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We establish a general Berry–Esseen type bound which gives optimal
bounds in many situations under suitable moment assumptions. By combin-
ing the general bound with Palm theory, we deduce a new error bound for
assessing the accuracy of normal approximation to statistics arising from ran-
dom measures, including stochastic geometry. We illustrate the use of the
bound in four examples: completely random measures, excursion random
measure of a locally dependent random process, and the total edge length of
Ginibre–Voronoi tessellations and of Poisson–Voronoi tessellations. More-
over, we apply the general bound to Stein couplings and discuss the special
cases of local dependence and additive functionals in occupancy problems.

1. Introduction. The pioneering work of Stein (1972), well known as Stein’s method,
provides a set of tools to estimate the error in the approximation of the distributions of ran-
dom variables by a specific distribution, and it has proven to be particularly powerful in the
presence of dependence. Indeed, many forms of Stein’s method have been developed to study
a variety of random phenomena, and the comprehensive monographs by Barbour, Holst and
Janson (1992) and Chen, Goldstein and Shao (2011) give accounts to that diversity.

It has become clear over the past decades that Stein’s method is naturally related to size bi-
asing and its point process counterpart Palm theory; see, for example, the results of Goldstein
and Rinott (1996), Chen and Xia (2004) and Goldstein and Xia (2006). While Goldstein and
Rinott (1996) and Goldstein and Xia (2006) considered size-bias couplings, Chen and Xia
(2004) studied Poisson process approximation for point processes using Palm theory. The
work of Chen and Xia (2004) suggests that for normal approximation for statistics resulting
from a random measure including those in stochastic geometry, it may be fruitful to combine
Stein’s method with Palm theory as well. Thus, in this article, we study normal approximation
for statistics associated with random measures through their Palm distributions.

To this end, we first prove a general result, Theorem 2.1, which can be thought of as an
extension of Theorem 2.1 of Chen and Shao (2004) to settings that are not restricted to local
dependence. We then connect our result with Palm theory in Section 3 to bound the errors
of normal approximation for statistics arising from random measures. In order to illustrate
the approach, we then estimate in Section 4 the errors in the normal approximation for com-
pletely random measures, the excursion random measure of a locally dependent random pro-
cess and the total edge length of Ginibre–Voronoi tessellations as well as Poisson–Voronoi
tessellations. The first three examples do not assume the Poisson process as an underlying
point process. Theorem 2.1 can also be easily combined with Stein couplings, giving rise to
Theorem 5.1 in Section 5, with applications to local dependence and problems from random
occupancy.
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Our main theorems are formulated in such a way so as to give optimal rates of convergence
in many applications. The cost we have to pay are higher moment requirements, but in many
applications these are naturally satisfied.

2. A general theorem. Let W be such that EW = 0 and VarW = 1. Theorem 2.1 of
Chen and Shao (2004) shows that if W is a sum of LD1 (see Section 5.1 for more details)
locally dependent random variables then there exists a random function K̂(t) such that

(2.1) E
{
Wf (W)

}= E

∫ ∞
−∞

f ′(W + t)K̂(t) dt

for all absolutely continuous functions f for which the expectations exist. A bound on the
Kolmogorov distance dK(L (W),N (0,1)) is then obtained without further dependence as-
sumption. A crucial step in the proof is the use of a concentration inequality (Proposition 3.1
of Chen and Shao (2004)) established under the LD1 local dependence. A careful examina-
tion of the proof of the proposition reveals that the concentration inequality actually holds if
W only satisfies (2.1), in which case the bound is expressed in terms of K̂(t) instead of the
locally dependent random variables. Consequently, Theorem 2.1 of Chen and Shao (2004)
holds for any W if Var(W) = 1 and there exists a random function K̂(t) such that (2.1) holds.

It was observed by Chen and Röllin (2010) that the proof of Theorem 2.1 of Chen and Shao
(2004) can be simplified if the concentration inequality is replaced by a recursive inequality,
which was inspired by Raič (2003) and which is (2.14) in this paper. Using this approach,
they obtain a bound for W satisfying a Stein coupling assumption. In this paper we use the
recursive inequality approach to obtain a simpler bound for W assuming that VarW = 1 and
that (2.1) holds for some random function K̂(t). As in the proof of Theorem 2.1 of Chen
and Shao (2004), Young’s inequality ((2.11) in this paper) is used to separate the product of
two random variables. A crucial step in the proof of Chen and Shao (2004) is to use Young’s
inequality together with the concentration inequality, whereas in this paper, it is used together
with the recursive inequality. Also in this paper, the random function K̂(t) is decomposed as
K̂ in(t) + K̂out(t) to allow greater flexibility in applications. We now state and prove the
general theorem.

THEOREM 2.1. Let W be such that EW = 0 and VarW = 1. Suppose there is a random
function K̂(t) such that (2.1) holds for all absolutely continuous functions f for which the
expectations exist, and assume we can write K̂(t) = K̂ in(t) + K̂out(t), where K̂ in(t) = 0 for
|t | > 1. Define K(t) = EK̂(t), K in(t) = EK̂ in(t), and Kout(t) = EK̂out(t). Then

(2.2) dK
(
L (W),N (0,1)

)≤ 2r1 + 11r2 + 5r3 + 10r4 + 7r5,

where

r1 = E

∣∣∣∣
∫
|t |≤1

(
K̂ in(t) − K in(t)

)
dt

∣∣∣∣, r2 =
∫
|t |≤1

∣∣tK in(t)
∣∣dt,

r3 = E

∫ ∞
−∞

∣∣K̂out(t)
∣∣dt, r4 = E

∫
|t |≤1

(
K̂ in(t) − K in(t)

)2
dt,

r5 =
(
E

∫
|t |≤1

|t |(K̂ in(t) − K in(t)
)2

dt

)1/2
.

PROOF. From (2.1), by letting f (w) = w, we obtain
∫∞
−∞ K(t) dt = 1. For x ∈ R and

ε > 0, define

hx,ε(w) :=

⎧⎪⎪⎨
⎪⎪⎩

1 if w ≤ x,

0 if w ≥ x + ε,

1 + ε−1(x − w) if x < w < x + ε.
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Let fx,ε be the bounded solution of the Stein equation

(2.3) f ′
x,ε(w) − wfx,ε(w) = hx,ε(w) −Ehx,ε(Z),

where Z ∼ N (0,1). The bounded solution fx,ε of (2.3) is unique and is given by

fx,ε(w) = −e
1
2 w2

∫ ∞
w

e− 1
2 t2[

hx,ε(t) −Ehx,ε(Z)
]
dt

(see Chen, Goldstein and Shao (2011), page 15). We have for all w,v ∈ R,

(2.4) 0 ≤ fx,ε(w) ≤ 1,
∣∣f ′

x,ε(w)
∣∣≤ 1,

∣∣f ′
x,ε(w) − f ′

x,ε(v)
∣∣≤ 1

and

∣∣f ′
x,ε(w + t) − f ′

x,ε(w)
∣∣≤ (|w| + 1

)|t | + 1

ε

∫ t∨0

t∧0
1[x ≤ w + u ≤ x + ε]du

≤ (|w| + 1
)|t | + 1[x − 0 ∨ t ≤ w ≤ x − 0 ∧ t + ε].

(2.5)

The bounds (2.4) and (2.5) were obtained by Chen and Shao (2004), page 2010. Bounds for
all cases of h and their proofs were given by Chen, Goldstein and Shao (2011), Section 2.2.
Now write

Ehx,ε(W) −Ehx,ε(Z)

= E

∫ ∞
−∞

f ′
x,ε(W)K(t) dt −E

∫ ∞
−∞

f ′
x,ε(W + t)K̂(t) dt

= E

∫
|t |≤1

f ′
x,ε(W)

(
K in(t) − K̂ in(t)

)
dt

+E

∫ ∞
−∞

f ′
x,ε(W)

(
Kout(t) − K̂out(t)

)
dt

+E

∫ ∞
−∞

(
f ′

x,ε(W) − f ′
x,ε(W + t)

)
K̂out(t) dt

+E

∫
|t |≤1

(
f ′

x,ε(W) − f ′
x,ε(W + t)

)(
K̂ in(t) − K in(t)

)
dt

+E

∫
|t |≤1

(
f ′

x,ε(W) − f ′
x,ε(W + t)

)
K in(t) dt

=: R1 + R2 + R3 + R4 + R5.

(2.6)

By (2.4), we obtain bounds

|R1| =
∣∣∣∣E
{
f ′

x,ε(W)

∫
|t |≤1

(
K̂ in(t) − K in(t)

)
dt

}∣∣∣∣
≤ E

∣∣∣∣
∫
|t |≤1

(
K̂ in(t) − K in(t)

)
dt

∣∣∣∣= r1,

(2.7)

|R2| =
∣∣∣∣E
{
f ′

x,ε(W)

∫ ∞
−∞

(
Kout(t) − K̂out(t)

)
dt

}∣∣∣∣
≤ E

∫ ∞
−∞

∣∣Kout(t)
∣∣dt +E

∫ ∞
−∞

∣∣K̂out(t)
∣∣dt ≤ 2E

∫ ∞
−∞

∣∣K̂out(t)
∣∣dt = 2r3

(2.8)

and

|R3| ≤ E

∫ ∞
−∞

∣∣K̂out(t)
∣∣dt = r3.(2.9)
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By (2.5),

|R4| ≤ E

{(|W | + 1
) ∫

|t |≤1
|t |∣∣K̂ in(t) − K in(t)

∣∣dt

}

+E

∫
|t |≤1

1[x − 0 ∨ t ≤ W ≤ x − 0 ∧ t + ε]∣∣K̂ in(t) − K in(t)
∣∣dt

=: R4,1 + R4,2.

(2.10)

Recall Young’s inequality: For a, b, c > 0, we have

(2.11) ab ≤ ca2

2
+ b2

2c
.

Using this inequality with c = α > 0, a = (|W | + 1)
√|t | and b = √|t ||K̂ in(t) − K in(t)|, we

have

R4,1 ≤ α

2
E

∫
|t |≤1

(|W | + 1
)2|t |dt + 1

2α
E

∫
|t |≤1

|t |(K̂ in(t) − K in(t)
)2

dt

≤ 2α + 1

2α
E

∫
|t |≤1

|t |(K̂ in(t) − K in(t)
)2

dt = 2α + r2
5

2α
.

By letting α = r5,

(2.12) R4,1 ≤ 2.5r5.

Using the inequality (2.11) again, but with c = (2d + 0.4|t | + 0.4ε)/(θβ) for θ,β > 0, b =
1[x − 0 ∨ t ≤ W ≤ x − 0 ∧ t + ε] and a = |K̂ in(t) − K in(t)|, we obtain

R4,2 ≤ θβ

2
E

∫
|t |≤1

(
2d + 0.4|t | + 0.4ε

)−11[x − 0 ∨ t ≤ W ≤ x − 0 ∧ t + ε]dt

+ 1

2θβ
E

∫
|t |≤1

(
2d + 0.4|t | + 0.4ε

)(
K̂ in(t) − K in(t)

)2
dt.

(2.13)

Let

d = dK
(
L (W),N (0,1)

)
, dε = sup

x∈R
∣∣Ehx,ε(W) − hx,ε(Z)

∣∣;
then it is not difficult to see that, for a ≤ b,

(2.14) P[a ≤ W ≤ b] ≤ 2d + 1√
2π

(b − a) ≤ 2d + 0.4(b − a), d ≤ dε + 0.4ε.

By (2.14),

P[x − 0 ∨ t ≤ W ≤ x − 0 ∧ t + ε] ≤ 2d + 0.4|t | + 0.4ε.

Using this, (2.13) yields

R4,2 ≤ θβ

2

∫
|t |≤1

dt + 2d + 0.4ε

2θβ
E

∫
|t |≤1

(
K̂ in(t) − K in(t)

)2
dt

+ 0.4

2θβ
E

∫
|t |≤1

|t |(K̂ in(t) − K in(t)
)2

dt = θβ + d + 0.2ε

θβ
r4 + 0.2

θβ
r2

5 .

By letting β = d + 0.2ε + r5, we obtain

R4,2 ≤ θ(d + 0.2ε + r5) + 1

θ
r4 + 0.2

θ
r5 = θd + 0.2θε + 1

θ
r4 +

(
θ + 0.2

θ

)
r5.(2.15)
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By (2.5) again, we have

|R5| ≤ E

∫
|t |≤1

(|W | + 1
)∣∣tK in(t)

∣∣dt

+ 1

ε
E

∫
|t |≤1

∫ 0∨t

0∧t
1[x ≤ W + u ≤ x + ε]∣∣K in(t)

∣∣dudt

≤ 2
∫
|t |≤1

∣∣tK in(t)
∣∣dt + 1

ε

∫
|t |≤1

∫ 0∨t

0∧t
P[x ≤ W + u ≤ x + ε]∣∣K in(t)

∣∣dudt

≤ 2
∫
|t |≤1

∣∣tK in(t)
∣∣dt + 1

ε

∫
|t |≤1

(2d + 0.4ε)
∣∣tK in(t)

∣∣dt = 2r2 + 2d + 0.4ε

ε
r2.

(2.16)

Letting ε = 1
2d and combining (2.6), (2.7), (2.8), (2.9), (2.10), (2.12), (2.15) and (2.16), we

obtain

dε ≤ 1.1θd + r1 + 6.4r2 + 3r3 + 1

θ
r4 +

(
2.5 + θ + 0.2

θ

)
r5.

This, together with (2.14), yields

d ≤ 1.1θd + 0.2d + r1 + 6.4r2 + 3r3 + 1

θ
r4 +

(
2.5 + θ + 0.2

θ

)
r5,

which implies

d ≤ (0.8 − 1.1θ)−1
{
r1 + 6.4r2 + 3r3 + 1

θ
r4 +

(
2.5 + θ + 0.2

θ

)
r5

}
.

Letting θ = 0.18, we obtain

d ≤ 2r1 + 11r2 + 5r3 + 10r4 + 7r5,

and this proves Theorem 2.1. �

REMARK 2.2. We have introduced K̂ in and K̂out mainly to allow for truncation. Since
we have kept the theorem general, different types of truncation are possible, and we will show
this in various applications in this article.

EXAMPLE 2.3. We will check the optimality of the bounds in Theorem 2.1 by taking
W as a sum of independent random variables. Let ξ1, . . . , ξn be independent with Eξi = 0
and Var(ξi) = σ 2

i , i = 1, . . . , n. Define B2 = ∑n
i=1 σ 2

i , Xi = ξi/B , i = 1, . . . , n, and W =∑n
i=1 Xi . Then EW = 0 and Var(W) = 1 and W satisfy the Stein identity (2.1) with

K̂(t) =
n∑

i=1

Xi

(
1[−Xi < t ≤ 0] − 1[−Xi > t > 0]).

Define

K̂ in(t) =
n∑

i=1

Xi1
[|Xi | ≤ 1

](
1[−Xi < t ≤ 0] − 1[−Xi > t > 0]),

K̂out(t) =
n∑

i=1

Xi1
[|Xi | > 1

](
1[−Xi < t ≤ 0] − 1[−Xi > t > 0]).
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Clearly K̂(t) = K̂ in(t) + K̂out(t) and K̂ in(t) = 0 for |t | > 1. Straightforward calculations
yield

r1 ≤
(

n∑
i=1

Var
(
X2

i 1
[|Xi | ≤ 1

]))1/2

≤
√∑n

i=1 E{ξ4
i 1[|ξi | ≤ B]}
B2 ;

r2 ≤ 1

2

n∑
i=1

E
{|Xi |31

[|Xi | ≤ 1
]}=

∑n
i=1 E{|ξi |31[|ξi | ≤ B]}

2B3 ;

r3 ≤
n∑

i=1

E
{
X2

i 1
[|Xi | > 1

]}=
∑n

i=1 E{ξ2
i 1[|ξi | > B]}
B2 ;

r4 ≤
n∑

i=1

E
{|Xi |31

[|Xi | ≤ 1
]}=

∑n
i=1 E{|ξi |31[|ξi | ≤ B]}

B3 ;

r5 ≤ 1√
2

(
n∑

i=1

E
{
X4

i 1
[|Xi | ≤ 1

]})1/2

=
√∑n

i=1 E{ξ4
i 1[|ξi | ≤ B]}√
2B2

.

Assuming that E|ξi |3 < ∞ for i = 1, . . . , n, we obtain

(2.17) dK
(
L(W),N (0,1)

)≤ 7
√∑n

i=1 E{ξ4
i 1[|ξi | ≤ B]}

B2 + 15.5
∑n

i=1 E|ξi |3
B3 .

If both
∑n

i=1 E{ξ4
i 1[|ξi | ≤ B]} and

∑n
i=1 E|ξi |3 are O(B2), such as in the i.i.d. case, then

the bound in (2.17) is O(B−1), which agrees with the order of the Berry–Esseen bound
C
∑n

i=1 E|ξi |3/B3. We expect that in most applications, the bound on the Kolmogorov dis-
tance in (2.2) should give the optimal or near optimal order. In particular, for integer-valued
random variables, the bounds can never be better than the scaling factor (see the general ar-
gument of Englund (1981)), so that, for instance, the bounds in Corollary 5.5 on occupancy
problems are optimal whenever the additive functional is integer-valued.

3. Random measures. Let 	 be a locally compact separable metric space. Let 
 be
a random measure on 	 with finite intensity measure �, and let 
α be the Palm measure
associated with 
 at α ∈ 	 (see Kallenberg (1983), pages 83, 103). We have

(3.1) E

{∫
	

f (α,
)
(dα)

}
= E

{∫
	

f (α,
α)�(dα)

}

for real-valued functions f (·, ·) for which the expectations exist (see Kallenberg (1983),
page 84). If 
 is a simple point process, the distribution of 
α can be interpreted as the
conditional distribution of 
 given that a point of 
 at α has occurred. On the other hand, if
�({α}) > 0, then 
({α}) is a nonnegative random variable with positive mean and 
α({α})
is a 
({α})-size-biased random variable. Therefore, in general, we may interpret the Palm
measure as a “size-biased random measure”. For the special case where f is absolutely con-
tinuous from R to R, we obtain

(3.2) E
{|
|f (|
|)}= E

∫
	

f
(|
α|)�(dα),

provided the expectations and integral exist, where |
| = 
(	). Let λ = �(	) = E|
|, B2 =
Var(|
|) and define

(3.3) W = |
| − λ

B
, Wα = |
α| − λ

B
.
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Assume that 
 and 
α , α ∈ 	, are defined on the same probability space, and define


α = Wα − W, Yα = |
α| − |
|.
From (3.2), we have

E
{
Wf (W)

}= 1

B
E

∫
	

(
f (Wα) − f (W)

)
�(dα) = 1

B
E

∫
	

∫ 
α

0
f ′(W + t) dt�(dα)

= 1

B
E

∫
	

∫ ∞
−∞

f ′(W + t)
(
1[
α > t > 0] − 1[
α < t ≤ 0])dt�(dα)

= E

∫ ∞
−∞

f ′(W + t)K̂(t) dt,

(3.4)

where

(3.5) K̂(t) = 1

B

∫
	

(
1[
α > t > 0] − 1[
α < t ≤ 0])�(dα).

We now apply Theorem 2.1 to (3.4) to obtain the following theorem.

THEOREM 3.1. Let W and Wα , α ∈ 	, be as defined in (3.3), and assume that 
 and

α are defined on the same probability space. Define K̂(t) as in (3.5), and let

K̂ in(t) = 1

B

∫
	

(
1[
α > t > 0] − 1[
α < t ≤ 0])1[|
α| ≤ 1

]
�(dα),

K̂out(t) = 1

B

∫
	

(
1[
α > t > 0] − 1[
α < t ≤ 0])1[|
α| > 1

]
�(dα).

Moreover, let

K(t) = EK̂(t), K in(t) = EK̂ in(t), Kout(t) = EK̂out(t).

Then

dK
(
L (W),N (0,1)

)≤ 2r ′
1 + 5.5r ′

2 + 5r ′
3 + 10r ′

4 + 7r ′
5,

where r ′
1, r ′

2, r ′
3, r ′

4 and r ′
5 are given by (3.6), (3.7), (3.8), (3.9) and (3.10) respectively.

PROOF. The proof of this theorem is reduced to calculating the error terms in Theo-
rem 2.1, which yields

r ′
1 := r1 = 1

B
E

∣∣∣∣
∫
	

(

α1

[|
α| ≤ 1
]−E

{

α1

[|
α| ≤ 1
]})

�(dα)

∣∣∣∣
(3.6)

= 1

B2E

∣∣∣∣
∫
	

(
Yα1

[|Yα| ≤ B
]−E

{
Yα1

[|Yα| ≤ B
]})

�(dα)

∣∣∣∣;
2r2 = 1

B

∫
	
E
{

2

α1
[|
α| ≤ 1

]}
�(dα)

(3.7)

= 1

B3

∫
	
E
{
Y 2

α 1
[|Yα| ≤ B

]}
�(dα)=: r ′

2;

r3 = 1

B

∫
	
E
{|
α|1[|
α| > 1

]}
�(dα)

(3.8)

= 1

B2

∫
	
E
{|Yα|1[|Yα| > B

]}
�(dα) =: r ′

3;
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r ′
4 := r4 = 1

B2

∫
|t |≤1

∫
	

∫
	

Cov
(
1[1 ≥ 
α > t > 0] − 1[−1 ≤ 
α < t ≤ 0],

1[1 ≥ 
β > t > 0] − 1[−1 ≤ 
β < t ≤ 0])�(dα)�(dβ)dt

= 1

B2

∫ 1

0

∫
	

∫
	

Cov
(
1[1 ≥ 
α > t > 0],1[1 ≥ 
β > t > 0])

(3.9)
× �(dα)�(dβ)dt

+ 1

B2

∫ 0

−1

∫
	

∫
	

Cov
(
1[−1 ≤ 
α < t < 0],1[−1 ≤ 
β < t < 0])

× �(dα)�(dβ)dt;
r ′

5 := r5

= 1

B

(∫ 1

0

∫
	

∫
	

t Cov
(
1[1 ≥ 
α > t > 0],1[1 ≥ 
β > t > 0])

× �(dα)�(dβ)dt(3.10)

−
∫ 0

−1

∫
	

∫
	

t Cov
(
1[−1 ≤ 
α < t < 0],1[−1 ≤ 
β < t < 0])

× �(dα)�(dβ)dt

)1/2
.

This completes the proof of Theorem 3.1. �

Using the fact that independence implies uncorrelatedness, we have the following corol-
lary.

COROLLARY 3.2. Let 
 be a random measure on 	 with finite mean measure � such
that E|
|4 < ∞, and set B2 = Var(|
|). Assume that 
 and 
α , α ∈ 	, are defined on the
same probability space. Define

W = |
| −E|
|
B

, Wα = |
α| −E|
|
B

, 
α = Wα − W.

Assume that there is a set D ∈ B(	 × 	) such that D is symmetric, that is, {(x, y) : (y, x) ∈
D} = D, and for all (α,β) �= D, 
α and 
β are independent. Then

dK
(
L(W),N (0,1)

)≤ 7s1 + 5.5s2 + 10s3,

where

s1 = 1

B2

(∫
(α,β)∈D

E
{
Y 2

α 1
[|Yα| ≤ B

]}
�(dα)�(dβ)

) 1
2 ;

s2 = 1

B3

∫
	
EY 2

α�(dα);

s3 = 1

B3

∫
(α,β)∈D

E
{|Yα|1[|Yα| ≤ B

]}
�(dα)�(dβ).
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PROOF. By Theorem 3.1, we have

r ′
1 ≤ 1

B

(
E

{[∫
	

[

α1

[|
α| ≤ 1
]−E

{

α1

[|
α| ≤ 1
]}]

�(dα)

]2})1/2

= 1

B

(∫
(α,β)∈D

Cov
(

α1

[|
α| ≤ 1
]
,
β1

[|
β | ≤ 1
])

�(dα)�(dβ)

) 1
2

≤ 1

B
(

∫
(α,β)∈D

1

2

(
Var

(

α1

[|
α| ≤ 1
])+ Var

(

β1

[|
β | ≤ 1
])

�(dα)�(dβ)
) 1

2

= 1

B

(∫
(α,β)∈D

Var
(

α1

[|
α| ≤ 1
])

�(dα)�(dβ)

) 1
2

≤ 1

B2

(∫
(α,β)∈D

E
{
Y 2

α 1
[|Yα| ≤ B

]}
�(dα)�(dβ)

) 1
2 =: s1,

(3.11)

where the second equality is due to the symmetry of the set D. Next,

r ′
2 + r ′

3 ≤ 1

B3

∫
	
EY 2

α�(dα) =: s2,

r ′
4 = 1

B2

∫ 1

0

∫
(α,β)∈D

Cov
(
1[1 ≥ 
α > t > 0],1[1 ≥ 
β > t > 0])

× �(dα)�(dβ)dt

+ 1

B2

∫ 0

−1

∫
(α,β)∈D

Cov
(
1[−1 ≤ 
α < t < 0],1[−1 ≤ 
β < t < 0])

× �(dα)�(dβ)dt

≤ 1

B2

∫
(α,β)∈D

E
{
min

(|
α|1[|
α| ≤ 1
]
, |
β |1[|
β | ≤ 1

])}
�(dα)�(dβ)

≤ 1

B3

∫
(α,β)∈D

E
{|Yα|1[|Yα| ≤ B

]}
�(dα)�(dβ) =: s3;

and finally,

r ′
5 = 1

B

(∫ 1

0

∫
(α,β)∈D

t Cov
(
1[1 ≥ 
α > t > 0],1[1 ≥ 
β > t > 0])

× �(dα)�(dβ)dt

−
∫ 0

−1

∫
(α,β)∈D

t Cov
(
1[−1 ≤ 
α < t < 0],1[−1 ≤ 
β < t < 0])

× �(dα)�(dβ)dt

)1/2

≤ 1

B

(∫ 1

0

∫
(α,β)∈D

tE
{
1[1 ≥ 
α > t > 0]1[1 ≥ 
β > t > 0]}

(3.12)
× �(dα)�(dβ)dt

−
∫ 0

−1

∫
(α,β)∈D

tE
{
1[−1 ≤ 
α < t < 0]1[−1 ≤ 
β < t < 0]}

× �(dα)�(dβ)dt

)1/2



2890 L. H. Y. CHEN, A. RÖLLIN AND A. XIA

= 1√
2B

(∫
(α,β)∈D

E
{
min

(

2

α1
[|
α| ≤ 1

]
,
2

β1
[|
β | ≤ 1

])}
�(dα)�(β)

) 1
2

≤ 1√
2B2

(∫
(α,β)∈D

E
{
Y 2

α 1
[|Yα| ≤ B

]}
�(dα)�(β)

) 1
2 = 1√

2
s1.

The proof of the corollary is completed by combining (3.11) to (3.12). �

4. Applications.

4.1. Completely random measures. A random measure 
 on the carrier space (	,B(	))

is said to be completely random (see Kingman (1967)) if for any k ≥ 1 and any pairwise
disjoint sets A1, . . . ,Ak ∈ B(	), 
(Ai), 1 ≤ i ≤ k, are independent. Well-known examples
include the compound Poisson process with cluster distributions on R+ := [0,∞) (see Daley
and Vere-Jones (2003), page 198), the Gamma process (see Daley and Vere-Jones (2008),
page 11) and the Pólya sum process (see Zessin (2009) and Rafler (2011)). The former two
processes cannot in general be represented as an integral of a random field with respect to a
point process with finite mean measure, hence they are not covered by the general theory of
Barbour and Xia (2006).

THEOREM 4.1. Let 
 be a completely random measure with mean measure � and finite
fourth moment E|
|4 < ∞. Let μ := μ
 := �(	), B2 := Var(|
|) and W = (|
|−E|
|)/B ,
then

dK
(
L (W),N (0,1)

)
≤ 10

B2

(∑
α∈	

E
{


({α})3}�({α}))1/2

+ 5.5

B3 E
∑
α∈	



({α})3

+ 25.5

B3

∑
α∈	

E
{


({α})2}�({α})

(4.1)

≤ 10

B2

(∑
α∈	

E
{


({α})3}�({α}))1/2

+ 31

B3E
∑
α∈	



({α})3.(4.2)

REMARK 4.2. (1) If � is diffuse at α (i.e., �({α}) = 0), then 
({α}) = 0 a.s. Hence, if
� is a diffuse measure, then the bound (4.1) is reduced to

dK
(
L(W),N (0,1)

)≤ 5.5

B3 E
∑
α∈	



({α})3 = 5.5

B3

∫
	
E
{

α

({α})2}�(dα).

(2) For a simple Poisson point process with �(	) = λ, the bound in (4.2) becomes 31λ−1/2,
which compares favourably with those in the literature; see, for example, Lachièze-Rey,
Schulte and Yukich (2019).

PROOF OF THEOREM 4.1. Using similar notation as in Corollary 3.2, we have Yα =

α({α}) − 
({α}) and Yα is independent of Yβ unless α = β . Hölder’s inequality ensures
that

(4.3) E
{


({α})2}�({α})≤ E

{


({α})3}.
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Hence, direct computation gives

s1 ≤ 1

B2

(∑
	

E
{
Y 2

α

}
�
({α})2)1/2

≤ 1

B2

(∑
	

(
E
{


({α})2}+E

{

α

({α})2})�({α})2)1/2

= 1

B2

(∑
	

(
E
{


({α})2}�({α})2 +E

{


({α})3}�({α})))1/2

≤
√

2

B2

(∑
	

E
{


({α})3}�({α}))1/2

,

where the equality is due to (3.1) and the last inequality follows from (4.3). The same rea-
soning gives

s2 ≤ 1

B3

∫
	

(
E
{


({α})2}+E

{

α

({α})2})�(dα)

= 1

B3

(∑
α∈	

E
{


({α})2}�({α})+E

∫
	



({α})2
(dα)

)

= 1

B3

(∑
α∈	

E
{


({α})2}�({α})+E

∑
α∈	



({α})3),

where the first equality follows from the fact that �({α}) = 0 implies 
({α}) = 0 a.s. and
(3.1). Finally,

s3 ≤ 1

B3

∑
	

(
E
{


({α})}+E

{

α

({α})})�({α})2

= 1

B3

∑
	

(
E
{


({α})}�({α})2 +E

{


({α})2}�({α}))

≤ 2

B3

∑
	

E
{


({α})2}�({α}).

Combining these estimates and Corollary 3.2 gives (4.1). (4.2) is an immediate consequence
of (4.1) and (4.3). �

COROLLARY 4.3. Let 
(i) for 1 ≤ i ≤ n be independent random measures on the carrier
space (S,S). Define 
 =∑n

i=1 
(i), B2 = Var(|
|) and W = (|
| −E|
|)/B . Then

dK
(
L (W),N (0,1)

)≤ 10

B2

(
n∑

i=1

E
∣∣
(i)

∣∣E∣∣
(i)
∣∣3)1/2

+ 31

B3

n∑
i=1

E
∣∣
(i)

∣∣3.

PROOF. Define 
′ = ∑n
i=1 |
(i)|δi , where δi is the Dirac measure at i, then 
′ is

a completely random measure on the carrier space 	 := {1, . . . , n} with mean measure
�′({i}) = E|
(i)|, i ∈ S′. We have B2 = Var(|
′|), W = (|
′| − E|
′|)/B , hence the claim
follows from (4.2). �
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4.2. Excursion random measure. Let (S,B(S)) be a metric space and {Xt,0 ≤ t ≤ T }
be an S-valued random process. Define Fa,b = σ {Xt : a ≤ t ≤ b}, for 0 ≤ a ≤ b ≤ T . We
say that {Xt,0 ≤ t ≤ T } is l-dependent with l > 0 if F0,b is independent of Fb+l,T for all
0 ≤ b < b + l ≤ T . We define the excursion random measure


(dt) = 1E(t,Xt) dt, E ∈ B
([0, T ] × S

)
.

Define μ = E
([0, T ]), B = √
Var(|
|) and W = (|
| − μ)/B .

The excursion random measure of a stationary process was defined by Hsing and Lead-
better (1998). It was shown by Hsing and Leadbetter (1998) that the asymptotic distribution
of the excursion random measure at high levels of exceedances gives a range of useful infor-
mation about the extremal behavior of the stationary process. Under very general conditions,
Hsing and Leadbetter (1998) demonstrated that various asymptotic properties of the excur-
sion random measures can be established. Our Theorem 3.1 can be used to prove the follow-
ing normal approximation error bound for the total excursion time of l-dependent random
processes.

THEOREM 4.4. For the l-dependent process {Xt,0 ≤ t ≤ T }, we have

(4.4) dK
(
L (W),N (0,1)

)≤ (14
√

2 + 8)l3/2μ1/2

B2 + 102l2μ

B3 .

PROOF. Write �(dt) = E
(dt) and Nα = [0, T ] ∩ [α − l, α + l] for α ∈ [0, T ]. Since
{Xt,0 ≤ t ≤ T } is l-dependent, we can take 
α such that Yα = 
α(Nα) − 
(Nα) for all
α ∈ [0, T ], and Yα is independent of Yβ for all |α − β| > 2l. Moreover, we have |Yα| ≤ 2l.
Hence,

r ′
1 ≤ 1

B2

(∫∫
|β−α|≤2l

Cov
(
Yα1

[|Yα| ≤ B
]
, Yβ1

[|Yβ | ≤ B
])

�(dα)�(dβ)

)1/2

≤ 1

B2

(∫∫
|β−α|≤2l

1

2

[
Var

(
Yα1

[|Yα| ≤ B
])+ Var

(
Yβ1

[|Yβ | ≤ B
])]

�(dα)�(dβ)

)1/2

(4.5)

= 1

B2

(∫∫
|β−α|≤2l

Var
(
Yα1

[|Yα| ≤ B
])

�(dα)�(dβ)

)1/2

≤ 1

B2

(∫∫
|β−α|≤2l

E
(
Y 2

α

)
�(dα)�(dβ)

)1/2
≤ 4

B2

√
l3μ.

Similarly,

r ′
2 + r ′

3 = 1

B3

∫ T

0
E
(
Y 2

α

)
�(dα) ≤ 4l2μ/B3,

r ′
4 = 1

B2

∫ 1

0

∫∫
|β−α|≤2l

Cov
(
1[1 ≥ 
α > t > 0],1[1 ≥ 
β > t > 0])

× �(dα)�(dβ)dt

+ 1

B2

∫ 0

−1

∫∫
|β−α|≤2l

Cov
(
1[−1 ≤ 
α < t < 0],1[−1 ≤ 
β < t < 0])

× �(dα)�(dβ)dt

≤ 1

B2

∫ 1

0

∫∫
|β−α|≤2l

E1[1 ≥ 
α > t > 0]�(dα)�(dβ)dt
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+ 1

B2

∫ 0

−1

∫∫
|β−α|≤2l

E1[−1 ≤ 
α < t < 0]�(dα)�(dβ)dt

= 1

B3

∫∫
|β−α|≤2l

E|Yα|�(dα)�(dβ) ≤ 8l2

B3 μ

and

r ′
5 = 1

B

(∫ 1

0

∫∫
|β−α|≤2l

t Cov
(
1[1 ≥ 
α > t > 0],1[1 ≥ 
β > t > 0])

× �(dα)�(dβ)dt

−
∫ 0

−1

∫∫
|β−α|≤2l

t Cov
(
1[−1 ≤ 
α < t < 0],1[−1 ≤ 
β < t < 0])

× �(dα)�(dβ)dt

)1/2

≤ 1

B

{∫ 1

0

∫∫
|β−α|≤2l

tE1[1 ≥ 
α > t > 0]�(dα)�(dβ)dt

−
∫ 0

−1

∫∫
|β−α|≤2l

tE1[−1 ≤ 
α < t < 0]�(dα)�(dβ)dt

}1/2

≤ 1

B

{
1

2

∫∫
|β−α|≤2l

E
{

2

α

}
�(dα)�(dβ)dt

}1/2
≤ 2

√
2l3/2μ1/2

B2 .

(4.6)

Finally, we have from Theorem 3.1 that

dK
(
L (W),N (0,1)

)≤ 2r ′
1 + 5.5

(
r ′

2 + r ′
3
)+ 10r ′

4 + 7r ′
5,

so collecting (4.5) to (4.6), we obtain (4.4). �

COROLLARY 4.5. Let Ii , 1 ≤ i ≤ n, be independent indicator random variables such
that P[Ii = 1] = pi . Let Sn = ∑n−k+1

i=1
∏i+k−1

j=i Ij , the number of k-runs in the sequence.

Define μn = ESn =∑n−k+1
i=1

∏i+k−1
j=i pj , Bn = √

Var(Sn), W = (Sn − μn)/Bn, then

dK
(
L (W),N (0,1)

)≤ (14
√

2 + 8)k3/2μ
1/2
n

B2
n

+ 102k2μn

B3
n

.

In particular, if pi = p ∈ (0,1) for all i, then

dK
(
L (W),N (0,1)

)= O
(
n−1/2).

PROOF. We define Xt := X
t� = ∏
t�+k−1
j=
t� Ij , 0 ≤ t < n − k + 2. Let E = [1, n − k +

2) × {1}, 
(dt) = 1E(t,Xt) dt , then the claim follows from (4.4) with l = k. �

4.3. The total edge length of Ginibre–Voronoi tessellations. The Ginibre point process
(see Ginibre (1965), Soshnikov (2000), Mehta (1991) and Goldman (2010)) has attracted
considerable attention recently because of its wide use in modeling mobile networks (see
Torrisi and Leonardi (2014), Miyoshi and Shirai (2014a), Miyoshi and Shirai (2014b) and
Keeler, Ross and Xia (2018)). The Ginibre point process is a special class of the Gibbs point
process family and it exhibits a repulsion between the points. The repulsive character makes
the cells more regular than those coming from a Poisson point process, hence in applications
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the Ginibre–Voronoi tessellation often fits better than the Poisson–Voronoi tessellation (see
Rider (2004), Le Caër and Ho (1990) and Goldman (2010)).

The Ginibre point process is defined through the factorial moment measures. For a locally
finite process Y on a Polish space S, the nth order factorial moment measure ν(n) of Y is
defined by the relation (see Kallenberg (1983), pages 109–110)

E

[∫
Sn

f (y1, . . . , yn)Y (dy1)(Y − δy1)(dy2) . . .

(
Y −

n−1∑
i=1

δyi

)
(dyn)

]

=
∫
Sn

f (y1, . . . , yn)ν
(n)(dy1, . . . , dyn),

where f ranges over all Borel measurable functions h : Sn → [0,∞). The Ginibre point
process on the complex plane C is defined as follows.

DEFINITION 4.6. We say the point process X on the complex plane C (∼= R
2) is the

Ginibre point process if its factorial moment measures are given by

ν(n)(dx1, . . . , dxn) = ρ(n)(x1, . . . , xn) dx1 . . . dxn, n ≥ 1,

where ρ(n)(x1, . . . , xn) is the determinant of the n × n matrix with (i, j)th entry

K(xi, xj ) = 1

π
e− 1

2 (|xi |2+|xj |2)exi x̄j .

Here and in the sequel, x̄ and |x| are the complex conjugate and modulus of x.

The Ginibre point process has the mean measure μ(dx) = 1
π

dx. Goldman (2010) stated
that the Palm process Xx of the Ginibre point process X at the location x satisfies

(4.7) X
d= (

Xx \ {x})∪ {x + Z},
where d= stands for “equals in distribution”, Z = (Z1,Z2

√−1) with (Z1,Z2) having bivari-
ate normal on R

2 with mean (0,0) and covariance matrix
[ 1/2 0

0 1/2

]
. That is, the Palm process

Xx can be obtained by removing a point from the process which is Gaussian distributed from
x and then adding x to X. It is still an open problem to know how Z is correlated with
Xx \ {x} (see Goldman (2010), Problem 2, page 27).

As Schreiber and Yukich (2013) (see also Xia and Yukich (2015)), we consider the window
Qλ := {(s1, s2

√−1) : −0.5
√

λ ≤ s1, s2 ≤ 0.5
√

λ} ⊂ C. For a realization x of X and x ∈ x,
let C(x,x) be the set of every point in C whose (Euclidean) distance to x is less than or equal
to its distance to any other point of x. The set C(x,x) is called the Voronoi cell centered at x

and the collection of C(x,x), x ∈ x, is called the Voronoi tessellation induced by x.
Note that when the Voronoi cell centers are close to the boundary of Qλ, our defini-

tion of Voronoi cells is slightly different from that of Penrose and Yukich (2001) (see also
Baryshnikov and Yukich (2005), Schreiber and Yukich (2013) and Xia and Yukich (2015)).
This is because the Voronoi cells defined by Penrose and Yukich (2001) do not satisfy the
translation invariant property which is a crucial condition for obtaining the central limit the-
orems of the Voronoi tessellation statistics.1

If we define the random measure


(dx) = L(x,X)X(dx),

1This minor issue was noted by Penrose (2007), and we thank J. Yukich for bringing this to our attention.
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where L(x,X) := Lλ(x,X) is one half the total edge length of the finite length edges (hence
we exclude all infinite edges) in the cell C(x,X), then the total edge length of the Ginibre–
Voronoi tessellation induced by X with centers in X ∩ Qλ can be written as

L(λ) := |
| =
∫
Qλ

L(x,X)X(dx).

THEOREM 4.7. Let B2 = Var(L(λ)) and W = (L(λ) −EL(λ))/B . We have

(4.8) lim
λ→∞λ−1

EL(λ) ∈ (0,∞), lim
λ→∞λ−1B2 ∈ (0,∞)

and

(4.9) dK
(
L (W),N (0,1)

)= O
(
λ−1/2 lnλ

)
.

REMARK 4.8. The Ginibre–Voronoi tessellation is a special case of the Gibbs–Voronoi
tessellations studied by Xia and Yukich (2015). Theorem 2.3 of Xia and Yukich (2015) gives

dK
(
L (W),N (0,1)

)= O
(
λ−1/2(lnλ)4),

which is slightly worse than (4.9).

REMARK 4.9. The error estimate for the total edge length of the Ginibre–Voronoi tessel-
lation is also valid for the more general class of α-Ginibre point processes with 0 < α < 1. As
a matter of fact, an α-Ginibre point process can be constructed by “deleting, independently
and with probability 1 − α, each point of the Ginibre point process and then applying the ho-
mothety of ratio

√
α to the remaining points in order to restore the intensity of the process”

(Goldman (2010)). Hence, for α-Ginibre Voronoi tessellations, except notational complexity,
our proof goes through without any difficulty.

REMARK 4.10. We do not know if the bound of (4.9) is of the correct order.

To prove Theorem 4.7, we need the following lemmas. We note that the estimate of the
void probability (4.10), albeit very simple, is not new and better estimates were given by
Błaszczyszyn, Yogeshwaran and Yukich (2019), Lemma 1.7 in the Supplement.

LEMMA 4.11. For A ⊂C with the area |A|, we have

(4.10) P
[
X(A) = 0

]≤ e−|A|/π

and

(4.11) E
[
X(A)l

]≤ 2
1
2 l(l−1)[1 ∨ (|A|/π)]l

for all l ∈ N := {1,2, . . . }.

PROOF. For θ ∈ (0,1), let g(θ) = E{(1 − θ)X(A)}, then

(4.12) g′(θ) = −E
{
(1 − θ)X(A)−1X(A)

}= −
∫
A
E
{
(1 − θ)Xx(A)−1}μ(dx).

Using (4.7), we can construct X and Xx together such that Xx(A) ≤ X(A) + 1 a.s. Hence, it
follows from (4.12) that

g′(θ) ≤ −
∫
A
E
{
(1 − θ)X(A)}μ(dx) = −g(θ)μ(A).
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FIG. 1. Isosceles triangles.

However, g(0) = 1, we obtain g(θ) ≤ e−θμ(A), which implies

P
[
X(A) = 0

]= g(1) ≤ e−μ(A) = e−|A|/π ,

as claimed in (4.10). In terms of (4.11), we can use the construction Xx(A) ≤ X(A) + 1 a.s.
again and the inequality (a + b)l−1 ≤ 2l−2(al−1 + bl−1) for all a, b ≥ 0 to obtain

E
[
X(A)l

]= E

∫
A

X(A)l−1X(dx) =
∫
A
E
[
Xx(A)l−1]μ(dx)

≤
∫
A
E
[(

X(A) + 1
)l−1]

μ(dx) = μ(A)E
[(

X(A) + 1
)l−1]

≤ 2l−2μ(A)
{
E
[
X(A)l−1]+ 1

}≤ 2l−1μ(A)
[
1 ∨E

(
X(A)l−1)].

Hence, (4.11) follows by induction. �

LEMMA 4.12. Suppose that rays emanating from the center 0 of C divide C into disjoint
congruent isosceles triangles Ai with angles θi , i = 1, . . . , k (see Figure 1), where k may be
finite or infinity. If x ⊂ C satisfies x ∩ Ai �= ∅ and θi ≤ π/3 for all i = 1, . . . , k, then the
Voronoi cell C(0,x) is contained in the disk B(0, d(x)), where B(x, r) := {u ∈ C : |u − x| ≤
r} and d(x) := sup{|u| : u ∈ x}.

PROOF. For each y ∈ C(0,x), there exists a triangle Ai such that y ∈ Ai . Since x ∩
Ai �= ∅, there exists a point v ∈ x ∩ Ai (see Figure 2) and it follows from y ∈ C(0,x) that
|y| ≤ |y −v|. This in turn implies |v| ≥ 2|y| cos(θ) ≥ |y|, that is, y ∈ B(0, d(x)) := {u : |u| ≤
d(x)}. This completes the proof. �

PROOF OF THEOREM 4.7. From the definition of the Ginibre point process, it is a Gibbs
point process with a pair potential function (Osada and Shirai (2016)), hence (4.8) are direct
corollaries of Theorem 2.1 of Schreiber and Yukich (2013) and Theorem 1.1 of Xia and
Yukich (2015). Hence, it remains to show (4.9).

FIG. 2. θ ≤ π/3.
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FIG. 3. Twelve disjoint congruent equal sectors.

We divide the disk Bo(x, t) := {u : 0 < |u − x| < t} into twelve disjoint congruent equal
sectors Ax,i(t), i = 1, . . . ,12, (see Figure 3) and define

Tx := inf
{
t : Ax,i(t) ∩ X �=∅, i = 1, . . . ,12

}
,

(see McGivney and Yukich (1999) and Penrose and Yukich (2001)). The area of Ax,i(t) is
|Ax,i(t)| = πt2/12, so it follows from Lemma 4.11 that

P[Tx > t] = P

( 12⋃
i=1

{
X
(
Ax,i(t)

)= 0
})

≤ 12P
[
X
(
Ax,1(t)

)= 0
]≤ 12e−t2/12.

(4.13)

Write Yx := |
x | − |
|, we establish that, for k ∈ N,

(4.14) E|Yx |k ≤ C(k),

where C(k) is a constant dependent on k. In fact, for a bounded measurable function f on
the space of all locally finite measures on C, a routine exercise of random measures gives

Ef (
x) = E{f (
∑

y∈X∩Qλ
L(y,X))L(x,X)X(dx)}

E{L(x,X)X(dx)}
= E{f (

∑
y∈Xx∩Qλ

L(y,Xx))L(x,Xx)}
EL(x,Xx)

.

That is, if the edges of the Voronoi tessellations are not affected by moving the point from
x + Z to x, then their distribution is not affected either. On the other hand, adding a point at
x does not affect the Voronoi cells centered at points outside B(x,3Tx) and deleting a point
at x + Z does not affect the Voronoi cells centered at points outside B(x + Z,3Tx+Z) (see
McGivney and Yukich (1999), Section 4). Therefore, by Lemma 4.12, the change of Voronoi
edge lengths due to shifting a point at x + Z to x is bounded by 2π[TxX(B(x,3Tx)) +
TZ+xX(B(x + Z,3Tx+Z))], so

E|Yx |k ≤ (2π)kE
{(

TxX
(
B(x,3Tx)

)+ TZ+xX
(
B(x + Z,3Tx+Z)

))k}
≤ 0.5(4π)kE

{
T k

x X
(
B(x,3Tx)

)k + T k
Z+xX

(
B(x + Z,3Tx+Z)

)k}
= (4π)kE

{
T k

0 X
(
B(0,3T0)

)k}
,

(4.15)

where the second inequality follows from the fact that (a + b)k ≤ 2k−1(ak + bk) for all
a, b ≥ 0 and the equality holds because TZ+xX(B(x +Z,3Tx+Z)) and TxX(B(x,3Tx)) have
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the same distribution as that of T0X(B(0,3T0)). However,

E
{
T k

0 X
(
B(0,3T0)

)k}
≤ 12E

∫
C

|y|kX(B(0,3|y|))k

× 1

[{
X
(
A0,1

(|y|))= 0
}∩

12⋂
i=2

{
X
(
A0,i

(|y|))≥ 1
}]

X(dy)

≤ 12E
∫
C

|y|kX(B(0,3|y|))k1
[
X
(
A0,1

(|y|))= 0
]
X(dy).

(4.16)

We apply the Georgii–Nguyen–Zessin integral characterization of Gibbs point processes (see
Møller and Waagepetersen (2004), Chapter 6.4) to obtain that the conditional probability of
observing an extra point of X in the volume element dy, given that configuration without
that point, equals π−1 exp(−β
�({y},X)) dy ≤ π−1 dy, where 
�({y},X) ≥ 0 is the local
energy function and 1/β ≥ 0 is the temperature (see Xia and Yukich (2015), Section 1.1).
Hence, it follows from (4.16) that

E
{
T k

0 X
(
B(0,3T0)

)k}
≤ 12

π
E

∫
C

|y|k(X + δy)
(
B
(
0,3|y|))k

× 1
[
(X + δy)

(
A0,1

(|y|))= 0
]
exp

(−β
�({y},X))dy

≤ 12

π
E

∫
C

|y|k(X + δy)
(
B
(
0,3|y|))k1

[
(X + δy)

(
A0,1

(|y|))= 0
]
dy

= 24E
∫ ∞

0
tk(X + δy)

(
B(0,3t)

)k1
[
X
(
A0,1(t)

)= 0
]
dt

≤ 24 · 2k−1
E

∫ ∞
0

tk
{
X
(
B(0,3t)

)k + 1
}
1
[
X
(
A0,1(t)

)= 0
]
dt

≤ 24 · 2k−1
∫ ∞

0
tk
√
E
{
X
(
B(0,3t)

)2k}
P
[
X
(
A0,1(t)

)= 0
]
dt

+ 24 · 2k−1
∫ ∞

0
tkP

[
X
(
A0,1(t)

)= 0
]
dt

≤ 12 × 20.5k(2k+1)
∫ ∞

0
max

{
1,9kt2k}tke−t2/24 dt + 24 · 2k−1

∫ ∞
0

tke−t2/12 dt,

where the last inequality follows from (4.10). This, together with (4.15), yields the bound in
(4.14).

We now apply Theorem 3.1 to establish (4.9).
The estimate of r ′

1. To simplify the notation, we write Y ′
x = Yx1[|Yx | ≤ B]. Set

Ux = {Tx ≤ 4
√

3 lnλ} ∩ {TZ+x ≤ 4
√

3 lnλ} ∩ {|Z| ≤ 2
√

3 lnλ
}
.

Using (4.13), we have

P
[
Uc

x

]= P
[
Uc

y

]≤ P[Tx > 4
√

3 lnλ] + P[Tx+Z > 4
√

3 lnλ] + P
[|Z| > 2

√
3 lnλ

]
= O

(
λ−4).(4.17)
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This, together with (4.14), ensures

Cov
(
Y ′

x1
[
Uc

x

]
, Y ′

y

)≤√
Var

(
Y ′

x1
[
Uc

x

])
Var

(
Y ′

y

)≤
√
E
{(

Y ′
x

)21
[
Uc

x

]}
E
{(

Y ′
y

)2}

≤
√
E
{
Y 2

x 1
[
Uc

x

]}
EY 2

y ≤
√√

EY 4
x P
[
Uc

x

]
EY 2

y = O
(
λ−1).

(4.18)

Similarly, we can derive

(4.19) Cov
(
Y ′

x1[Ux], Y ′
y1
[
Uc

y

])= O
(
λ−1)

and

Cov
(
Y ′

x1[Ux], Y ′
y1[Uy])≤√

Var
(
Y ′

x1[Ux])Var
(
Y ′

y1[Uy])
≤
√
EY 2

xEY 2
y = O(1).

(4.20)

Assume |x − y| > 20
√

3 lnλ. Conditional on UxUy , Yx is independent of Yy , hence

E
(
Y ′

xY
′
y |UxUy

)= E
(
Y ′

x |UxUy

)
E
(
Y ′

y |UxUy

)
.

Using (4.14) and (4.17), we obtain∣∣E(Y ′
x1
[
UxU

c
y

])∣∣≤ {
E
[(

Y ′
x1[Ux])2]P[Uc

y

]}1/2 ≤ {
E
[
Y 2

x

]
P
[
Uc

y

]}1/2 = O
(
λ−2).

The same argument gives that all E(Y ′
x1[UxUy]), E(Y ′

y1[UxUy]) and E(Y ′
x1[Ux]) are of order

O(1) and E(Y ′
y1[Uc

xUy]) = O(λ−2), hence

Cov
(
Y ′

x1[Ux], Y ′
y1[Uy])

= E
(
Y ′

x |UxUy

)
E
(
Y ′

y |UxUy

)
P[UxUy] −E

(
Y ′

x1[UxUy])E(Y ′
y1[UxUy])

−E
(
Y ′

x1
[
UxU

c
y

])
E
(
Y ′

y1[UxUy])−E
(
Y ′

x1[Ux])E(Y ′
y1
[
Uc

xUy

])
= E

(
Y ′

x1[UxUy])E(Y ′
y1[UxUy])[P[UxUy]]−1(1 − P[UxUy])

+ O
(
λ−2)+ O

(
λ−2)

= O
(
λ−2),

(4.21)

where the last equation follows from (4.17) since 1 − P[UxUy] ≤ P[Uc
x ] + P[Uc

y ] = o(λ−4).
Now,∫∫

	2
Cov

(
Y ′

x, Y
′
y

)
�(dx)�(dy) =

∫∫
	2

Cov
(
Y ′

x1
[
Uc

x

]
, Y ′

y

)
�(dx)�(dy)

+
∫∫

	2
Cov

(
Y ′

x1[Ux], Y ′
y1
[
Uc

y

])
�(dx)�(dy)

+
∫∫

|x−y|>20
√

3 lnλ
Cov

(
Y ′

x1[Ux], Y ′
y1[Uy])�(dx)�(dy)

+
∫∫

|x−y|≤20
√

3 lnλ
Cov

(
Y ′

x1[Ux], Y ′
y1[Uy])�(dx)�(dy).

Using (4.18) for the first term, (4.19) for the second term, (4.21) for the third term and (4.20)
for the last term, we have∫∫

	2
Cov

(
Y ′

x, Y
′
y

)
�(dx)�(dy) = O(λ lnλ).
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This gives the estimate of r ′
1 as

(4.22) r ′
1 = O

(
λ−1)[∫∫

	2
Cov

(
Y ′

x, Y
′
y

)
�(dx)�(dy)

]1/2
= O

(
λ−1/2

√
lnλ

)
.

The estimate of r ′
2 + r ′

3. Applying (4.14) gives

(4.23) r ′
2 + r ′

3 ≤ B−3
∫
	
EY 2

x �(dx) = O
(
λ−1/2).

The estimate of r ′
4. To simplify the notation, we write

ζx,t =
{

1[1 ≥ 
x > t > 0] for t > 0,

1[−1 ≤ 
x < t < 0] for t < 0.

If |x − y| > 20
√

3 lnλ, we have

Cov(ζx,t , ζy,t ) = Cov
(
ζx,t1

[
Uc

x

]
, ζy,t

)+ Cov
(
ζx,t1[Ux], ζy,t1

[
Uc

y

])
+ Cov

(
ζx,t1[Ux], ζy,t1[Uy]).(4.24)

We apply (4.17) to obtain

(4.25) Cov
(
ζx,t1

[
Uc

x

]
, ζy,t

)≤ P
[
Uc

x

]= O
(
λ−4).

Likewise,

Cov
(
ζx,t1[Ux], ζy,t1

[
Uc

y

])= O
(
λ−4).

Given UxUy , ζx,t is independent of ζy,t , hence

E(ζx,t ζy,t |UxUy) = E(ζx,t |UxUy)E(ζy,t |UxUy).

This ensures that we can expand the last term of (4.24) into

Cov
(
ζx,t1[Ux], ζy,t1[Uy])= E(ζx,t |UxUy)E(ζy,t |UxUy)P[UxUy](1 − P[UxUy])

−E(ζx,t |Ux)P[Ux]E(ζy,t |Uc
xUy

)
P
[
Uc

xUy

]
−E

(
ζx,t |UxU

c
y

)
P
[
UxU

c
y

]
E(ζy,t |UxUy)P[UxUy]

= O
(
P
[
Uc

x

]+ P
[
Uc

y

])= O
(
λ−4),

(4.26)

again, by (4.17). Combining estimates (4.25)–(4.26), we obtain from (4.24) that, when |x −
y| > 20

√
3 lnλ,

(4.27) Cov(ζx,t , ζy,t ) = O
(
λ−4).

This implies ∫ 1

0

∫∫
	2

Cov(ζx,t , ζy,t )�(dx)�(dy)dt

=
∫ 1

0

∫∫
|x−y|>20

√
3 lnλ

Cov(ζx,t , ζy,t )�(dx)�(dy)dt

+
∫ 1

0

∫∫
|x−y|≤20

√
3 lnλ

Cov(ζx,t , ζy,t )�(dx)�(dy)dt

≤ O
(
λ−2)+ ∫ 1

0

∫∫
|x−y|≤20

√
3 lnλ

Eζx,t�(dx)�(dy)dt

= O
(
λ−2)+ B−1

∫∫
|x−y|≤20

√
3 lnλ

E|Yx |�(dx)�(dy) ≤ O
(
λ1/2 lnλ

)
,

(4.28)
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where the last inequality is due to (4.14). Similarly, we can also establish

(4.29)
∫ 0

−1

∫∫
	2

Cov(ζx,t , ζy,t )�(dx)�(dy)dt = O
(
λ1/2 lnλ

)
.

Adding (4.28) and (4.29) gives

(4.30) r ′
4 = O

(
λ−1/2 lnλ

)
.

The estimate of r ′
5. We make use of (4.27) to get∫ 1

0

∫∫
	2

t Cov(ζx,t , ζy,t )�(dx)�(dy)dt

=
∫ 1

0

∫∫
|x−y|>20

√
3 lnλ

t Cov(ζx,t , ζy,t )�(dx)�(dy)dt

+
∫ 1

0

∫∫
|x−y|≤20

√
3 lnλ

t Cov(ζx,t , ζy,t )�(dx)�(dy)dt

≤ O
(
λ−2)+ ∫ 1

0

∫∫
|x−y|≤20

√
3 lnλ

tEζx,t�(dx)�(dy)dt

= O
(
λ−2)+ B−2

2

∫∫
|x−y|≤20

√
3 lnλ

E|Yx |2�(dx)�(dy) ≤ O(lnλ),

(4.31)

where, again, the last inequality follows from (4.14). Correspondingly, we can deduce the
following bound:

(4.32)
∫ 0

−1

∫∫
	2

t Cov(ζx,t , ζy,t )�(dx)�(dy)dt = O(lnλ).

Combining (4.31) and (4.32) yields

(4.33) r ′
5 = O

(
λ−1/2

√
lnλ

)
.

Finally, we collect all the estimates in (4.22), (4.23), (4.30) and (4.33) to achieve the bound
(4.9), as claimed. �

4.4. The total edge length of Poisson–Voronoi tessellations. The Poisson–Voronoi tessel-
lations have been studied extensively since Avram and Bertsimas (1993). For normal approxi-
mation of the total edge length of Poisson–Voronoi tessellations, an error bound of the optimal
order was established by Lachièze-Rey, Schulte and Yukich (2019) using the Malliavin–Stein
approach. In this subsection, we demonstrate that Theorem 3.1 can be utilized to derive an
error bound of the same order.

Similar to the previous subsection, we consider X as a Poisson point process on R
2 with

mean measure μ(dx) = dx and set Qλ = {(x1, x2) : −√
λ/2 ≤ x, y ≤ √

λ/2}. For the ease of
reading, we briefly recap a few essential terminologies. For a realization x of X and x ∈ x,
we define C(x,x) as the set of every point in R

2 whose (Euclidean) distance to x is less
than or equal to its distance to any other point of x. The collection of C(x,x), x ∈ x, is
called the Poisson–Voronoi tessellation induced by the realization x of X. Again, we write
L(x,X) := Lλ(x,X) as one half the total edge length of the finite length edges in the cell
C(x,X), then the total edge length of the Poisson–Voronoi tessellation induced by X with
centers in X ∩ Qλ can be summarized as

L(λ) :=
∫
Qλ

L(x,X)X(dx).
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THEOREM 4.13. Let B2 = Var(L(λ)) and W = (L(λ) −EL(λ))/B . We have

(4.34) lim
λ→∞λ−1

EL(λ) ∈ (0,∞), lim
λ→∞λ−1B2 ∈ (0,∞)

and

(4.35) dK
(
L (W),N (0,1)

)= O
(
λ−1/2).

PROOF. The claim (4.34) can be found in Avram and Bertsimas (1993), hence it suffices
to show (4.35). To this end, we write 
(dx) = L(x,X)X(dx) and apply Theorem 3.1. As
observed by McGivney and Yukich (1999), Section 4, adding a point at α does not affect
the Voronoi cells centered at points outside B(α,3Tα), while Yα (respectively Yβ ) is deter-
mined by the configuration B(α,3Tα)∩X (respectively B(β,3Tβ)∩X). Thus Yα and Yβ are
conditionally independent given Tα and Tβ with |α − β| > 3(Tα + Tβ), which implies

Cov
(
Y ′

α,Y ′
β

)
=
∫ ∞

0

∫ ∞
0

E
(
Y ′

αY ′
β |Tα = s1, Tβ = s2

)
P(Tα ∈ ds1, Tβ ∈ ds2)

−
∫ ∞

0
E
(
Y ′

α|Tα = s1
)
P(Tα ∈ ds1)

∫ ∞
0

E
(
Y ′

β |Tβ = s2
)
P(Tβ ∈ ds2)

=
∫∫

3(s1+s2)≥|α−β|
E
(
Y ′

αY ′
β |Tα = s1, Tβ = s2

)
P(Tα ∈ ds1, Tβ ∈ ds2)

−
∫∫

3(s1+s2)≥|α−β|
E
(
Y ′

α|Tα = s1
)
E
(
Y ′

β |Tβ = s2
)
P(Tα ∈ ds1)P(Tβ ∈ ds2).

(4.36)

However, direct verification ensures

(4.37) P(Tα ∈ ds) = 2π
(
1 − e− πs2

12
)11

e− πs2
12 s ds.

By checking the relationship of the event {Tβ ∈ ds2} and various possible cases of the event
{Tα = s1}, we obtain

P(Tβ ∈ ds2|Tα = s1) ≤ e− πs2
2

12 2πs2
12 ds2

1 − e− πs2
1

12

,

which, together with (4.37), implies

P(Tα ∈ ds1, Tβ ∈ ds2) = P(Tβ ∈ ds2|Tα = s1)P(Tα ∈ ds1)

≤ π2

3
s1s2e

− π(s2
1+s2

2 )

12 ds1 ds2.
(4.38)

Since the change of the total edge lengths as the result of adding a point at α (respectively β)
can be bounded by 2πTα (respectively 2πTβ ), if we use C to represent a constant independent
of λ, α and β , whose value may vary from one line to another, then we have the following
crude estimates for Y ′ and the same estimates also hold for Y in place of Y ′:∣∣E(Y ′

α|Tα = s1, Tβ = s2
)∣∣≤ C

(
s3

1 + 1
)
,∣∣E(Y ′

α|Tα = s1
)∣∣≤ C

(
s3

1 + 1
)
,∣∣E(Y ′

αY ′
β |Tα = s1, Tβ = s2

)∣∣≤ C
(
s3

1s3
2 + 1

)
,∣∣E(Y ′2

α |Tα = s1, Tβ = s2
)∣∣≤ C

(
s4

1 + 1
)
,∣∣E(Y ′2

α |Tα = s1
)∣∣≤ C

(
s4

1 + 1
)
.

(4.39)
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Combining (4.36), (4.37), (4.38) and (4.39) gives

∣∣Cov
(
Y ′

α,Y ′
β

)∣∣≤ C

∫∫
3(s1+s2)≥|α−β|

(
s4

1s4
2 + 1

)
e− π(s2

1+s2
2 )

12 ds1 ds2

≤ C
(|α − β|3 + 1

)
e− π |α−β|2

432 .

(4.40)

Using (4.40), we have

r ′
1 ≤ O

(
λ−1)(∫∫

Qλ×Qλ

Cov
(
Y ′

α,Y ′
β

)
�(dα)�(dβ)

)1/2

≤ O
(
λ−1)(∫∫

Qλ×Qλ

(|α − β|3 + 1
)
e− π |α−β|2

432 �(dα)�(dβ)

)1/2
= O

(
λ−1/2).

(4.41)

For r ′
2 and r ′

3, we use (4.37) and (4.39) to obtain

E
(
Y 2

α

)=
∫ ∞

0
E
(
Y 2

α |Tα = s
)
P(Tα ∈ ds) ≤

∫ ∞
0

C
(
s4 + 1

)
e− πs2

12 s ds = C,

E
(
Y ′2

α

)=
∫ ∞

0
E
(
Y ′2

α |Tα = s
)
P(Tα ∈ ds) ≤

∫ ∞
0

C
(
s4 + 1

)
e− πs2

12 s ds = C,

which implies

r ′
2 ≤ O

(
λ−3/2) ∫

Qλ

E
(
Y ′2

α

)
�(dα) = O

(
λ−1/2)

and

r ′
3 ≤ O

(
λ−3/2) ∫

Qλ

E
(
Y 2

α

)
�(dα) = O

(
λ−1/2).

For r ′
4, when 3(s1 + s2) < |α − β|, we have

P(1 ≥ 
α > t > 0,1 ≥ 
β > t > 0|Tα = s1, Tβ = s2)

= P(1 ≥ 
α > t > 0|Tα = s1)P(1 ≥ 
β > t > 0|Tβ = s2).

Hence

Cov
(
1[1 ≥ 
α > t > 0],1[1 ≥ 
β > t > 0])

=
∫ ∞

0

∫ ∞
0

P(1 ≥ 
α > t > 0,1 ≥ 
β > t > 0|Tα = s1, Tβ = s2)

× P(Tα ∈ ds1, Tβ ∈ ds2)

−
(∫ ∞

0
P(1 ≥ 
α > t > 0|Tα = s)P(Tα ∈ ds)

)2

=
∫∫

3(s1+s2)≥|α−β|
P(1 ≥ 
α > t > 0,1 ≥ 
β > t > 0|Tα = s1, Tβ = s2)

× P(Tα ∈ ds1, Tβ ∈ ds2)

−
∫∫

3(s1+s2)≥|α−β|
P(1 ≥ 
α > t > 0|Tα = s1)P(1 ≥ 
β > t > 0|Tβ = s2)

× P(Tα ∈ ds1)P(Tβ ∈ ds2),
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which implies∫ 1

0

∣∣Cov
(
1[1 ≥ 
α > t > 0],1[1 ≥ 
β > t > 0])∣∣dt

≤
∫∫

3(s1+s2)≥|α−β|

∫ 1

0
P(1 ≥ 
α > t > 0,1 ≥ 
β > t > 0|Tα = s1, Tβ = s2) dt

× P(Tα ∈ ds1, Tβ ∈ ds2)

+
∫∫

3(s1+s2)≥|α−β|

∫ 1

0
P(1 ≥ 
α > t > 0|Tα = s1)P(1 ≥ 
β > t > 0|Tβ = s2) dt

× P(Tα ∈ ds1)P(Tβ ∈ ds2)
(4.42)

≤ 2
∫∫

3(s1+s2)≥|α−β|,s1<s2

E
(|
α||Tα = s1, Tβ = s2

)
P(Tα ∈ ds1, Tβ ∈ ds2)

+ 2
∫∫

3(s1+s2)≥|α−β|,s1<s2

E
(|
α||Tα = s1

)
P(Tα ∈ ds1)P(Tβ ∈ ds2)

≤ O
(
λ−1/2) ∫∫

3(s1+s2)≥|α−β|,s1<s2

(
s3

1 + 1
)
P(Tα ∈ ds1, Tβ ∈ ds2)

+ O
(
λ−1/2) ∫∫

3(s1+s2)≥|α−β|,s1<s2

(
s3

1 + 1
)
P(Tα ∈ ds1)P(Tβ ∈ ds2)

≤ O
(
λ−1/2)e− π |α−β|2

432 ,

where the second last inequality is from (4.39) and the last inequality is obtained as in (4.40).
Thus, it follows from (4.42) and the same argument for (4.41) that∣∣∣∣

∫∫
Qλ×Qλ

∫ 1

0
Cov

(
1[1 ≥ 
α > t > 0],1[1 ≥ 
β > t > 0])dt�(dα)�(dβ)

∣∣∣∣
≤ O

(
λ−1/2) ∫∫

Qλ×Qλ

e− π |α−β|2
432 �(dα)�(dβ) = O

(
λ1/2).

(4.43)

Likewise, we can show that∣∣∣∣
∫∫

Qλ×Qλ

∫ 0

−1
Cov

(
1[−1 ≤ 
α < t < 0],1[−1 ≤ 
β < t < 0])dt�(dα)�(dβ)

∣∣∣∣
= O

(
λ1/2).

(4.44)

Combining (4.43) and (4.44) gives r ′
4=O(λ−1/2). For r ′

5, we can bound it in the same way as
for r ′

4. In fact, we replace (4.42) with∫ 1

0
t
∣∣Cov

(
1[1 ≥ 
α > t > 0],1[1 ≥ 
β > t > 0])∣∣dt

≤
∫∫

3(s1+s2)≥|α−β|

∫ 1

0
tP(1 ≥ 
α > t > 0,1 ≥ 
β > t > 0|Tα = s1, Tβ = s2) dt

× P(Tα ∈ ds1, Tβ ∈ ds2)

+
∫∫

3(s1+s2)≥|α−β|

∫ 1

0
tP(1 ≥ 
α > t > 0|Tα = s1)P(1 ≥ 
β > t > 0|Tβ = s2) dt

× P(Tα ∈ ds1)P(Tβ ∈ ds2)
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≤
∫∫

3(s1+s2)≥|α−β|,s1<s2

E
(

2

α|Tα = s1, Tβ = s2
)
P(Tα ∈ ds1, Tβ ∈ ds2)

+
∫∫

3(s1+s2)≥|α−β|,s1<s2

E
(

2

α|Tα = s1
)
P(Tα ∈ ds1)P(Tβ ∈ ds2)

≤ O
(
λ−1) ∫∫

3(s1+s2)≥|α−β|,s1<s2

(
s4

1 + 1
)
P(Tα ∈ ds1, Tβ ∈ ds2)

+ O
(
λ−1) ∫∫

3(s1+s2)≥|α−β|,s1<s2

(
s4

1 + 1
)
P(Tα ∈ ds1)P(Tβ ∈ ds2)

= O
(
λ−1)e− π |α−β|2

432 ,

where the second last inequality is from (4.39) and the last inequality is from a similar argu-
ment leading to (4.40). Therefore,∣∣∣∣

∫ 1

0

∫∫
Qλ×Qλ

t Cov
(
1[1 ≥ 
α > t > 0],1[1 ≥ 
β > t > 0])dt�(dα)�(dβ)

∣∣∣∣
≤ O

(
λ−1) ∫∫

Qλ×Qλ

e− π |α−β|2
432 �(dα)�(dβ) = O(1).

(4.45)

The same reasoning can be adjusted to show that∣∣∣∣
∫ 0

−1

∫∫
Qλ×Qλ

t Cov
(
1[−1 ≤ 
α < t < 0],1[−1 ≤ 
β < t < 0])dt�(dα)�(dβ)

∣∣∣∣
= O(1).

(4.46)

The anticipated order of r ′
5 = O(λ−1/2) can be observed from (4.45) and (4.46). The proof is

completed by observing that r ′
i ,1 ≤ i ≤ 5, are all of the order O(λ−1/2). �

5. Stein couplings. The following notion was introduced by Chen and Röllin (2010).
A triple of random variables (W,W ′,G) defined on the same probability space is called a
Stein coupling if

(5.1) E
{
Gf

(
W ′)− Gf (W)

}= E
{
Wf (W)

}
for all absolutely continuous functions f with f (x) = O(1 + |x|). By taking f (x) = 1, (5.1)
implies that EW = 0, and by taking f (w) = w, (5.1) implies that VarW = E{G(W ′ − W)};
as usual, we assume that VarW = 1.

Now suppose (W,W ′,G) is a Stein coupling. Let 
 = W ′ − W , and let F be a σ -algebra
with respect to which W is measurable. Then

E
{
Wf (W)

}= E

∫ ∞
−∞

f ′(W + t)K̂(t) dt,

where

K̂(t) = E
{
G
(
1[
 > t > 0] − 1[
 < t ≤ 0])∣∣F}.

One particular choice of K in and Kout that turns out to be useful is

K̂ in(t) = E
{
G
(
1[
 ∧ 1 ≥ t > 0] − 1

[

 ∨ (−1) ≤ t ≤ 0

])∣∣F},
K̂out(t) = E

{
G[1(
 ≥ t > 
 ∧ 1] − 1

[

 < t < 
 ∨ (−1)

])∣∣F},
from which, via Theorem 2.1, we can immediately deduce a bound on the normal approx-
imation of W in terms of quantities involving only the Stein coupling. Whereas r2 and r3
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are typically straightforward to bound, r1, r4 and r5 can be difficult to handle without further
assumptions. The following result shows, however, that, by introducing additional auxiliary
random variables, we can obtain upper bounds on these quantities that are far more tractable.

THEOREM 5.1. Let (W,W ′,G) be a Stein coupling; set 
 = W ′ − W . Let (G′,
′) be
a conditionally independent copy of (G,
) given F , and let (G∗,
∗) be an unconditionally
independent copy of (G,
). Then

dK
(
L (W),N (0,1)

)≤ 9s1 + 11s2 + 5s3 + 10s4,

where

s1 = (
E
{∣∣GG′∣∣(|
| ∧ 1

)(∣∣
′ − 
∗∣∣∧ 2
)+ ∣∣G(G′ − G∗)∣∣(|
| ∧ 1

)(∣∣
∗∣∣∧ 1
)})1/2

,

s2 = E
{|G|(|
| ∧ 1

)2}
, s3 = E

{|G|(|
| − 1
)
1
[|
| > 1

]}
,

s4 = E
{∣∣GG′∣∣(∣∣
′ − 
∗∣∣∧ 1

)+ ∣∣G(G′ − G∗)∣∣(∣∣
′∣∣∧ ∣∣
∗∣∣∧ 1
)}

.

PROOF. Let EF denote conditional expectation with respect to F , and let x̄ = (x ∧ 1) ∨
(−1). We apply Theorem 2.1; using Lemma 5.9(i) in the last inequality,

r2
1 = (

E
∣∣EF (G
̄) −E(G
̄)

∣∣)2 ≤ VarEF (G
̄) = E
{(
E
F (G
̄)

)2 − (
E{G
̄})2}

= E
{
GG′
̄
̄′ − GG∗
̄
̄∗}≤ E

{|G
̄|∣∣G′
̄′ − G∗
̄∗∣∣}
≤ E

{|G
̄|(∣∣G′∣∣(∣∣
′ − 
∗∣∣∧ 2
)+ ∣∣G′ − G∗∣∣(∣∣
∗∣∣∧ 1

))}= s2
1 .

The expressions for s2 and s3 are easily obtained from r2 and r3. Letting I±
x (t) = 1[x ∧ 1 ≥

t > 0] − 1[x ∨ (−1) ≤ t ≤ 0] and using Lemma 5.9(ii),

r4 = E

∫
|t |≤1

(
K̂ in(t) − K in(t)

)2
dt = E

∫
|t |≤1

(
E
F{GI±

t (
)
}−E

{
GI±

t (
)
})2

dt

= E

∫
|t |≤1

(
E
F{GI±

t (
)
})2 − (

E
{
GI±

t (
)
})2

dt

= E

∫
|t |≤1

(
E
F{GG′I±

t (
)I±
t

(

′)}−E

{
GG∗I±

t (
)I±
t

(

∗)})dt

= E

∫
|t |≤1

(
GG′I±

t (
)I±
t

(

′)− GG∗I±

t (
)I±
t

(

∗))dt

= E
{
GG′(|
| ∧ ∣∣
′∣∣∧ 1

)
1
[


′ > 0

]− GG∗(|
| ∧ ∣∣
∗∣∣∧ 1
)
1
[


∗ > 0

]}
≤ E

{∣∣GG′∣∣(∣∣
′ − 
∗∣∣∧ 1
)}+E

{|G|∣∣G′ − G∗∣∣(|
| ∧ ∣∣
∗∣∣∧ 1
)}= s4.

Finally, similar to the estimate of r4, using Lemma 5.9(iii),

r2
5 = E

∫
|t |≤1

|t |(K̂ in(t) − K in(t)
)2

dt

= E

∫
|t |≤1

|t |(GG′I±
t (
)I±

t

(

′)− GG∗I±

t (
)I±
t

(

∗))dt

= 1

2
E
{
GG′(|
| ∧ ∣∣
′∣∣∧ 1

)21
[


′ > 0

]− GG∗(|
| ∧ ∣∣
∗∣∣∧ 1
)21

[


∗ > 0

]}

≤ E

{∣∣GG′∣∣(|
| ∧ 1
)(∣∣
′ − 
∗∣∣∧ 1

)+ 1

2
|G|∣∣G′ − G∗∣∣(|
| ∧ ∣∣
∗∣∣∧ 1

)2}≤ s2
1 .

This concludes the proof. �
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Many couplings in the literature, such as the exchangeable pair and the size-bias coupling,
can be formulated as Stein couplings, to which Theorem 5.1 can be applied. In what follows,
we construct Stein couplings for local dependence and additive functionals in classical oc-
cupancy problems and apply Theorem 5.1 to obtain new error bounds, of which the former
improves a result of Chen and Shao (2004).

5.1. Local dependence. Consider a sequence of centered random variables X1, . . . ,Xn

which are locally dependent in the following sense. For each 1 ≤ i ≤ n, there is a set Ai ⊂
{1, . . . , n} such that Xi and (Xj )j∈Ac

i
are independent of each other. Moreover, for each 1 ≤

i ≤ n, there is a set Bi ⊂ {1, . . . , n} such that Ai ⊂ Bi and such that (Xj )j∈Ai
and (Xj )j∈Bc

i

are independent of each other. Let W =∑n
i=1 Xi , Yi =∑

j∈Ai
Xj and assume that VarW = 1.

This and related types of dependency structures were extensively studied by Chen and
Shao (2004); in particular, it is shown that under the above assumptions and if there is 2 <

ρ ≤ 4 such that E|Xi |ρ +E|Yi |ρ ≤ θp for some θ > 0 and all 1 ≤ i ≤ n, then

(5.2) dK
(
L (W),N (0,1)

)≤ (13 + 11κ)nθ3∧ρ + 2.5θp/2√κn,

where

(5.3) κ = sup
1≤i≤n

∣∣{1 ≤ j ≤ n : Bj ∩ Bi �=∅}∣∣;
see Chen and Shao (2004), Theorem 2.2.

We can easily reproduce (5.2) (up to constants) and further improve it by means of Theo-
rem 5.1.

THEOREM 5.2. Let X1, . . . ,Xn be centered random variables with dependency neigh-
borhoods Ai and Bi as described above, set W = ∑n

i=1 Xi , and assume that Var(W) = 1,
and assume that there is θ > 0 such that E{|Xi |ρ} ∨ E{|Yi |ρ} ≤ θρ for some 2 < ρ ≤ 4 and
each 1 ≤ i ≤ n. Then

dK
(
L (W),N (0,1)

)≤ (16 + 67λ)nθ3∧ρ + 28θρ/2
√

λn,

where

(5.4) λ = sup
1≤i≤n

∣∣{1 ≤ j ≤ n : Aj ∩ Bi �= ∅}∣∣.
REMARK 5.3. Note that λ in (5.4) is upper bounded by κ in (5.3), and in fact, λ can be

substantially smaller than κ .

PROOF OF THEOREM 5.2. Let I and J be independent random variables, uniformly
distributed on set of indices {1, . . . , n} independently of all else. Let W ′ = W − YI and G =
−nXI ; then (W,W ′,G) is a Stein coupling, and we have 
 = −YI . Let F = σ(X1, . . . ,Xn),
and let (X∗

1, . . . ,X∗
n) be an independent copy of (X1, . . . ,Xn). Let G′ = −nXJ and 
′ =

−YJ ; clearly, (G′,
′) is an independent copy of (G,
) given F . Moreover, with

(
G∗,
∗)=

{
(−nXJ ,−YJ ) if AJ ∩ BI =∅,(−nX∗

J ,−Y ∗
J

)
if AJ ∩ BI �=∅;

it is easy to see that (G∗,
∗) is an unconditionally independent copy of (G,
). We now
apply Theorem 5.1. To this end, recall Young’s inequality; for nonnegative real numbers a

and b we have ab ≤ ap/p + bq/q whenever p and q are Hölder conjugates.
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We start by bounding s2; we have

s2 =
n∑

i=1

E
{|Xi |(|Yi | ∧ 1

)2}
.

If 3 ≤ ρ ≤ 4, Young’s inequality yields

E
{|Xi |(|Yi | ∧ 1

)2}≤ E|Xi |3
3

+ 2E|Yi |3
3

≤ θ3,

and if 2 < ρ < 3, Young’s inequality yields

E
{|Xi |(|Yi | ∧ 1

)2}≤ E|Xi |ρ
ρ

+ (ρ − 1)E(|Yi | ∧ 1)2ρ/(ρ−1)

ρ
≤
(

1

ρ
+ ρ − 1

ρ

)
θρ = θρ,

so that s2 ≤ nθ3∧ρ . We continue to bound s3; we have

s3 =
n∑

i=1

E
{|Xi |(|Yi | − 1

)
1
[|Yi | > 1

]}
.

If 3 ≤ ρ ≤ 4, Young’s inequality yields

E
{|Xi |(|Yi | − 1

)
1
[|Yi | > 1

]}≤ E|Xi |3
3

+ 2E|Yi |3
3

≤ θ3,

and if 2 < ρ < 3, Young’s inequality yields

E
{|Xi |(|Yi | − 1

)
1
[|Yi | > 1

]}≤ E|Xi |ρ
ρ

+ (ρ − 1)E(|Yi |1[|Yi | > 1])ρ/(ρ−1)

ρ

≤ E|Xi |ρ
ρ

+ (ρ − 1)E|Yi |ρ
ρ

≤ θρ,

so that s3 ≤ nθ3∧ρ . Now, in order to bound s4, note that

E
{∣∣GG′∣∣(∣∣
′ − 
∗∣∣∧ 1

)}=
n∑

i=1

n∑
j :Aj∩Bi �=∅

E
{|XiXj |(∣∣Yj − Y ∗

j

∣∣∧ 1
)}

.

Using again Young’s inequality, we have for 3 ≤ ρ ≤ 4,

E
{|XiXj |(∣∣Yj − Y ∗

j

∣∣∧ 1
)}≤ 1

3
E
{|Xi |3 + |Xj |3 + 4|Yj |3 + 4

∣∣Y ∗
j

∣∣3}≤ 10

3
θ3,

and for 2 < ρ < 3,

E
{|XiXj |(∣∣Yj − Y ∗

j

∣∣∧ 1
)}≤ 1

ρ
E|Xi |ρ + 1

ρ
E|Xj |ρ + ρ − 2

ρ
E
(∣∣Yj − Y ∗

j

∣∣∧ 1
)ρ/(ρ−2)

≤ 1

ρ
E|Xi |ρ + 1

ρ
E|Xj |ρ + ρ − 2

ρ
E
(∣∣Yj − Y ∗

j

∣∣)ρ

≤ 1

ρ
E|Xi |ρ + 1

ρ
E|Xj |ρ + 2ρ−1 ρ − 2

ρ

(
E|Yj |ρ +E

∣∣Y ∗
j

∣∣ρ)

≤
(

2

ρ
+ 2ρ ρ − 2

ρ

)
θρ ≤ 10

3
θρ.

Similarly,

E
{∣∣G(G′ − G∗)∣∣(∣∣
′∣∣∧ ∣∣
∗∣∣∧ 1

)}≤ E
{∣∣G(G′ − G∗)∣∣(∣∣
′∣∣∧ 1

)}
=

n∑
i=1

n∑
j :Aj∩Bi �=∅

E
{∣∣Xi

(
Xj − X∗

j

)∣∣(|Yj | ∧ 1
)}

.
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Using again Young’s inequality, we have for 3 ≤ ρ ≤ 4,

E
{∣∣Xi

(
Xj − X∗

j

)∣∣(|Yj | ∧ 1
)}≤ 1

3
E
{|Xi |3 + 4|Xj |3 + 4

∣∣X∗
j

∣∣3 + |Yj |3}≤ 10

3
θ3,

and for 2 < ρ < 3,

E
{∣∣Xi

(
Xj − X∗

j

)∣∣(|Yj | ∧ 1
)}

≤ 1

ρ
E|Xi |ρ + 1

ρ
E
∣∣Xj − X∗

j

∣∣ρ + ρ − 2

ρ
E
(|Yj | ∧ 1

)ρ/(ρ−2)

≤ 1

ρ
E|Xi |ρ + 1

ρ
E
∣∣Xj − X∗

j

∣∣ρ + ρ − 2

ρ
E|Yj |ρ

≤ 1

ρ
E|Xi |ρ + 2ρ−1

ρ

(
E|Xj |ρ +E

∣∣X∗
j

∣∣ρ)+ ρ − 2

ρ
E|Yj |ρ

≤
(

1 + 2ρ

ρ
+ ρ − 2

ρ

)
θρ ≤ 10

3
θρ.

Hence, s4 ≤ 20
3 nλθ3∧ρ . Finally, to bound s1, note that

E
{∣∣GG′∣∣(|
| ∧ 1

)(∣∣
′ − 
∗∣∣∧ 2
)}

=
n∑

i=1

n∑
j :Aj∩Bi �=∅

E
{|XiXj |(|Yi | ∧ 1

)(∣∣Yj − Y ∗
j

∣∣∧ 2
)}

.

Using Young’s inequality, we have

E

{
|2XiXj |(|Yi | ∧ 1

)((1

2

∣∣Yj − Y ∗
j

∣∣)∧ 1
)}

≤ E|2Xi |ρ
ρ

+ E|Xj |ρ
ρ

+ (ρ − 2)(E(|Yi | ∧ 1)2ρ/(ρ−2) +E((1
2 |Yj − Y ∗

j |) ∧ 1)2ρ/(ρ−2))

2ρ

≤ E|2Xi |ρ
ρ

+ E|Xj |ρ
ρ

+ (ρ − 2)(E|Yi |ρ + 2−ρ
E|Yj − Y ∗

j |ρ)

2ρ

≤
(

1 + 2ρ

ρ
+ (ρ − 2)(1 + 2−ρ+ρ−1+1)

2ρ

)
θρ ≤ 19

4
θρ.

Similarly,

E
{∣∣G(G′ − G∗)∣∣(|
| ∧ 1

)(∣∣
∗∣∣∧ 1
)}

=
n∑

i=1

n∑
j :Aj∩Bi �=∅

E
{∣∣Xi

(
Xj − X∗

j

)∣∣(|Yi | ∧ 1
)(∣∣Y ∗

j

∣∣∧ 1
)}

.
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Using Young’s inequality another time, we have

E
{∣∣Xi

(
Xj − X∗

j

)∣∣(|Yi | ∧ 1
)(∣∣Y ∗

j

∣∣∧ 1
)}

≤ E|Xi |ρ
ρ

+ E|Xj − X∗
j |ρ

ρ
+ (ρ − 2)(E(|Yi | ∧ 1)2ρ/(ρ−2) +E(|Y ∗

j | ∧ 1)2ρ/(ρ−2))

2ρ

≤ E|Xi |ρ
ρ

+ E|Xj − X∗
j |ρ

ρ
+ (ρ − 2)(E|Yi |ρ +E|Y ∗

j |ρ)

2ρ

≤
(

1 + 2ρ

ρ
+ ρ − 2

ρ

)
θρ ≤ 19

4
θρ.

Thus, s2
1 ≤ 19

2 nλθρ . Combining the bounds and applying Theorem 5.1, the final bound fol-
lows. �

5.2. Additive functionals in the classical occupancy scheme. Consider the following
multinomial urn model. A total of m balls are independently distributed among n urns in
such a way that a ball is placed in urn i with probability pi , where

∑m
i=1 pi = 1. Let ξi be the

number of balls urn i contains after the balls have been distributed. For each 1 ≤ i ≤ n, let ϕi

be a real-valued function on the nonnegative integers. We are interested in the statistic

V =
n∑

i=1

ϕi(ξi),

respectively, the centered and normalized version

W = 1

σ

n∑
i=1

(
ϕi(ξi) − μi

)
,

where μi = Eϕi(ξi) and σ 2 = VarV . In the special case where pi = 1/n and ϕi = ϕ, this
statistic has been studied by various authors; in particular, Dembo and Rinott (1996) used
Stein’s method and size-biasing to obtain error bounds, but only for smooth probability met-
rics (we refer to their paper for general references). We give the corresponding result for the
Kolmogorov distance for general pi and ϕi , which is, to the best of our knowledge, new in
this generality.

THEOREM 5.4. Let m, n and W be as in the preceding paragraph. Assume there are
positive constants K1, K2 and K3 such that∣∣ϕi(x)

∣∣≤ K1e
K1x, x ≥ 0,1 ≤ i ≤ n,

and such that

(5.5) sup
1≤i≤n

pi ≤ K2

m
and n ≤ K3m.

Then there is a constant C := C(K1,K2,K3) such that

(5.6) dK
(
L (W),N (0,1)

)≤ C

(
n1/2

σ 2 + n

σ 3

)
.

Specializing to the case originally considered by Dembo and Rinott (1996), we have that
σ 2 � n as long as ϕ is not a linear function (see Dembo and Rinott (1996), Remark 3.1), and
we have the following corollary.
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COROLLARY 5.5. If ϕi = ϕ for all i for some nonlinear function ϕ, if pi = 1/n, and if
0 < limn→∞ n/m < ∞, then σ 2 � n and thus,

dK
(
L (W),N (0,1)

)= O
(

1

n1/2

)
.

PROOF OF THEOREM 5.4. In what follows the reference set in expressions like “i �= I”
or “i /∈ A” is {1, . . . , n}, so that these expressions have to be read as “i ∈ {1, . . . , n} \ {I }”
or “i ∈ {1, . . . , n} \ A”, respectively. Moreover, we use the convention that sums of the form
‘‘
∑

i �=j ” stand for single sums over the first variable, not double sums over both variables.
Stein coupling. Denote by (ξi)1≤i≤n the ball counts in the respective urns, and let F =

σ(ξ1, . . . , ξn). Let I be uniformly distributed on {1, . . . , n}, independently of all else. Given
I , let ι1, ι2, . . . be an i.i.d. sequence, where P[ι1 = i|I ] = pi/(1 − pI ) for all i �= I , let
ηi = ξi +∑ξI

k=1 1[ιk = i] for i �= I , and let N := {ι1, . . . , ιξI
}. The family of random variables

(ηi)i �=I represents the configuration of balls in the urns if the balls from the I th urn are
redistributed among the other urns, and N is the set of urns having received at least one ball
during that redistribution.

Let W be defined as before, and let

G = − n

σ

(
ϕI (ξI ) − μI

)
, W ′ = 1

σ

(
−μI +∑

i �=I

(
ϕi(ηi) − μi

))
.

It is not difficult to see that (W,W ′,G) is a Stein coupling and that


 = − 1

σ

(
ϕI (ξI ) + ∑

i∈N

(
ϕi(ξi) − ϕi(ηi)

));

see, for example, Chen and Röllin (2010), Construction 2A.
Construction of (G′,
′). Let F = σ(ξ1, . . . , ξn), and let J be uniformly distributed on

{1, . . . , n}, independently of all else. Given J , let ι′1, ι′2, . . . be an i.i.d. sequence, where P[ι′1 =
i|J ] = pi/(1 − pJ ) for all i �= J , and let η′

i = ξi +∑ξJ

k=1 1[ι′k = i] for i �= J , and let N ′ :=
{ι′1, . . . , ι′ξJ

}. Define

G′ = − n

σ

(
ϕJ (ξJ ) − μJ

)
, 
′ = − 1

σ

(
ϕJ (ξJ ) + ∑

i∈N ′

(
ϕi(ξi) − ϕi

(
η′

i

)))
.

Clearly, (G′,
′) is an independent copy of (G,
) conditionally on F .
Construction of (G∗,
∗). We first construct a realization (ξ∗

i )1≤i≤n of the urn process
which is independent of (G,
) but which is still closely coupled to (ξi)1≤i≤n. To this end,
let (ξ•

i )1≤i≤n be an independent copy of (ξi)1≤i≤n. Set

ξ∗
i = ξ•

i for all i ∈ N ∪ {I }.
Now, let χ =∑

i∈N∪{I } ξi and χ• =∑
i∈N∪{I } ξ•

i ; we distinguish three cases.

(i) If χ• = χ , set

ξ∗
i = ξi for all i /∈ N ∪ {I }.

(ii) If χ• < χ , let ι∗1, . . . , ι∗χ−χ• be i.i.d. random variables on {1, . . . , n} \ (N ∪ {I }) with
distribution given by P[ι∗1 = k|I,N] = pk/(1 −∑

j∈N∪{I } pj ) for k /∈ N ∪ {I }, and set

ξ∗
i = ξi +

χ−χ•∑
j=1

1
[
ι∗j = i

]
for all i /∈ N ∪ {I }.
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(iii) If χ• > χ , let ι∗1, . . . , ιχ•−χ be constructed recursively as follows. Let ι∗1 have distri-
bution given by P[ι∗1 = k|I, (ξi)i /∈N∪{I }] = ξk/(m − χ) for k /∈ N ∪ {I }. For 1 < l < χ• − χ ,
assume ι∗1, . . . , ι∗l have been sampled, and let ι∗l+1 have distribution given by P[ι∗l+1 =
k|I, (ξi)i /∈N∪{I }, (ι∗i )1≤i≤l] = (ξk − ∑l

j=1 1[ι∗j = k])/(m − χ − l) for k /∈ N ∪ {I }. Finally,
set

ξ∗
i = ξi −

χ•−χ∑
j=1

1
[
ι∗j = i

]
for all i /∈ N ∪ {I }.

It is not difficult to check that the distribution of (ξ∗)1≤i≤n is the same regardless of
(ξi)i∈N∪{I } (the key to this is the observation that (ξi)i /∈N∪{I } given (ξi)i /∈N∪{I } is like dis-
tributing n − χ balls independently among the urns i /∈ N ∪ {I } proportionally to their re-
spective probabilities (pi)i /∈N∪{I }), so that (ξ∗)1≤i≤n is independent of (ξi)i∈N∪{I }.

With ι′1, ι′2, . . . as before, we set η∗
i = ξ∗

i + ∑ξ∗
J

k=1 1[ι′k = i] and N∗ = {ι′1, . . . , ι′ξ∗
J
} and

define

G∗ = − n

σ

(
ϕJ

(
ξ∗
J

)− μJ

)
, 
∗ = − 1

σ

(
ϕJ

(
ξ∗
J

)+ ∑
i∈N∗

(
ϕi

(
ξ∗
i

)− ϕi

(
η∗

i

)))
.

Since (ξ∗
i )1≤i≤n, J and (ι′1, ι′2, . . . ) are independent of (ξi)i∈N∪{I }, it follows that (G∗,
∗)

is an independent copy of (G,
).
Bounding the error terms—preliminaries. We first show that we can assume without loss

of generality that

(5.7) sup
1≤i≤n

pi ≤ K2

m
∧ 1

2
.

Indeed, there are only finitely many m such that K2/m ≥ 1/2, that is, such that m ≤ 2K2,
and hence, using the second condition of (5.5), there are only finitely many pairs (m,n) such
that K2/m ≥ 1/2. For these finitely many cases, we can choose C large enough to make (5.6)
true whenever σ 2 > 0.

We will use (5.7) repeatedly to conclude that, for example,

pj

1 − pi

≤ 2K2

m
≤ C

m
.

Throughout the proof we will use C to denote a constant that can change from expression to
expression but that only depends on K1, K2 and K3.

Bounding the error terms—an event of small probability. Define the event

B1 = {
ξJ = ξ∗

J

}∩ {
ξι′j = ξ∗

ι′j
for all 1 ≤ j ≤ ξJ

}
and note that

B1 ⊂ {
G′ = G∗}, B1 ⊂ {


′ = 
∗}.
Let N• = {ι∗1, . . . , ι∗|χ•−χ |} = {i /∈ N ∪ {I } : ξi �= ξ∗

i }, let M = N• ∪ N ∪ {I } (disjoint union!),
and define the event

B2 = {
M ∩ {J } ∩ N ′ = ∅

}
.

Clearly, B2 ⊂ B1; thus, setting A = Bc
2 , we have{

G′ �= G∗}⊂ A,
{

′ �= 
∗}⊂ A.
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We proceed to bound P[A]. Let G = σ(I, (ιi)i≥1, (ι
∗
i )i≥1, (ξi)1≤i≤n, (ξ

•
i )1≤i≤n); we have

P[A|G] = 1

n

n∑
j=1

P[A|J = j,G] ≤ |M|
n

+ 1

n

∑
j /∈M

E
{∣∣M ∩ N ′∣∣|J = j,G

}

≤ |M|
n

+ 1

n

∑
j /∈M

E

{
ξJ∑

k=1

1
[
ι′k ∈ M

]∣∣∣∣J = j,G
}

= |M|
n

+ 1

n

∑
j /∈M

ξj

∑
k∈M

pk

1 − pj

≤ |M|
n

+ 2K2|M|
nm

∑
j /∈M

ξj .

Since
∑

j /∈M ξj ≤ m, and since

|M| = 1 + |N | + ∣∣χ − χ•∣∣≤ C
(
1 + χ + χ•),

we obtain

(5.8) P
[
A|I, (ιi)i≥1,

(
ι∗i
)
i≥1, (ξi)1≤i≤n,

(
ξ•
i

)
1≤i≤n

]≤ C

n

(
1 + χ + χ•).

Let now G = σ(I, (ιi)i≥1, ξI ). We have

E

{ ∑
i∈N∪{I }

(
ξi + ξ•

i

)∣∣∣∣G
}

≤ E

{∑
i �=I

(
ξi + ξ•

i

) ξI∑
k=1

1[ιk = i]
∣∣∣∣G
}

= E

{∑
i �=I

(
ξi + ξ•

i

) ξI∑
k=1

pi

1 − pI

∣∣∣∣G
}

≤ 2K2ξI

m
E

{∑
i �=I

(
ξi + ξ•

i

)∣∣∣∣G
}

≤ 4K2ξI ,

which, together with (5.8), implies that

P
[
A|I, (ιi)i≥1, ξI

]≤ C(ξI + 1)

n
.

Taking expectation and applying Lemma 5.7, we obtain

P[A] ≤ C

n
.

Bounding the error terms—G and 
. Note first that

|
|3 ≤ C

σ 3

(
eK1ξI + 2

∑
i∈N

eK1(ξi+ξI )

)3
≤ C

σ 3

(
e3K1ξI + |N |2 ∑

i∈N

e3K1(ξi+ξI )

)
,

and since |N | ≤ ξI ≤ eξI , we can further bound this by

|
|3 ≤ C

σ 3

∑
i∈N∪{I }

eC(ξi+ξI ).

Now, given I and ξI , the family of random variables (ξi)i �=I is again an urn model; in partic-
ular, we have

L (ξi |I, ξI ) = Bi
(
m − ξI ,

pi

1 − pI

)
.
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Since the set N is chosen independently of (ξi)i �=I , we can apply Lemma 5.7 consecutively,
and we obtain

E
∑

i∈N∪{I }
eC(ξi+ξI ) ≤ CE

{(
1 + |N |)eCξI

}≤ CE
{
eCξI

}≤ C.

Thus, E|
|3 ≤ C/σ 3. Now,

|G|3 ≤ Cn3

σ 3

(
e3K1ξI + μ3

I

)
,

and since μ3
i ≤ K1Ee3K1ξi , we have

E|G|3 ≤ Cn3

σ 3 EeCξI ≤ Cn3

σ 3 .

Bounding the error terms—G1A and 
1A. Note first that


4 ≤ C

σ 4

(
eK1ξI + 2

∑
i∈N

eK1(ξi+ξI )

)4
≤ C

σ 4

(
e4K1ξI + |N |3 ∑

i∈N

e4K1(ξi+ξI )

)
,

and since |N | ≤ ξI , we can further bound this by


4 ≤ C

σ 4

∑
i∈N∪{I }

eC(ξi+ξI ).

Thus, using (5.8), we obtain that

E
{

41A

}≤ C

nσ 4E

{( ∑
i∈N∪{I }

eC(ξi+ξI )

)(
1 + ∑

i∈N∪{I }

(
ξi + ξ•

i

))}

≤ C

nσ 4E

{( ∑
i∈N∪{I }

eC(ξi+ξI )

)( ∑
i∈N∪{I }

eC(ξi+ξ•
i )

)}

≤ C

nσ 4E

( ∑
i∈N∪{I }

eC(ξi+ξ•
i +ξI )

)2
≤ C

nσ 4E
∑

i∈N∪{I }
eC(ξi+ξ•

i +ξI ).

Similarly as before,

(5.9) E
∑

i∈N∪{I }
eC(ξi+ξ•

i +ξI ) ≤ CE
{(

1 + |N |)eCξI
}≤ C.

Thus, E{
41A} ≤ C
nσ 4 . In very much the same way, we deduce that E{G41A} ≤ Cn3

σ 4 .

Bounding the error terms—G′1A and 
′1A. Similarly as for 
4,


′4 ≤ C

σ 4

∑
i∈N ′∪{J }

eC(ξi+ξJ ).

Let us now prove first that

P
[
A|J,

(
ι′i
)
1≤i≤n, (ξi)1≤i≤n,

(
ξ•
i

)
1≤i≤n

]
≤ C

n

(
1 + ξJ + 1

m

(
1 + ∑

i∈N ′∪{J }
ξi

) ∑
i /∈N ′∪{J }

(
ξi + ξ•

i

)2)
.

(5.10)
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To this end, let G = σ(J, (ι′i)1≤i≤n, (ξi)1≤i≤n, (ξ
•
i )1≤i≤n). We have

P[A|G] = 1

n

n∑
i=1

P[A|I = i,G] = 1 + |N ′|
n

+ 1

n

∑
i /∈N ′∪{J }

P[A|I = i,G]

≤ 1 + ξJ

n
+ 1

n

∑
i /∈N ′∪{J }

E
{∣∣M ∩ (

N ′ ∪ {J })∣∣∣∣I = i,G
}

≤ 1 + ξJ

n
+ 1

n

∑
i /∈N ′∪{J }

E
{∣∣N ∩ (

N ′ ∪ {J })∣∣+ ∣∣N• ∩ (
N ′ ∪ {J })∣∣∣∣I = i,G

}
.

Now, for i /∈ N ′ ∪ {J },
E
{∣∣N ∩ (

N ′ ∪ {J })∣∣∣∣I = i,G
}

≤ E

{
ξI∑

k=1

1
[
ιk ∈ N ′ ∪ {J }]∣∣∣∣I = i,G

}
= ξi

∑
k∈N ′∪{J }

pk

1 − pi

≤ Cξi(1 + ξJ )

m
,

and

E
{∣∣N• ∩ (

N ′ ∪ {J })∣∣∣∣I = i,G
}

≤ E

{|χ−χ•|∑
k=1

1
[
ι∗k ∈ N ′ ∪ {J }]∣∣∣∣I = i,G

}

≤ E

{|χ−χ•|∑
k=1

( ∑
l∈N ′∪{J }

pl

1 −∑
j∈N∪{I } pj

+
∑

l∈N ′∪{J } ξl

m − χ − k + 1

)∣∣∣∣I = i,G
}

≤ E

{|χ−χ•|∑
k=1

(
(1 + ξJ )1

[
ξi + 1 ≤ m

2K2

]
2K2

m

+ 1
[
ξi + 1 >

m

2K2

]
+

∑
l∈N ′∪{J } ξl

m − χ − k + 1

)∣∣∣∣I = i,G
}

≤ C(ξi + ξJ + 1)

m
E
{∣∣χ − χ•∣∣∣∣I = i,G

}

+
( ∑

k∈N ′∪{J }
ξk

)
E

{|χ−χ•|∑
k=1

1

m − χ − k + 1

∣∣∣∣I = i,G
}
.

First observe that

E
{∣∣χ − χ•∣∣∣∣I = i,G

}
≤ E

{
χ + χ•|I = i,G

}= E

{ ∑
k∈N∪{I }

(
ξk + ξ•

k

)∣∣∣∣I = i,G
}

= ξi + ξ•
i +∑

k �=i

(
ξk + ξ•

k

)
E

{
ξi∑

l=1

1[ιl = k]
∣∣∣∣I = i,G

}

= ξi + ξ•
i +∑

k �=i

(
ξk + ξ•

k

) ξi∑
l=1

pk

1 − pi

≤ ξi + ξ•
i +∑

k �=i

(
ξk + ξ•

k

) ξi∑
l=1

2K2

m
≤ C

(
ξi + ξ•

i

)
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and

E
{(

χ + χ•)2|I = i,G
}

≤ E

{ ∑
j∈N∪{I }

∑
k∈N∪{I }

(
ξj + ξ•

j

)(
ξk + ξ•

k

)∣∣∣∣I = i,G
}

= (
ξi + ξ•

i

)2 + 2
(
ξi + ξ•

i

)
E

{∑
j∈N

(
ξj + ξ•

j

)+ ∑
j∈N

∑
k∈N

(
ξj + ξ•

j

)(
ξk + ξ•

k

)∣∣∣∣I = i,G
}
.

Now,

E

{∑
j∈N

(
ξj + ξ•

j

)∣∣∣∣I = i,G
}

≤ E

{∑
j �=I

(
ξj + ξ•

j

)( ξI∑
l=1

1[ιl = j ]
)∣∣∣∣I = i,G

}

=∑
j �=i

(
ξj + ξ•

j

)
E

{
ξI∑

l=1

1[ιl = j ]
∣∣∣∣I = i,G

}
=∑

j �=i

(
ξj + ξ•

j

) ξi∑
l=1

pj

1 − pi

=∑
j �=i

(
ξj + ξ•

j

) ξi∑
l=1

2K2

m
≤ 2K2ξi,

and

E

{∑
j∈N

∑
k∈N

(
ξj + ξ•

j

)(
ξk + ξ•

k

)∣∣∣∣I = i,G
}

≤ E

{∑
j �=I

∑
k �=I

(
ξj + ξ•

j

)(
ξk + ξ•

k

) ξI∑
l=1

1[ιl = j ]
ξI∑

u=1

1[ιu = k]
∣∣∣∣I = i,G

}

=∑
j �=i

∑
k �=i

(
ξj + ξ•

j

)(
ξk + ξ•

k

)
E

{
ξI∑

l=1

1[ιl = j ]
ξI∑

u=1

1[ιu = k]
∣∣∣∣I = i,G

}

≤∑
j �=i

∑
k �=i

(
ξj + ξ•

j

)(
ξk + ξ•

k

)
E

{
ξI∑

l=1

1[ιl = j ]
∣∣∣∣I = i,G

}

×E

{
ξI∑

u=1

1[ιu = k]
∣∣∣∣I = i,G

}

≤∑
j �=i

∑
k �=i

(
ξj + ξ•

j

)(
ξk + ξ•

k

)(
ξi

pj

1 − pi

)2

≤∑
j �=i

∑
k �=i

(
ξj + ξ•

j

)(
ξk + ξ•

k

)(
ξi

2K2

m

)2
≤ 16K2

2ξ2
i ,

so that

E
{(

χ + χ•)2∣∣I = i,G
}≤ (

ξi + ξ•
i

)2 + 2
(
ξi + ξ•

i

)(
2K2ξi + 16K2

2ξ2
i

)≤ C
(
ξi + ξ•

i

)2
.
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Now, since a + |a − b| ≤ 2(a + b) for nonnegative numbers a and b, we have

E

{|χ−χ•|∑
k=1

1

m − χ − k + 1

∣∣∣∣I = i,G
}

≤ E

{ |χ − χ•|
m − m/2

+ 2 log(m + 1)1
[
2
(
χ + χ•)> m/2

]∣∣∣∣I = i,G
}

≤ C

m

(
E
{∣∣χ − χ•∣∣∣∣I = i,G

}
E
{(

χ + χ•)2∣∣I = i,G
})≤ C(ξi + ξ•

i )2

m
.

This leads to

E
{∣∣N• ∩ (

N ′ ∪ {J })∣∣∣∣I = i,G
}

≤ C

(
ξJ + 1

m
+ ξi + 1

m

)(
ξi + ξ•

i

)+ C

( ∑
k∈N ′∪{J }

ξk

)
1

m

(
ξi + ξ•

i

)2

≤ C

m

[
(ξJ + ξi + 1)

(
ξi + ξ•

i

)+ ( ∑
k∈N ′∪{J }

ξk

)(
ξi + ξ•

i

)2]

≤ C

m

[
ξJ

(
ξi + ξ•

i

)+ (
ξi + ξ•

i

)2 +
( ∑

k∈N ′∪{J }
ξk

)(
ξi + ξ•

i

)2]

≤ C

m

(
1 + ∑

k∈N ′∪{J }
ξk

)(
ξi + ξ•

i

)2
.

Putting all together, (5.10) follows. Hence,

E
{

′41A

}
≤ C

nσ 4E

{( ∑
i∈N ′∪{J }

eC(ξi+ξJ )

)
×
(

1 + ξJ + 1

m

(
1 + ∑

i∈N ′∪{J }
ξi

) ∑
i /∈N ′∪{J }

(
ξi + ξ•

i

)2)}

≤ C

nσ 4E

{( ∑
i∈N ′∪{J }

eC(ξi+ξJ )

)
×
(
eξJ + 1

m

( ∑
i∈N ′∪{J }

eξi

) ∑
i /∈N ′∪{J }

e2(ξi+ξ•
i )

)}
.

Now, similarly as in (5.9),

E

{
eξJ

∑
i∈N ′∪{J }

eC(ξi+ξJ )

}
≤ C.

Moreover

1

m
E

{( ∑
i∈N ′∪{J }

eC(ξi+ξJ )

)( ∑
i∈N ′∪{J }

eξi

)( ∑
i /∈N ′∪{J }

e2(ξi+ξ•
i )

)}

≤ 1

m
E

{( ∑
i∈N ′∪{J }

eC′(ξi+ξJ )

)( ∑
i /∈N ′∪{J }

e2(ξi+ξ•
i )

)}

≤ 1

m
E

{
E

( ∑
i∈N ′∪{J }

eC′(ξi+ξJ )

∣∣∣∣ξJ

)
E

( ∑
i /∈N ′∪{J }

e2(ξi+ξ•
i )

∣∣∣∣ξJ

)}
≤ Cn

m
≤ C,

where for the second last inequality we used the fact that conditionally on J and ξJ , the
family (ξi)i �=J is a urn model and hence negatively associated and we can therefore apply
Lemma 5.8, and where for the last inequality we proceeded in the same way as in (5.9). So,
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putting all together we obtain E{
′41A} ≤ C/(σ 4n). In very much the same way we deduce
that E{G′41A} ≤ Cn3/σ 4.

Bounding the error terms—G∗1A and 
∗1A. Similarly as for 
4, and using that ξ∗
i ≤

ξi + ξ•
i + χ , we have

(5.11) 
∗4 ≤ C

σ 4

∑
i∈N∗∪{J }

eC(ξ∗
i +ξ∗

J ) ≤ eCχ
∑

i∈N∗∪{J }
eC(ξi+ξ•

i ).

Let G = σ(I, (ιi)i≥1, (ι
∗
i )i≥1, (ξi)1≤i≤n, (ξ

•
i )1≤i≤n); we have

E

{ ∑
i∈N∗∪{J }

eC(ξi+ξ•
i )1A

∣∣∣∣G
}

= 1

n

n∑
j=1

E

{ ∑
i∈N∗∪{J }

eC(ξi+ξ•
i )1A

∣∣∣∣J = j,G
}
.(5.12)

For j ∈ M we have

E

{ ∑
i∈N∗∪{J }

eC(ξi+ξ•
i )1A

∣∣∣∣J = j,G
}

≤ e
C(ξj+ξ•

j ) +E

{∑
i �=J

eC(ξi+ξ•
i )

ξ∗
J∑

k=1

1
[
ι′k = i

]∣∣∣∣J = j,G
}

≤ e
C(ξj+ξ•

j ) +E

{∑
i �=J

eC(ξi+ξ•
i )

ξ∗
J∑

k=1

pi

1 − pJ

∣∣∣∣J = j,G
}

≤ e
C(ξj+ξ•

j ) + 2K2

m

∑
i �=j

eC(ξi+ξ•
i )ξ∗

j .

(5.13)

For j /∈ M , we have

E

{ ∑
i∈N∗∪{J }

eC(ξi+ξ•
i )1A

∣∣∣∣J = j,G
}

≤ E

{∣∣M ∩ N∗∣∣ ∑
i∈N∗∪{J }

eC(ξi+ξ•
i )

∣∣∣∣J = j,G
}

≤ E

{ ξ∗
J∑

k=1

1
[
ι′k ∈ M

](
eC(ξJ +ξ•

J ) + ∑
i �=J

eC(ξi+ξ•
i )

ξ∗
J∑

k=1

1
[
ι′k = i

])∣∣∣∣J = j,G
}

≤ 2K2|M|
m

ξ∗
j e

C(ξj+ξ•
j ) +E

{
ξ∗
J

∑
i∈M

eC(ξi+ξ•
i )

ξ∗
J∑

k=1

1
[
ι′k = i

]∣∣∣∣J = j,G
}

+E

{ ∑
i �=M∪{J }

eC(ξi+ξ•
i )

ξ∗
J∑

k=1

1
[
ι′k ∈ M

] ξ∗
J∑

k=1

1
[
ι′k = i

]∣∣∣∣J = j,G
}

≤ 2K2|M|
m

ξ∗
j e

C(ξj+ξ•
j ) + ξ∗

j

∑
i∈M

eC(ξi+ξ•
i )ξ∗

j

2K2

m

+ ∑
i �=M∪{j}

eC(ξi+ξ•
i )

2K2|M|ξ∗
j

m

2K2ξ
∗
j

m
,

(5.14)
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where in the last inequality we used that the indicators (1[ι′k ∈ M], (1[ι′k = i]) are negatively
associated whenever i /∈ M . Combining (5.13) and (5.14) with (5.12), we obtain

E

{ ∑
i∈N∗∪{J }

eC(ξi+ξ•
i )1A

∣∣∣∣G
}

≤ C

n

n∑
j=1

(
e
C(ξj+ξ•

j ) + 1

m

∑
i �=j

ξ∗
j eC(ξi+ξ•

i ) + |M|
m

ξ∗
j e

C(ξj+ξ•
j )

+ 1

m

∑
i∈M

ξ∗2
j eC(ξi+ξ•

i ) + |M|
m2

∑
i �=M∪{j}

ξ∗2
j eC(ξi+ξ•

i )

)
.

(5.15)

Using the inequality 1 ≤ 1
m

∑n
i=1 ξi ≤ 1

m

∑n
i=1 eξi and ξ∗

i ≤ ξi + ξ•
i + χ , it is not difficult to

further coarsen the bound in (5.15) to

E

{ ∑
i∈N∗∪{J }

eC(ξi+ξ•
i )1A

∣∣∣∣G
}

≤ C

nm2

n∑
i=1

n∑
k=1

∑
j∈M

e
C(ξi+ξj+ξk+ξ•

i +ξ•
j +ξ•

k +χ)
.

Combining this with (5.11), we have

E
{

∗41A

}≤ C

σ 4nm2

n∑
k=1

n∑
l=1

E
∑
u∈M

eC(ξk+ξl+ξu+ξ•
k +ξ•

l +ξ•
u+χ).

Now, let G = σ(I, (ιu)u≥1, (ξu)1≤u≤n, (ξ
•
u)1≤u≤n); we have

E

{ ∑
u∈N•

eC(ξu+ξ•
u )

∣∣∣∣G
}

≤ E

{ ∑
u/∈N∪{I }

eC(ξu+ξ•
u )

|χ−χ•|∑
w=1

1
[
ι∗w = u

]∣∣∣∣G
}

≤ E

{ ∑
u/∈N∪{I }

eC(ξu+ξ•
u )

|χ−χ•|∑
w=1

(
pu

1 −∑
x∈N∪{I } px

+ ξu

m − χ − w + 1

)∣∣∣∣G
}

≤ E

{ ∑
u/∈N∪{I }

eC(ξu+ξ•
u )

[∣∣χ − χ•∣∣(2K2

m
+ 1

[
ξI + 1 >

m

2K2

])

+ ξu|χ − χ•|
m − m/2

+ 2 log(m + 1)1
[
2
(
χ + χ•)> m/2

]]∣∣∣∣G
}

≤ C

m
E

{ ∑
u/∈N∪{I }

eC(ξu+ξ•
u )((χ + χ•)(ξI + 1) + ξu

(
χ + χ•)+ (

χ + χ•)2)∣∣∣∣G
}

≤ C

m

∑
u/∈N∪{I }

eC(ξu+ξ•
u+χ+χ•).

Thus, since M is the disjoint union of N ∪ {I } and N•, we obtain

E

{∑
u∈M

eC(ξk+ξl+ξu+ξ•
k +ξ•

l +ξ•
u+χ)

}
≤ C

m
E

{ ∑
u/∈N∪{I }

eC(ξk+ξl+ξu+ξ•
k +ξ•

l +ξ•
u+χ+χ•)

}

+E

{ ∑
u∈N∪{I }

eC(ξk+ξl+ξu+ξ•
k +ξ•

l +ξ•
u+χ)

}
.
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Now, conditioning on I , ξI and (ιi)i≥1, we can apply Lemma 5.8 and then Lemma 5.7 so
that, for example,

E
{
eC(ξk+ξl+ξu+ξ•

k +ξ•
l +ξ•

u+χ)|I, ξI , (ιi)i≥1
}≤ C · CξI · eCξI ≤ CeCξI .

Hence,

E

{∑
u∈M

eC(ξk+ξl+ξu+ξ•
k +ξ•

l +ξ•
u+χ)

}
≤ C

m
E

{ ∑
u/∈N∪{I }

eCξI

}
+ CE

{ ∑
u∈N∪{I }

eCξI

}

≤ C

(
n

m
+ 1

)
EeCξI ≤ C,

which finally leads to

E
{

∗41A

}≤ C

σ 4nm2

n∑
k=1

n∑
l=1

C ≤ C

σ 4n
.

Again, in very much the same way we can prove that E{G∗41A} ≤ Cn3/σ 4.
Combining the bounds. Collecting the bounds we need in order to employ Lemma 5.6

below, we have

g0 ≤ Cn

σ
, d0 ≤ C

σ
, P[A] ≤ C

n
, g1, g2, g3 ≤ Cn3/4

σ
, d1, d2, d3 ≤ C

σn1/4 ;
this leads to

s1 ≤ Cn1/2

σ 2 , s2, s3, s4 ≤ Cn

σ 3 .

Applying these bounds to Theorem 5.1 proves the claim. �

5.2.1. Technical lemmas. The following lemma is straightforward to prove.

LEMMA 5.6. Consider the setting of Theorem 5.1. Let A be an event such that {G′ �=
G∗} ∪ {
′ �= 
∗} ⊂ A. With

g3
0 = E|G|3, g4

1 = E
{
G41A

}
, g4

2 = E
{
G′41A

}
, g4

3 = E
{
G∗41A

}
,

d3
0 = E|
|3, d4

1 = E
{

41A

}
, d4

2 = E
{

′41A

}
, d4

3 = E
{

∗41A

}
,

we have

s1 ≤ [g1g2d1d2 + 2g1g2d1d3 + g1g3d1d3]1/2, s2, s3 ≤ g0d
2
0 ,

s4 ≤ (
g1g2d2 + g1g2d3 + g1g2(d2 ∧ d3) + g1g3(d2 ∧ d3)

)
P[A]1/4.

LEMMA 5.7. Let Z ∼ Bi(r, q) with r ≤ m and q ≤ c/m. Then for any a, b ≥ 0,

E
(
ZaebZ)≤ C(a, b, c).

PROOF. This easily follows from

E
(
ZaebZ)≤ Ee(a+b)Z = exp

(
r log

(
qea+b + 1 − q

))≤ exp
(
rqea+b)≤ exp

(
cea+b). �

LEMMA 5.8. The family of random variables (ξ1, . . . , ξn) is negatively associated; that
is, for nondecreasing functions f and g and disjoint sets A,B ⊂ {1, . . . , n},

E
{
f
(
(ξi)i∈A

)
g
(
(ξi)i∈B

)}≤ Ef
(
(ξi)i∈A

)
Eg
(
(ξi)i∈B

)
.
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LEMMA 5.9. Let a′, a∗, b, b′ and b∗ be real numbers. With x̄ = (x ∧ 1) ∨ (−1),

(i)
∣∣a′b̄′ − a∗b̄∗∣∣

≤ ∣∣a′∣∣(∣∣b′ − b∗∣∣∧ 2
)+ ∣∣a′ − a∗∣∣(∣∣b∗∣∣∧ 1

)
,

(ii)
∣∣a′(|b| ∧ ∣∣b′∣∣∧ 1

)
1
[
bb′ > 0

]− a∗(|b| ∧ ∣∣b∗∣∣∧ 1
)
1
[
bb∗ > 0

]∣∣
≤ ∣∣a′∣∣(∣∣b′ − b∗∣∣∧ 1

)+ ∣∣a′ − a∗∣∣(|b| ∧ ∣∣b∗∣∣∧ 1
)
,

(iii)
∣∣a′(|b| ∧ ∣∣b′∣∣∧ 1

)21
[
bb′ > 0

]− a∗(|b| ∧ ∣∣b∗∣∣∧ 1
)21

[
bb∗ > 0

]∣∣
≤ 2

∣∣a′∣∣(|b| ∧ 1
)(∣∣b′ − b∗∣∣∧ 1

)+ ∣∣a′ − a∗∣∣(|b| ∧ ∣∣b′∣∣∧ 1
)2

.

PROOF. We have∣∣a′b̄′ − a∗b̄∗∣∣≤ ∣∣a′b̄′ − a′b̄∗∣∣+ ∣∣a′b̄∗ − a∗b̄∗∣∣≤ ∣∣a′∣∣∣∣b̄′ − b̄∗∣∣+ ∣∣a′ − a∗∣∣∣∣b̄∗∣∣
≤ ∣∣a′∣∣(∣∣b′ − b∗∣∣∧ 2

)+ ∣∣a′ − a∗∣∣(∣∣b∗∣∣∧ 1
)
,

which proves (i). Moreover, by considering eight possible combinations of the signs of b, b′
and b∗, we can conclude that

(5.16)
∣∣(|b| ∧ ∣∣b′∣∣∧ 1

)
1
[
bb′ > 0

]− (|b| ∧ ∣∣b∗∣∣∧ 1
)
1
[
bb∗ > 0

]∣∣≤ ∣∣b′ − b∗∣∣∧ 1.

This in turn ensures that∣∣a′(|b| ∧ ∣∣b′∣∣∧ 1
)
1
[
bb′ > 0

]− a∗(|b| ∧ ∣∣b∗∣∣∧ 1
)
1
[
bb∗ > 0

]∣∣
≤ ∣∣a′∣∣ · ∣∣(|b| ∧ ∣∣b′∣∣∧ 1

)
1
[
bb′ > 0

]− (|b| ∧ ∣∣b∗∣∣∧ 1
)
1
[
bb∗ > 0

]∣∣
+ ∣∣a′ − a∗∣∣ · (|b| ∧ ∣∣b∗∣∣∧ 1

)
1
[
bb∗ > 0

]
≤ ∣∣a′∣∣(∣∣b′ − b∗∣∣∧ 1

)+ ∣∣a′ − a∗∣∣(|b| ∧ ∣∣b∗∣∣∧ 1
)
,

as claimed in (ii). Last, using |x2 − y2| = |x + y| · |x − y| and (5.16) in the second inequality
below, we obtain∣∣a′(|b| ∧ ∣∣b′∣∣∧ 1

)21
[
bb′ > 0

]− a∗(|b| ∧ ∣∣b∗∣∣∧ 1
)21

[
bb∗ > 0

]∣∣
≤ ∣∣a′∣∣ · ∣∣(|b| ∧ ∣∣b′∣∣∧ 1

)21
[
bb′ > 0

]− (|b| ∧ ∣∣b∗∣∣∧ 1
)21

[
bb∗ > 0

]∣∣
+ ∣∣a′ − a∗∣∣ · ∣∣(|b| ∧ ∣∣b∗∣∣∧ 1

)21
[
bb∗ > 0

]∣∣
≤ ∣∣a′∣∣[(|b| ∧ ∣∣b′∣∣∧ 1

)+ (|b| ∧ ∣∣b∗∣∣∧ 1
)](∣∣b′ − b∗∣∣∧ 1

)
+ ∣∣a′ − a∗∣∣(|b| ∧ ∣∣b∗∣∣∧ 1

)2
≤ 2

∣∣a′∣∣(|b| ∧ 1
)(∣∣b′ − b∗∣∣∧ 1

)+ ∣∣a′ − a∗∣∣(|b| ∧ ∣∣b∗∣∣∧ 1
)2

,

which proves (ii). �
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RAIČ, M. (2003). Normal approximation with Stein’s method. In Proceedings of the Seventh Young Statisticians

Meeting.
RIDER, B. (2004). Order statistics and Ginibre’s ensembles. J. Stat. Phys. 114 1139–1148. MR2035641

https://doi.org/10.1023/B:JOSS.0000012520.37908.07
SCHREIBER, T. and YUKICH, J. E. (2013). Limit theorems for geometric functionals of Gibbs point processes.

Ann. Inst. Henri Poincaré Probab. Stat. 49 1158–1182. MR3127918 https://doi.org/10.1214/12-AIHP500
SOSHNIKOV, A. (2000). Determinantal random point fields. Russian Math. Surveys 55 923–975.
STEIN, C. (1972). A bound for the error in the normal approximation to the distribution of a sum of dependent

random variables. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability
(Univ. California, Berkeley, Calif., 1970/1971), Vol. II: Probability Theory 583–602. MR0402873

TORRISI, G. L. and LEONARDI, E. (2014). Large deviations of the interference in the Ginibre network model.
Stoch. Syst. 4 173–205. MR3353217 https://doi.org/10.1214/13-SSY109

XIA, A. and YUKICH, J. E. (2015). Normal approximation for statistics of Gibbsian input in geometric probabil-
ity. Adv. in Appl. Probab. 47 934–972. MR3433291 https://doi.org/10.1239/aap/1449859795

ZESSIN, H. (2009). Der Papangelou Prozess. J. Contemp. Math. Anal. 44 36–44.

http://www.ams.org/mathscinet-getitem?mr=3520017
https://doi.org/10.1007/s00440-015-0644-6
http://www.ams.org/mathscinet-getitem?mr=2336596
https://doi.org/10.1214/EJP.v12-429
http://www.ams.org/mathscinet-getitem?mr=1878288
https://doi.org/10.1214/aoap/1015345393
http://www.ams.org/mathscinet-getitem?mr=2035641
https://doi.org/10.1023/B:JOSS.0000012520.37908.07
http://www.ams.org/mathscinet-getitem?mr=3127918
https://doi.org/10.1214/12-AIHP500
http://www.ams.org/mathscinet-getitem?mr=0402873
http://www.ams.org/mathscinet-getitem?mr=3353217
https://doi.org/10.1214/13-SSY109
http://www.ams.org/mathscinet-getitem?mr=3433291
https://doi.org/10.1239/aap/1449859795
https://doi.org/10.1007/s00440-015-0644-6

	Introduction
	A general theorem
	Random measures
	Applications
	Completely random measures
	Excursion random measure
	The total edge length of Ginibre-Voronoi tessellations
	The total edge length of Poisson-Voronoi tessellations

	Stein couplings
	Local dependence
	Additive functionals in the classical occupancy scheme
	Technical lemmas


	Acknowledgments
	Funding
	References

