message-passing algorithm on the planted PWIT, and the resulting system of RDEs.
Thus while the location of the threshold and the overlap would change, in any one-parameter
family of distributions P we expect there to be a phase transition from almost-perfect to
partial recovery when P ’s expectation crosses some critical value.

2. Almost perfect recovery for λ ≥ 4. We start by proving that the minimum matching
achieves almost perfect recovery whenever λ ≥ 4.

THEOREM 2.1. For any λ ≥ 4, we have E[overlap(M∗,Mmin)] = 1−o(1). In particular,
E[|M∗ � Mmin|] is O(1) for λ > 4 and O(

√
n) for λ = 4.

To prove Theorem 2.1, we use the following Chernoff-like bound on the probability that
one Erlang random variable exceeds another. The proof is elementary and appears in Ap-
pendix A.

LEMMA 2.2. Suppose X1 is the sum of t independent exponential random variables with
rate λ1, and X2 is the sum of t independent exponential random variables with rate λ2 (and
independent of X1) where λ1 > λ2. Then

P[X1 > X2] ≤
(

4λ1λ2

(λ1 + λ2)2

)t

≤
(

4λ2

λ1

)t

.

PROOF OF THEOREM 2.1. An alternating cycle is a cycle in Kn,n that alternates between
planted and unplanted edges, and an augmenting cycle is an alternating cycle C where the
total weight of its planted edges C ∩ M∗ exceeds that of its unplanted edges C \ M∗.

Now recall that the symmetric difference M∗ � Mmin is a disjoint union of augmenting
cycles. The number of cyclic permutations of t things is (t − 1)!. Thus the number of alter-
nating cycles of length 2t , that is, containing t planted edges and t unplanted edges, is at
most

(2.1)
(
n

t

)
(t − 1)! = 1

t
nt

(
1 − 1

n

)(
1 − 2

n

)
· · ·
(

1 − t − 1

n

)
≤ 1

t
nte−t (t−1)/(2n).

Applying Lemma 2.2 with λ1 = λ and λ2 = 1/n, the probability that a given alternating cycle
of length 2t is augmenting is at most (4/(λn))t .

Now the size of the symmetric difference |M∗ � Mmin| is at most the total length of all
augmenting cycles. By the linearity of expectation, its expectation is bounded by

E
[∣∣M∗ � Mmin

∣∣]≤ n∑
t=1

2t

(
4

λn

)t 1

t
nte−t (t−1)/(2n) ≤ 2e1/2

∞∑
t=1

(
4

λ

)t

e−t2/(2n).
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When λ > 4 the geometric sum
∑∞

t=1(4/λ)t converges, giving E[|M∗ � Mmin|] = O(1).

When λ = 4, we have
∑∞

t=1 e−t2/(2n) ≤ ∫∞
0 e−t2/(2n) dt = √

πn/2, so E[|M∗ � Mmin|] =
O(

√
n).

To complete the proof, let ω(1) be any function of n that tends to infinity. By Markov’s
inequality, with high probability |M∗ � Mmin| is less than ω(1) times its expectation, and
(1.1) gives w.h.p. overlap(M∗,Mmin) = 1 − o(1). �

We note that when λ > 4 is sufficiently large we have E[|M∗ � Mmin|] < 1, implying that
Mmin achieves perfect recovery, that is, Mmin = M∗, with positive probability. We also note
that a similar argument shows that, for λ < 4, the overlap is w.h.p. at least 1 − 2 log 4

λ
. But

this bound is far from tight, and below we give much more precise results.

3. Exact results for the expected overlap when λ < 4. In this section we provide a
characterization of the asymptotic overlap of Mmin, showing exactly how well Mmin achieves
partial recovery when λ < 4.

THEOREM 3.1. Suppose 0 < λ < 4 is a fixed constant. Then the expected overlap be-
tween the minimum matching and the planted one is

lim
n→∞

1

n
E
[∣∣Mmin ∩ M∗∣∣]= α(λ),

where

(3.1) α(λ) = 1 − 2
∫ ∞

0

(
1 − F(x)

)(
1 − G(x)

)
V (x)W(x)dx < 1,

and where (F,G,V,W) is the unique solution to the coupled system of ordinary differential
equations (3.8)–(3.11) given below with boundary conditions (3.12)–(3.13).

Denote the weight of the minimum matching by w(Mmin)�
∑

e∈Mmin
we, where we is the

weight of the edge e. We also derive the asymptotic value of (1/n)E[w(Mmin)] for 0 < λ < 4.

COROLLARY 3.2. For 0 < λ < 4, the weight of the minimum matching is

lim
n→∞

1

n
E
[
w(Mmin)

]= βp(λ) + βu(α),

where βp(λ) and βu(λ) are the contributions of planted and unplanted edges to the weight of
Mmin respectively:

βp(λ) =
∫ ∞
−∞
(
1 − F(x)

)(
1 − G(x)

)
V (x)

[∫ ∞
0

λte−λt (1 − F(t − x)
)

dt

]
dx,

βu(λ) =
∫ ∞
−∞
(
1 − F(y)

)[(
1 − G(y)

)
V (y)W(y) − λ

(
G(y) − W(y)

)]
×
[∫ ∞

0
t
(
1 − F(t − y)

)
W(t − y)dt

]
dy.

PROOF. We start by relating the planted model (�n,Kn,n) where �n denotes the random
edge weights, to a type of weighted infinite tree (�∞, T∞) as Aldous did for the unplanted
model [2, 6]. This tree corresponds to the neighborhood of a uniformly random vertex, where
“local” is defined in terms of shortest path length (sum of edge weights). While Kn,n has
plenty of short loops, this neighborhood is locally treelike since it is unlikely to have any
short loops consisting entirely of low-weight edges.
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FIG. 2. The planted Poisson weighted infinite tree (planted PWIT) (�∞, T∞) with the labeling scheme described
in the text. The bold red edges are planted edges and the solid blue edges are unplanted. The root is the empty
string ø. Appending 0 to the label of a vertex indicates its planted child, if any, while appending i ≥ 1 indicates
its unplanted child with the ith lightest edge.

Starting at a root vertex ø, we define the tree T∞ shown in Figure 2. The root has a planted
child, that is, a child connected to it by a planted edge (bold in red), and a series of unplanted
children (solid blue). We label these vertices with strings of integers as follows: the root is
labeled with the empty string ø. Appending 0 to a label indicates the planted child of that
parent, if it has one—that is, if its partner in the planted matching is a child rather than its
parent. We indicate the unplanted children by appending i for i ∈ {1,2,3, . . .}.

We sort the unplanted children of each vertex so that the one labeled with i is the ith
lightest, that is, has the ith lightest edge. Since the distribution of unplanted weights has
density Q′(0) = 1/n at 0, these weights are asymptotically described by the arrivals of a
Poisson process with rate 1, while the weight of the planted edges are distributed as exp(λ).
We call the resulting structure the planted Poisson weighted infinite tree, or planted PWIT,
and use �∞ to denote its edge weights. We define all this formally in Section 6 and Section 7,
and prove that the finite planted model (�n,Kn,n) weakly converges to (�∞, T∞).

Following Aldous [6], in Section 8 we then construct a matching M∞,opt on the planted
PWIT. Crucially, it has a symmetry property called involution invariance, which roughly
speaking means that it treats the root just like any other vertex in the tree. We prove that it is
the unique involution invariant matching that minimizes the expected cost at the root.

We define M∞,opt in terms of the fixed point of a message-passing algorithm that com-
putes, for each vertex v, the cost of matching v with its best possible child. This cost is the
minimum over v’s children w of the weight of the edge between them, minus the analogous
cost for w:

Xv = min
children w of v

(
�∞(v,w) − Xw

)
.

Now suppose that the Xw’s are independent, and our goal is to compute the distribution of
Xv . Unlike the unplanted model, the two types of children will have their Xw drawn from
two different distributions. In the first case, w is v’s planted child, and w’s children are all
unplanted. In the second case, w is an unplanted child of v, and has a planted child of its own.
Let X and Y denote the distributions of Xw in these two cases. Then assuming that Xv obeys
the appropriate distribution gives the following system of recursive distributional equations
(RDEs):

X
d= min{ζi − Yi}∞i=1,(3.2)

Y
d= min

(
η − X, {ζi − Yi}∞i=1

) d= min
(
η − X,X′),(3.3)
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where the Yi ’s are i.i.d., X and X′ are i.i.d., η ∼ exp(λ), and the ζi for i = 1,2, . . . are jointly
distributed as the arrivals of a Poisson process of rate 1.

In general, analyzing recursive distributional equations (RDEs) is very challenging, since
they act on the infinite-dimensional space of probability distributions over the reals. However,
it is sometimes possible to “collapse” them into a finite-dimensional system of ordinary dif-
ferential equations. For the unplanted case of the random matching problem, Aldous [6] de-
rived a single differential equation whose solution is the logistic distribution. For the planted
case, we use a similar approach, but arrive at a more complicated system of four coupled
ODEs.

LEMMA 3.3. Let fX,fY ,FX(x) = P[X < x] and FY (y) = P[Y < y] denote the prob-
ability density functions and cumulative distribution functions (CDFs) of X and Y , and let
F̄X = 1 − FX and F̄Y = 1 − FY . If (3.2)–(3.3) have a solution, then

(3.4)
dFX(x)

dx
= F̄X(x)F̄X(−x)E

[
FX(η + x)

]
.

PROOF. First note that (3.3) gives

(3.5) F̄Y (y) = F̄X(y)E
[
FX(η − y)

]
.

Now the pairs {(ζi, Yi)} in (3.2) form a two-dimensional Poisson point process {(z, y)} on
R+ × R with density fY (y)dz dy. We have X > x if and only if none of these points have
z − y < x, so

(3.6) F̄X(x) = exp
(
−
∫∫

z−y<x
fY (y)dz dy

)
= exp

(
−
∫ ∞
z=−x

F̄Y (z)dz

)
.

Taking derivatives of both sides of this equation with respect to x and using (3.5) gives

fX(x) = dFX(x)

dx
= −dF̄X(x)

dx
= F̄X(x)F̄Y (−x) = F̄X(x)F̄X(−x)E

[
FX(η + x)

]
. �

For the sake of simplicity, we omit the subscript X in FX(·) in the sequel. Define

(3.7) G(x) = F(−x), V (x) = E
[
F(η + x)

]
, W(x) = V (−x).

LEMMA 3.4. When η ∼ exp(λ), F is a solution to (3.4) if and only if (F,G,V,W) is a
solution to the following four-dimensional system of ordinary differential equations (ODEs):

dF

dx
= (

1 − F(x)
)(

1 − G(x)
)
V (x),(3.8)

dV

dx
= λ

(
V (x) − F(x)

)
,(3.9)

dG

dx
= −(1 − F(x)

)(
1 − G(x)

)
W(x),(3.10)

dW

dx
= λ

(
G(x) − W(x)

)
(3.11)

with the boundary conditions

(3.12)
F(−∞) = V (−∞) = G(+∞) = W(+∞) = 0,

F (+∞) = V (+∞) = G(−∞) = W(−∞) = 1,

and

0 ≤ F,G ≤ 1, 0 < V,W ≤ 1.(3.13)
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PROOF. For one direction, suppose F is a solution to (3.4). Then (3.8) and (3.10) di-
rectly follow from (3.4) by plugging in the definition of (F,G,V,W); thus they hold for any
distribution of η. In contrast, (3.9) and (3.11) are derived via integration by parts under the
assumption that η ∼ exp(λ). The conditions (3.12) and (3.13) hold because F must be a valid
CDF. Note that V (x),W(x) > 0 for any finite x by definition, as η is larger than any fixed
threshold with a positive probability.

For the other direction, suppose F is a solution to the system of ODEs (3.8)–(3.11) with
conditions (3.12)–(3.13). Clearly F satisfies (3.4). We only need to verify that F is a valid
CDF, which is equivalent to checking (1) F is nondecreasing; (2) F(+∞) = 1 and F(−∞) =
0; and (3) F is right continuous. All these properties are satisfied automatically. �

We comment that RDEs can be solved exactly for some other problems with random ver-
tex or edge weights in the case of the exponential distribution, such as maximum weight
independence sets and maximum weight matching in sparse random graphs [15–17]. In some
cases this is simply because the minimum of a set of exponential random variables is itself an
exponential random variable. To our knowledge our situation involving integration by parts
is more unusual.

An interesting consequence of (3.8)–(3.13) is the following conservation law:

(3.14) F(x)W(x) + G(x)V (x) − V (x)W(x) = 0.

Since F(0) = G(0) and V (0) = W(0), this also implies that

(3.15) V (0) = 2F(0).

Surprisingly, we find that the system (3.8)–(3.11) exhibits a sharp phase transition at λ = 4.
On the one hand, when λ ≥ 4, they have no solution consistent with (3.12)–(3.13), corre-
sponding to Theorem 2.1 that we have almost perfect recovery in that case. To see this,
assume that V (x) �= 0 and introduce a new function U(x) as

U(x) = F(x)

V (x)
.

Then U(x) is differentiable and satisfies

dU

dx
= −λU(1 − U) + (1 − F)(1 − G).(3.16)

LEMMA 3.5. If λ ≥ 4, then the system of ODEs (3.8)–(3.11) with conditions (3.12)–
(3.13) has no solution.

PROOF. We prove by contradiction. Suppose the system of ODEs (3.8)–(3.11) has a
solution satisfying the conditions (3.12)–(3.13). Then U(x) → 1 as x → +∞. Since (3.15)
gives U(0) = F(0)/V (0) = 1/2, this implies that there is some x0 ≥ 0 such that U(x0) =
1/2 and U ′(x0) ≥ 0. Since U(x0) = F(x0)/V (x0) and V (x0) > 0, we also have F(x0) =
V (x0)/2 > 0, and we also have G(x0) ≥ 0. But then (3.16) gives

U ′(x0) = −λ/4 + (
1 − F(x0)

)(
1 − G(x0)

)
< −λ/4 + 1 ≤ 0.

This contradicts U ′(x0) ≥ 0, and shows that U can never exceed its initial value of 1/2 or
tend to 1 as x → +∞. �

On the other hand, Theorem 5.1 in Section 5 proves that for all λ < 4, there is a unique
solution to (3.8)–(3.11) consistent with the conditions (3.12)–(3.13), and hence giving the
CDFs of X and Y . The idea hinges on a dynamical fact, namely that the (U,V,W) = (1,1,0)
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is a saddle point, and there is a unique initial condition that approaches it as x → ∞ along its
unstable manifold.

Along with Lemma 3.4, this unique solution to the ODEs gives the unique solution to the
RDEs (3.2) and (3.3). Moreover, Theorem 9.1 in Section 9 tells us that the expected overlap
of Mmin converges to that of M∞,opt, which in turn is the probability that the edge weight of
a planted edge is less than the cost of matching its endpoints to other vertices:

lim
n→∞

1

n
E
[∣∣Mmin ∩ M∗∣∣]= α(λ) = P

[
η < X + X′],

where X and X′ are i.i.d. with CDF given by F and η ∼ exp(λ) is independent. Finally, we
compute P[η < X + X̂] as follows:

P[η < X + X̂] = 1 −Eη

[∫ +∞
−∞

f (x)F (η − x)dx

]
= 1 −

∫ +∞
−∞

dF(x)

dx
Eη

[
F(η − x)

]
dx

= 1 −
∫ +∞
−∞

(
1 − F(x)

)(
1 − G(x)

)
V (x)W(x)dx

= 1 − 2
∫ +∞

0

(
1 − F(x)

)(
1 − G(x)

)
V (x)W(x)dx,

where in the last line we used the fact that the integrand is an even function of x.
Similarly, by Theorem 9.1, Lemma 8.3 and Corollary 8.2, we have

lim
n→∞

1

n
E

[ ∑
e∈Mmin

�n(e)

]
= lim

n→∞E
[
�n

(
1,Mmin(1)

)]= E
[
�∞
(
ø,M∞,opt(ø)

)]
= E

[
η1
(
η < X + X′)]+E

[
ζ1
(
ζ < Y + Y ′)],

where X and X′ are i.i.d. with CDF given by F , Y and Y ′ are i.i.d. with CDF given by
1 − (1 − F)W , η ∼ exp(λ) is independent of X and X′. Finally ζ is “uniformly distributed”
over R+, that is, with Lebesgue measure on R+, and is independent of Y and Y ′. Note that

βp(λ)� E
[
η1
(
η < X + X′)]= ∫ ∞

0
λte−λt

∫ ∞
−∞

dF(x)

dx

(
1 − F(t − x)

)
dx dt

=
∫ ∞
−∞
(
1 − F(x)

)(
1 − G(x)

)
V (x)

∫ ∞
0

λte−λt (1 − F(t − x)
)

dt dx,

and

βu(λ)� E
[
ζ1
(
ζ < Y + Y ′)]

=
∫ ∞

0
t

∫ ∞
−∞

dFY (y)

dy

(
1 − FY (t − y)

)
dy dt

=
∫ ∞

0
t

∫ ∞
−∞

(
dF(y)

dy
W(y) − (1 − F(y)

)dW(y)

dy

)(
1 − F(t − y)

)
W(t − y)dy dt

=
∫ ∞
−∞
(
1 − F(y)

)[(
1 − G(y)

)
V (y)W(y) − λ

(
G(y) − W(y)

)]
×
[∫ ∞

0
t
(
1 − F(t − y)

)
W(t − y)dt

]
dy.

This completes the proof of Theorem 3.1 and Corollary 3.2. �
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FIG. 3. The solid red line is the theoretical value computed by numerically solving the system of ODEs
(3.8)–(3.11). The blue dots, is the empirical mean of the corresponding quantity on bipartite graphs generated by
the planted model with n = 1000. Each dot is the average of 100 independent trials. The error bars show the 95%
confidence interval of the distribution, that is, the range into which 95 out of 100 trials fell, suggesting that both
quantities are concentrated around their expectations.

To illustrate our results, we plot the function α(λ) and βp(λ) + βu(λ) in Figure 3, and
compare with experimental results from finite graphs with n = 1000. As the plot shows, when
λ ≥ 4 and the overlap is 1 −o(1) w.h.p., βp(λ)+βu(λ) = 1/λ, that is, the expected weight of
a planted edge. Conversely when λ → 0 and the overlap is o(1) w.h.p., βp(λ)+βu(λ) → ζ(2)

as in the unplanted model, since Mmin consists almost entirely of unplanted edges.
We comment that the connection between the finite planted model and the planted PWIT is

an integral part of the above argument. We explore this connection in detail in Sections 6–9.
The results presented in these sections are true for any distribution of unplanted edge weights
with density Q′(0) = 1/n, and any distribution of planted edge weights P .

4. Open questions. We conclude the discussion of our main results with some open
questions.

1. We have computed the expected overlap and cost (per vertex) of the minimum match-
ing. However, in Figure 3 both quantities appear to concentrate on their expected values, and
we conjecture that they both have variance O(1/n). We give numerical evidence for this in
Figure 4, where we plot empirical values of these variances for fixed λ = 1 and varying n. For
the unplanted model with exponentially distributed edge weights, Wästlund [34, 36] derived
the precise asymptotic formula (4ζ(2) − 4ζ(3))/n + O(1/n2) for Var[ 1

n
w(Mmin)]; it is not

known if this holds, for example, for the uniform distribution. In the planted case, we can
adapt the arguments in [32], Section 10, from the unplanted model to show that

Var
[

1

n
w(Mmin)

]
= O

(
(logn)4

N(log logn)2

)
via Talagrand’s inequality.1 We do not know how to tighten this to O(1/n), or to prove a sim-
ilar bound for the overlap. We believe both would follow from correlation decay of messages
in the planted PWIT, in which case distant pairs of edges in Kn,n would be asymptotically
independent.

1The only minor adaptation is to show [32], Proposition 10.3, continues to hold for the planted model, that
is, the bipartite graph Kn,n after truncating edges with weights above 2u logn is (u logn)-expanding with high
probability. This can be proved by first coupling the planted model to the unplanted one in a way that every edge
weight in the planted model is no larger and then directly invoking Propsition.10.3.
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FIG. 4. The blue dots are computed by finding the variance of the corresponding quantity on bipartite graphs
generated by the planted model with λ = 1. Each dot is the average of 1000 independent trials. For both the
overlap and the cost the variance appears to decrease as O(1/n) as shown by the dashed lines with slope −1 on
this log–log plot.

2. We have focused here on the maximum-likelihood estimator, which for the exponential
distribution is also the minimum-weight matching. In physical terms, we have considered this
problem at zero temperature. In contrast, the posterior distribution P[M∗ = M ′ | G] given in
(1.2) is a Gibbs distribution at nonzero temperature. The estimator with the largest expected
overlap would then be the maximum marginal estimator, that is, the set of edges e for which
P[e ∈ M∗ | G] ≥ P[e /∈ M∗ | G]. This estimator is not generally a matching or even of size
n; nevertheless, one can restrict to estimators which are perfect matchings while increasing
the expected misclassification rate |M ′�M∗|/(2n) at most by a factor of two. We leave for
future work the problem of computing the expected overlap of this estimator. It is possible
that it achieves almost-perfect recovery for some λ < 4, that is, that the information-theoretic
threshold for almost-perfect recovery is different from the threshold we have computed here,
but we conjecture this is not the case.

3. In physics, a phase transition is called continuous if the order parameter (in this case,
the overlap) is continuous at the threshold, and as pth order if its (p − 2)th derivative is con-
tinuous. Although we have not proved this, α(λ) in Figure 3 appears to have zero derivative
at λ = 4. This suggests that the transition in the optimal overlap is of third or higher order,
unlike other well-known problems in random graphs such as the emergence of the giant com-
ponent (second order) [11], the stochastic block model with two groups (second order) or
with four or more groups (first order) [26], or the appearance of the k-core for k ≥ 3 (first
order) [28]. Very recently, a nonrigorous argument that neglects small terms in the RDE [31]
was given that suggests the transition is infinite order, that is, with all derivatives continuous
at λ = 4. Proving this is an attractive open problem.

4. A related question is how the minimum matching changes when the graph undergoes
a small perturbation. Aldous and Percus [4] introduced this problem formally and classified
combinatorial optimization problems based on how the cost of the optimal solution scales
with the size of the perturbation. Using a cavity-based analysis and Monto Carlo simulation,
they suggested that the minimum cost among all perfect matchings that differ from the min-
imum matching by at least δn edges is larger than the cost of the minimum matching by
�(δ3). This framework has been studied rigorously in [7] and [8] for different combinatorial
optimization problems. It would be interesting to explore this same kind of perturbation in
the planted model, where we study the minimum cost among all matchings that differ from
the planted matching by at least δn edges.
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5. Can Lemma 3.5 be turned into a proof of almost perfect recovery? More generally,
when the RDEs (3.2) and (3.3) lack a solution supported on R (i.e., excluding weights in
{±∞}) does this imply almost perfect recovery?

6. We have given two proofs that that the RDEs have a unique solution if λ < 4. Theo-
rem 5.1 uses the dynamics of the ODEs, while Theorem 8.11 uses the uniqueness of M∞,opt
on the planted PWIT. These two types of reasoning seem completely orthogonal, but they
must be connected. When do the properties of the optimum involution invariant object on an
appropriate type of infinite tree imply the dynamical fact that a system of RDEs has a unique
fixed point?

7. What can we say about distributions P(w) of planted weights other than exponential?
For what distributions is it possible to collapse the RDEs into a finite-dimensional system
of ODEs? As stated above, Chertkov et al. [12] studied the folded Gaussian distribution
P = |N (0, κ)|, but we have been unable to reduce the RDEs to ODEs in this case. Nev-
ertheless, in the spirit of universality classes in physics, we expect any reasonable family of
distributions P to undergo a phase transition similar to what we have shown here for the ex-
ponential distribution, namely from almost-perfect to partial recovery at some critical value
of P ’s expectation (where this critical value may depend on the shape of the distribution P ).
Moreover, with respect to question #3 above, we expect the order of this phase transition, and
other scaling properties in its vicinity, to be robust as long as P ′(0) > 0.

8. Finally, what about planted models with spatial structure, as in the original problem of
particle tracking from [12]?

5. Analysis of the system of ODEs. In this section, we state and prove Theorem 5.1.

THEOREM 5.1. When λ < 4, the system of ODEs (3.8)–(3.11) has a unique solution
(F,G,V,W) satisfying conditions (3.12)–(3.13).

When V (x) �= 0, recall that

U(x) = F(x)

V (x)
.

Thus, when V (x) �= 0 and W(x) �= 0, the conservation law FW + GV − V W = 0 is equiva-
lent to

G(x)

W(x)
= 1 − U(x).

Also, recall that from the conservation law we have V (0) = W(0) = 2F(0) = 2G(0). Hence,
the previous 4-dimensional system of ODEs (3.8)–(3.11) with conditions (3.12)–(3.13) re-
duces to the following 3-dimensional system of ODEs:

(5.1)

dU

dx
= −λU(1 − U) + (1 − UV )

(
1 − (1 − U)W

)
,

dV

dx
= λV (1 − U),

dW

dx
= −λWU

with initial condition

U(0) = 1

2
, V (0) = W(0) = ε, ε ∈ [0,1].(5.2)
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Note that the partial derivatives of the right-hand side of (5.1) with respect to (U,V,W)

are continuous. Therefore, by the standard existence and uniqueness theorem for solutions of
systems of ODEs (see, e.g., [29], Theorem 2) it follows that the system (5.1) with the initial
condition (5.2) has a unique solution in a neighborhood of 0 for a fixed ε ∈ [0,1]. We write
this unique solution as U(x, ε), V (x, ε), and W(x, ε), which we abbreviate as (U,V,W)

whenever the context is clear. We extend the neighborhood to the maximum interval Iε in
which the solution (U(x, ε),V (x, ε),W(x, ε)) is finite, so that the existence and uniqueness
theorem applies to Iε . In particular, if the solution (U(x, ε),V (x, ε),W(x, ε)) is finite for
all x ∈ [0,∞), then Iε = [0,∞); otherwise, at least one of U , V , W converges to ∞ as x

converges to some finite x0 and then Iε = [0, x0). In the latter case, we say the solution is
±∞ for x ≥ x0.

Therefore, to prove Theorem 5.1, it suffices to show that the system of ODEs (5.1) with
the initial condition (5.2) has a solution (U(x, ε0),V (x, ε0),W(x, ε0)) for x ∈ [0,+∞)

satisfying the boundary condition U(+∞, ε0) = V (+∞, ε0) = 1 and W(+∞, ε0) = 0 for
a unique ε0 ∈ [0,1]. Geometrically speaking, this is due to the fact that (U = 1,V =
1,W = 0) is a saddle point, and there is a unique choice of ε0 so that the trajectory
(U(x, ε0),V (x, ε0),W(x, ε0)) falls into the stable manifold, that is, set of initial condi-
tions (U(0, ε0),V (0, ε0),W(0, ε0)) such that (U(x, ε0),V (x, ε0),W(x, ε0)) → (1,1,0) as
x → +∞. For any other choice of ε �= ε0, the trajectory (U(x, ε),V (x, ε),W(x, ε)) veers
away from (1,1,0) to infinity.

The outline of the proof is as follows. We first prove some basic properties satisfied by
the solution (U,V,W) in Section 5.1. Then based on these properties, in Section 5.2 we
prove that the solution satisfies some monotonicity properties with respect to ε by study-
ing the sensitivity of the solution to the initial condition. Next, in Section 5.3 we char-
acterize the limiting behavior of the solution depending on whether it hits 1 or not. The
monotonicity properties and the limiting behavior enable us to completely characterize
the basins of attraction in Section 5.4. In particular, we show that the basin of attraction
for (U = 1,V = 1,W = 0) is a singleton, that is, there is a unique choice of ε0 ∈ [0,1]
such that (U(x, ε0),V (x, ε0),W(x, ε0) → (1,1,0) as x → +∞. Finally, we connect the 3-
dimensional system of ODEs (5.1) back to the 4-dimensional system of ODEs (3.8)–(3.11)
and finish the proof of Theorem 5.1 in Section 5.5.

5.1. Basic properties of the solution. In the following lemma, we prove some basic prop-
erties of the solution.

LEMMA 5.2. Fix any ε ∈ (0,1]. Then for any x ∈ [0,+∞) such that the unique solution
(U,V,W) is well-defined (not equal to ±∞), it holds that

V (x) = W(x)eλx, UV < 1, (1 − U)W < 1, U,V,W > 0.

PROOF. It follows from (5.1) that

V (x) = ε exp
(
λ

∫ x

0

(
1 − U(y)

)
dy

)
> 0,(5.3)

W(x) = ε exp
(
−λ

∫ x

0
U(y)dy

)
> 0.(5.4)

Hence V (x) = W(x)eλx . Thus the conservation law FW + GV − V W = 0 implies that

V = F + Geλx, W = F e−λx + G.
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Recall that F = UV and G = (1 − U)W . Then

(5.5)

dF

dx
= (1 − F)(1 − G)V = (1 − F)(1 − G)

(
F + Geλx),

dG

dx
= −(1 − F)(1 − G)W = −(1 − F)(1 − G)

(
F e−λx + G

)
.

For the sake of contradiction, suppose max{F(x),G(x)} ≥ 1 for some finite x > 0. Since
F(x) and G(x) are continuous in x and F(0) = G(0) < 1, there is an x0 > 0 such that
max{F(x0),G(x0)} = 1. Define F̃ (x) ≡ F(x0) and G̃(x) ≡ G(x0). Then (F̃ (x), G̃(x)) is a
solution to ODE (5.5) in x ∈ [0, x0] running backward with its initial value at x = x0 given by
(F (x0),G(x0)). Note that (F (x),G(x)) is also a solution to ODE (5.5) in the backward time
x ∈ [0, x0] with its initial value at x = x0 given by (F (x0),G(x0)). Also note that the right-
hand side of ODE (5.5) is continuous in x and the partial derivatives with respect to F and
G are continuous. By existence and uniqueness ([29], Theorem 2), it follows that F(x) ≡
F(x0) and G(x) ≡ G(x0) for x ∈ [0, x0]. Hence, max{F(0),G(0)} = 1, which contradicts
that F(0) = G(0) = ε/2 < 1. Thus, F = UV < 1 and G = (1 − U)W < 1.

Next, we argue that U > 0. Suppose not, since U(0) = 1/2, by the differentiability of U

in x, there exists a finite x0 > 0 such that U(x0) = 0 and U ′(x0) ≤ 0. However,

dU

dx

∣∣∣∣
x=x0

= [
1 − U(x0)V (x0)

][
1 − (

1 − U(x0)
)
W(x0)

]= [
1 − F(x0)

][
1 − G(x0)

]
> 0,

which leads to a contradiction. �

5.2. Monotonicity to the initial condition. The key to our proof is to study how the solu-
tion of the system of ODEs (5.1) changes with respect to the initial condition (5.2).

Standard ODE theory (see [29], Theorem 15) shows that U(x, ε) is differentiable in ε and
the mixed partial derivatives satisfy

∂2U(x, ε)

∂x ∂ε
= ∂2U(x, ε)

∂ε ∂x
;

similarly for V and W . Moreover, the partial derivatives (∂U/∂ε, ∂V/∂ε, ∂W/∂ε) satisfy the
following system of equations:

(5.6)

∂

∂x

∂U

∂ε
= [−λ(1 − 2U) − V

(
1 − (1 − U)W

)+ (1 − UV )W
]∂U

∂ε

− U
(
1 − (1 − U)W

)∂V

∂ε
− (1 − UV )(1 − U)

∂W

∂ε
,

∂

∂x

∂V

∂ε
= −λV

∂U

∂ε
+ λ(1 − U)

∂V

∂ε
,

∂

∂x

∂W

∂ε
= −λW

∂U

∂ε
− λU

∂W

∂ε
,

with initial condition

∂U(0, ε)

∂ε
= 0,

∂V (0, ε)

∂ε
= 1,

∂W(0, ε)

∂ε
= 1.(5.7)

The system of equations (5.6) is known as the system of variational equations and can be
derived by differentiating (5.1) with respect to ε and interchange ∂x and ∂ε. The initial con-
dition (5.7) can be derived by differentiating (5.2) with respect to ε.

The following key lemma shows that whenever U(x, ε) ≤ 1, U(x, ε) is decreasing in ε,
while V (x, ε) and W(x, ε) are increasing in ε.
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LEMMA 5.3. Fix ε ∈ (0,1). Suppose U(x, ε) ≤ 1 for x ∈ (0, c] for a finite constant
c > 0. Then for all x ∈ (0, c],

∂U(x, ε)

∂ε
< 0 and

∂W(x, ε)

∂ε
> 0.(5.8)

Moreover, it follows that all x ∈ (0, c],
∂V (x, ε)

∂ε
≥ exp

(
λ

∫ x

0

(
1 − U(t, ε)

)
dt

)
= V (ε)

ε
≥ 1.(5.9)

PROOF. We first show that (5.9) holds whenever ∂U(x, ε)/∂ε < 0 for x ∈ (0, c]. Recall
that in Lemma 5.2 we have shown that V > 0. It follows from (5.6) that for all x ∈ (0, c]

∂

∂x

∂V

∂ε
≥ λ(1 − U)

∂V

∂ε
.

Thus for all x ∈ (0, c]
∂V (x, ε)

∂ε
≥ exp

(
λ

∫ x

0

(
1 − U(s)

)
ds

)
= V (x, ε)

ε
≥ 1,

where the equality holds due to (5.3).
Next we show (5.8). For the sake of contradiction, suppose not, that is, there exists a

x0 ∈ (0, c] such that either ∂U(x0,ε)
∂ε

≥ 0 or ∂W(x0,ε)
∂ε

≤ 0.
Define

a = inf
{
x ∈ (0, c] : ∂U(x, ε)

∂ε
≥ 0

}
and

b = inf
{
x ∈ (0, c] : ∂W(x, ε)

∂ε
≤ 0

}
,

with the convention that the infimum of an empty set is +∞. Then min{a, b} ≤ x0 ≤ c.
Case 1: Suppose a ≤ b. Due to the initial condition (5.7) and the initial condition (5.2), we

have that

∂U(0, ε)

∂ε
= 0,

∂

∂x

∂U(0, ε)

∂ε
= −

(
1 − ε

2

)
< 0.

Then we have a > 0. Moreover, by the differentiability of ∂U(x,ε)
∂ε

in x and the definition of
a, we have

∂U(x, ε)

∂ε
< 0 ∀x ∈ (0, a),

∂U(a, ε)

∂ε
= 0 and

∂

∂x

∂U(a, ε)

∂ε
≥ 0.

It follows from our previous argument for proving (5.9) that ∂V (x, ε)/∂ε ≥ 1 for all x ∈
(0, a]. Since a ≤ b, we also have that

∂W(a, ε)

∂ε
≥ 0.

Recall that in Lemma 5.2 we have shown that UV < 1, (1 − U)W < 1 and U > 0. More-
over, by assumption we have U ≤ 1. Thus we get from ODE (5.6) that

∂

∂x

∂U(a, ε)

∂ε
= −U

(
1 − (1 − U)W

)∂V (a, ε)

∂ε
− (1 − UV )(1 − U)

∂W(a, ε)

∂ε
< 0,

which contradicts ∂
∂x

∂U(a,ε)
∂ε

≥ 0.
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Case 2: Suppose a > b. Due to the initial condition (5.6), we have that

∂W(0, ε)

∂ε
= 1.

Thus b > 0. By the differentiability of ∂W(x,ε)
∂ε

in x, we have that

∂W(b, ε)

∂ε
= 0 and

∂

∂x

∂W(b, ε)

∂ε
≤ 0 and

∂U(b, ε)

∂ε
< 0.

Recall that in Lemma 5.2 we have shown that W > 0. It follows from ODE (5.6) that

∂

∂x

∂W(b, ε)

∂ε
= −λW

∂U(b, ε)

∂ε
> 0,

which contradicts ∂
∂x

∂W(b,ε)
∂ε

≤ 0. �

Based on Lemma 5.3, we prove another “monotonicity” lemma, showing that if U(x, ε0) <

1 for all x ≥ 0 and some ε0 ∈ (0,1), then U(x, ε) < 1 for all x ≥ 0 and all ε ∈ (ε0,1).

LEMMA 5.4. Suppose U(x, ε0) < 1 for all x ≥ 0 and some ε0 ∈ (0,1). Then U(x, ε) < 1
for all ε ∈ (ε0,1) and all x ≥ 0.

PROOF. Fix an arbitrary but finite x0 > 0. We claim that U(x0, ε) < 1 for all ε ∈ (ε0,1).
Suppose not. Then define

ε1 � inf
{
ε ∈ (ε0,1) : 1 ≤ U(x0, ε) < +∞}

.

Note that by assumption, U(x0, ε0) < 1. By the definition of ε1 and the differentiability of
U(x0, ε) in ε, we have

U(x0, ε1) = 1,
∂U(x0, ε1)

∂ε
≥ 0.

We claim that U(x, ε1) < 1 for all x ∈ (0, x0). If not, then there exists an x1 ∈ (0, x0) such that
U(x1, ε1) = 1. Note that dU(x,ε1)

dx
> 0 if U(x) ≥ 1. Thus U(x, ε1) > 1 for all x > x1, which

contradicts the fact that U(x0, ε1) = 1. Therefore, we can apply Lemma 5.3 with c = x0 and
get that

∂U(x0, ε1)

∂ε
< 0,

which contradicts the fact that ∂U(x0,ε1)
∂ε

≥ 0. Since x0 is arbitrarily chosen, we conclude that
U(x, ε) < 1 for all ε ∈ (ε0,1) and all x > 0. �

5.3. Limiting behavior of (U,V,W). In this section, we characterize the limiting behav-
ior of (U,V,W), depending on whether U or V hit 1.

First, we state a simple lemma, showing that if both U and V do not hit 1 in finite time,
then they converge to 1 as x → ∞.

LEMMA 5.5. If U(x, ε0) < 1 and V (x, ε0) < 1 for all x ≥ 0 and some ε0 ∈ (0,1), then
U(x, ε0) → 1, V (x, ε0) → 1, and W(x, ε0) → 0 as x → ∞.

PROOF. By Lemma 5.2, we have W(x) = V (x)e−λx → 0 as x → ∞. Recall that accord-
ing to (5.1),

dV

dx
= λV (1 − U) > 0.
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Since V (x) < 1 for all x ≥ 0, it follows that dV
dx

→ 0 and hence U(x) → 1 as x → +∞.
Thus, as x → +∞,

dU

dx
= −λU(1 − U) + (1 − UV )

(
1 − (1 − U)W

)→ 0,

which implies that V (x) → 1 as x → +∞. �

The next lemma shows the behavior of U and V if they hit 1 for finite x.

LEMMA 5.6. Let x0 > 0 be finite.

• If V (x0) = 1, then V (x) monotonically increases to +∞ and U(x) → 0 for x ≥ x0.
• If U(x0) = 1, then U(x) monotonically increases to +∞ and V (x) → 0 for x ≥ x0.

PROOF. Suppose V (x0) = 1. Recall that in Lemma 5.2, we have shown that UV < 1.
According to ODE (5.1), we get that dV/dx > 0 if V ≥ 1 as UV < 1. Thus V (x) monotoni-
cally increases to +∞ for x ≥ x0. Moreover U(x) → 0 for x ≥ x0.

Suppose U(x0) = 1. Recall that in Lemma 5.2, we have shown that (1 − U)WV < 1.
According to ODE (5.1), we get that dU/dx > 0 if U ≥ 1. Hence, U(x) monotonically
increases to +∞ for x ≥ x0. As UV < 1, it further follows that V (x) → 0 for x ≥ x0. �

5.4. Basins of attraction. In view of Lemma 5.5 and Lemma 5.6, define the basin of
attraction for (U = 0,V = +∞) as

S1 = {
ε ∈ [0,1] : V (x, ε) ≥ 1 for some finite x > 0

};
the basin of attraction for (U = +∞,V = 0) as

S2 = {
ε ∈ [0,1] : U(x, ε) ≥ 1 for some finite x > 0

};
and the basin of attraction for (U = 1,V = 1) as

S0 = {
ε ∈ [0,1] : U(x, ε) < 1 and V (x, ε) < 1 for all finite x > 0

}
.

When ε is either 0 or 1, we have the following simple characterizations of the solution.

LEMMA 5.7. Suppose λ < 4.

• If ε = 0, then V (x) ≡ 0, W(X) ≡ 0 and U(x) monotonically increases to +∞.
• If ε = 1, then V (x) monotonically increases to +∞ and U(x) → 0.

PROOF. First, consider the case ε = 0. Then according to the system of ODEs (5.1), we
immediately get that V (x) ≡ 0, W(X) ≡ 0. Thus

dU

dx
= −λU(1 − U) + 1 > 0,

where the last inequality holds due to λ < 4. Hence, U(x) monotonically increases to +∞.
The conclusion in the case ε = 1 simply follows from Lemma 5.6. �

Now we are ready to prove a lemma, which completely characterizes the basins of attrac-
tion S0, S1, and S2.

LEMMA 5.8. Suppose λ < 4. Then there exists a unique ε0 ∈ (0,1) such that

S0 = {ε0}, S1 = (ε0,1], S2 = [0, ε0).(5.10)
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PROOF. Lemma 5.7 implies that 1 ∈ S1 and 0 ∈ S2. Note that UV < 1 by Lemma 5.2.
Thus it follows from Lemma 5.6 that S1 and S2 are disjoint.

We first prove that S1 is left open. Fix any ε ∈ S1. Since V (x, ε) ≥ 1 for some finite x,
it follows from Lemma 5.6 that there exists an x0 such that V (x0, ε) > 1. By the continuity
of V (x0, ε) in ε, there exists a δ > 0 such that for all ε′ ∈ [ε − δ, ε], V (x0, ε

′) > 1, and thus
V (x, ε′) → +∞ and U(x, ε′) → 0 as x → +∞. Hence, [ε − δ, ε] ⊂ S1. Thus S1 is left open.

Analogously, we can prove that S2 is right open. Note that S0 = [0,1] \ (S1 ∪ S2), and S1

and S2 are disjoint. It follows that S0 is nonempty. Let ε0 be any point in S0. Next we prove
(5.10).

We first fix any ε ∈ (ε0,1). Since ε0 ∈ S0, it follows that U(x, ε0) < 1 and V (x, ε0) < 1 for
all x ≥ 0. In view of Lemma 5.4, we have that U(x, ε) < 1 for all ε ∈ (ε0,1) and all x > 0. It
follows from Lemma 5.3 that ∂V (x, ε)/∂ε ≥ 1 for all x > 0 and all ε ∈ (ε0,1). Thus for all
x ≥ 0,

V (x, ε) = V (x, ε0) +
∫ ε

ε0

∂V (x, η)

∂η
dη ≥ V (x, ε0) + (ε − ε0).

Since V (x, ε0) → 1 as x → +∞, there exists an x0 such that for all x ≥ x0,

V (x, ε0) ≥ 1 − (ε − ε0)/2.

Combining the last two displayed equation gives that for all x ≥ x0,

V (x, ε) ≥ 1 + (ε − ε0)/2 > 1.

We conclude that ε ∈ S1 and thus (ε0,1] ⊂ S1.
Next we fix any ε ∈ (0, ε0) and show that ε ∈ S2. Suppose not. Then there exists an ε1 ∈

(0, ε0) such that U(x, ε1) < 1 for all x ≥ 0. By Lemma 5.4, we have that U(x, ε) < 1 for all
ε ∈ (ε1,1) and all x > 0. In view of Lemma 5.3, it immediately follows that (5.9) holds for
all x > 0 and all ε ∈ (ε1,1). Thus,

V (x, ε0) = V (x, ε1) +
∫ ε0

ε1

∂V (x, ε)

∂ε
dε ≥ V (x, ε1) + (ε0 − ε1).

Note that since ε0 ∈ S0, V (x, ε0) < 1 for all x ≥ 0, it follows that for all x ≥ 0,

V (x, ε1) < 1 − (ε0 − ε1),

which contradicts the conclusion of Lemma 5.5. Thus we conclude that ε ∈ S2 and thus
[0, ε0) ⊂ S2.

Since S0, S1, and S2 are all disjoint, the desired (5.10) readily follows. �

5.5. Proof of Theorem 5.1. We are now ready to prove Theorem 5.1. Let S0 = {ε0}, and
let (U(x, ε0),V (x, ε0),W(x, ε0)) be the unique solution to the system of ODEs (5.1) with
the initial condition (5.2). For x ∈ [0,+∞), define

F(x) = U(x, ε0)V (x, ε0), F (−x) = (
1 − U(x, ε0)

)
W(x, ε0),

V (x) = V (x, ε0), V (−x) = W(x, ε0),

G(x) = F(−x), G(−x) = F(x),

W(x) = V (−x), W(−x) = V (x).
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We show that (F,G,V,W) is a solution to the system of ODEs (3.8)–(3.11) with condi-
tions (3.12)–(3.13). First, by construction (F,G,V,W) satisfy the system of ODEs (3.8)–
(3.11). In particular, since U(0, ε0) = 1/2 and V (0, ε0) = W(0, ε0) = ε0, we have

lim
x↓0

dV

dx
(x, ε) = λV (0, ε0)

(
1 − U(0, ε0)

)= λε0

2
,

lim
x↑0

dV

dx
(x, ε) = − lim

x↓0

dW

dx
(x, ε) = λW(0, ε0)U(0, ε0) = λε0

2
.

Therefore, V is differentiable at 0. Analogously, we can verify that F , G, and W are differ-
entiable at 0.

Second, since ε0 ∈ S0, by definition U(x, ε0) < 1 and V (x, ε0) < 1 for all x ≥ 0.
Thus it follows from Lemma 5.5 that as x → +∞, U(x, ε0) → 1, V (x, ε0) → 1, and
W(x, ε0) → 0. Hence, (F,G,V,W) satisfy condition (3.12). Third, in view of Lemma 5.2,
we have that U(x, ε0),V (x, ε0),W(x, ε0) > 0, W(x, ε0) < 1, U(x, ε0)V (x, ε0) < 1, and
(1 − U(x, ε0))W(x, ε0) < 1. Therefore, 0 < V,W < 1 and 0 < F,G < 1, satisfying con-
dition (3.13).

Next, we show that the solution (F,G,V,W) is unique. Let (F̃ , G̃, Ṽ , W̃ ) denote another
solution to system of ODEs (3.8)–(3.11) with conditions (3.12)–(3.13). Let Ũ = F̃ /Ṽ . Then
(Ũ , Ṽ , W̃ ) is a solution to the system of ODEs (5.1), satisfying the initial condition (5.2)
with ε = Ṽ (0) = W̃ (0). Moreover, Ũ (x) < 1 and Ṽ (x) < 1 for all x ≥ 0, because otherwise
by Lemma 5.6, either Ũ (x) → +∞ or Ṽ (x) → +∞, violating that F̃ (x), Ṽ (x) → 1. As a
consequence, Ṽ (0) ∈ S0. It follows from Lemma 5.8 that ε0 = Ṽ (0). By the uniqueness of the
solution to system of ODEs (5.1) with the initial condition (5.2), we have Ũ (x) ≡ U(x, ε0),
Ṽ (x) ≡ V (x, ε0), W̃ (x) ≡ V (x, ε0). Thus, (F̃ , G̃, Ṽ , W̃ ) = (F,G,V,W).

6. Planted networks and local weak convergence. In this section and the succeeding
ones we define the planted Poisson Weighted Infinite Tree (planted PWIT), define a match-
ing M∞,opt on it, prove that it is optimal and unique, and prove that the minimum weight
matching Mn,min on Kn,n converges to it in the local weak sense. We follow the strategy of
Aldous’ celebrated proof of the π2/6 conjecture in the unplanted model [2, 6], and in a few
places the review article of Aldous and Steele [5]. There are some places where we can sim-
ply re-use the steps of that proof, and others where the planted model requires a nontrivial
generalization or modification, but throughout we try to keep our proof as self-contained as
possible.

In this section we lay out our notation, and formally define local weak convergence. We
apologize to the reader in advance for the notational complications they are about to endure:
there are far too many superscripts, subscripts, diacritical marks, and general doodads on
these symbols. But some level of this seems to be unavoidable if we want to carefully define
the various objects and spaces we need to work with.

First off, the exponential distribution with rate ν is denoted by exp(ν). Its cumulative dis-
tribution function is P[x > t] = e−νt and its mean is 1/ν. For a Borel space (S,S) consisting
of a set S and a σ -algebra S , P(S) is the set of all Borel probability measures defined on S.

We use Z for the integers, N0 = {0,1,2, . . .} and N+ = {1,2, . . .} for the natural numbers,
and R+ for the set of nonnegative real numbers. The number of elements of a set A is denoted
by |A|. Random variables are denoted by capital letters; when we need to refer to a specific
realization we sometimes use small letters.

Our graphs will be simple and undirected unless otherwise specified. Given an undirected
graph G = (V ,E), a (perfect) matching M ⊂ E is a set of edges where every vertex v ∈ V is
incident to exactly one edge in M . For each v, we refer to the unique v′ such that {v, v′} ∈ M

as the partner to v, and will sometimes denote it as M(v); then M(M(v)) = v. In a bipartite
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graph, a matching defines a one-to-one correspondence between the vertices on the left and
those on the right. In a forgivable abuse of notation, will often write M(v, v′) = 1 if {v, v′} ∈
M and 0 otherwise.

A rooted graph G◦ = (V ,E,ø) is a graph G = (V ,E) with a distinguished vertex ø ∈ V .
The height of a vertex v ∈ V in a rooted graph G◦ = (V ,E,ø) is the shortest-path distance
from ø to v, that is, the minimum number of edges among all paths from ø to v.

A planted graph G = (V ,E,M∗) is a graph (V ,E) together with a planted matching
M∗ ⊂ E. Similarly a rooted planted graph G◦ = (V ,E,M∗,ø) is a planted graph with a
distinguished vertex ø. We refer to the edges in M∗ and E \ M∗ as the planted edges and
unplanted edges respectively.

Two planted graphs G = (V ,E,M∗) and G′ = (V ′,E′,M∗′) are said to be isomorphic
if there exists a bijection γ : V → V ′ such that {v1, v2} ∈ E if and only if γ ({v1, v2}) :=
{γ (v1), γ (v2)} ∈ E′, and {v1, v2} ∈ M∗ if and only if γ ({v1, v2}) = {γ (v1), γ (v2)} ∈ M∗′.
Thus the isomorphism γ preserves the planted and unplanted edges. A rooted isomor-
phism from G◦ = (V ,E,M∗,ø) to G′◦ = (V ′,E′,M∗′,ø′) is an isomorphism between
G = (V ,E,M∗) and G′ = (V ′,E′,M∗′) such that γ (ø) = ø′.

Next we endow a planted graph with a weight function. A planted network N = (G, �) is
a planted graph G = (V ,E,M∗) together with a function � : E → R+ that assigns weights
to the edges. For the sake of brevity, we write �(v,w) instead of �({v,w}).

Now let Kn,n = (Vn,En,M
∗
n) denote a complete bipartite graph together with a planted

matching. We use [n] to denote the set of integers {1,2, . . . , n}. We label the vertices
on the left-hand side of Kn,n as {1,2, . . . , n}, and the vertices on the right-hand side as
{1′,2′, . . . , n′}. In a slight abuse of notation, we denote these sets of labels [n] and [n′] re-
spectively. Thus Vn = [n] ∪ [n′], En = {{i, j ′} : i ∈ [n] and j ′ ∈ [n′]}, and M∗

n = {{i, i′} : i ∈
[n] and i ′ ∈ [n′]}.

Let �n denote a random function that assigns weights to the edges of Kn,n as follows: if
e ∈ M∗, then �n(e) ∼ exp(λ), and if e /∈ M∗

n then �n(e) ∼ exp(1/n). We denote the resulting
planted network as (Kn,n, �n). We denote the minimum matching on (Kn,n, �n) as Mn,min.
Figure 5 illustrates a realization of the planted model.

We want to define a metric on planted networks, or rather on their isomorphism classes.
Two planted networks N = (G, �) and N ′ = (G′, �′) are isomorphic if there is an isomor-
phism γ between G and G′ that preserves the length of the edges, that is, if �(v1, v2) =

FIG. 5. A realization of (K4,4, �4) for n = 4 and λ = 1. Red bold edges are in M∗
n (planted edges), and solid

blue edges are in En \ M∗
n .
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�′(γ (v1), γ (v2)). A rooted planted network N◦ = (G◦, �) is a rooted planted graph G◦ to-
gether with a weight function �, and we define rooted isomorphism as before. Let [N◦] de-
note the class of rooted planted networks that are isomorphic to N◦. Henceforth, we use N◦
to denote a typical member of [N◦].

Next, we define a distance function d�(v, v′) as the shortest-path weighted distance be-
tween vertices but treating planted edges as if they have zero weight. That is,

(6.1) d�

(
v, v′) := inf

paths p from v to v′

∑
e∈p\M∗

�(e).

For any vertex v ∈ V and any ρ ∈ R+, we can consider the neighborhood Nρ(v) = {v′ :
d�(v, v′) ≤ ρ}. A network is locally finite if |Nρ(v)| is finite for all v and all ρ.

Now let G∗ denote the set of all isomorphism classes [N◦], where N◦ ranges over all
connected locally finite rooted planted networks. There is a natural way to equip G∗ with a
metric. Consider a connected locally finite rooted planted network N◦ = (G◦, �). Now, for
ρ ∈ R+, we can turn the neighborhood Nρ(ø) into a rooted subgraph (G◦)ρ . To be precise,
(G◦)ρ = (Vρ,Eρ,M∗

ρ,ø) is given as follows:

1. Vertex set: Vρ = Nρ(ø) = {v : d�(v,ø) ≤ ρ}.
2. Edge set: e ∈ Eρ if e ∈ p for some path p starting from ø such that

∑
e∈p\M∗ �(e) ≤ ρ.

3. Planted matching: M∗
ρ = M∗ ∩ Eρ .

Given this definition, for any [N◦], [N ′◦] ∈ G∗ a natural way to define a distance is

d
([N◦], [N ′◦

])= 1

R + 1
,

where R is the largest ρ at which the corresponding rooted subnetworks ((G◦)ρ, �) and
((G′◦)ρ, �′) cease to be approximately isomorphic in the following sense:

(6.2)
R = sup

{
ρ ≥ 0 : there exists a rooted isomorphism γρ : (G◦)ρ → (

G′◦
)
ρ

such that ∀e ∈ Eρ,
∣∣�(e) − �′(γρ(e)

)∣∣< 1/ρ
}
.

(Note that this isomorphism is between the rooted subgraphs (G◦)ρ and (G′◦)ρ , not the cor-
responding rooted networks, so it is not required to preserve the weights exactly.) In other
words, N◦ and N ′◦ are close whenever there is a large neighborhood around ø where the edge
weights are approximately the same, up to isomorphism. In particular, a continuous function
is one that we can approximate arbitrarily well by looking at larger and larger neighborhoods
of the root.

Equipped with this distance, we say that a sequence ([Nn,◦ = (Gn,◦, �n)])∞n=1 converges

locally to [N∞,◦], and write [Nn,◦] loc−→ [N∞,◦], if the following holds: for all ρ ∈ R+ such
that N∞,◦ does not have a vertex at a distance exactly ρ from the root ø, there is an nρ ∈ N0
such that for all n > nρ there is a rooted isomorphism γn,ρ : (Gn,◦)ρ → (G∞,◦)ρ such that
�n(γ

−1
n,ρ(e)) → �(e) for all e ∈ Eρ where Eρ is defined from G∞,◦ as above. That is, as n

increases, Nn,◦ becomes arbitrarily close to N∞,◦ on arbitrarily large neighborhoods.
It is easy to check that d defines a metric on G∗. Moreover, G∗ equipped with this metric is

a Polish space: a complete metric space which is separable, that is, it has a countable dense
subset. Hence, we can use the usual tools in the theory of weak convergence to study sequence
of probability measures on G∗. More precisely, define P(G∗) as the set of all probability
measures on G∗ and endow this space with the topology of weak convergence: a sequence
μn ∈ P(G∗) converges weakly to μ∞, denoted by μn

w−→ μ, if for any continuous bounded
function f : G∗ → R, ∫

G∗
f dμn →

∫
G∗

f dμ∞.
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Since G∗ is a Polish space, P(G∗) is a Polish space as well with the Lévy–Prokhorov met-
ric [14], pages 394–395, Theorem 11.3.1 and Theorem 11.3.3. Also, Skorokhod’s theorem
([19], p. 79, Theorem 4.30) implies that μn converges weakly to μ∞ if an only if there are
random variables [Nn,◦] and [N∞,◦] defined over G∗ such that [Nn,◦] ∼ μn, [N∞,◦] ∼ μ∞,

and [Nn,◦] loc−→ [N∞,◦] almost surely.
This notion of convergence in G∗ was first discussed by Aldous and Steele in [5]. It is called

local weak convergence to emphasize the fact that this notion of convergence only informs us
about the local properties of measure around the root. We are going to use this framework to
study the asymptotics of a sequence of finite planted networks. This methodology is known as
the objective method [5] and has been used to analyze combinatorial optimization problems
in a variety of random structures (e.g., [5, 15–17, 21, 30]).

In order to apply this machinery to random finite planted networks, consider a finite planted
network N = (G, �). For a vertex v ∈ V , let N◦(v) denote the planted network rooted at v

consisting of v’s connected component. Then we can define a measure U(N) ∈ P(G∗) as
follows:

(6.3) U(N) = 1

|V |
∑
v∈V

δ[N◦(v)],

where δ[N◦(v)] ∈ P(G∗) is the Dirac measure that assigns 1 to [N◦(v)] ∈ G∗ and 0 to to any
other member of G∗. In other words, U(N) is the law of [N◦(ø)] where ø is picked uniformly
from V . Now, to study the local behavior of a sequence of finite networks (Nn)n, the objective
method suggests studying the weak limit of the sequence of measures (U(Nn))n.

DEFINITION 6.1 (Random weak limit). A sequence of finite planted networks (Nn)
∞
n=1

has a random weak limit μ ∈ P(G∗) if U(Nn)
w−→ μ.

If Nn is a random planted network, we replace U(Nn) in the above definition with
EU(Nn), where

(6.4) EU(N)(A) := E
[
U(N)(A)

]
for all Borel sets A ⊆ G∗,

and the expectation is taken with respect to the randomness of N . For us, in both (Kn,n, �n)

and the weighted infinite tree (N∞,◦, �∞) we define below, the only source of randomness
is the edge weights. It is easy to see that if N is vertex transitive, so that every vertex has
the same distribution of neighborhoods, then EU(N) is the law of [N(ø)] (or of [N(v)] for
any vertex v). In many settings, for example, sparse Erdős–Rényi graphs, U(N) converges in
distribution to N(ø), since averaging over all possible root vertices effectively averages over
N as well. But taking the expectation over N as we do here avoids having to prove this.

Not all probability measures μ ∈ P(G∗) can be random weak limits. The uniform rooting
in the measure associated with finite networks implies a modest symmetry property on the
asymptotic measure. One necessary condition for a probability measure to be a random weak
limit is called unimodularity [3].

To define unimodularity, let G∗∗ denote the set of all isomorphism classes [N◦◦], where N◦◦
ranges over all connected locally finite doubly-rooted planted networks—that is, networks
with an ordered pair of distinguished vertices. We define G∗∗ as the set of equivalence classes
under isomorphisms that preserve both roots, and equip it with a metric analogous to (6.2) to
make it complete and separable. A continuous function f ([N◦◦(ø, v)]) is then one which we
can approximate arbitrarily well by looking at neighborhoods of increasing size that contain
both ø and v.
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Then we can define unimodularity as follows.

DEFINITION 6.2 (Unimodularity). A probability measure μ ∈ P(G∗) is unimodular if
for all Borel functions f : G∗∗ →R+,∫

G∗

∑
v∈V

f
([

N◦◦(ø, v)
])

dμ
([

N◦(ø)
])= ∫

G∗

∑
v∈V

f
([

N◦◦(v,ø)
])

dμ
([

N◦(ø)
])

.(6.5)

In other words, the expectation over μ of the sum (either finite or +∞) over all v of
f ([N◦◦(ø, v)]) remains the same if we swap ø and v. Since in a connected graph we can
swap any vertex v with ø by a sequence of swaps between ø and its neighbors, each of
which moves v closer to the root, this definition is equivalent to one where we restrict f to
Borel functions with support on {[N◦◦(ø, v)] | ø and v are neighbors}. With this restriction,
unimodularity is known as involution invariance [3], Proposition 2.2.

LEMMA 6.3 (Involution invariance). A probability measure μ ∈ P(G∗) is unimodular if
and only if (6.5) holds for all Borel functions f : G∗∗ → R+ such that f ([N◦◦(ø, v)]) = 0
unless {ø, v} ∈ E.

Aldous in [5] uses another characterization of involution invariance. Given a probability
measure μ ∈ P(G∗), define a measure μ̃ on G∗∗ as the product measure of μ and the counting
measure on the neighbors of the root, that is,

μ̃(·) :=
∫
G∗

∑
v:{ø,v}∈E

1
([

N◦◦(ø, v)
] ∈ ·)dμ

([
N◦(ø)

])
,(6.6)

where 1 is the indicator function. Like μ, μ̃ is a σ -finite measure. Throughout the following
sections, we use the ˜tilde to distinguish a measure associated with doubly-rooted planted
networks from the corresponding measure associated with singly-rooted ones.

Then Aldous’ definition of involution invariance in [5] is as follows.

DEFINITION 6.4 (Involution invariance, again). A probability measure μ ∈ P(G∗) is said
to be involution invariant if the induced measure μ̃ on G∗∗ is invariant under the involution
map ι : G∗∗ → G∗∗, that is,

μ̃(A) = μ̃
(
ι−1(A)

)
for all Borel sets A ⊆ G∗∗,

where ι([N◦◦(ø, v)]) = [N◦◦(v,ø)].

Crucially, unimodularity and involution invariance are preserved under local weak con-
vergence. Any random weak limit satisfies unimodularity and is involution invariant [3, 5]
(although the converse is an open problem).

The theory of local weak convergence is a powerful tool for studying random combina-
torial problems. In the succeeding sections we will prove a series of propositions analogous
to [2, 6] showing local weak convergence between our planted model of randomly weighted
graphs Kn,n and a kind of infinite tree N∞,◦. These propositions make a rigorous connection
between the minimum matching on Kn,n and the minimum involution invariant matching
M∞,opt on N∞,◦. Finally, we analyze M∞,opt using the RDEs that we solved with differen-
tial equations above.
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7. The PWIT and planted PWIT. In this section we define the planted Poisson
Weighted Infinite Tree, and show that it is the weak limit of the planted model (Kn,n, �n).

Let us ignore the planted matching for the moment and assume that �n(e) ∼ exp(n) for all
e ∈ En. The problem of finding the minimum matching on this unplanted network is known
as the random assignment problem. Kurtzberg [22] introduced this problem with i.i.d. uni-
form edge lengths on [0, n], and Walkup [33] proved that the expected cost of the minimum
matching is bounded and is independent of n. In the succeeding years, many researchers
tightened the bound for E[Xn] (e.g., [18, 20, 23]). Using powerful but nonrigorous methods
from statistical physics, Meźard and Parisi [25] conjectured that E[Xn] has the limiting value
ζ(2) = π2/6 as n → ∞. Aldous first proved [2] that E[Xn] indeed has a limit, and then [6]
proved the π2/6 conjecture, using the local weak convergence approach we follow here.

Other methods have been introduced to study this problem [24, 27, 35], including the
marvelous fact that for finite n, the expected cost of the minimum matching is the sum of the
first n terms of the Riemann series for ζ(2), namely 1 + 1/4 + 1/9 + · · · + 1/n2. But these
methods rely heavily on the specifics of the matching problem, and we will not discuss them
here.

As the first step in applying local weak convergence to the planted problem, we are going
to identify the weak limit of the planted model according to Definition 6.1: that is, the kind
of infinite randomly weighted tree that corresponds to Kn,n with weights drawn from our
model. To be more precise, we are interested in a probability measure μ∞ ∈ P(G∗) that
μn = EU(Nn) ∈ P(G∗) converges to in the local weak sense, where Nn = (Kn,n, �n) is the
planted model, U(Nn) is the random measure defined in (6.3) by rooting Nn at a uniformly
random vertex, and EU(Nn) is the measure defined in (6.4). Since every neighborhood has
the same distribution of neighborhoods in the planted model, the root might as well be at
vertex 1, so μn is simply the distribution of [Nn,◦(1)]. Thus

(7.1)

μn(A) = EU(Nn)(A)

= 1

2n

∑
v∈Vn

E
[
δ[Nn(v)](A)

]= P
[[

Nn,◦(1)
] ∈ A

]
for all Borel sets A ⊆ G∗.

In the unplanted model studied by Aldous and others, the weak limit of the random match-
ing problem is the Poisson Weighted Infinite Tree (PWIT). The planted case is similar but
more elaborate: the weights of the unplanted edges are Poisson arrivals, but the weights of
the planted edges have to be treated separately. We call this the planted PWIT, and define it
as follows.

We label the vertices V∞ of the planted PWIT with sequences over N0, which we denote
with bold letters. The root is labeled by the empty sequence ø. The children of a vertex
i = (i1, i2, . . . , it ), are ij := (i1, i2, . . . , it , j ) for some j ∈ N0, and if t > 0 its parent is
parent(i) := (i1, i2, . . . , it−1). We say that i belongs to the t th generation of the tree, and
write gen(i) = t .

Appending j ∈ {1,2, . . .} to i gives the j th nonplanted child, that is, the child with the j th
smallest edge weight among the nonplanted edges descending from the parent i. However,
appending j = 0 indicates i’s planted child if any, that is, i’s partner in the planted matching
if its partner is one of its children instead of its parent. Since the planted partner of a planted
child is its parent, these sequences never have two consecutive zeroes. (Note that the root has
a planted child, so the first entry in the sequence is allowed to be 0.) We denote the set of such
sequences of length t as �t , and the set of all finite such sequences as � =⋃

t∈N0
�t . Thus

the edge set is E∞ = {{i, ij} | j ∈ N0 and i, ij ∈ �}, and the planted matching M∗∞ ⊂ E∞
consists of the edges {{i, i0} | i, i0 ∈ �}. Let T∞ = (V∞ = �,E∞,M∗∞) be the resulting
planted tree.
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Next we define the random edge weights �∞ : E∞ → R+. The weights of the unplanted
edges are distributed just as in the PWIT: that is, for each vertex i ∈ V∞, the sequence
(�∞(i, ij))j=1,2,... is distributed jointly as the arrivals ζ1, ζ2, . . . of a Poisson process with
rate 1. Then we have the planted edges: if i0 ∈ �, then �∞(i, i0) ∼ exp(λ) independent of
everything else. Note that these random weights are independent for different parents i ∈ V∞.

Finally, let N∞ = (T∞, �∞) denote the random planted tree and let N∞,◦ denote the ver-
sion of N∞ rooted at ø. We call N∞,◦ the planted Poisson Weighted Infinite Tree or the
planted PWIT for short. Its structure is shown in Figure 2.

As in Section 6, let [N∞,◦] denote the equivalence class of N∞,◦ up to rooted isomor-
phisms, and denote by μ∞ ∈P(G∗) the probability distribution of [N∞,◦] in G∗. The follow-
ing theorem shows that μn converges weakly to μ∞.

THEOREM 7.1. The planted PWIT is the random weak limit of the planted model on
Kn,n, i.e, μn

w−→ μ∞.

SKETCH OF THE PROOF. Similar to the unplanted case [2], Lemmas 10 and 11, the proof
follows from the following steps:

1. Recall that μn is the distribution of [Nn,◦(1)]. We define an exploration process that
explores the vertices of Nn,◦(1) starting from the root vertex 1 in a series of stages. At stage
m, this process reveals a tree of depth m + 1 and maximum arity m + 1, where the children
of each vertex are its m lightest unplanted neighbors (among the remaining vertices) and
possibly its planted partner (if its planted partner is not its parent).

2. In the limit n → ∞, the tree explored at each stage is asymptotically the same as a
truncated version of the planted PWIT, that is, the analogous stage-m neighborhood of the
root ø.

3. For large enough m (independent of n), the ρ-neighborhood (Gn,◦(1))ρ of vertex 1 in
Nn,◦(1) is a subgraph of the explored tree at stage m of the process with high probability.
This is due to the fact that, while Kn,n has plenty of cycles that are topologically short, it is
very unlikely that any short cycle containing vertex 1 consists entirely of low-weight edges.

4. Finally, the result follows by using the Portmanteau theorem, which enables us to ex-
tend the convergence of distributions on local neighborhoods in total variation distance to the
desired local weak convergence.

The complete proof is presented in Appendix B. �

Since the planted model on Kn,n converges to the planted PWIT, we have every reason to
believe that—just as Aldous showed for the unplanted problem—the minimum matching on
the planted model converges locally weakly to the minimum involution invariant matching
on the planted PWIT. We make this statement rigorous in the following sections, following
and generalizing arguments in [2, 5, 6].

8. The optimal involution invariant matching on the planted PWIT. In this section
we define the optimal involution invariant random matching M∞,opt on the planted PWIT—
or more precisely, the joint distribution (�∞,M∞,opt). We define it in terms of fixed points
of a message-passing algorithm, construct it rigorously on the infinite tree, and prove that it
is optimal and unique.

Since the planted PWIT is an infinite tree, the total weight of any matching is infinite.
This makes it unclear whether there is a well-defined notion of a minimum-weight matching.
But since we are ultimately interested in the cost per vertex of the minimum matching on
Kn,n, we call a random matching (�∞,M∞) on the planted PWIT optimal if it minimizes the
expected cost of the edge incident to the root, E[�∞(ø,M∞(ø))].



2688 M. MOHARRAMI, C. MOORE AND J. XU

However, since μn is involution invariant and involution invariance is preserved under
weak limit, we need to restrict our search for minimum matching to involution invariant
matchings. This restriction is crucial. For instance, if we simply want to minimize the ex-
pected cost at the root, we could construct a matching as follows, akin to a greedy algo-
rithm: first match the root to its lightest child, that is, the one with the lowest edge weight.
Then match each of its other children with their lightest child, and so on. For this matching,
E[�∞(ø,M∞(ø))] = E[min(η, ζ )] = 1/(1 + λ) where η ∼ exp(λ) is the weight of the root’s
planted edge and ζ ∼ exp(1) is the weight of its lightest unplanted edge.

However, as pointed out by Aldous for the unplanted model [6], Section 5.1, this matching
is not involution invariant. For instance, suppose 1 is ø’s lightest child, but that 1 has a de-
scending edge whose weight is even less. In this case, if we swap ø and 1, we won’t include
the edge {1,ø} in the resulting matching. Indeed, in the unplanted case the optimal involu-
tion invariant matching has expected weight π2/6 per vertex, while this greedy matching has
expected weight 1. The lesson here is that the only matchings on the PWIT (or the planted
PWIT) that correspond to genuine matchings on Kn,n are those that are involution invariant.

Before we proceed, we make a small increment to our formalism. For a network N we
define M[N ] as the set of all matchings on N . Now, a random matching (�,M ) on N is
a joint distribution of edge weights and matchings, that is, a probability measure on R

E+ ×
M[N ] with marginal � on R

E+. Intuitively, the reader would probably interpret the phrase
“random matching” as a measurable function from R

E+ → M[N ], assigning a distribution of
matchings to each realization of the edge weights �. However, here we follow Aldous by using
it to mean a distribution over both � and M . Note that M may have additional randomness
even after conditioning on �; we will eventually learn, however, that M∞,opt does not.

8.1. The message-passing algorithm. We start by describing a message-passing algo-
rithm on the planted PWIT that we will use to define M∞,opt. We have already discussed
this, but we do it here in our notation for the infinite tree.

If (�∞,M ) is involution invariant, E[�∞(v,M (v))] is independent of the choice of
v ∈ V∞. Let us pretend for now that the total weight of the minimum involution invariant
matching M∞,opt is finite, and minimize it with a kind of message-passing algorithm.

For a vertex v ∈ V∞, let T∞(v) denote the subtree consisting of v and its descendants,
rooted at v (in particular, T∞(ø) = T∞). Let �∞(T∞(v)) and �∞(T∞(v)\{v}) denote the total
weight of the minimum involution invariant matching on T∞(v) and T∞(v)\{v} respectively.
The difference between these, which we denote

(8.1) Xv = �∞
(
T∞(v)

)− �∞
(
T∞(v) \ {v}),

is the cost of matching v with one of its children, as opposed to leaving it unmatched (or rather
matching it with its parent, without including the cost of that edge). This is the difference
between two infinite quantities, but as Aldous and Steele say [5] we should “continue in the
brave tradition of physical scientists” and see where it leads. While we have already seen the
resulting RDEs in the proof of Theorem 3.1, it will be helpful to restate them here in this
more precise notation.

Suppose that in a realization of M∞,opt, ø is matched with its child i. Then we have

�∞
(
T∞(ø)

)= �∞(ø, i) + �∞
(
T∞(i) \ {i})+∑

j �=i

�∞
(
T∞(j)

)
= �∞(ø, i) + �∞

(
T∞(i) \ {i})+ �∞

(
T∞(ø) \ {ø})− �∞

(
T∞(i)

)
.

Rearranging and using (8.1), we have

Xø = �∞(ø, i) − Xi.
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We can read this as follows: by matching ø with its child i, we pay the weight �∞(ø, i) of the
edge between them, but avoid the cost Xi of having i matching with one of its own children.
But of course we want to match ø with whichever child minimizes this cost, giving

(8.2) Xø = min
j≥0

(
�∞(ø, j) − Xj

)
.

Using the same argument, this relation holds for any vertex v ∈ V∞. Recalling that the chil-
dren of v are labeled vj (i.e., v’s label sequence with j appended) for j ≥ 0, we have

(8.3) Xv = min
j≥0,vj∈V∞

(
�∞(v, vj) − Xvj

)
.

Now recall that v’s planted partner is either its parent or its 0th child. If the former, then
this minimization ranges over v’s unplanted children vj for j ≥ 1. If the latter, then it also
includes v’s planted child v0. Let us assume that Xv is drawn from one of two distributions
over R, and denote this random variable X in the first case and Y in the second case. We
expect these distributions to be fixed if we draw Xvj independently for each j , and obtain Xv

by applying (8.3). Since v’s unplanted children have planted children, but v’s planted child
(if any) only has unplanted children, we get the following recursive distributional equations
(RDEs):

X
d= min

({ζi − Yi}∞i=0
)
,(8.4)

Y
d= min

(
η − X, {ζi − Yi}∞i=0

)
,(8.5)

where X is independent of everything else, {Yi}∞i=1 and Y are i.i.d. and {ζi}∞i=1 are the arrivals
of a Poisson process with rate 1, and η ∼ exp(λ) is the weight �(v, v0) of the planted edge—
these are the edge weights of the planted PWIT described in Section 7.

As we saw in Section 3, the distributional equations (8.4)–(8.5) have a unique fixed point
supported on R whenever λ < 4. Our next task is to turn this heuristic derivation into a
rigorous construction of random variables on the planted PWIT, and use them to construct
the minimum involution invariant random matching M∞,opt.

8.2. A rigorous construction of M∞,opt. The construction is similar to the one in the un-
planted model (see [6], Section 4.3, and [5], Section 5.6). We draw random variables X from
a fixed point of the system of recursive distributional equations (8.4)–(8.5). Then we show
that these random variables generate an involution invariant random matching, by construct-
ing it (randomly) on finite neighborhoods, and then extending it to the infinite tree. In the
next subsection, we analyze this matching and show that it is optimal.

Define the set of directed edges
←→
E ∞ = −→

E ∞ ∪←−
E ∞ of T∞ by assigning two directions to

each edge e ∈ E∞: for an edge e = {i, ij} let −→
e = (i, ij) ∈ −→

E ∞ denote the edge directed
downward, that is, away from the root, and let ←−

e = (ij, i) ∈ ←−
E ∞ denote the edge directed

upward toward the root. We use ←→
e to denote a typical member of

←→
E ∞. We extend the edge

weights to
←→
E ∞, as �∞(

←−
e ) = �∞(

−→
e ) = �∞(e).

The following lemma shows how to define “costs” or “messages” on
←→
E ∞. It is essentially

identical to [6], Lemma 14, and [5], Lemma 5.8, except that we have different distributions
of messages on the planted and unplanted edges.

LEMMA 8.1. Let (X0, Y0) be a solution of the system of recursive distributional equa-
tions (8.4)–(8.5). Jointly with the edge weights �∞, we can construct a random function
X : ←→E ∞ →R such that the following hold:
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(i) For every edge (u, v) ∈ ←→
E ∞ we have

X(u, v) = min
(v,w)∈E∞,w �=u

(
�∞(v,w) − X(v,w)

)
.(8.6)

(ii) For every planted edge e ∈ M∗∞, X(
−→
e ) and X(

←−
e ) each have the same distribution

as X0.
(iii) For every unplanted edge e /∈ M∗∞, X(

−→
e ) and X(

←−
e ) each have the same distribution

as Y0.
(iv) For every edge e ∈ E∞, X(

−→
e ) and X(

←−
e ) are independent.

PROOF. The idea is to construct these random variables on the subtree consisting of
all edges up to a given depth h. We do this by initially “seeding” them on the downward-
pointing edges at that depth, drawing their X independently from the appropriate fixed-point
distribution. We then use the message-passing algorithm given by (8.6) to propagate them
through this subtree. As with belief propagation on a tree, this propagation consists of one
sweep upward to the root, and then one sweep back downward toward the leaves. Finally,
we use the Kolmogorov consistency theorem [19], p. 115, Theorem 6.16, to take the limit
h → ∞, extending the distribution on these finite-depth subtrees to T∞.

Formally, let h ∈ N+. Let
−→
E ∞(h) and

←−
E ∞(h) respectively denote the set of downward-

and upward-directed edges at depth h − 1, and let
←→
E ∞(≤ h) denote the set of all directed

edges up to depth h:
−→
E ∞(h) = {−→

e = (v, vj) : gen(v) = h − 1, {v, vj} ∈ E∞
}
,

←−
E ∞(h) = {←−

e = (vj, v) : gen(v) = h − 1, {v, vj} ∈ E∞
}
,

←→
E ∞(≤ h) = {←→

e = (v,w) : gen(v),gen(w) ≤ h, {v,w} ∈ E∞
}
.

In particular,
−→
E ∞(h) is the set of downward-pointing edges at the leaves of the subtree of

depth h, and
←→
E ∞(≤ h) is the set of all edges, pointing in both directions, within that subtree

(see Figure 6). Our goal is to define X on
←→
E ∞(≤ h).

To initialize the process, for each −→
e ∈ −→

E ∞(h) we assign the random variable X(
−→
e )

by drawing independently from X0 if e ∈ M∗∞ and from Y0 if e /∈ M∗∞. We then use (8.6)

recursively to define {X(
−→
e ) : −→

e ∈ −→
E ∞(k)} for k ∈ {h − 1, h − 2, . . . ,1}. Once we have

X(
−→
e ) for all edges incident to the root, we use (8.6) to obtain X(

←−
e ) for these edges, that is,

for
←−
E ∞(1). We then move back down the tree, using (8.6) at each level to define {X(

←−
e ) :

←−
e ∈ ←−

E ∞(k)} for k ∈ {1,2, . . . , h}.
Parts (ii) and (iii) of the lemma follow from the fact that (X0, Y0) are fixed points of

(8.4)–(8.5). Part (iv) follows from the fact that, for all e ∈ E∞(≤ h), X(
−→
e ) and X(

←−
e ) are

determined by disjoint subsets of {X(
−→
e ) : −→e ∈ −→

E ∞(h)} and hence are independent.

FIG. 6. The sets
−→
E ∞(2) and

←→
E ∞(≤ 2). Bold red edges are in M∗∞ and solid blue edges are in E∞ \ M∗∞.
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Finally, we extend these random variables to the entire planted PWIT. For each finite depth
h, the above construction gives a collection of random variables

Xh = {(
�∞(

←→
e ),X(

←→
e )
) : ←→e ∈ ←→

E ∞(≤ h)
}
,

that satisfies (i), (ii), (iii), and (iv). Moreover, the marginal distribution of Xh+1 restricted to
depth h is the same as the distribution of Xh. Now, by the Kolmogorov consistency theorem,
there exists a collection of random variables X∞ that satisfies (i), (ii), (iii), and (iv), such that
the marginal distribution of X∞ restricted to depth h is the same as the distribution of Xh.

�

One important implication of Lemma 8.1 is the following corollary.

COROLLARY 8.2. Consider the collection of random variables X∞ given by Lemma 8.1.

(i) Let e = {ø,0} denote the planted edge incident to the root. Then X(
−→
e ) and X(

←−
e )

are independent and identically distributed as X0, and are independent of �∞(e).
(ii) Suppose we condition on the existence of an unplanted edge e = {ø, i} incident to ø

with �∞(e) = ζ . Then X(
−→
e ) and X(

←−
e ) are independent and identically distributed as Y0.

PROOF. Part (i) follows immediately from the construction in Lemma 8.1. Part (ii) fol-
lows from the fact that if we condition on the existence of a Poisson arrival at time ζ , the other
arrivals are jointly distributed according to the same Poisson process. There is a subtlety here
in that it is important to condition on ζ but not on i, since knowing where ζ is in the sorted
order of the unplanted weights affects their distribution. On the other hand, if we fix an edge
e before doing this sorting, then X(

−→
e ) and X(

←−
e ) are independent of �∞(e) for both planted

and unplanted edges, and we will use this fact below. �

Our next task is to transform the above construction into a random matching (�∞,M∞,opt).
There are two ways we might do this. One would be to define a function on V∞ that yields a
proposed partner w for each vertex v. As in (8.6), matching v with w would cost the weight
of the edge between them, but remove the cost of having w pair with one of its other neigh-
bors. Minimizing this total cost over all neighbors w (rather than over all but one as in the
message-passing algorithm) gives

(8.7) M∞,opt(v) = arg min
w:{v,w}∈E∞

(
�∞(v,w) − X(v,w)

)
.

Since each edge weight �∞(v,w) is drawn from a continuous distribution, and Corollary 8.2
implies that it is independent of X(v,w), with probability 1 the elements of the set we are
minimizing over are distinct and this arg min is well-defined.

Alternately, we could define a mark function on E∞ as described above, namely the in-
dicator function for the event that an edge e is in the matching. Including e in the matching
makes sense if �∞(e) is less than the cost of matching each of its endpoints to one of their
other neighbors. So (abusing notation) this suggests

M∞,opt(e) =
{

1 if �∞(e) < X(
−→
e ) + X(

←−
e ),

0 otherwise.
(8.8)

A priori, there is no guarantee that either of these functions is a matching, or that they agree
with each other. The following lemma (which is a reformulation of [5], Lemma 5.9) gives the
good news that they are, and they do.
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LEMMA 8.3. The following are equivalent:

1. u = arg minw:{v,w}∈E∞(�∞(v,w) − X(v,w))

2. v = arg minw:{u,w}∈E∞(�∞(u,w) − X(u,w))

3. �∞(u, v) < X(u, v) + X(v,u).

Therefore, u = M∞,opt(v) if and only if v = M∞,opt(u) (with M∞,opt defined as in (8.7)),
and these are equivalent to M∞,opt(u, v) = 1 (with M∞,opt defined as in (8.8)).

PROOF. By (8.6), condition (1) holds if and only if

�∞(v, u) − X(v,u) < arg min
w:{v,w}∈E∞,w �=u

(
�∞(v,w) − X(v,w)

)= X(u, v).

Rearranging gives (3), so (1) and (3) are equivalent. Since (3) is symmetric with respect to
swapping u and v, (2) and (3) are also equivalent. �

Finally, given the symmetric dependency of M∞,opt(e) on the values of X(
−→
e ) and X(

←−
e ),

it is intuitive that the random matching (�∞,M∞,opt) is involution invariant. The following
lemma corresponds to [6], Lemma 24, in the unplanted case, but defining the involutions in
a way that preserves the (un)planted edges takes a little more work. We give the proof in
Appendix C.

PROPOSITION 8.4. The random matching (�∞,M∞,opt) is involution invariant.

8.3. Optimality of M∞,opt. Now that we have constructed (�∞,M∞,opt), it is time to
prove that (�∞,M∞,opt) is the minimum involution invariant random matching. The steps
we take to prove this claim are mostly the same as in [6], Sections 4.4 and 4.5, but a few
details differ in the planted model, so for the sake of completeness and consistency with our
notation we give a self-contained proof.

As the first step, we are going to prove that (�∞,M∞,opt) is a minimum involution in-
variant matching: that is, it achieves the minimum expected length at the root. We follow the
discussion at the beginning of Section 4.5 in [6].

PROPOSITION 8.5. Let (�∞,M ′∞) be an involution invariant random matching on the
planted PWIT. Then E[�∞(ø,M ′∞(ø))] ≥ E[�∞(ø,M∞,opt(ø))].

PROOF. Note that in addition to depending on the edge weights �∞, M ′∞ might also
have additional randomness. However, we can always couple (�∞,M ′∞) and (�∞,M∞,opt)

so that if we condition on �∞ then M ′∞ and M∞,opt are independent. Let A be the event that
M ′∞(ø) �= M∞,opt(ø), and assume without loss of generality that P[A] > 0.

Conditioned on A, there is a doubly-infinite alternating path that passes through the root
ø, alternating between edges in M ′∞ and M∞,opt. That is to say, there is a doubly-infinite
sequence of distinct vertices . . . , v−2, v−1, v0, v1, v2, . . . where v0 = ø, v1 = M∞,opt(ø),
and v−1 = M ′∞(ø), and where for all even integers m we have M∞,opt(vm) = vm+1 and
M ′∞(vm) = vm−1.

By the construction of M∞,opt, we know that v1 achieves the minimum in Equation (8.7):

(8.9) �∞(v0, v1) − X(v0, v1) = min
w:{v0,w}∈E∞

(
�∞(v0,w) − X(v0,w)

)
.

We also have the message-passing equation (8.6) for X(v−1, v0),

(8.10) X(v−1, v0) = min
w:{v0,w}∈E∞,w �=v−1

(
�∞(v0,w) − X(v0,w)

)
.
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The right-hand sides of (8.9) and (8.10) are the same except that v−1 is excluded in (8.10). But
since the minimum is achieved by v1, excluding v−1 makes no difference, and the right-hand
sides are equal. Rearranging gives

(8.11) �∞(v0, v1) = X(v0, v1) + X(v−1, v0).

On the other hand, (8.6) also implies X(u, v) ≤ �∞(v,w) − X(v,w) for any u, v, w where
u and w are distinct neighbors of v, and in particular

(8.12) X(v1, v0) ≤ �∞(v0, v−1) − X(v0, v−1).

Now, using (8.11), the expected difference in the length at the root is

E
[(

�∞
(
ø,M ′∞(ø)

)− �∞
(
ø,M∞,opt(ø)

))]
= E

[(
�∞(v0, v−1) − �∞(v0, v1)

)
1A

]
= E

[(
�∞(v0, v−1) − X(v0, v1) − X(v−1, v0)

)
1A

]
.

(8.13)

Now we use the fact that M∞,opt and M ′∞ are both involution invariant. There is a subtlety
here in that conditioning on A breaks involution invariance, since it requires M∞,opt and
M ′∞ to differ at the root specifically. However, the involutions that swap v0 with v1 or with
v−1 maintain this conditioning, since M∞,opt and M ′∞ differ at these vertices as well. It fol-
lows that X(v0, v1) and X(v1, v0) have the same conditional distribution and hence the same
conditional expectation, and similarly for X(v0, v−1) and X(v−1, v0). Then (8.13) becomes

(8.14)
E
[(

�∞
(
ø,M ′∞(ø)

)− �∞
(
ø,M∞,opt(ø)

))]
= E

[(
�∞(v0, v−1) − X(v1, v0) − X(v0, v−1)

)
1A

]
,

which is greater than or equal to zero by (8.12). �

Even given Proposition 8.5, it is still possible a priori that there might be a random
involution invariant matching (�∞,M ′∞) with the same expected length at the root as
(�∞,M∞,opt). If we were simply trying to calculate the expected length of the minimum
matching, this would not be an issue. But our object is the overlap, not the length. If there
are two minimal matchings with the same length but different overlap, it would not be clear
which is the weak limit of the minimum matching on Kn,n.

Happily, we can follow a path similar to [6], Section 4.4 and 4.5, to show that M∞,opt is
unique, making the inequality in Proposition 8.5 strict. The following is essentially Proposi-
tion 18 of [6].

PROPOSITION 8.6. Let (�∞,M ′∞) be an involution invariant random matching on
the planted PWIT. If P[M ′∞(ø) �= M∞,opt(ø)] > 0 then E[�∞(ø,M ′∞(ø))] > E[�∞(ø,

M∞,opt(ø))].

PROOF. For sake of contradiction, assume there is an involution invariant random match-
ing (�∞,M ′∞) such that E[�∞(ø,M ′∞(ø))] = E[�∞(ø,M∞,opt(ø))]. By the proof of Propo-
sition 8.5, we have E[D1A] = 0 where

D = �∞(v0, v−1) − X(v1, v0) − X(v0, v−1) ≥ 0,

and where A is again the event {M ′∞(ø) �= M∞,opt(ø)}, and where the inequality D ≥ 0 is
given by Equation (8.12). Therefore, conditioned on A, almost surely

(8.15) X(v1, v0) = �∞(v0, v−1) − X(v0, v−1).
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Now recall that v1 achieves the minimum, over all w in v0’s neighborhood, of �∞(v0,w) −
X(v0,w). By Equation (8.6), X(v1, v0) is the minimum of this same quantity over all w �= v1.
But this is the second minimum, that is, the second-smallest value, and (8.15) implies

(8.16) v−1 = arg min
i

[2](�∞(ø, i) − X(ø, i)
)
,

where min[2] denotes the second minimum. Thus the following holds almost surely: either
M ′∞ agrees with M∞,opt at the root, or it matches the root with the second minimum of
�∞(ø, i) − X(ø, i) rather than the minimum. That is, without conditioning on A,

P

(
M ′∞(ø) ∈

{
arg min

i

(
�∞(ø, i) − X(ø, i)

)
or arg min[2]

i

(
�∞(ø, i) − X(ø, i)

)})= 1.

Since (�∞,M ′∞) is involution invariant, the same relation holds for each vertex v ∈ V∞, that
is,

(8.17)

P

(
M ′∞(v) ∈

{
arg min

w:{w,v}∈E∞

(
�∞(v,w) − X(v,w)

)
or

arg min[2]
w:{w,v}∈E∞

(
�∞(v,w) − X(v,w)

)})= 1.

Thus any matching with the same expected length as M∞,opt must, almost surely at almost
all vertices v, match v with its best or second-best partner according to �∞(v,w) − X(v,w).

Surprisingly, no involution-invariant matching can choose the second-best partner with
nonzero probability. The following proposition shows that (8.17) cannot hold unless M ′∞ =
M∞,opt almost surely.

PROPOSITION 8.7 (Proposition 20 of [6]). The only involution invariant random match-
ing that satisfies (8.17) is M∞,opt.

PROOF. The reader might be wondering why we can’t simply assign everyone to their
second-best partner. But recall the key fact from Lemma 8.3 that if

M∞,opt(v) = arg min
w:{v,w}∈E∞

(
�∞(v,w) − X(v,w)

)
,

then M∞,opt(M∞,opt(v)) = v and {{v,M∞,opt(v)} : v ∈ V∞} is indeed a matching. The prob-
lem is that this fact does not generally hold if we replace arg min with arg min[2].

If M ′∞ and M∞,opt differ anywhere with positive probability, then by involution invariance
they differ at the root with positive probability. In that case, as before, there is a doubly-
infinite alternating path from the root to infinity. Thus once M ′∞ matches the root with its
second-best partner, it must keep doing this forever on that path. But in order for M ′∞ to be
involution invariant, it must make the same choices if we follow the path in reverse, and so
each vertex on this path must be the second-best partner of its second-best partner. We will
see that the probability that this is true on every step of the path, all the way to infinity, is
zero.

Let . . . , v−2, v−1, v0, v1, v2, . . . be the alternating path defined as follows. First let v0 = ø.
To define vt for t > 0, we extend the path by alternately apply the best and second-best rules,

vt+1 =

⎧⎪⎪⎨⎪⎪⎩
arg min

u:{u,vt }∈E∞

(
�∞(vt , u) − X(vt , u)

)
if t is even.

arg min[2]
u:{u,vt }∈E∞

(
�∞(vt , u) − X(vt , u)

)
if t is odd.
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Similarly, for t < 0 we extend the path backwards,

vt−1 =

⎧⎪⎪⎨⎪⎪⎩
arg min[2]
u:{u,vt }∈E∞

(
�∞(vt , u) − X(vt , u)

)
if t is even,

arg min
u:{u,vt }∈E∞

(
�∞(vt , u) − X(vt , u)

)
if t is odd.

In particular, v1 = M∞,opt(ø) and (if A holds) v−1 = M ′∞(ø).
Now for each odd integer t , define the event Bt that vt and vt+1 are the second-best partners

of each other. For odd t > 0 we can write

Bt = {
vt = arg min[2]

u:{u,vt+1}∈E∞

(
�∞(vt+1, u) − X(vt+1, u)

)}
,

and for odd t < 0,

Bt = {
vt+1 = arg min[2]

u:{u,vt }∈E∞

(
�∞(vt , u) − X(vt , u)

)}
.

As discussed above, since M ′∞ is involution invariant A implies Bt , in particular, for all
t = 1,3,5, . . .. Thus

A ⊂ �B∞ :=
∞⋂

t=1,3,5,...

Bt .

Writing �Bt =⋂t
t ′=1,3,5,... Bt ′ , this implies

P[A] ≤ P[�B∞] = ∏
t=1,3,5,...

P[Bt+2 | �Bt ] = ∏
t=1,3,5,...

P[�Bt+2]
P[�Bt ] .

and so

(8.18) if P[A] > 0 then lim
t→∞,t odd

P[�Bt+2]
P[�Bt ] = 1.

Now we use involution invariance again. If we root the planted PWIT at v2 instead of v0,
sliding the alternating path two steps to the left, the event �Bt+2 becomes the event B−1 ∩ �Bt

(and A still holds). By involution invariance the probability of these two events is the same,
so

P[�Bt+2]
P[�Bt ] = P[B−1 ∩ �Bt ]

P[�Bt ] = P[B−1 | �Bt ].

By continuity of probability measure, if P[�B∞] > 0—which holds if P[A] > 0—we also have

lim
t→∞P[B−1 ∩ �Bt ] = P[B−1 ∩ �B∞] and lim

t→∞P[�Bt ] = P[�B∞],
in which case

lim
t→∞P[B−1 | �Bt ] = P[B−1 | �B∞].

Thus (8.18) demands that this conditional probability is 1. But the following lemma, which
generalizes Lemma 22 of [6] to the planted case, shows that this is not so.

LEMMA 8.8. If P[�B∞] > 0 then P[B−1 | �B∞] < 1.
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PROOF. As in [6], Remark on page 402, the idea is that B−1 only depends on what
happens on the “leftward” branch of the alternating path, v0, v−1, v−2, . . . , while �B∞ depends
only on the “rightward” branch v0, v1, v2, . . . . For the details, see Appendix D. �

Lemma 8.8 implies that P(A) = 0, and by the discussion above that M ′∞ = M∞,opt almost
surely. This completes the proof of Proposition 8.7. . . �

. . . which completes the proof of Proposition 8.6. �

An immediate corollary of Proposition 8.6 is the following.

COROLLARY 8.9. In the minimum involution invariant random matching (�∞,

M∞,opt), M∞,opt is a function of the edge lengths �∞. That is to say, given a realization
of (�∞(e), e ∈ E∞), M∞,opt is a fixed matching on the planted PWIT.

PROOF. Consider a coupling (�∞,M∞,opt,M
′∞,opt) such that conditioned on (�∞(e),

e ∈ E∞), M∞,opt and M ′∞,opt are i.i.d. Then, by Proposition 8.6 we have M∞,opt = M ′∞,opt
almost surely. �

In other words, M∞,opt does not have any additional randomness besides its dependence
on �∞. This was left as an open question for the unplanted case in [6], Remark (d), although
we claim that that paper in fact resolved it! As later stated in [5], this implies that if we use the
construction of Section 8.2 to define random variables X on neighborhoods of depth h, then
(conditioning on �∞) the random matching defined by these variables becomes concentrated
around a single matching as h → ∞.

This does not quite imply that the messages X on the directed edges of the planted PWIT
are determined by �∞. This was shown for the unplanted case by Bandyopadhyay using the
concept of endogeny [9]. We believe endogeny holds for the planted case, but we leave this
as an open question. In any case, as long as the system of recursive distributional equations
(8.4)–(8.5) has a solution supported on R, whether it is unique or not, the minimum involution
invariant random matching M∞,opt is uniquely defined. Therefore, whenever we focus on a
realization of �∞, there is no need to call M∞,opt a random matching.

8.4. Uniqueness of the solution of RDEs. Recall from Section 8.2 that M∞,opt is de-
fined by drawing messages at the boundary of neighborhoods of increasing size from a fixed
point of the RDEs (8.4)–(8.5), propagating these messages throughout the neighborhood, and
then including edges (u, v) whose weights �∞(u, v) are less than the sum of their messages
X(u, v) + X(v,u).

However, Corollary 8.9 shows that M∞,opt is a function of the weights �∞. As we com-
mented there, this doesn’t quite imply that the messages X are also functions of �∞. However,
Corollary 8.9 imposes strong conditions on the possible solutions of the RDEs. Specifically,
if the RDEs have more than one solution, then each one must somehow result in the same
matching M∞,opt given the edge weights. In this section, we show that this implies that the
fixed point is indeed unique. This provides an interesting counterpart to the dynamical proof
of uniqueness given in Theorem 5.1.

First we show that any solution has a well-defined moment generating function in a neigh-
borhood of the origin.

LEMMA 8.10. Let (X,Y ) be a solution of the system of recursive distributional equa-
tions (8.4)–(8.5) supported on R. Then the random variable X has a finite moment generating
function E[eμX] for μ in an open neighborhood of 0.
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PROOF. Recall that FX and FY denote the cumulative distribution functions of X and
Y respectively, and F̄X and F̄Y denote their complements. On the one hand, by (3.6), for all
x > 0 we have

F̄X(x) = exp
(
−
∫ ∞
z=−x

F̄Y (z)dz

)
≤ exp

(−xF̄Y (0)
)
.

On the other hand, for every x0 > 0, Lemma 3.3 gives

fX(x0) = F̄X(x0)F̄X(−x0)E
[
FX(η + x0)

]≥ F̄X(−x0)F̄X(x0)E
[
FX(η − x0)

]= fX(−x0),

where the inequality follows by the fact that FX(η − x0) ≤ FX(η + x0) for all η. Hence,

P[X < −x] ≤ P[X > x] ≤ exp
(−xF̄Y (0)

)
,

and F̄X(0) ≥ 1/2. Then (3.5) implies

F̄Y (0) = F̄X(0)E
[
FX(η)

]≥ 1

2
E
[
FX(η)

]
> 0.

where the last inequality holds because η can be arbitrarily large and X is supported on R.
The result now follows by simple algebra. If 0 ≤ μ < F̄Y (0) we have

E
[
eμX]= ∫ ∞

0
P
[
eμX > s

]
ds ≤ 1 +

∫ ∞
1

P
[
eμX > s

]
ds

= 1 +
∫ ∞

1
P

[
X >

ln s

μ

]
ds ≤ 1 +

∫ ∞
1

s−F̄Y (0)/μ ds < ∞,

and the proof for −F̄Y (0) < μ ≤ 0 is similar. Hence E[eμX] < ∞ for μ ∈ (−F̄Y (0), F̄Y (0)).
�

Now recall that by Lemmas 8.1 and Lemma 8.3, given �(u, v) = x, the probability that
(u, v) ∈ M∞,opt equals P[X +X′ > x] where X = X(u, v) and X′ = X(v,u) are i.i.d. copies
of the random variable X. If the RDEs have two distinct solutions (X1, Y1) and (X2, Y2),
Corollary 8.9 implies that P[X1 + X′

1 > x] = P[X2 + X′
2 > x] for all x, so that X1 + X′

1 and
X2 + X′

2 have the same distribution. But since

E
[
eμ(X1+X′

1)
]= (

E
[
eμX1

])2
,

and similarly for X2, this implies that X1 and X2 have the same moment generating function,
which by Lemm 8.10 is well-defined in a neighborhood of the origin. It follows that X1 and
X2 have the same distribution [13], Theorem 1. Using (3.3), Y1 and Y2 are equidistributed as
well, and we have proved the following theorem.

THEOREM 8.11. Assume the system of recursive distributional equations (8.4)–(8.5) has
a solution supported on R. Then such solution is unique.

9. Convergence of the minimum matching on (Kn,n, �n) to M∞,opt. At this point we
have constructed (�∞,M∞,opt) and shown that it is the unique involution invariant matching
on the planted PWIT that minimizes the weight at the root. It is finally time to show that
the minimum matching (�n,Mn,min) on our original planted model on Kn,n converges to
(�∞,M∞,opt) in the local weak sense. This implies that these two objects have the same joint
distribution of edge weights, and which edges they include in the matching, on neighborhoods
of any finite radius. In particular, they have the same expected overlap—which is the overlap
we computed in Section 3. Thus we finally complete the proof of Theorem 3.1.
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To use the framework of local weak convergence to study minimum matchings, we append
{0,1} to the edges of planted networks in G∗. In a slight abuse of terminology, we add a ĥat
and also call N̂ = (G, �,M ) a planted network where � is the weight function and M :
E → {0,1} is a mark function (which may or may not be a matching). This lets us discuss
the joint distribution of edge weights, the planted matching, and the minimum matching of
vertex neighborhoods in either model.

In particular, let μ̂n be this distribution in the vicinity of a uniformly random vertex in the
finite model,

μ̂n = EU(N̂n) is the law of
[
N̂n,◦(1)

]
where N̂n = (Kn,n, �n,Mn,min),

and let μ̂∞ be the analogous distribution at the root of the planted PWIT,

μ̂∞ is the law of [N̂∞,◦] where N̂∞ = (T∞, �∞,M∞,opt).

We will show that μ̂∞ is the weak limit of μ̂n. Thus the two models have all the same local
statistical properties, including their expected weight and overlap.

The proof consists of two main steps, namely, the easier half and the harder half. In the eas-
ier half, using a simple compactness argument we prove that any subsequence of probability
measures μ̂n has a subsequence that converges to an involution invariant random matching
on planted PWIT. Using Skorokhod’s theorem this shows that the weight of the minimum
matching on Kn,n is at least that of M∞,opt:

(9.1) lim inf
n→∞ E

[
�n

(
1,Mn,min(1)

)]≥ E
[
�∞
(
ø,M∞,opt(ø)

)]
.

Informally, this follows by contradiction. If lim infn �n(1,Mn,min(1)) were smaller than this,
then the subsequence of sizes n on which it converges to that smaller value would itself have
a subsequence that convergences to an involution invariant matching on the planted PWIT
with that weight. . . but this would contradict the optimality of M∞,opt.

In the harder half, using (�∞,M∞,opt) we follow the strategy of [2]. First we construct an
almost-perfect matching on (Kn,n, �n) with weight close to E[�∞(ø,M∞,opt(ø))]. Then, we
fix this almost-perfect matching matching to make a perfect matching on (Kn,n, �n) without
changing the weight too much. This proves that

(9.2) lim sup
n→∞

E
[
�n

(
1,Mn,min(1)

)]≤ E
[
�∞
(
ø,M∞,opt(ø)

)]
.

Combining (9.1) and (9.2), we have

(9.3) lim
n→∞E

[
�n

(
1,Mn,min(1)

)]= E
[
�∞
(
ø,M∞,opt(ø)

)]
.

As in Aldous’ proof of the ζ(2) conjecture for the unplanted model, this establishes the
expected weight of the minimum matching in the planted model. But much more is true.
Since M∞,opt is unique, we get the following theorem.

THEOREM 9.1. The random weak limit of (Kn,n, �n,Mn,min) is (T∞, �∞,M∞,opt), that

is, μ̂n
w−→ μ̂∞. In particular, their expected overlap is equal to

α(λ) := lim
n→∞

1

n
E
[∣∣Mn,min ∩ M∗

n

∣∣]
= lim

n→∞P
({

1,1′} ∈ M∗
n

)= P
({ø,0} ∈ M∞,opt

)
.

PROOF. In the easy-half proof, we show that every subsequence of μ̂n has a further
subsequence that converges to an involution random matching on the planted PWIT (see
next subsection). Now, by (9.3) and Proposition 8.6, every subsequence of μ̂n converges to
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μ̂∞; so does the whole sequence. Hence, the random weak limit of (Kn,n, �n,Mn,min) is
(T∞, �∞,M∞,opt). �

Finally, using Corollary 8.2 we have for the expected overlap

(9.4) P
({ø,0} ∈ M∞,opt

)= P
(
X + X̂ > �∞(ø,0)

)
,

where X and X̂ are independent copies of X0 and (X0, Y0) is the unique solution of the
system of recursive distributional equations (8.4)–(8.5). But this computation is exactly what
we have done in Section 3 by transforming these distributional equations into a system of
ordinary differential equations. This completes the proof of Theorem 3.1.

9.1. The easy half: A simple compactness argument. As the first step toward the proof
of the local weak convergence of μ̂n to μ̂∞, we show that for any sequence of n that tends
to infinity, there is a subsequence that converges weakly to some involution invariant random
matching μ̂′∞ on the planted PWIT. Saying this again in symbols, for any sequence (nk)

there is an involution invariant μ̂′∞ and a subsequence (nj ) ⊆ (nk) such that μ̂nj

w−→ μ̂′∞. Our
argument is somewhat simplified from [5], Section 5.8, pages 53–54.

By Theorem 7.1, we already know μnk

w−→ μ∞: that is, the two models agree on their local
distributions of weighted neighborhoods. Since G∗ is a Polish space, the Prokhorov theorem
([19], page 309, Theorem 16.3) implies that the sequence μnk

is tight, that is, for every ε > 0
there is a compact set K ⊂ G∗ such that P([Nnk,◦(1)] ∈ K) > 1 − ε (recall that μnk

is the law
of [Nnk,◦(1)]).

Define K̂ by appending {0,1} to the edges of each member of K. Since K is compact, so
is K̂. Moreover, since P([Nnk,◦(1)] ∈ K) > 1 − ε, so is P([N̂nk,◦(1)] ∈ K̂) > 1 − ε. Hence,
the sequence μ̂nk

is also tight, and by the Prokhorov theorem there is a further subsequence

nj such that μ̂nj

w−→ μ̂′∞ where μ̂′∞ is some random matching on the planted PWIT. Since
involution invariance passes through limit, μ̂′∞ is involution invariant. Note that we cannot
invoke the Portmanteau theorem to show that E[�nj

(1,Mnj ,min(1))] → E[�∞(ø,M ′∞(ø))],
since the weight of the minimum matching is not a bounded continuous function with respect
to the topology of (local) weak convergence.

By Skorokhod’s theorem we can assume that [N̂nj ,◦(1)] loc−→ [N̂ ′∞,◦] almost surely, where
[N̂ ′∞,◦] ∼ μ̂′∞, and N̂ ′∞ = (T∞, �∞,M ′∞). By the definition of local convergence,

�nj

(
1,Mnj ,min(1)

)→ �∞
(
ø,M ′∞(ø)

)
as n → ∞, almost surely.

Using Fatou’s lemma, we have

lim inf
nj→∞ E

[
�nj

(
1,Mnj ,min(1)

)]≥ E
[
�∞
(
ø,M ′∞(ø)

)]
.

The lower bound (9.1) follows by assuming nk is a subsequence of n that achieves
lim infn→∞E[�n(1,Mn,min(1))].

9.2. The harder half. In the “easy half” above we proved the inequality (9.1), namely
that the average weight of the minimum matching on (Kn,n, �n) is bounded below by
E[�∞(ø,M∞,opt(ø))]. Now we are going to prove the inequality (9.2) in the opposite di-
rection, and therefore that inequality can be replaced by equality within arbitrarily small ε.
The key idea is to construct a low weight matching on (Kn,n, �n) using (�∞,M∞,opt).
In particular, we want the average weight of this matching to be arbitrarily close to
E[�∞(ø,M∞,opt(ø))] for large enough n.

Recall that the weight of planted and unplanted edges in (Kn,n, �n) are distributed as
exp(λ) and exp(1/n) respectively, independent of everything else. Intuitively speaking, Kn,n
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viewed from the planted directed edge (1,1′) corresponds to the doubly-rooted planted PWIT
viewed from the root’s planted edge (ø,0), and Kn,n viewed from an unplanted directed edge
such as (1,2) corresponds to the doubly-rooted planted PWIT viewed from an unplanted
edge incident to the root, namely (ø, i) where i ∈ N is arbitrary.

Now, using this “edge-centric” viewpoint, and following the approach of Aldous in [2,
6], we will assign possibly fractional values to the edges of (Kn,n, �n) such that the value
assigned to the edge e = {i, j ′} ∈ En corresponds to the probability that M∞,opt(e) = 1,
assuming its local neighborhood in (Kn,n, �n) is a realization of the planted PWIT.

Consider the n × n matrix Qn where qi,j ′ is the value assigned to the edge (i, j ′). If these
values corresponded exactly to probabilities, then Qn would be doubly-stochastic. That is,
Qn would be a fractional matching, that is, an element of the matching polytope, with weight

�n(Qn) = ∑
i∈[n],j∈[n′]

qi,j ′�n

(
i, j ′).

Since minimizing the weight is a linear programming problem, there is a vertex of this poly-
tope, that is, an honest matching M(π)i,j ′ = 1 if j ′ = π(i) and 0 otherwise for some per-
mutation π , whose weight is less than or equal to �n(Qn). Alternatively, we could use the
Birkhoff theorem to write Q as a convex combination of permutation matrices,

Q =∑
π

cπM(π).

Then if we choose a random matching π with probability cπ , the expected weight would be
�n(Qn). Finally, if (1/n)�n(Qn) also converges to the expected weight of M∞,opt, we would
be done.

All this is almost true. As we will see, we will define Qn by looking at a bi-infinite version
of the planted PWIT, extending it in either direction from an edge [6], Section 5.2. By looking
at (�∞,M∞,opt) on large neighborhoods of this edge, we will obtain probabilities that almost,
but not quite, sum to 1, since the true partner of a vertex in M∞,opt might be outside this
neighborhood. As a result, Qn is almost doubly-stochastic in a certain sense. Following [2],
we then build an almost-perfect matching with weight close to that of M∞,opt, and then—by
swapping a small fraction of edges—convert this into a perfect matching within increasing the
weight very much. At this point in the proof, we can use lemmas in [2] virtually unchanged.

REMARK 1. For sake of notational simplicity, for the remainder of the section, we will
drop the subscripts ∞ and ◦◦. Thus objects without the subscript n live on the planted PWIT,
while those with n live on the finite model.

9.2.1. The bi-infinite planted PWIT. As the first step toward the proof of the “harder
half”, we change the viewpoint from a vertex to an edge. There are two doubly-rooted infinite
versions of the planted PWIT that we need to study. One is rooted at a planted edge (ø,0), and
the other is rooted at an unplanted edge (ø, i) for some i ∈N. We illustrate these in Figure 7.

The measure on i ∈ N will be the uniform counting measure—that is, every position in the
order of ø’s unplanted edges has the same measure. Although this measure is not normaliz-
able, we will speak informally of i as “uniformly chosen.” One intuition for this uniformity
comes from the finite model Kn,n. If we choose uniformly from the n(n−1) unplanted edges,
or (by symmetry) from the n − 1 unplanted edges of the root vertex 1, then its order in the
sorted list of edge weights is uniform on the set {1, . . . , n − 1}.

The other intuition is as follows. The edge weight of an unplanted edge is distributed
as exp(1/n), which for weights of constant size is asymptotically 1/n times the Lebesgue
measure on R+. If the weight is x, the probability that the Poisson process of weight 1
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FIG. 7. The structure of (a) T ↔
u and (b) T ↔

p . The bold red edges are planted edges and the solid blue edges are
unplanted.

generates i − 1 arrivals in the interval [0, x] is e−xxi−1/(i − 1)!. The total Lebesgue measure
of this event is then

(9.5)
∫ ∞

0

e−xxi−1

(i − 1)! dx = �(i)

(i − 1)! = 1 for all i,

so every i has equal measure.
We make this intuition rigorous below, showing how the appropriate measure on bi-infinite

PWITs around both types of edge is related to the planted PWIT by extending the strategy of
[6], Section 5.2, to the planted case.

In the case of the planted edge {ø,0}, the corresponding bi-infinite tree is just a relabeling
of the vertices: relabel ø as −ø and relabel 0 as +ø, and then relabel all the other vertices
“below” these two roots as we did before (see Figure 7). However, for a planted edge {ø, i} for
a “uniformly” selected i ∈ N, things are a bit more complicated. Since i ∈ N is “uniformly”
selected, the cost of the edge {ø, i} is “uniformly distributed” over R+, that is, Lebesgue
measure on R+. On the other hand, as we pointed out in the proof of Corollary 8.2, the other
unplanted children of ø are still arrivals of a Poisson process. Specifically, if we remove {ø, i},
the remaining connected component of ø is still a planted PWIT. Hence, the corresponding
bi-infinite tree is obtained by gluing two independent copies of the planted PWIT, using an
edge with edge weight “distributed” as Lebesgue measure, and then relabeling the vertices:
ø as −ø, i as +ø, and the others accordingly (see Figure 7). In the rest of the section, we
are going to give detailed construction of the bi-infinite trees, and then we show that they are
equivalent to the corresponding doubly-rooted planted PWIT.

REMARK 2. To distinguish the edge-centric viewpoint from the singly-rooted vertex
viewpoint, we use the superscript ↔.

Let Tu denote the planted PWIT rooted at ø, and let Tp denote the subtree, rooted at 0,
obtained by removing the edge {ø,0}. Relabel the root of Tp to be ø, and then relabel all the
vertices of Tp using the same rule as in the planted PWIT. Let T −

u and T +
u be two independent

copies of Tu. Similarly, let T −
p and T +

p be two independent copies of Tp . Relabel the vertices
of T +

u and T +
p by adding “+” sign to the original labels, and relabel the vertices of T −

u and
T −

p by adding “−” sign to the original labels.
Now, let T ↔

u denote a bi-infinite tree, rooted at (−ø,+ø), obtained by joining the roots
of T −

u and T +
u . Let V ↔

u and E↔
u denote the vertices and the edges of T ↔

u respectively. Let
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M↔
u denote the set of planted edges of T ↔

u , which is the union of the planted edges in T −
u

and T +
u . Let �↔

u denote the function that assigns weight to the edges of T ↔
u by using the

weight of the edges in T −
u and T +

u , and specifying the weight of {−ø,+ø} to be uniformly
“distributed” on [0,∞), that is, Lebesgue measure on R+, independent of everything else.
Write T ↔

u = (G↔
u , �↔

u ), where G↔
u = (V ↔

u ,E↔
u ,M↔

u , (−ø,+ø)), and let μ↔
u denote the

σ -finite measure associated with T ↔
u .

Similarly, define T ↔
p by joining the roots of T −

p and T +
p . However, this time include

{−ø,+ø} as a planted edge in M↔
p , and specify the weight of {−ø,+ø} to be an exponen-

tially distributed random variable with parameter λ, independent of everything else. Write
T ↔

p = (G↔
p , �↔

p ), where G↔
p = (V ↔

p ,E↔
p ,M↔

p , (−ø,+ø)), and let μ↔
p denote the proba-

bility distribution of T ↔
p . Figure 7 illustrates a realization of T ↔

u and T ↔
p .

Recall that the doubly-rooted planted PWIT is the product measure μ×count on {0,1,2,

3, . . .}, where count is the counting measure. We can think of it as a product measure on
[0,∞)E × {0,1,2, . . .}. Similarly, we can think of μ↔

u and μ↔
p as a σ -finite measure on

[0,∞)E
↔
u and a probability measure on [0,∞)E

↔
p , respectively. Now, depending on whether

the second root is 0 or not, there is a natural map from the doubly-rooted planted PWIT to
T ↔

p or T ↔
u : (1) If the second root is 0, relabel the vertices as:

i. relabel 0 as +ø and ø as −ø,
ii. relabel any sequence 0i1i2 · · · il for l ≥ 0 as +i1i2 · · · il ,

iii. relabel any sequence i1i2 · · · il for l ≥ 1 such that i1 �= 0 as −i1i2 · · · il .
This relabeling induces a bijection ψ |p : [0,∞)E × {0} → [0,∞)E

↔
p ; (2) If the second root

is k ∈ {1,2,3, . . .}, relabel the vertices as:

i. relabel k as +ø and ø as −ø,
ii. relabel any sequence ki1i2 · · · il for l ≥ 0 as +i1i2 · · · il ,

iii. relabel any sequence i1i2 · · · il for l ≥ 1 such that i1 > k as −(i1 − 1)i2 · · · il ,
iv. relabel any sequence i1i2 · · · il for l ≥ 1 such that i1 < k as −i1i2 · · · il .

This relabeling induces a bijection ψ |u : [0,∞)E × {1,2,3, . . .} → [0,∞)E
↔
u . Clearly, ψ |p

maps μ × δ0 to μ↔
p , where δ0 is the delta measure on the second root. It is also easy to see

that ψ |u maps μ × count on {1,2,3, . . .} to μ↔
u using the following lemma. Finally, note

that

μ × count on {0,1,2,3, . . .} = μ × δ0 + μ × count on {1,2,3, . . .}.

LEMMA 9.2 ([6], Lemma 25). Write � := {(xi) : 0 < x1 < x2 < · · · , xi → ∞}. Write
Pois for the probability measure on � which is the distribution of the Poisson process
of rate 1. Consider the map X : � × {1,2,3, . . .} → � × [0,∞) which takes ((xi), k) to
((xi, i �= k), xk). Then X maps Pois×count to Pois×Leb, where Leb is the Lebesgue
measure on [0,∞).

REMARK 3. For sake of brevity, we use E↔· instead of E↔
u or E↔

p whenever the sub-
script does not affect the discussion. Similar changes applies to other symbols. More specifi-
cally, all the following arguments are true if we replace all the “·” with“u” or “p .”

We introduce two additional pieces of notation that we will use in the following subsec-
tions. Recall that G↔· = (V ↔· ,E↔· ,M↔· , (−ø,+ø)) is a bi-infinite tree (without the edge
weights). We define G↔·,B to be a subtree of G↔· induced by V ↔·,B := {±ø} ∪ {±i1i2 · · · il ∈
V ↔· : is ∈ {0,1, . . . ,B}}, that is, the subtree obtained by restricting the number of unplanted
children of each vertex to B . We also define G↔·,B,H to be a subtree of G↔·,B induced by
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V ↔·,B,H := {±ø} ∪ {±i1i2 · · · il ∈ V ↔·,B : l ≤ H + 1 and l = H + 1 iff il = 0}, that is, the sub-
tree obtained by restricting the depth of vertices to H or H + 1, depending on whether
the vertex is a planted pair of its parent or not. Define �↔·,B to be the restriction of �↔· to
�↔·,B , and �↔·,B,H to be the restriction of �↔·,B to �↔·,B,H . Now, define T ↔·,B := (G↔·,B, �↔·,B) and
T ↔·,B,H := (G↔·,B,H , �↔·,B,H ), and let μ↔·,B and μ↔·,B,H to be the associated measures. Note that
there is a natural restriction ρ·,H that maps T ↔·,B to T ↔·,B,H .

Thus far, we show that the doubly-rooted planted PWITs and bi-infinite trees are equiva-
lent. Next, we are going establish the connection between the planted model (Kn,n, �n) and
the bi-infinite trees.

9.2.2. The unfolding map. Now that we have discussed how to view the planted PWIT
from an edge (a planted edge or a “uniformly” selected unplanted edge), we are going to
discuss the similar viewpoint in Kn,n = (Vn,En,M

∗
n). This is done via an unfolding map that

unfolds (Kn,n, �n) viewed from a planted or unplanted edge. This unfolding map is similar to
the one discussed in [2], Section 3.2, with two additional properties: the number of unplanted
children of every vertex is the same (for a fixed B when n is large enough), and the set of
unplanted edges M∗

n is a matching on the unfolded graph. Eventually, we want to show that
the local neighborhood of an edge in Kn,n is the same as the local neighborhood of the edge
in the bi-infinite trees. This should not come as a surprise, given Theorem 7.1.

Next, we are going to give detailed construction of the unfolding map. Fix B ∈ N+, and
fix some edge {i, j ′} from Kn,n. We are going to unfold (Kn,n, �n) from the viewpoint of the
edge {i, j ′} and construct the doubly-rooted tree U↔

B,n(i, j
′), rooted at (i, j ′), with maximum

B + 1 arity. This unfolding map resembles the exploration process discussed in the proof of
Theorem 7.1, with one key difference: this map unfolds (Kn,n, �n) from an edge viewpoint.

Include the edge {i, j ′} in U↔
B,n(i, j

′). The unfolding map proceeds as follows. In this
process, all vertices will be “live,” “dead,” or “neutral.” The live vertices will be contained in
a queue. Initially, i and j ′ are live and the queue consists of only i, j ′ in order and all the other
vertices are neutral. At each time step, a live vertex v is popped from the head of the queue. If
v’s planted neighbor M∗

n(v) is neutral, then include the edge {v,M∗
n(v)} in the doubly-rooted

tree U↔
B,n(i, j

′), add M∗
n(v) to the end of the queue and let M∗

n(v) live. Let v1, v2, . . . , vB

denote the B closest unplanted, neutral neighbors of vertex v in a nondecreasing order of
distance to v. Include all the edges {v, vk} in the doubly-rooted tree U↔

B,n(i, j
′) for 1 ≤ k ≤ B .

Also, include all the edges {vk,M
∗
n(vk)} in U↔

B,n(i, j
′) for 1 ≤ k ≤ B . The popped vertex v is

dead. Add those neutral vertices v1, v2, . . . , vB to the end of the queue in order and they are
live. Also, add those neutral vertices M∗

n(v1),M
∗
n(v2), . . . ,M

∗
n(vB) to the end of the queue

in order and they are live. The process ends when the queue is empty. According to this
rule, the order of the vertices that are selected after j ′ is the planted neighbor i0 of i (if
{i, j ′} is not planted), i1, i2, . . . , iB , M∗

n(i1),M
∗
n(i2), . . . ,M

∗
n(iB), the planted neighbor j ′

0 of
j ′ (if {i, j ′} is not planted), j ′

1, j
′
2, . . . , j

′
B , M∗

n(j ′
1),M

∗
n(j ′

2), . . . ,M
∗
n(j ′

B), etc. This unfolding
process stops when all vertices of Kn,n are included in U↔

B,n(i, j
′). Figure 8 illustrates the

U↔
1,4(1,2′) and U↔

1,4(1,1′) for the planted network given in Figure 5. Note that in both cases,
M∗

n is a matching.

Let us define a relabeling bijection φ
i,j ′
B,n (not to be confused with φ|p and φ|u) from Vn to

a subset of +� ∪ −�, where +� := {+i : i ∈ �} and −� := {−i : i ∈ �} denote the set of

vertex labelings of the bi-infinite planted PWIT. Define φ
i,j ′
B,n(i) = −ø and φ

i,j ′
B,n(j

′) = +ø. At
each step of the unfolding process, when we pick vertex v and add {v, vk} and {vk,M

∗
n(vk)}

to U↔
B,n(i, j

′), set φ
i,j ′
B,n(vk) = φ

i,j ′
B,n(v)k and φ

i,j ′
B,n(M

∗
n(vk)) = φ

i,j ′
B,n(vk)0.

Here, using the bijection φ
i,j ′
B,n, we first map U↔

B,n(i, j
′) to a subtree of T ↔·,B and

then apply the restriction map ρ·,H on this subtree. For ease of notation, we abbrevi-

ate ρ·,H (φ
i,j ′
B,n(U

↔
B,n(i, j

′))) as ρ·,H (U↔
B,n(i, j

′)) whenever the context is clear. It is easy
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FIG. 8. The doubly-rooted trees (a) U↔
1,4(1,2′) and (b) U↔

1,4(1,1′) obtained by unfolding the planted network
in Figure 5.

to see that the graph structure of ρu,H (U↔
B,n(i, j

′)) for j ′ �= i ′ and all sufficiently large n

is isomorphic to G↔
u,B,H , and the graph structure of ρp,H (U↔

B,n(i, i
′)) for all sufficiently

large n is isomorphic to G↔
p,B,H . Let μ↔

n,u,B,H denote the probability measure associated
with ρu,H (U↔

B,n(i, j
′)) for j ′ �= i′, and let μ↔

n,p,B,H denote the probability measure as-
sociated with ρu,H (U↔

B,n(i, i
′)). Note that if Du,x = {T ↔

u,B,H : �↔
u,B,H ({−ø,ø}) < x}, then

μ↔
n,u,B,H (Du,x) = 1 − exp(−x/n) ≈ x/n as n → ∞. Also, note that μ↔

u,B,H (Du,x) = x. We
now generalize Lemma 10 in [2] to the planted case.

LEMMA 9.3. For any fixed B,H ∈ N+, and x > 0 we have

nμ↔
n,u,B,H (Du,x ∩ ·) TV−→ μ↔

u,B,H (Du,x ∩ ·),
μ↔

n,p,B,H

TV−→ μ↔
p,B,H ,

where the total variation convergence of positive measures is defined as:

μn
TV−→ μ iff sup

A

∣∣μn(A) − μ(A)
∣∣→ 0.

PROOF. The proof is almost identical to the proof of Lemma B.1, and has been omitted.
The only subtle difference is the restriction to Du,x , which causes no problem since n ×
1
n

e−x/n → 1 as n → ∞. �

Next, we are going to use the involution invariant random matching (�,Mopt) on the
planted PWIT to assign values to the edges of (Kn,n, �n). Ideally, the value assigned to an
edge e = {i, j ′} corresponds to the probability of e being in the matching that we want to
construct.

9.2.3. Assigning values to the edges of (Kn,n, �n). Now it’s time to assign fractional
values to the edges of (Kn,n, �n). This is done by pretending that the local neighborhood of
an edge e in (Kn,n, �n), is a realization of the local neighborhood of the corresponding bi-
infinite tree. So, as the first step toward assigning values to the edges of (Kn,n, �n), we need to
know how to assign value to {−ø,+ø} in the bi-infinite tree using the minimum matching on
the planted PWIT. The idea is to use the inverse image of ψ |· and map the edge {−ø,+ø} to
the corresponding edge on the planted PWIT. This gives us a function g· : [0,∞)E

↔· → [0,1],
which we then use to assign fractional values to the edges of (Kn,n, �n), by conditioning on
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its neighborhood. We are going to discuss these steps in detail. We follow the discussion in
[6], Section 5.5, and then [2], Introduction.

Recall that μ̃ = μ × count on {0,1,2,3, . . .} is the measure associated with the doubly-
rooted planted PWIT. Also, recall that since μ is involution invariant, the product measure μ̃

is invariant under the involution map ι that swaps the roots. Following the discussion of [6],
Section 5.5, we define the function γopt : [0,∞)E × {0,1,2, . . .} → [0,1] by

γopt(w, i) = P
[
Mopt(ø) = i | �(e) = w(e) ∀e ∈ E

]
.

As Aldous points out, the function γopt satisfies certain consistency properties:

(i)
∑∞

i=0 γopt(w, i) = 1 since Mopt is a matching.
(ii) γopt(ι(w, i)) = γopt(w, i) since the random matching (�,Mopt) is involution invari-

ance, where ι(w, i) swaps i and ø given {�(e) = w(e)∀e ∈ E}.
Also, we have (iii) E[�(Mopt(ø),ø)] = ∫

w

∑∞
i=0 γopt(w, i)w(ø, i)μ(dw). Now, define g· :

[0,∞)E
↔· → [0,1] as follows:

g.

(
w↔

.

)= γopt
(
ψ |−1·

(
w↔

.

))
,

where ψ |· is the bijection map that we defined earlier in Section 9.2.1, and ψ |−1· is its inverse.
We can think of the function g· as the probability that the edge {−ø,+ø} is in the matching.
The function g· satisfies similar consistency properties corresponding to (i) and (ii):

(i′) The function g· assigns honest probabilities to the neighbors of −ø as well as +ø. To be
more specific, let ι+p,i, ι

−
p,i : [0,∞)E

↔
p → [0,∞)E

↔
u denote the root swapping maps, that

change the root from (−ø,+ø) to (−ø,−i), and from (−ø,+ø) to (+i,+ø) respectively
(and then relabel all the vertices). Similarly, define ι+u,i and ι−u,i . We have:

(a) In T ↔
p , the values assigned to the neighbors of −ø as well as +ø sums to one:

gp

(
w↔

p

)+ ∞∑
i=1

gu

(
ι±p,i

(
w↔

p

))= 1.

(b) In T ↔
u , the values assigned to the neighbors of −ø as well as +ø sums to one:

gu

(
w↔

u

)+ gp

(
ι±u,0

(
w↔

u

))+ ∞∑
i=1

gu

(
ι±u,i

(
w↔

u

))= 1.

(ii′) Let ι↔· denote the root swamping map, that swaps the root (−ø,+ø) to (+ø,−ø) (and
then relabels all the vertices). We have g.(w

↔
. ) = g.(ι

↔· (w↔
. )).

Also note that the function g· is measurable with respect to the product σ -algebra on
[0,∞)E

↔· . Hence, (iii) becomes (iii′)

E
[
�
(
Mopt(ø), ø

)]=∫
w↔

p

w↔
p (−ø,+ø)gp

(
w↔

p

)
μ↔

p

(
dw↔

p

)
+
∫
w↔

u

w↔
u (−ø,+ø)gu

(
w↔

u

)
μ↔

u

(
dw↔

u

)
.

Now we use the function g· to assign fractional values to the edges of the planted model.
We store the values assigned to the edges of (Kn,n, �n) in an n × n matrix Qn = [qi,j ′ ]i,j ′ ,
where qi,j ′ is the value assigned to the edge {i, j ′}. Let g·,B,H to be the conditional ex-
pectation of g· given σ(�↔· (e), e ∈ E↔·,B,H ), with respect to the measure μ↔· . Also, let
gu,x,B,H = gu,B,H 1Du,x . Now, qi,j ′ is defined as follows:

qi,j ′ :=
{
gu,x,B,H

(
ρu,H

(
U↔

B,n

(
i, j ′))) if j ′ �= i′,

gp,B,H

(
ρp,H

(
U↔

B,n

(
i, i′
)))

if j ′ = i′.
(9.6)
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As we mentioned before, if Qn were doubly-stochastic, we could have used it to construct a
matching on Kn,n. However, it is not hard to see that P[Qn is doubly-stochastic] = 0. Nev-
ertheless, we expect Qn to become almost doubly-stochastic, as a larger neighborhood is
revealed.

Let us define a discrimination factor, as Aldous does in [2], Introduction:

X (Qn) = 1

n

n∑
i=1

∣∣∣∣∣1 −
n′∑

j ′=1′
qi,j ′

∣∣∣∣∣+ 1

n

n′∑
j ′=1′

∣∣∣∣∣1 −
n∑

i=1

qi,j ′

∣∣∣∣∣.
Note that if Qn is doubly-stochastic, then X (Qn) = 0. Naturally, we should expect that
E[X (Qn)] ≈ 0, for large values x, B , H , and n. We should also expect the average expected
cost of Qn to be close to the expected cost of Mopt, that is,

1

n
E

[∑
i,j ′

qi,j ′�n

(
i, j ′)]≈ E

[
�
(
Mopt(ø),ø

)]
,

for large enough values of x, B , H , and n. Using the same set of inequalities as in [2],
Section 3.4, it follows that the both intuitions are correct.

LEMMA 9.4.

(i) For any ε > 0, there is an x0, B0, H0 and n0 such that for all x > x0, B > B0, H > H0,
and n > n0 we have E[X (Qn)] < ε. In the other words,

lim
x→∞ lim sup

B→∞
lim sup
H→∞

lim sup
n→∞

E
[
X (Qn)

]= 0.

(ii) For any δ > 0, there is an x0 and n0 such that for all x > x0 and n > n0, the average
expected cost of Qn is in the δ neighborhood of the cost of Mopt on the planted PWIT, for all
B and H . In the other words,

lim
x→∞ lim sup

n→∞
1

n
E

[∑
i,j ′

qi,j ′�n

(
i, j ′)]= E

[
�
(
Mopt(ø),ø

)]
for all B and H.

PROOF. The proof is almost identical to the proof presented in [2], Section 3.4. The proof
of part (ii) is a direct consequence of Lemma 9.3 and linearity of expectation. The proof
of part (i) needs more work, but the inequalities are the same as the one presented in [2],
Section 3.4. The key factor is the consistency properties of functions gu and gp , Lemma 9.3,
and the fact that there is no short cycle containing the root consists entirely of low-weight
edges (as mentioned in the proof of Theorem 7.1). �

Now that we know Qn eventually becomes a doubly-stochastic matrix with weight close
to that of Mopt, we will construct a perfect matching on (Kn,n, �n) with (within ε) the same
weight. First, by invoking [2], Proposition 7, we construct a partial matching with the cost
close to the cost of Qn. Next, using [2], Proposition 9, we construct a perfect matching by
swapping operation while keeping the cost almost the same. The changes required to extend
this analysis to the planted case are very minor, but we present the strategy in the next section
for completeness.

9.2.4. Construction of the matching. Finally, we are going to give the precise construc-
tion of the low cost matching on (Kn,n, �n) and prove (9.2). By Lemma 9.4, we know that
Qn becomes arbitrary close to a doubly-stochastic matrix, that is, X (Qn) becomes arbitrary
close to 0 with high probability. Now, using Qn for sufficiently large n, we construct a low
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cost partial matching which matches most of the vertices and leaves a small fraction of ver-
tices isolated. This is done by invoking Proposition 7 in [2]. Then we use Proposition 9 in [2]
and swap some of the edges to obtain a perfect matching on (Kn,n, �n) while keeping the cost
almost the same. On the rare occasions that we fail to either construct the partial matching or
swap the edges, we use M∗

n . Since these events are rare, the use of planted matching won’t
affect the total cost. We follow the discussion in [2], Section 2.

Let us begin with describing how to construct a partial matching using an almost doubly-
stochastic matrix. We say Qn is an almost doubly-stochastic matrix if its discrimination factor
is close enough to 0, or more precisely, if X (Qn) < 1/200. We say νn : En → {0,1,ø} is a
(1 − θ) partial matching if vertices in U(νn) = {i ∈ [n] : νn(i, j

′) = 1 for some j ′ ∈ [n′]} are
matched to different vertices in [n′] and |U(νn)| ≥ (1 − θ)n.

The first step is to convert Qn to a doubly-stochastic matrix. Define an n × n matrix An =
[ai,j ′ ] as follows:

ai,j ′ := qi,j ′

max(1, qi,:)max(1, q:,j ′)
,

where qi,: :=∑
j ′∈[n′] qi,j ′ and q:,j ′ :=∑

i∈[n] qi,j ′ . Similarly, define ai,: and a:,j ′ for all i ∈
[n] and j ′ ∈ [n′]. Note that ai,: ≤ 1 and a:,j ′ ≤ 1. Define an n × n matrix Bn = [bi,j ′ ] as
follows:

bi,j ′ = (1 − ai,:)(1 − a:,j ′)

n −∑
i∈[n]

∑
j ′∈[n′] ai,j ′

.

It is easy to check that An + Bn is doubly-stochastic. Hence, by Birkhoff–von Neumann
theorem An + Bn can be written as a convex combination of permutations. Hence, there
exists a random matching Mn on (Kn, �n) such that ∀i ∈ [n], j ′ ∈ [n′] : P(Mn(i) = j ′) =
ai,j ′ + bi,j ′ . Note that for all i ∈ [n] and j ′ ∈ [n′] we have ai,j ′ ≤ qi,j ′ , however, there is no
such a bound for bi,j ′ . As a result, we may end up assigning high probabilities to undesired
edges which can affect the expected cost of the matching Mn. Now, the idea is to use some
part of the matching Mn that is behaving well enough.

PROPOSITION 9.5 ([2], Proposition 7). Let Qn = [qi,j ′ ] and �n = [�n(i, j
′)] be given

nonrandom n×n matrices. Suppose 200X (Qn) ≤ θ < 1. Consider the random matching Mn

given as above and define the random set D(Mn) := {i ∈ [n] : bi,Mn(i) ≤ ηai,Mn(i)} where
η = √

3X (Qn)/θ . Then

E

[ ∑
i∈D(Mn)

qi,Mn(i)�n

(
i,Mn(i)

)]≤ (1 + η)
∑
i∈[n]

∑
j ′∈[n′]

qi,j ′�n

(
i, j ′),

P
[∣∣D(Mn)

∣∣≥ (1 − θ)n
]≥ 1 − 3(1 + η−1)X (Qn)

θ
,

that is, the random matching Mn restricted to the random set D(Mn) is a (1 − θ) matching
with high probability with cost close to the cost of Qn. Specifically, there is a (1 − θ) partial
matching νn (nonrandom) such that∑

i∈U(νn)

qi,νn(i)�n

(
i, νn(i)

)≤ (1 + 4
√
X (Qn)/θ

) ∑
i∈[n]

∑
j ′∈[n′]

qi,j ′�n

(
i, j ′).

Next, we patch the partial matching νn given by the Proposition 9.5 (which exists for
almost all realization of the edge weights and Qn), to construct a perfect matching without
distorting the expected cost and the given partial matching too much. Aldous suggests using
the greedy algorithm to do that. In the planted setting, the idea is to simply remove all the
planted edges and then use the greedy algorithm.
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PROPOSITION 9.6 ([2], Proposition 9). Fix 0 < θ < 1/10, and let k = �θn�. Let �n =
[�n(i, j

′)] denote the matrix of the edge weights. Let νn denote a 1 − θ partial matching. Let
N0 = [n] \U(νn) and N ′

0 = [n′] \νn(U(νn)) denote the set of unpaired vertices in either side.
(Here, N0, N ′

0 and νn may depend on �n in an arbitrary way.) Then there exists a random
subset S ⊂ [n] \ N0 of size k, random bijections ν1 : S → N ′

0, ν2 : N0 → νn(S), and events
�n with P(�n) → 0 such that

lim sup
n→∞

1

n
E

[
1�c

n

(∑
i∈N0

�n

(
i, ν2(i)

)+∑
i∈S

�n

(
i, ν1(i)

))]≤ 24θ1/2.

It remains to combine Proposition 9.5 and Proposition 9.6 to construct a matching on
Kn,n. The key idea is to rewrite the edge weights of Kn,n as the minimum of two independent
exponential random variables.

LEMMA 9.7. If X ∼ exp(μ1) and Y ∼ exp(μ2) are independent, then min(X,Y ) ∼
exp(μ1 + μ2).

Now, for any fixed 0 < α < 1, we can write

�n

(
i, j ′)= min

(
�1
n(i, j

′)
1 − α

,
�2
n(i, j

′)
α

)
,(9.7)

where �1
n(i, j

′) and �2
n(i, j

′) are independent copies of �n(i, j
′). We use �1

n(i, j
′) to construct

the partial matching, and then �2
n(i, j

′) to patch the partial matching and construct a complete
matching. On the event �∗

n that the construction is not possible, that is either Proposition 9.5
or Proposition 9.6 failed, we can always use the planted matching to construct a matching
on Kn,n. Since the probability of this failure goes to zero, this does not affect the cost of the
matching that much. Specifically, we need to show that Ln := 1

n

∑
i∈[n] �n(i, i

′) is uniformly
integrable.

LEMMA 9.8. There exists a function δ(·) with δ(x) → 0 as x → 0 such that for arbitrary
events �∗

n,

lim sup
n→∞

E[Ln1�∗
n
] ≤ δ(ε),(9.8)

where ε = lim supn→∞P[�∗
n].

PROOF. Since E[(Ln)
2] < ∞, Ln is uniformly integrable. In particular, by Cauchy–

Schwarz inequality, we have E[Ln1�∗
n
] ≤

√
E[(Ln)2]P[�∗

n] =√
E[(Ln)2]ε. �

Now we are ready to present the formal proof of (9.2), which closely follows the proof of
Proposition 2 in [2]. Fix 0 < θ < 1 and let ε = θ3/200. Construct Qn = [qi,j ′ ]i,j ′ as per (9.6)
using the edge cost �1

n. It follows from Lemma 9.4 that for all sufficiently large x, B , H , n,
E[X (Qn)] < ε and

1

n
E

[∑
i,j ′

qi,j ′�1
n

(
i, j ′)]≤ E

[
�
(
Mopt( ø),ø

)]+ ε.(9.9)

Define event �1
n = {200X (Qn) > θ2}. Then by Markov’s inequality,

P
[
�1

n

]= P
[
200X (Qn) > θ2]≤ 200E[X (Qn)]

θ2 ≤ 200ε

θ2 = θ.
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Outside event �1
n, we have 200X (Qn) ≤ θ2 < θ . It follows from Proposition 9.5 that outside

event �1
n, there exists a (1 − θ) partial matching νn such that∑

i∈U(νn)

qi,νn(i)�
1
n

(
i, νn(i)

)≤ (1 + θ)
∑
i∈[n]

∑
j ′∈[n′]

qi,j ′�1
n

(
i, j ′),(9.10)

where U(νn) is the set of vertices i matched under νn. Now, condition on a realization (outside
of �1

n) of �1
n, and apply Proposition 9.6 to �2

n. Since �1
n and �2

n are independent, it follows
from Proposition 9.6 that there exist an event �2

n and bijections ν1 and ν2 such that for all
sufficiently large n, P[�2

n] ≤ θ and

(9.11)
1

n
E

[
1(�1

n)c

( ∑
i∈[n]\U(νn)

�2
n

(
i, ν2(i)

)+ ∑
i∈ν−1

n (ν2([n]\U(νn))

�2
n

(
i, ν1(i)

))]≤ 24θ1/2.

Outside event �∗
n = �1

n ∪�2
n, we can construct a complete matching πn : [n] → [n′] such that

πn(i) = ν2(i) if i ∈ [n] \ U(νn); and πn(i) = ν1(i) if i ∈ ν−1
n (ν2([n] \ U(νn)); and πn(i) =

νn(i) otherwise. On event �∗
n, we just let πn to be the planted matching. Combining (9.7),

(9.9), (9.10), (9.11), and (9.8) yields that

lim sup
n→∞

1

n
E

[∑
i,j ′

πn

(
i, j ′)�n

(
i, j ′)]≤ (1 + θ)(E[�(Mopt(ø),ø)] + ε)

1 − α
+ 24θ1/2

α
+ δ(2θ).

Letting θ (and hence ε) → 0, then letting α → 0, we establish (9.2).

APPENDIX A: PROOF OF LEMMA 2.2

The moment generating function for an exponential random variable Y with rate λ is

E
[
eμY ]= λ

λ − μ
.

Since X1 and X2 are independent, the exponential generating function for X1 − X2 is

(A.1) E
[
eμ(X1−X2)

]= E
[
eμX1

]
E
[
e−μX2)

]= (
λ1λ2

(λ1 − μ)(λ2 + μ)

)t

.

By Markov’s inequality

P[X1 > X2] = P
[
eμ(X1−X2) > 1

]≤ E
[
eμ(X1−X2)

]
for any μ > 0. The right-hand side of (A.1) is minimized when μ = (λ1 − λ2)/2, giving the
desired result.

APPENDIX B: PROOF OF THEOREM 7.1

Step 1: The exploration process
As we pointed out in the sketch of the proof, the first step is to define an exploration process

that explores vertices of Nn,◦(1) in a series of stages. The stage m of the exploration process
reveals a rooted subtree of (Kn,n, �n), denoted by Nn,◦[m]. The root of Nn,◦[m] is vertex 1,
the number of unplanted children of every vertex is m, and the set of planted edges restricted
to Nn,◦[m] is a matching. Next, we provide a formal construction of Nn,◦[m].

The construction begins with vertex 1. Include the edge {1,M∗
n(1) = 1′} in Nn,◦[m].

Let {v1, v2, . . . , vm} denote the m closest unplanted neighbors of vertex 1. Add all the
edges {1, vk} and then {vk,M

∗
n(vk)} to Nn,◦[m]. Next, continue with the vertex 1′. Let

{w1,w2, . . . ,wm} denote the m closest unplanted neighbors of vertex 1′, among all the ver-
tices that has not been added to Nn,◦[m]. Include all the edges {1′,wk} and then {wk,M

∗
n(wk)}
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FIG. 9. Stage 2 of the exploration process on (K4,4, �4) given by Figure 5.

to Nn,◦[m]. At each step of the construction, we follow two simple rules: (1) the next ver-
tex to pick is the oldest one in Nn,◦[m]; (2) when we add m closest unplanted children of
this vertex and their planted pairs, we avoid all the vertices that has already been added to
Nn,◦[m].

The construction continues until we are about to pick a vertex at depth m, at which point
it stops. Note that the only vertices at depth m + 1 are the planted partners of the vertices
at depth m. Let V

(m)
n and E

(m)
n denote the set of the vertices and the edges of Nn,◦[m] re-

spectively. Note that for all sufficiently large n, |V (m)
n | and |E(m)

n | are independent of n. Let
μ

(m)
n ∈ P(G∗) denote the law of [Nn,◦[m]]. Figure 9 demonstrates the construction of Nn,◦[2]

for the graph given by Figure 5.
Step 2: A total variation convergence
The rooted planted tree Nn,◦[m] has the same graph structure as a truncated version of

the planted PWIT: remove all vertices i = (i1, i2, . . . il) such that either (1) is > m for some
s ∈ {1,2, . . . , l}, or (2) l > m + 1, or (3) l = m + 1 and il �= 0. In particular, the number
of unplanted children of every vertex in the truncated version is m, the depth of vertices are
bounded by m + 1, and the only vertices at depth m + 1 are the planted pairs of the vertices
at depth m. Let N∞[m] denote the truncated planted PWIT, and let μ

(m)∞ denote the law of
[N∞[m]]. Now, using the same approach as in [2], Lemma 10, we show that μ

(m)
n converges

to μ
(m)∞ in total variation norm.

LEMMA B.1. For any fixed m, μ
(m)
n

TV−→ μ
(m)∞ where the total variation convergence of

positive measures is defined as follows:

μn
TV−→ μ iff sup

A

∣∣μn(A) − μ(A)
∣∣→ 0.

PROOF. It is easy to see that μ
(m)
n is absolutely continuous with respect to μ

(m)∞ . More-
over, the Radon-Nikodym derivative of μ

(m)
n with respect to μ

(m)∞ equals the likelihood ratio.
Consider similar steps on the planted PWIT to construct N∞[m]. Conditioned on the first

t − 1 steps of the construction of N∞[m] and Nn,◦[m], we will calculate the ratio of the
conditional densities for the next step of the construction. Since planted edges have the same
exp(λ) distribution in both cases, we are only interested in the corresponding ratio of un-
planted edges.

At t th step of the construction of N∞[m], the conditional density of (x1, x1 + x2, . . . , x1 +
· · ·+xm) is exp(−(x1 +x2 +· · ·+ xm)). At t th step of the construction of Nn,◦[m], using the
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memoryless property of exponential random variables, the conditional density of (x1, x1 +
x2, . . . , x1 + · · · + xm) is

m−1∏
i=0

|It−1| − i

n
exp

(
−xi+1(|Ik−1| − i)

n

)
,

where It−1 is the set of vertices that has not been added to N∞[m] yet up to the t th step.
Hence, the ratio of conditional densities is at least

m−1∏
i=0

|Ik−1| − i

n
≥
(

n − |V (m)|
n

)m

,

and we have

dμ
(m)
n

dμ
(m)∞

≥
(

1 − |V (m)|
n

)|E(m)|−|V (m)|/2
,

where the exponent |E(m)| − |V (m)|/2 is the number of unplanted edges explored.
Note that |V (m)| and |E(m)| do not depend on n, for all sufficiently large n. Hence, as

n → ∞ the right-hand side of the above inequality goes to 1. Now, the result follows by the
fact that μ

(m)
n and μ

(m)∞ are probability measures. �

Step 3: Locally tree-like property
Fix some ρ > 0. Recall that (Gn,◦(1))ρ denotes the ρ-neighborhood of vertex 1 in Nn,◦(1)

as is defined in Section 6. Similarly, (Gn,◦[m])ρ denotes the neighborhood ρ of node 1
in Nn,◦[m]. The question is, whether these two neighborhoods are the same. Note that
(Gn,◦[m])ρ is a tree but (Gn,◦(1))ρ is not necessary. However, it becomes a tree with high
probability.

LEMMA B.2. Fix ε > 0 and ρ > 0. Then there exists large enough m0(ε, ρ) such that
for all fixed m > m0(ε, ρ),

P
[(

Gn,◦(1)
)
ρ �= (

Gn,◦[m])ρ]≤ ε as n → ∞.

PROOF. Let m0 to be large enough such that

P
[
number of vertices in

(
Gn,◦(1)

)
ρ > m0

]
< ε/2.

Fix m > m0. Consider the event {(Gn,◦(1))ρ �= (Gn,◦[m])ρ}. This event may happens if either

the number of vertices in (Gn,◦(1))ρ is greater than m or there are two vertices v,w ∈ V
(m)
n

such that {v,w} /∈ E
(m)
n but �n(v,w) ≤ ρ. The probability of the first event is bounded by

ε/2. For the other event, note that if v,w ∈ V
(m)
n and {v,w} ∈ En \ E

(m)
n , then �n(v,w) is

dominated by an exponentially distributed random variable with mean n. (To see this, assume
that v was revealed earlier than w. Then we know that the cost of the edge {v,w} is larger
than the cost cm of the edge {v, vm}, where vm is the mth closest unplanted neighbor of v.
Hence, the probability distribution of the weight of {v,w}, using the memoryless property,
is 1/n exp((x − cm)/n) which is stochastically larger than a random variable distributed as
exp(1/n). Hence,

P
[∃v,w ∈ V (m)

n such that {v,w} /∈ E(m)
n and �n(v,w) ≤ ρ

]
≤
(∣∣V (m)

n

∣∣
2

)(
1 − exp(−t/n)

)→ 0 as n → ∞.
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As we mentioned before, |V (m)
n | is independent of n for all sufficiently large n. Now, the

result follows by combining the last two displayed inequalities. �

Now, combining Lemma B.1 and Lemma B.2, we get the following corollary.

COROLLARY B.3. Fix ρ > 0. Let μn,ρ denote the law of [((Gn,◦(1))ρ, �n)], and let μ∞,ρ

denote the law of [((G∞)ρ, �∞)]. Then μn,ρ
TV−→ μ∞,ρ .

Step 4: Portmanteau theorem
For a fixed R > 0, since the condition d([N◦], [T◦]) < (R + 1)−1 is equivalent to

d([((G◦)R, �)], [T◦]) < (R + 1)−1, Corollary B.3 implies that, for all finite rooted planted
trees [T◦] ∈ G∗, we have ∣∣μn(AT◦) − μ∞(AT◦)

∣∣→ 0 as n → ∞,(B.1)

where AT◦ is defined as

AT◦ := {[N◦] ∈ G∗ : d([N◦], [T◦])< (R + 1)−1}.
Note that the support of μ∞ is rooted planted trees. Moreover, recall that G∗ is separable,
hence, the restriction of G∗ to the rooted planted trees is also separable. Since μ∞ is a prob-
ability measure, for any R > 0 and any ε > 0, there exists a finite set S(R, ε) consisting of
rooted planted trees T◦ = (G◦, �) with (G◦)R = G◦ such that

μ∞
( ⋃

T◦∈S(R,ε)

AT◦

)
> 1 − ε.

Using Corollary B.3, there exists n0(ε) ∈ N+ such that for all n > n0(ε),

μn

( ⋃
T◦∈S(R,ε)

AT◦

)
> 1 − 2ε.

Now we are going to prove that μn
w−→ μ∞. By definition μn

w−→ μ∞, if for any continuous
bounded function f : G∗ →R, ∫

G∗
f dμn →

∫
G∗

f dμ∞.

Using the Portmanteau theorem, we can restrict our attention to the uniformly continuous
bounded functions. Let f : G∗ → R be a uniformly continuous bounded function. Now, for
any ε > 0, there is a δ > 0 such that if d([N◦], [N ′◦]) < δ then |f ([N◦]) − f ([N ′◦])| ≤ ε. Fix
the value of ε and let R to be large enough such that (R + 1)−1 < δ. We have∣∣∣∣∫G∗

f dμn −
∫
G∗

f dμ∞
∣∣∣∣≤ 3ε|f |∞ + ∑

T◦∈S(R,ε)

f (T◦)
∣∣μn(AT◦) − μ∞(AT◦)

∣∣+ 2ε,

where |f |∞ := supN∈G∗ |f (N)|. The result follows by arbitrary choice of ε, the fact that
|S(R, ε)| < ∞, and (B.1).

APPENDIX C: PROOF OF PROPOSITION 8.4

By Lemma 8.3, M∞,opt is a deterministic function of the collection of random variables

C∞ = {
�∞(e),X(

←→
e ); e ∈ E∞, and ←→

e is directed
}
.
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Also note that X(
←→
e ) satisfies (8.6), which does not depend on the relabeling of the vertices.

Now, by construction, we only need to show that the distribution of (X(
−→
e ); e ∈ −→

E ∞(h)) for
h ≥ 1 is invariant with respect to the involution map ι.

Abusing the notation, let μ̂∞,opt denote the law of C∞ and define μ̃∞,opt to be μ̂∞,opt ×
count on N+, similar to (6.6). Fix the second root k ≥ 0 and let

B = {(
X(

−→
e ),

−→
e ∈ −→

E ∞(h)
) ∈ ·, k is distinguished

}
(C.1)

denote a measurable subset on Ĝ∗∗, where Ĝ∗∗ is defined similar to G∗∗ (the set all isomor-
phism classes of connected locally finite doubly-rooted planted networks) with an additional
mark on the edges ←→

e representing X(
←→
e ). Let (X0, Y0) denote a solution of the system of

recursive distributional equations (8.4)–(8.5) as in Lemma 8.3. Recall that if −→
e is a planted

edge then X(
−→
e ) and X0 have the same distribution; otherwise, X(

−→
e ) and Y0 have the same

distribution. Note that the collection of random variables (X(
−→
e ),

−→
e ∈ −→

E ∞(h)) are inde-
pendent since they depend on messages received from disjoint subtrees.

We need to show that

μ̃∞,opt
(
ι−1(B)

)= μ̃∞,opt(B).

We treat the cases k = 0 or k > 0 separately.

(i) If k = 0, then we have

ι−1(B) = {
the double root is (ø,0)

}∩ {(X(
−→
e ),

−→
e ∈ −→

E ∞(h,0)
) ∈ ·},

where
−→
E ∞(h,0) := {(v, vj) : {v, vj} ∈ E∞ s.t. v = i1i2i3 · · · ih−2 with i1 �= 0 or v =

0i2i3 · · · ih}. Now to complete the proof, it suffices to show that (X(
−→
e ),

−→
e ∈ −→

E ∞(h,0))

has the same distribution as (X(
−→
e ),

−→
e ∈ −→

E ∞(h)). Clearly, the collection of random vari-
ables (X(

−→
e ),

−→
e ∈ −→

E ∞(h,0)) are independent, and X(
−→
e ) has the same distribution as X0

or Y0 depending on whether −→
e is planted or unplanted. Thus it remains to prove that there

is a one-to-one map from
−→
E ∞(h,0) to

−→
E ∞(h) that maps (un)planted edges to (un)planted

ones. Consider the relabeling function φ defined as follows:

φ(0i2i3 · · · ih) = i2i3 · · · ih ∀0i2i3 · · · ih ∈ V∞,

φ(i1i2 · · · ih−2) = 0i1i2 · · · ih−2 ∀i1i2 · · · ih−2 with i1 �= 0,

and define γ : −→E ∞(h,0) → −→
E ∞(h) by γ ({v, vj}) := {φ(v),φ(v)j}.

(ii) If k > 0, then we have

ι−1(B) = ⋃
l>0

{{
the double root is (ø, l)

}∩ Al ∩ {(X(
−→
e ),

−→
e ∈ −→

E ∞(h, l)
) ∈ ·}},

where

Al := {
�∞
(
l, l(k − 1)

)
< �∞(ø, l) < �∞(l, lk)

}
,

and
−→
E ∞(h, l) is defined similar to

−→
E ∞(h,0). Note that the events {(X(

−→
e ),

−→
e ∈ −→

E ∞(h,

l)) ∈ ·} and Al are independent, and the distribution of (X(
−→
e ),

−→
e ∈ −→

E ∞(h, l)) does not
depend on l. Also, note that by (9.5), we have∑

l>0

P[Al] =
∫ ∞

0
P[exactly k − 1 arrivals before x]dx = 1.

The result then follows using the same argument as in the previous case.
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APPENDIX D: PROOF OF LEMMA 8.8

There are two branches that we are interested in: the alternating path from ø through v−1,
and the alternating path from ø through v1. It is more convenient to study these two branches
on the doubly-rooted planted PWIT, rooted at (ø, v1). The proof uses the discussion of bi-
infinite planted PWITs T ↔

u and T ↔
p in Section 9.2.1. We follow the same notation and sim-

plification (Remark 1 in Section 9.2.1) here.
Using the relabeling maps ψ |p and ψ |u, we already know that μ∞ × δ0 is equivalent to

μ↔
p and μ∞ × count on {1,2,3, . . .} is equivalent to μ↔

u . We can use the relabeling map
ψ |· to define {X·(−→e ),

−→
e is a directed edge in E↔· } jointly with {�↔· (e), e ∈ E↔· }. Note that

the joint distribution of {�↔· (e),X·(−→e ); e ∈ E↔· and −→
e is directed} is exactly the same as if

we use the construction of Lemma 8.1 by redefining
−→
E (h) as

(D.1)

−→
bE↔· (h) := {−→

e = (−v,−vj) : gen(v) = h − 1
}

∪ {−→e = (+v,+vj) : gen(v) = h − 1
}
.

Now, given {X·(−→e ),
−→
e is a directed edge in E↔· } we can define a minimum matching M ↔·,opt

on T ↔· , same as in Lemma 8.3, that is,

∀v ∈ V ↔· : M ↔·,opt(v) = arg min
w:{v,w}∈E↔·

(
�↔· (v,w) − X·(v,w)

)
,(D.2)

∀e ∈ E↔· : M ↔·,opt(e) = 1 if and only if �↔· (e) < X·(−→e ) + X·(←−e ).(D.3)

Next, we are going to show that the bi-infinite tree T ↔
u (T ↔

p ) restricted to M ↔
u,opt(−ø,+ø) =

1 (M ↔
p,opt(−ø,+ø) = 1) is equivalent to the doubly-rooted planted PWIT, rooted at {ø,

Mopt(ø)}, restricted to Mopt(ø) �= 0 (Mopt(ø) = 0).

On the planted PWIT Tu (recall that Tu = T (ø) as defined in Section 9.2.1), define X
↓
u =

mini≥0(�(ø, i) − X(ø, i)). Let νu(x) denote the conditional distribution of the set{
�(e),X(

−→
e ); e ∈ Eh and −→

e is directed away from ø
}

given X
↓
u = x. Similarly, on the subtree Tp (recall that Tp is a relabeling of T (0) as defined

in Section 9.2.1), define X
↓
p = mini≥1(�(ø, i) − X(ø, i)). Let νp(x) denote the conditional

distribution of the set{
�(e),X(

−→
e ); e ∈ Ep and −→

e is directed away from ø
}

given X
↓
p = x. On the bi-infinite tree T ↔· , define μ1· to be the measure obtained by restricting

μ↔· to the set {�↔· (−ø,+ø) < X·(−ø,+ø) + X·(+ø,−ø)}, that is, M ↔·,opt(−ø,+ø) = 1. Let
E↔+· and E↔−· denote all edges of form {+v,+vj} and {−v,−vj} respectively. Clearly,
E↔· = E↔+· ∪ E↔−· ∪ {−ø,+ø}. Let (X0, Y0) be a solution of the system of recursive distri-
butional equations (8.4)–(8.5).

LEMMA D.1. The measures μ1
u and μ1

p are finite positive measures. The total mass of

μ1
u equals P[Mopt(ø) �= 0] and the total mass of μ1

p is P[Mopt(ø) = 0]. Under μ1· we have:

(i) The joint density of (�↔
u (−ø,+ø),Xu(+ø,−ø),Xu(−ø,+ø)) at point (l, x1, x2) is

fu(x1)fu(x2)1(0<l<x1+x2), where fu(·) is the density of Y0 and 1(0<l<x1+x2) is the indicator
function; the joint density of (�↔

p (−ø,+ø),Xp(+ø,−ø),Xp(−ø,+ø)) at point (l, x1, x2) is
fp(x1)fp(x2)λ exp(−λl), where fp(·) is the density of X0.
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(ii) Conditioned on (�↔· (−ø,+ø),X·(+ø,−ø),X·(−ø,+ø)) = (l, x1, x2) with x1 + x2 >

l, the distribution of the family{
�↔· (e),X·(−→e ); e ∈ E↔−· and −→

e is directed away from −ø
}

is the image of ν·(x1) under the natural embedding T· → T −· ⊂ T ↔· ; the distribution of the
family {

�↔· (e),X·(−→e ); e ∈ E↔+· and −→
e is directed away from +ø

}
is the image of ν·(x2) under the natural embedding T· → T +· ⊂ T ↔· and these two families
are conditionally independent.

REMARK 4. Conditioned on (�↔· (−ø,+ø),X·(+ø,−ø),X·(−ø,+ø)) = (l, x1, x2) with
x1 + x2 > l, we have M ↔·,opt(−ø,+ø) = 1. Now, by (D.2) and the construction of X· on
T ↔· , we have X·(−i,−ø) = �↔· (−ø,+ø) − X·(−ø,+ø) for all i. Similarly, X·(+i,+ø) =
�↔· (+ø,−ø) − X·(+ø,−ø) for all i. This combined with the families in part (ii) of
Lemma D.1, specifies X· on T ↔· under μ1· .

PROOF. By construction of X· on T ↔· , we already know that X·(+ø,−ø) and X·(−ø,

+ø) are independent with density f·(·). Moreover, �↔
u (−ø,+ø) has uniform “distribution” on

[0,∞), and �↔
p (−ø,+ø) is an exponentially distributed random variable with parameter λ.

Hence, the joint density has the form mentioned in (i). Moreover, the total mass of μ1
u is∫ ∞

x1=−∞

∫ ∞
x2=−∞

(x1 + x2)
+fu(x1)fu(x2) dx2 dx1,(D.4)

and the total mass of μ1
p is∫ ∞

x1=−∞

∫ ∞
x2=−∞

(
1 − exp

(−λ(x1 + x2)
+))fp(x1)fp(x2) dx2 dx1,(D.5)

where (x1 + x2)
+ = max(x1 + x2,0). Now, using the joint density above, we can calculate

the total mass of μ1
u and μ1

p as shown by the following lemma.

LEMMA D.2. The equation (D.4) equals P[Mopt(ø) �= 0], and the equation (D.5) equals
P[Mopt(ø) = 0].

PROOF OF LEMMA D.2. Let X1 and X2 denote two independent copies of X0, and
Y1 and Y2 denote two independent copies of Y0. Let η denote an exponentially distributed
random variable with parameter λ.

Using Corollary 8.2, we have

Equation (D.4) = E
[
(Y1 + Y2)

+]
=
∫ ∞
x=0

P[Y1 + Y2 > x]dx

=
∫ ∞
ζ=0

P
[
X(

−→
e ) + X(

←−
e ) > �(e) | ∃e = {ø, i ≥ 1}, �(e) = ζ

]
dζ

= P
[
Mopt(ø) �= 0

]
,

Equation (D.5) = P[X1 + X2 > η] = P
[
X(ø,0) + X(0,ø) > �(ø,0)

]
= P

[
Mopt(ø) = 0

]
. �
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Next, by construction based on (X·(−→e ),
−→
e ∈ −→

bE↔· (h)) as in Lemma 8.1, under μ↔· the
families{

�↔· (e),X·(−→e ); e ∈ E↔−· and −→
e is directed away from − ø

}∪ X·(+ø,−ø),

and {
�↔· (e),X·(−→e ); e ∈ E↔+· and −→

e is directed away from + ø
}∪ X·(−ø,+ø),

are independent of each other and �↔· (−ø,+ø). Therefore, the desired conditional indepen-
dence in part (ii) follows, when conditioned on (�↔· (−ø,+ø),X·(+ø,−ø),X·(−ø,+ø)) =
(l, x1, x2).

Finally, note that each families under μ↔· is distributed as the image of corresponding
family on T·, where X·(+ø,−ø) (or X·(−ø,+ø)) corresponds to X

↓· . Now, the independence
of these two families under μ↔· implies that the conditional distribution of families under μ1·
depends only on the corresponding value of X

↓· , that is, x1 for the first family and x2 for the
second one. �

Recall that ψ |p : [0,∞)E × {0} → [0,∞)E
↔
p maps μ × δ0 to μ↔

p , and ψ |u : [0,∞)E ×
{1,2,3, . . .} → [0,∞)E

↔
u maps μ × count on {1,2,3, . . .} to μ↔

u . Note that the inverse
image of the event {�↔· (−ø,+ø) < X·(+ø,−ø) + X·(−ø,+ø)} under ψ |· is the event{(

ø,Mopt(ø)
)

is the double root
}
.

Hence, ψ |−1
p maps the measure μ1

p to μ × δ0 restricted to {the second root is Mopt(ø) = 0},
and ψ |−1

u maps the measure μ1
u to μ × count on {1,2,3, . . .} restricted to{

the second root is Mopt(ø) and Mopt(ø) �= 0
}
.

Hence, to study the events �B∞ and B−1 on the planted PWIT, we can relabel the ver-
tices by setting ø to be −ø, Mopt(ø) to be +ø, map the doubly-rooted planted PWIT, rooted
at (ø,Mopt(ø)), to the corresponding bi-infinite tree (T ↔

u or T ↔
p depending on whether

Mopt(ø) = 0 or not), and study the image of these events under μ1
p and μ1

u.

D.1. A lemma on Tu and Tp . Before analyzing the image of B−1 on T ↔
u (or T ↔

p de-
pending on whether Mopt(ø) = 0 or not), let us present a technical lemma which generalizes
Lemma 23 in [2] to the planted case.

LEMMA D.3. On the planted PWIT, define

X↓
u = min

i≥0

(
�(ø, i) − X(ø, i)

)
,

X↓
p = min

i≥1

(
�(ø, i) − X(ø, i)

)
,

Iu = arg min
i≥0

(
�(ø, i) − X(ø, i)

)
,

Ip = arg min
i≥1

(
�(ø, i) − X(ø, i)

)
.

For −∞ < b < a < ∞ define

gu(a, b) := P

[
�(ø, Iu) − b > min[2]

j :{Iu,Iuj}∈E

(
�(Iu, Iuj) − X(Iu, Iuj)

) ∣∣X↓
u = a

]
,

gp(a, b) := P

[
�(ø, Ip) − b > min[2]

j :{Ip,Ipj}∈E

(
�(Ip, Ipj) − X(Ip, Ipj)

) ∣∣X↓
p = a

]
.

Then gu(a, b), gp(a, b) > 0.
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PROOF. Let us begin with an observation, which is the continuous analogous of the split-
ting property of a Poisson process.

OBSERVATION. Let {Xi}∞i=1 be independent real-valued continuous random variables
with common distribution αX . Let {ζi}∞i=1 denote the arrivals of a Poisson process with pa-
rameter 1. Then {(ζi,Xi)}∞i=1 forms a Poisson point process on [0,∞) × (−∞,+∞) with
mean intensity β(z, x) dz dx = dzαX(dx).

Now, let Yi = ζi − Xi . The set of points {Yi}∞i=1 forms a certain inhomogeneous Poisson
process on (−∞,∞) with mean intensity γ (y) dy = αX([−y,∞)) dy. Finally, it is easy to
see that conditioned on the time of the first arrival to be y0, the other points in {Yi}∞i=1 are the
points of a certain inhomogeneous Poisson process on (y0,∞). Similar statement holds if we
condition on no arrival before y0.

Note that by (8.6) we have

X(ø, I·) = min
j :{I·,I·j}∈E

(
�(I·, I·j) − X(I·, I·j)

)
.

Now, by the above observation, the set of points {�(I·, I·j) − X(I·, I·j), j ≥ 1} conditioned
on X(ø, I·) = x, are the points of a certain inhomogeneous Poisson process on (x,∞) (note
that the claim is true regardless of whether arg minj :{I·,I·j}∈E(�(I·, I·j) − X(I·, I·j)) = 0 or
not). Hence,

P

[
min[2]

j :{I·,I·j}∈E

(
�(I·, I·j) − X(I·, I·j)

) ∈ [y, y + dy] ∣∣X(ø, I·) = x
]
≥ β̃x(y) dy,

where β̃x(y) > 0 for all y > x. Since the above term does not depend on the value of �(ø, I·),
we have

g̃·(a, b, x)

:= P

[
�(ø, I·) − b > min[2]

j :{I·,I·j}∈E

(
�(I·, I·j) − X(I·, I·j)

) ∣∣X(ø, I·) = x, �(ø, I·) = a + x
]

> 0,

for all −∞ < b < a < ∞, and −∞ < x < ∞. Now, the result follows by

g·(a, b) = E
[
g̃·
(
a, b,X(ø, I·)

) | X↓· = a
]
,

since X
↓· = �(ø, I·) − X(ø, I·). �

D.2. Calculating with the bi-infinite tree. On the bi-infinite tree T ↔· , define the event
C·,−1 as

C·,−1 :=
{
−ø = arg min[2]

y:{y,−I·}∈E↔·

(
�↔· (−I·, y) − X·(−I·, y)

)}
,

where

−I· = arg min
−i:{−ø,−i}∈E↔·

(
�↔· (−ø,−i) − X·(−ø,−i)

)
.

The event C·,−1 under μ1· corresponds to the event B−1 on the doubly-rooted planted PWIT,
rooted at (ø, v1), where v1 = Mopt(ø). Define the following σ -algebras:

F−· = σ
(
X·(−→e ), �↔· (e) : e ∈ E↔−· and −→

e is directed
)
,

F+· = σ
(
X·(−→e ), �↔· (e) : e ∈ E↔+· and −→

e is directed
)
,

Fø· = σ
(
�↔· (−ø,+ø),X·(+ø,−ø),X·(−ø,+ø)

)
.
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LEMMA D.4. μ1· (Cc·,−1 | F+· ,Fø· ) = g·(X·(+ø,−ø), �↔· (−ø,+ø)−X·(−ø,+ø)), where
Cc·,−1 is the complement of the event C·,−1.

PROOF. By Remark 4 right after Lemma D.1,

F−· ∩Fø· = Fø· ∩ σ
(
X·(−→e ), �↔· (e) : e ∈ E↔−· and −→

e is directed away from −ø
)
,

F+· ∩Fø· = Fø· ∩ σ
(
X·(−→e ), �↔· (e) : e ∈ E↔+· and −→

e is directed away from +ø
)
.

Now, since C·,−1 is F−· measurable, by conditional independence of Lemma D.1 part (ii) we
have

μ1·
(
Cc·,−1 | F+· ,Fø·

)= μ1·
(
Cc·,−1 | Fø·

)
.

Hence, we need to show that for all (l, x1, x2),

μ1·
{
Cc·,−1 | (�↔· (−ø,+ø),X·(+ø,−ø),X·(−ø,+ø)

)= (l, x1, x2)
}= g·(x1, l − x2).

By Lemma D.1, conditioned on (�↔· (−ø,+ø),X·(+ø,−ø),X·(−ø,+ø)) = (l, x1, x2), the
distribution of the family{

�↔· (e),X·(−→e ); e ∈ E↔−· and −→
e is directed away from −ø

}
,

is the image of ν·(x1) under the natural embedding T· → T −· ⊂ T ↔· . Recall that ν·(x1) is the
distribution of {�(e),X(

−→
e ); e ∈ E· and −→

e is directed away from ø} on T·, given X
↓· = x1.

Hence,

g·(x1, l − x2)

= μ1·
{
�↔· (−ø,−I·) − (l − x2) > min[2]

j :{−I·,−I·j}∈E↔−·

(
�↔· (−I·,−I·j) − X·(−I·,−I·j)

) ∣∣
(
�↔· (−ø,+ø),X·(+ø,−ø),X·(−ø,+ø)

)= (l, x1, x2)
}
.

However, under this conditioning

�↔· (−ø,−I·) − (l − x2) = �↔· (−ø,−I·) − (�↔· (−ø,+ø) − X·(−ø,+ø)
)

= �↔· (−I·,−ø) − X·(−I·,−ø),

where the last equality follows by (8.6) and the fact that under μ1· , M ↔·,opt(−ø,ø) = 1 (see

Remark 4). Finally, note that under μ1· ,

Cc·,−1 =
{
�↔· (−I·,−ø) − X·(−I·,−ø) > min[2]

j :{−I·,−I·j}∈E↔−·

(
�↔· (−I·,−I·j) − X·(−I·,−I·j)

)}
.

�

Now we have all the machinery to finish the proof of Lemma 8.8. By using the relabeling
bijections, P[B−1 | �B∞, {Mopt(ø) = 0}] equals μ1

p(Cp,−1 | Cp) where Cp is a certain event
which is measurable with respect to F+

p ∩Fø
p such that μ1

p(Cp) = P[�B∞ ∩ {Mopt(ø) = 0}].
Similarly, P[B−1 | �B∞, {Mopt(ø) �= 0}] equals μ1

u(Cu,−1 | Cu) for a certain event Cu that is
defined similar to Cp . Now, by Lemma D.3 and Lemma D.4, if μ1· (C·) > 0, then we have

μ1·
(
Cc·,−1 ∩ C·

)= Eμ1·
[
1C·μ

1·
(
Cc·,−1 | F+· ,Fø·

)]
= Eμ1·

[
1C·g·

(
X·(+ø,−ø), �↔· (−ø,+ø) − X·(−ø,+ø)

)]
> 0.
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