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In this paper, we consider isotropic and stationary real Gaussian ran-
dom fields defined on S

2 ×R and we investigate the asymptotic behavior, as
T → +∞, of the empirical measure (excursion area) in S

2 × [0, T ] at any
threshold, covering both cases when the field exhibits short and long mem-
ory, that is, integrable and nonintegrable temporal covariance. It turns out that
the limiting distribution is not universal, depending both on the memory pa-
rameters and the threshold. In particular, in the long memory case a form of
Berry’s cancellation phenomenon occurs at zero-level, inducing phase transi-
tions for both variance rates and limiting laws.

1. Introduction.

1.1. Background and motivations. In recent years, special interest has been devoted to
the study of random fields Z = {Z(x), x ∈ S

2} defined on the two-dimensional unit sphere
S

2, finding applications in several areas such as medical imaging, atmospheric sciences, geo-
physics, solar physics and cosmology (see, e.g., [10, 11, 23, 30]). In particular, considerable
attention has been drawn by the investigation of geometric functionals of Gaussian excursion
sets on manifolds (see, e.g., [1, 2]). Indeed, aiming to study the geometry of a random field
Z, it is natural to introduce the family of excursion sets{

x ∈ S
2 : Z(x) ≥ u

}
indexed by the threshold u ∈ R; under Gaussianity and isotropy, the expected value of their
Lipschitz–Killing curvatures (i.e., area, boundary length and Euler–Poincaré characteristic),
is easily obtained as a special case of the celebrated Gaussian kinematic formula, see for ex-
ample, [1], Ch. 13. However, what is more challenging is to investigate fluctuations around
these expected values and for this purpose, asymptotic methods must be exploited, consid-
ering sequences of random fields. In particular, a number of recent papers has focussed on
the asymptotic behavior of sequences of Gaussian Laplace eigenfunctions (random spherical
harmonics), in the high-energy limit, that is, as the eigenvalues diverge. Several results have
been given concerning the asymptotic variance, the limiting distribution and the correlation
for different values of the thresholding parameter u ∈ R of Lipschitz–Killing curvatures of
their excursion sets, see for example, [8, 9, 25, 26, 29, 39, 42] and the references therein; see
also [7, 17, 24, 32, 34, 41] for related results on the standard flat torus and on the Euclidean
plane. Some of these results entail rather surprising issues, for instance the cancellation of
the leading variance terms for specific threshold values (typically in the nodal case u = 0)
and the possibility to express wide classes of functionals as simple polynomial integrals on
S2 of the underlying fields, up to lower order terms.
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The purpose of this paper is to begin the investigation of these same issues for a different
class of fields, that is, isotropic and stationary Gaussian fields on S

2 × R, which can be
immediately interpreted as spherical random fields evolving over time (see, e.g., [3, 5, 22]
and the references therein). Although the present manuscript is mainly of theoretical nature, it
is very easy to figure out several areas of applications where such random fields emerge most
naturally, including the scientific research streams mentioned above. In the next subsection,
we introduce our setting in more detail.

1.2. Sphere-cross-time random fields. Let us fix a probability space (�,F,P). We de-
note by S

2 the two-dimensional unit sphere with the round metric. A space–time real-valued
spherical random field

(1) Z = {
Z(x, t), x ∈ S

2, t ∈ R
}

is a collection, indexed by S
2 ×R, of real random variables such that the map

Z : � × S
2 ×R →R

is F⊗B(S2 ×R)-measurable, where B(S2 ×R) stands for the Borel σ -field of S2 ×R. We
say that Z is Gaussian if for every n ≥ 1, x1, . . . , xn ∈ S

2, t1, . . . tn ∈ R, the random vector
(Z(x1, t1), . . . ,Z(xn, tn)) is Gaussian.

CONDITION 1.1. The space–time real-valued spherical real random field Z in (1) is
Gaussian and:

• zero-mean, that is, E[Z(x, t)] = 0 for every x ∈ S
2, t ∈ R;

• stationary and isotropic, that is,

(2) E
[
Z(x, t)Z(y, s)

]= �
(〈x, y〉, t − s

)
for every x, y ∈ S

2, t, s ∈R, where � : [−1,1]×R→R is a positive semidefinite function
and 〈·, ·〉 denotes the standard inner product in R

3;
• mean square continuous, that is, � is continuous.

The assumption of zero-mean is of course just a convenient normalization with no mathe-
matical impact. The assumption of Gaussianity ensures that we need to make no distinction
between so-called weak and strong stationarity, see for example, [23], Definition 5.9, and it
simplifies some of our proofs to follow; moreover, it is the common background with basi-
cally all the previous literature on the geometry of excursion sets (starting from [1]), likewise
the assumption of mean square-continuity, see for example, [3, 18] and the references therein.

From now on we assume that Z in (1) satisfies Condition 1.1.

1.2.1. Karhunen–Loève expansions. It is well known (see, e.g., [3], Theorem 3.3, or [22],
Theorem 3) that the following expansion for the covariance function � in (2) holds:

(3) �(θ, τ ) =
+∞∑
�=0

2� + 1

4π
C�(τ)P�(θ), (θ, τ ) ∈ [−1,1] ×R,

where {C�, � ≥ 0} is a sequence of continuous positive semidefinite functions on R, P� de-
notes the �-th Legendre polynomial [36], Section 4.7, and the series is uniformly convergent,
which is equivalent to

(4)
+∞∑
�=0

2� + 1

4π
C�(0) < +∞.
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Obviously C�(0) ≥ 0 for every � = 0,1,2, . . . . Let T > 0, it is straightforward (see, e.g., [5])
to prove that the following Karhunen–Loève expansion for Z holds in L2(� × S

2 × [0, T ]):

(5) Z(x, t) =
+∞∑
�=0

�∑
m=−�

a�,m(t)Y�,m(x),

where {Y�,m, � ≥ 0,m = −�, . . . , �} is the standard real orthonormal basis of spherical har-
monics [23], Section 3.4, for L2(S2), and

(6) a�,m(t) =
∫
S2

Z(x, t)Y�,m(x) dx,

so that {a�,m, � ≥ 0,m = −�, . . . , �} is a family of independent, stationary, centered, Gaussian
processes on R such that for every t, s ∈ R

E
[
a�,m(t)a�,m(s)

]= C�(t − s).

REMARK 1.2. We will investigate the asymptotic behavior of Z in S
2 × [0, T ] as T →

+∞, in particular the set of attainable laws of its geometrical functionals. Our proofs will
rely on L2(P)-bounds, uniform with respect to the parameter T , thus allowing a fruitful use
of the expansion in (5) which actually holds true for every fixed T > 0.

Now let

Ñ := {
� ≥ 0 : C�(0) 	= 0

}
.

From now on, we will consider only � ∈ Ñ unless otherwise specified. Let us define

(7) Z�(x, t) :=
�∑

m=−�

a�,m(t)Y�,m(x), (x, t) ∈ S
2 ×R.

By construction, {Z�, � ∈ Ñ} is a sequence of independent random fields and each Z�(·, t)
almost surely solves the Helmholtz equation

	S2Z�(·, t) + �(� + 1)Z�(·, t) = 0,

where 	S2 denotes the spherical Laplacian. For notational convenience and without loss of
generality we also assume that

(8) E
[
Z2(x, t)

]= ∑
�∈Ñ

σ 2
� = 1, σ 2

� := E
[
Z2

�(x, t)
]= 2� + 1

4π
C�(0).

1.2.2. Long and short range dependence. For � ∈ Ñ, Bochner Theorem ensures that there
exists a probability measure μ� on (R,B(R)) such that

C�(τ)

C�(0)
=
∫
R

eiλτ dμ�(λ), τ ∈ R.

If μ� is absolutely continuous with respect to the Lebesgue measure, then we may introduce
the normalized spectral density as the function f� :R →R

+ such that

(9)
C�(τ)

C�(0)
=
∫
R

eiλτ f�(λ) dλ, τ ∈ R;
we have of course ∫

R

f�(λ) dλ = 1.

If C� is integrable on R, then clearly f� exists.
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Let us now define the family of symmetric real-valued functions {gβ,β ∈ (0,1]} as fol-
lows:

(10) gβ(τ ) =
{(

1 + |τ |)−β if β ∈ (0,1),(
1 + |τ |)−α if β = 1,

for some α ∈ [2,+∞). We believe that the assumption α ∈ [2,+∞) is not essential for the
validity of our main findings; indeed it seems likely that it can be replaced with α ∈ (1,+∞).
Nevertheless, the current formulation is instrumental to obtain neat proofs of some technical
results, in particular Lemma 4.13 in Appendix 5.5.

CONDITION 1.3. There exists a sequence {β� ∈ (0,1], � ∈ Ñ} such that

C�(τ) = G�(τ) · gβ�
(τ ), � ∈ Ñ,

where gβ�
is as in (10) and

sup
�∈Ñ

∣∣∣∣G�(τ)

C�(0)
− 1

∣∣∣∣= o(1) as τ → +∞.

Moreover 0 ∈ Ñ (i.e., C0(0) 	= 0) and if β0 = 1 then∫
R

C0(τ ) dτ > 0.

From now on we assume that Condition 1.3 holds for the sequence {C�, � ∈ Ñ}. Note that
G�(0) = C�(0) for every � ∈ Ñ.

REMARK 1.4 (Abelian/Tauberian type results). Let � ∈ Ñ. The coefficient β� in Con-
dition 1.3 can be interpreted as a “memory” parameter; in particular, for β� = 1 (resp.
β� ∈ (0,1)) the covariance function C� is integrable on R (resp.

∫
R

|C�(τ)|dτ = +∞) and
the corresponding process has so-called short (resp. long) memory behavior (note that C�(0)

is always nonnegative but C�(τ) need not be, for τ > 0). Under some regularity assumptions,
an equivalent characterization could be given in terms of the behavior at the origin of the
spectral density f� in (9): long-memory entailing divergence to infinity, whereas in the short-
memory/integrable case f� is immediately seen to be bounded in 0. Clearly one could choose
alternative parametrizations for gβ(τ ), such as for instance

gβ(τ ) = (
1 + |τ |2)−β/2 or gβ(τ ) = (

1 + |τ |γ )−β;
these choices would not alter by any means the substance of our results, as our condition is
basically requiring that, for all �,

lim
τ→∞

C�(τ)

C�(0)τ−β�
= 1.

Possible generalizations would be to allow for the possibility of slowly-varying factors,
that is, to allow for autocorrelations of the form L(|τ |)τ−β , where L(·) is such that
limτ→∞ L(|τ |)/L(c|τ |) = 1 for all c > 0. These generalizations are common in the long
memory literature but would not alter by any means the substance of our results, so we avoid
to consider them for brevity’s sake.

Some conventions. From now on, c ∈ (0,+∞) will stand for a universal constant which
may change from line to line. Let {an,n ≥ 0}, {bn,n ≥ 0} be two sequences of positive
numbers: we will write an ∼ bn if an/bn → 1 as n → +∞, an ≈ bn whenever an/bn → c,
an = o(bn) if an/bn → 0, and finally an = O(bn) if eventually an/bn ≤ c.
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2. Main results. Let u ∈R. We consider the random process Au on R defined as

(11) Au(t) := area
(
Z(·, t)−1([u,∞))

) =
∫
S2

1Z(x,t)≥u dx, t ∈R,

where dx is an element of Lebesgue measure on the sphere. In words, Au(t) represents
the empirical measure (i.e., the excursion area) of Z(·, t) corresponding to the level u; its
expected value is immediately seen to be given by E[Au(t)] = 4π(1 − �(u)), where

�(u) :=
∫ +∞
u

φ(t) dt, φ(t) := 1√
2π

e−t2/2,

� (resp. φ) denoting the tail distribution (resp. probability density) function of a standard
Gaussian random variable. This area functional for spherical random fields has been consid-
ered by many authors, starting for instance from [19], see also Chapter 2 in [16].

We are interested in the fluctuations of Au(t) around its expected value, and we hence
introduce the following statistics: for T > 0

(12) MT (u) :=
∫
[0,T ]

(
Au(t) −E

[
Au(t)

])
dt

and its normalized version

(13) M̃T (u) := MT (u)√
VarMT (u)

.

CONDITION 2.1. Let {β�, � ∈ Ñ} be the sequence defined in Condition 1.3.

• The sequence {β�, � ∈ Ñ, � ≥ 1} admits minimum. Let us set

(14) β�� := min{β�, � ∈ Ñ, � ≥ 1}, I� := {� ∈ Ñ : β� = β��}.
• If I� 	= Ñ, then the sequence {β�, � ∈ Ñ \ I�, � ≥ 1} admits minimum. Let us set

(15) β��� := min
{
β�, � ∈ N\I�, � ≥ 1

}
.

Note that β��, β��� ∈ (0,1] and for � ∈ I�, obviously C�(0) > 0. In words, β�� represents
the smallest exponent corresponding to the largest memory, I� the set of multipoles where
this minimum is achieved, and β��� the second smallest exponent β� governing the time decay
of the autocovariance C� at some given multipole �. Note that we are excluding the multipole
� = 0 by the definition of β�� and β��� in (14) and (15), on the other hand � = 0 may belong
to I�. We assume that Condition 2.1 holds from now on.

As we shall see below, the asymptotic behavior of MT (u) in (12), as T → +∞, is gov-
erned by a subtle interplay between the value of the parameters β�� , β��� and the threshold
level u.

2.1. Long memory behavior. We start investigating the case of long-range dependence.

THEOREM 2.2. If either u 	= 0 and β0 < min(2β��,1) or u = 0 and β0 < min(3β��,1),
then

lim
T →∞

Var(MT (u))

T 2−β0
= 2φ2(u)C0(0)

(1 − β0)(2 − β0)
,

and

M̃T (u)
d→

T →+∞Z,

where Z ∼ N (0,1) is a standard Gaussian random variable and →d denotes convergence
in distribution.
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Recall that by assumption C0(0) > 0 (see Condition 1.3), hence the limiting variance con-
stant in Theorem 2.2 is strictly positive.

REMARK 2.3. In words, Theorem 2.2 holds when the zero-th order multipole component
{a00(t), t ∈ R} is long memory (β0 < 1) and all the other multipoles have asymptotically
smaller variance (a consequence of either β0 < 2β�� , when u 	= 0, or β0 < 3β�� , when u = 0,
as we will show below). It should be recalled that, by (6),

a00(t) =
∫
S2

Z(x, t)Y00(x) dx = 1√
4π

∫
S2

Z(x, t) dx,

that is, a00(t) corresponds to the sample mean of the random field Z(·, t) at the instant t ∈ R.

REMARK 2.4. It seems possible to extend Theorem 2.2 both in the direction of func-
tional convergence, that is, uniform convergence with respect to u (see [12, 28]) and to quan-
titative versions of the central limit theorem in Kolmogorov or Wassestein distances, see [31]
for the discussion of the celebrated Stein–Malliavin approach, as well as Chapter 2 of [16]
for early results in the case of the excursion area. For brevity’s sake, these extensions are not
investigated here and are left as possible topics for future research.

The limiting distribution in Theorem 2.2 is universal; this is not the case for the theorems
to follow. We need first to recall one more definition.

DEFINITION 2.5. The random variable Xβ has the standard Rosenblatt distribution (see,
e.g., [37] and also [13, 38]) with parameter β ∈ (0, 1

2) if it can be written as

(16) Xβ = a(β)

∫
(R2)′

ei(λ1+λ2) − 1

i(λ1 + λ2)

W(dλ1)W(dλ2)

|λ1λ2|(1−β)/2 ,

where W is the white noise Gaussian measure on R, the stochastic integral is defined in the
Ito’s sense (excluding the diagonals: as usual, (R2)′ stands for the set {(λ1, λ2) ∈ R

2 : λ1 	=
λ2}), and

(17) a(β) := σ(β)

2�(β) sin((1 − β)π/2)
,

with

σ(β) :=
√

1

2
(1 − 2β)(1 − β).

We say the random vector V satisfies a composite Rosenblatt distribution of degree N ∈ N

with parameters c1, . . . , cN ∈ R, if

(18) V = VN(c1, . . . , cN ;β)
d=

N∑
k=1

ckXk;β,

where {Xk;β}k=1,...,N is a collection of i.i.d. standard Rosenblatt random variables of param-
eter β .

Note that indeed E[Xβ] = 0 and Var(Xβ) = 1. The Rosenblatt distribution was first intro-
duced in [37] and has already appeared in the context of spherical isotropic Gaussian random
fields as the exact distribution of the correlogramme, see [21].
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REMARK 2.6. The characteristic function �V of V = VN(c1, . . . , cN ;β) in (18) is given
by (see, e.g., [40])

�V (θ) =
N∏

k=1

ξβ(ckθ), ξβ(θ) = exp

(
1

2

+∞∑
j=2

(
2iθσ (β)

)j aj

j

)
,

where ξβ is the characteristic function of Xβ in (16), the series is only convergent near the
origin and

aj :=
∫
[0,1]j

|x1 − x2|−β |x2 − x3|−β · · · |xj−1 − xj |−β |xj − x1|−β dx1 dx2 · · · dxj .

Note that when β → 0+ then ξβ approaches the characteristic function of 1√
2
(Z2 − 1), where

Z ∼N (0,1) is a standard Gaussian random variable. As β → 1
2
−

the limit is the characteris-
tic function of Z. Many more characterizations of the Rosenblatt distribution have been given
in the literature: for instance its infinite divisibility properties and Levy–Khinchin represen-
tation are discussed in [20] and the references therein.

THEOREM 2.7. Assume that u 	= 0. If 2β�� < min(β0,1) we have

lim
T →∞

Var(MT (u))

T 2−2β��
= u2φ(u)2

2(1 − 2β��)(1 − β��)

∑
�∈I�

(2� + 1)C�(0)2.

If β0 = 1 and 2β�� = 1 we have

lim
T →∞

Var(MT (u))

T logT
= u2φ(u)2

∑
�∈I�

(2� + 1)C�(0)2.

Assume in addition that #I� is finite, then as T → +∞

(19) M̃T (u)
d→ ∑

�∈I�

C�(0)√
v�

V2�+1(1, . . . ,1;β��),

where {V2�+1(1, . . . ,1;β��), � ∈ I�} is a family of independent composite Rosenblatt random
variables as in (18) and

v� = a(β��)2
∑
�∈I�

2(2� + 1)C�(0)2

(1 − β��)(1 − 2β��)
,

where a(β��) is as in (17).

Recall that for � ∈ I� we have C�(0) > 0 (see (14)) hence the limiting variance constants
in Theorem 2.7 are strictly positive. For the limiting random variable in (19), note that∑

�∈I�

C�(0)√
v�

V2�+1(1, . . . ,1;β��)
d=VN�(c1, . . . , cN�;β��),

where N� :=∑
�∈I�(2� + 1) and

(c1, . . . , cN�) = 1√
v�

(
C�1(0), . . . ,C�1(0)︸ ︷︷ ︸

(2�1+1) times

, . . . ,C�k
(0), . . . ,C�k

(0)︸ ︷︷ ︸
(2�k+1) times

)
,

with I� = {�1, . . . , �k}.
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REMARK 2.8 (Normal approximation of Rosenblatt distributions). The distribution of
the random variable in (18) is, of course, non-Gaussian. However, in some circumstances it
can be closely approximated by a Normal law. Indeed, consider for simplicity the case where
the minimum for {β�, � ∈ Ñ} is attained in a single multipole that we call ��, that is, I� = {��}.
Then the limiting distribution in (19) is

C��(0)√
v�

V2��+1(1, . . . ,1;β�∗) = 1√
2�� + 1

V2��+1(1, . . . ,1;β�∗)

and by an immediate application of the classical Berry–Esseen Theorem (see, e.g., [14]) one
has that

dKol

(
1√

2�� + 1
V2��+1(1, . . . ,1, β��),Z

)
≤ c · E[|Xβ��

|3]√
2�� + 1

,

where Z ∼ N (0,1) and dKol denotes Kolmogorov distance, see for example, [31], Section
C.2. The value of �� for a given random field is fixed, so no central limit theorem occurs;
however for �� large enough the resulting composite Rosenblatt distribution can become ar-
bitrary close to a standard Gaussian variable. Recall here that components at high multipoles
�� � 0 correspond to small-scale features, so these cases would correspond to random fields
which are dominated by a “local” behavior with high-persistence over time.

THEOREM 2.9. Assume that u = 0 and that there exists an even1 multipole � ∈ I�. If
3β�� < min(1, β0), then

lim
T →∞

Var(MT (u))

T 2−3β��

= 2

3!(1 − 3β��)(2 − 3β��)

∑
�1,�2,�3∈I�

G000
�1�2�3

3∏
i=1

√
2�i + 1

4π
C�i

(0),

where

(20) G000
�1�2�3

:=
∫
S2

Y�1,0(x)Y�2,0(x)Y�3,0(x) dx

is a so-called Gaunt integral (cf. (22)). If β0 = 1 and 3β�� = 1 then

lim
T →∞

Var(MT (u))

T logT
= 8πHq−1(u)2φ(u)2

3!
∑

�1,�2,�3∈I�

G000
�1,�2,�3

3∏
i=1

√
2�i + 1

4π
C�i

(0).

Moreover we have, as T → +∞,

(21) M̃T (u) = −Var(MT (u))−1/2

3!√2π

∫
S2×[0,T ]

H3
(
Z(x, t)

)
dx dt + oP(1),

where H3(t) := t3 − 3t , t ∈ R is the third Hermite polynomial (cf. (24)) and oP(1) is a family
of random variables converging to zero in probability.

Recall that for � ∈ I� we have C�(0) > 0 (see (14)) and note that G000
�1�2�3

in (20) is non-

negative (see, e.g., [23], Remark 3.45); moreover if � is even, then G000
��� > 0, see [23], in

particular Proposition 3.43 and (3.61). Hence under the assumptions of Theorem 2.9 the lim-
iting variance constants are strictly positive.

1The motivation for this assumption is described just after the statement of Theorem 2.9.
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REMARK 2.10. Using the same steps as in the classical papers [13, 38], it seems possible
to prove that the right hand side of (21) (and hence M̃T (u)), under the setting of Theorem 2.9,
converges in distribution to a weighted sum of higher order Rosenblatt random variables
(more precisely, of order 3). However, because for the probability laws of the latter very
little is known, and even less so for their linear combinations, we refrain from rigorously
investigating this issue here.

REMARK 2.11. For simplicity of presentation, we are ruling out some boundary cases
(such as β0 = 2β�� ), which could be dealt with the same techniques as we shall exploit below:
the limit distributions would just correspond to linear combinations of the asymptotic random
variables that we obtained above.

2.2. Short memory behavior. Theorems 2.2, 2.7 and 2.9 have all considered cases where
some form of long-memory behavior is present on the temporal side, meaning that β� < 1 for
at least one instance of the multipole �. In this section we investigate the case where on all
scales no form of long-range dependence occurs.

We first need to introduce some more notation: for q ≥ 3, let �1, . . . , �q ≥ 0 and mi ∈
{−�i, . . . , �i} for i = 1, . . . , q . The generalized Gaunt integral ([23], page 82) of parameters
q, �1, . . . , �q,m1, . . . ,mq is defined as (cf. (20))

(22) Gm1···mq

�1···�q
:=
∫
S2

Y�1,m1(x) · · ·Y�q,mq (x) dx,

where {Y�,m, � ≥ 0,m = −�, . . . , �} still denotes the family of spherical harmonics introduced
in Section 1.2.1.

THEOREM 2.12. Assume β0 = 1. If either u 	= 0 and 2β�� > 1 or u = 0 and 3β�� > 1,
we have

lim
T →∞

Var(MT (u))

T
=

+∞∑
q=1

s2
q,

where

s2
1 := φ(u)2

∫
R

C0(τ ) dτ,

s2
2 := u2φ(u)2

2

+∞∑
�=0

(2� + 1)

∫
R

C�(τ)2 dτ,(23)

s2
q := 4πHq−1(u)2φ(u)2

q!
+∞∑

�1,...,�q=0

G0...0
�1...�q

∫
R

q∏
i=1

√
2�i + 1

4π
C�i

(τ ) dτ, q ≥ 3.

Moreover, as T → +∞,

M̃T (u)
d→ Z,

Z ∼ N (0,1) being a standard Gaussian random variable.

Recall that for β0 = 1 we have
∫
R

C0(τ ) dτ ∈ (0,+∞) (see Condition 1.3) so that s2
1 > 0

yielding
∑

q≥1 s2
q > 0 (the limiting variance constant is strictly positive).

REMARK 2.13 (On Berry’s cancellation). It is interesting to note that a phase transi-
tion occurs at u = 0. Indeed, for 2β�� < 1 one observes a form of Berry’s cancellation phe-
nomenon (see, e.g., [4, 42]), in the sense that the variance diverges with a smaller order rate.
More precisely, there are two possibilities:
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• for 3β�� < 1 (resp. 3β�� = 1), the rate of the variance changes from T 2−2β�� to T 2−3β�� ,
(resp. T logT ) and the limiting distribution is non-Gaussian (Theorem 2.9 and Re-
mark 2.10);

• for 3β�� > 1, the rate of the variance changes from T 2−2β�� to T , and the limiting distribu-
tion is Gaussian (Theorem 2.12).

3. Outline of the paper. The results in Theorems 2.2, 2.7, 2.9 and 2.12 fully characterize
the behavior of the empirical measure for sphere-cross-time random fields. The resulting
scheme is, in the end, rather simple and can be summarized as follows.

• Short Memory Behavior: this setting corresponds to integrable covariance functions and
occurs either when β0 = 1 and 2β�� > 1, for u 	= 0, or when β0 = 1 and 3β�� > 1, for
u = 0. In such circumstances, the limiting distribution is always Gaussian and the variance,
as T → +∞, is asymptotic to T , for all values of the threshold parameter u. Hence, no
form of Berry’s cancellation, as in Remark 2.13, can occur.

• Long Memory Behavior: this setting corresponds to nonintegrable temporal autocovariance
and in this case the picture is more complicated:
– for β0 < min(2β��,1), the variance grows as T 2−β0 and the limiting distribution is Gaus-

sian, for all values of u;
– for 2β�� < min(β0,1), the variance grows as T 2−2β�� and the limiting distribution is

non-Gaussian (we denote it as composite Rosenblatt), for u 	= 0; however, for u = 0, a
form of Berry’s cancellation occurs, the variance is of order T max(2−3β�� ,1), the limiting
distribution being non-Gaussian for 2 − 3β�� > 1 and Gaussian for 2 − 3β�� < 1.

3.1. Overview of the proofs. The rationale behind these results can be more easily under-
stood if we review the main ideas behind the proofs.

3.1.1. Chaotic expansions. The main technical tool that we are going to exploit is the
possibility to expand our area functional MT (u) in (12) into so-called Wiener chaoses, by
means of the Stroock–Varadhan decomposition, see [31], Section 2.2, as well as our Sec-
tion 4. Briefly, the latter is based on the fact that the sequence of (normalized) Hermite poly-
nomials {Hq/

√
q!}q≥0

(24) H0 ≡ 1, Hq(u) := (−1)qφ(u)−1 dq

duq
φ(u), q ≥ 1

(where φ still denotes the probability density function of a standard Gaussian random vari-
able) is a complete orthonormal basis of the space of square integrable functions on the
real line with respect to the Gaussian measure. The first three polynomials are H0(u) = 1,
H1(u) = u, H2(u) = u2 − 1, H3(u) = u3 − 3u.

From (12) we have the following orthogonal expansion:

(25) MT (u) =
∞∑

q=0

MT (u)[q],

the series converging in L2(�), where (see Lemma 4.1)

(26) MT (u)[q] = Hq−1(u)φ(u)

q!
∫
[0,T ]

∫
S2

Hq

(
Z(x, t)

)
dx dt

is the orthogonal projection of MT (u) onto the so-called qth Wiener chaos. Note that if
u = 0, then MT (u)[q] = 0 whenever q is even.
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3.1.2. Sharp asymptotics. The crucial step behind our arguments is to investigate the
sharp asymptotic behavior, as T → +∞, of the variances for these chaotic projections. In
order to simplify this discussion we assume here that β�� ≤ β0, see the next sections for a
complete analysis. For every u ∈ R,

(27) Var
(
MT (u)[1])= c1 · T max(2−β0,1)(1 + o(1)

)
.

For q ≥ 2 and either u 	= 0 or u = 0 and q odd (recall that for u = 0 the projections onto even
order chaoses vanish), we have

(28) Var
(
MT (u)[q])= cq · T max(2−qβ�� ,1)(1 + 1qβ��=1 · logT )

(
1 + o(1)

)
.

Here, for q ≥ 1, cq = cq(u,β��,I�) is a finite and positive constant depending in particular
on q , the level u and the coefficient β�� . Thanks to (25) and (31),

Var
(
MT (u)

)= ∞∑
q=1

Var
(
MT (u)[q])

and hence, up to controlling the sequence {cq, q ≥ 1}, from (27) and (28) we have that, as
T → ∞,

M̃T (u) = MT (u)[1]√
Var(MT (u)[1]) + oP(1) for β0 < min(2β��,1), u 	= 0,

M̃T (u) = MT (u)[1]√
Var(MT (u)[1]) + oP(1) for β0 < min(3β��,1), u = 0,

M̃T (u) = MT (u)[2]√
Var(MT (u)[2]) + oP(1) for 2β�� < min(β0,1), u 	= 0,

M̃T (u) = MT (u)[3]√
Var(MT (u)[3]) + oP(1) for 3β�� < min(β0,1), u = 0,

where oP(1) denotes a sequence of random variables converging to zero in probability. The
asymptotic distribution of (13) can then be derived in the cases considered just above by
a careful analysis of these single components: the first chaotic term is Gaussian for every
T > 0, the second one asymptotically follows a composite Rosenblatt distribution. On the
other hand, in the remaining cases, (e.g., u 	= 0, β0 = 1 and 2β�� > 1 or u = 0, β0 = 1 and
3β�� > 1) it is not possible to identify a single dominating component; indeed, all the chaotic
projections contribute with a variance of the same rate T , and the Gaussian limiting behavior
will follow from a Breuer–Major type argument [6], [31], Section 5.3, Section 7.

3.2. Discussion. We can further summarize our results as follows:

u 	= 0 u = 0 Asymptotic distribution

First chaos dominates if β0 < min(2β��,1)

(Var ≈ T 2−β0 )

β0 < min(3β�� ,1)

(Var ≈ T 2−β0 )

Gaussian

Second chaos dominates if 2β�� < min(β0,1)

(Var ≈ T 2−2β�� )

never (it vanishes) non-Gaussian
(composite Rosenblatt 2)

Third chaos dominates if never 3β�� < min(β0,1)

(Var ≈ T 2−3β�� )

non-Gaussian

All chaoses dominate if β0 = 1, 2β�� > 1
(Var ≈ T )

β0 = 1, 3β�� > 1
(Var ≈ T )

Gaussian
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These findings should be compared with a rapidly growing literature devoted to the in-
vestigation of geometric functionals over spherical random fields in a different regime; in
particular, a number of papers (see, e.g., [8, 25, 26, 29, 39, 42]) have considered the high-
frequency behavior (e.g., when the eigenvalues diverge) for spherical random eigenfunctions
with no form of temporal dependence. The results we exhibited here have some analogies,
but also important differences, with this stream of literature. In particular

• for the excursion area of random spherical harmonics at u 	= 0 [25, 29] it is indeed the case
that the high-energy behavior is dominated by the second-order chaotic projection, whose
asymptotic distribution is, however, Gaussian. The same asymptotic behavior occurs for
other geometric functionals, such as the boundary length of excursion sets and their Euler–
Poincaré characteristic, see [8, 35];

• for u = 0, the limiting variance is always of smaller-order, and asymptotic Gaussianity
holds [26, 29].

These differences can be explained as follows. Because in the case of high-frequency asymp-
totics one deals with sequences of eigenspaces of growing dimensions, the second chaotic
components correspond to a sum of a growing number of i.i.d. coefficients, whence a stan-
dard central limit theorem holds. In our case here, the dimension of the sum of the eigenspaces
which correspond to the strongest memory does not diverge in general, and hence asymptotic
Gaussianity need not to hold. Moreover, in the case of high-frequency asymptotics the linear
projection term a00 is dropped by construction: on the contrary, for the random fields we in-
vestigate here this term can be dominant for instance when β0 < min(2β��,1), in which case
Gaussianity follows trivially.

As far as Berry’s cancellation is concerned, this can occur in the present circumstances
only when H2(Z(·, ·)) exhibits long memory behavior, that is, nonintegrable temporal au-
tocovariance: this is indeed the case for 2β�� < 1. If this condition is not met, all chaotic
components have integrable temporal autocovariance, none of them dominates and a central
limit theorem is established by means of a Breuer–Major Theorem. Note that the presence
of long memory behavior in the field Z is a necessary, but not sufficient condition for the
covariance of H2(Z(·, ·)) to be nonintegrable.

As a final analogy, a remarkable feature of high-frequency asymptotics for random eigen-
functions is the fact that geometric functionals turn out to be asymptotically fully correlated
over different levels, and even among themselves, see [9] and the references therein. It is then
of interest to investigate if similar features appear in the present framework. We present here
a small result that highlights this point.

PROPOSITION 3.1. Assume that u 	= 0, 2β�� < min(β0,1) and that there exists a unique

�� := arg min
�∈Ñ,�≥1

β�,

then, as T → ∞,

Corr
(
MT (u),mT ;��(u)

)→ 1,

where

mT ;��(u) := u

2σ��
φ

(
u

σ��

)∫
S2

∫ T

0
H2

(
Z��(x, t)

σ��

)
dx dt.

REMARK 3.2. Note that, if we introduce the process

MT ;�(u) =
∫ T

0

(
Au;�(t) −E

[
Au;�(t)

])
dt,
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where

Au;�(t) :=
∫
S2

1Z�(x,t)≥u dx,

(cf. (7) and (11)) then mT ;��(u) = MT ;��(u)[2], the second order chaotic component of the
functional of the monochromatic field Z�� .

4. Stroock–Varadhan decompositions. The first tool that is needed in order to establish
our asymptotic results is the derivation of the analytic form for the chaotic expansion (25) of
the empirical measure. The result is very close to analogous findings given by [12, 29]. For a
complete discussion on Wiener chaos and related topics see for example, [31], Section 2.2.

LEMMA 4.1. For every T > 0 we have that

(29) MT (u) = ∑
q≥1

Jq(u)

q!
∫
[0,T ]

∫
S2

Hq

(
Z(x, t)

)
dx dt,

where Jq(u) = Hq−1(u)φ(u), φ still being the density function of a standard Gaussian ran-
dom variable and Hq the Hermite polynomial (24) of order q . The convergence of the series
in (29) is in the L2(�)-sense.

PROOF. Let Z ∼ N (0,1), then

1Z≥u =
∞∑

q=0

Jq(u)

q! Hq(Z),

where the right hand side converges in the L2(�)-sense and the coefficients Jq(u) are given
by

Jq(u) := E
[
1Z≥uHq(Z)

]= ∫
R

1x≥uHq(x)φ(x) dx

= (−1)q
∫ +∞
u

dq

dxq
φ(x) dx = Hq−1(u)φ(u)

(note that for fixed x ∈ S
2, t ∈ R, Z(x, t) is standard Gaussian). Now consider the sequence

of random variables {
Q∑

q=0

Jq(u)

q!
∫
[0,T ]

∫
S2

Hq

(
Z(x, t)

)
dx dt,Q ≥ 1

}
;

let us prove that

(30)
Q∑

q=0

Jq(u)

q!
∫
[0,T ]

∫
S2

Hq

(
Z(x, t)

)
dx dt

Q→+∞−→ MT (u)

in the L2(�)-sense. We have, thanks to Jensen inequality and Fubini–Tonelli Theorem,

E

[(
MT (u) −

Q∑
q=0

Jq(u)

q!
∫
[0,T ]

∫
S2

Hq

(
Z(x, t)

)
dx dt

)2]

= E

[(∫
[0,T ]

∫
S2

(
1Z(x,t)≥u −

Q∑
q=0

Jq(u)

q! Hq

(
Z(x, t)

))
dx dt

)2]
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≤ 4πT

∫
[0,T ]

∫
S2
E

[(
1Z(x,t)≥u −

Q∑
q=0

Jq(u)

q! Hq

(
Z(x, t)

))2]
dx dt

= (4π)2T 2
E

[(
1Z≥u −

Q∑
q=0

Jq(u)

q! Hq(Z)

)2]
→

Q→+∞ 0,

hence (30) holds and the proof is concluded. �

In particular, the zeroth projection is

(31) MT (u)[0] = E
[
MT (u)

]= 0;
for the first one we have, recalling (5) and (7),

MT (u)[1] = φ(u)

∫
[0,T ]

∫
S2

Z(x, t) dx dt = φ(u) lim
L→∞

∫
[0,T ]

∫
S2

L∑
�=0

Z�(x, t) dx dt,

where the limit is in the L2(�)-sense. Hence

(32) MT (u)[1] = φ(u)

∫
[0,T ]

a00(t)√
4π

dt,

the spherical harmonics of degree � ≥ 1 having zero mean on the sphere. Furthermore

MT (u)[2] = uφ(u)

2

∫
[0,T ]

∫
S2

(
Z2(x, t) − 1

)
dx dt,

MT (u)[3] = (u2 − 1)φ(u)

2

∫
[0,T ]

∫
S2

(
Z3(x, t) − 3Z(x, t)

)
dx dt.

Thanks to orthogonality of the chaotic components, from Lemma 4.1 we get

Var
(
MT (u)

)= ∞∑
q=1

Var
(
MT (u)[q])

=
∞∑

q=1

Jq(u)2

q!
∫
[0,T ]2

∫
S2×S2

�
(〈x, y〉, t − s

)q
dx dy dt ds,

(33)

where � is the covariance function in (2).

4.1. First order chaotic projections. In this subsection we investigate the variance be-
havior of the first chaotic component (32).

LEMMA 4.2. We have, as T → +∞,

lim
T →∞

Var(MT (u)[1])
T 2−β0

= 2φ(u)2C0(0)

(1 − β0)(2 − β0)
if β0 ∈ (0,1)

and

lim
T →∞

Var(MT (u)[1])
T

= φ(u)2
∫
R

C0(τ ) dτ if β0 = 1.
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Recall that Condition 1.3 ensures that C0(0) > 0 and that for β0 = 1∫
R

C0(τ ) dτ ∈ (0,+∞),

hence Lemma 4.2 gives the exact rate for the variance, the limiting constants being strictly
positive. From (32) we can write

(34) Var
(
MT (u)[1])= φ(u)2

∫
[0,T ]2

C0(t − s) dt ds.

REMARK 4.3. We will often make use of the following standard computation, that we
report in this remark and that are taken for granted in the rest of the article. Making the change
of variable τ = t − s for the double integral on the right hand side of (34), it is well known
that (see, e.g., [16], page 25):∫

[0,T ]2
C0(t − s) dt ds =

∫ T

0
ds

∫ T −s

−s
C0(τ ) dτ = T

∫ T

−T

(
1 − |τ |

T

)
C0(τ ) dτ.

It is now easy to investigate the asymptotic behavior, as T → +∞, of the variance of the
first order chaotic component.

PROOF OF LEMMA 4.2. From Remark 4.3 and (34) we can write

(35) Var
(
MT (u)[1])= 2T φ(u)2

∫ T

0

(
1 − τ

T

)
C0(τ ) dτ.

If β0 = 1, recalling from Condition 1.3 that in this case the covariance C0 is integrable on
R, we immediately have (thanks to dominated convergence theorem) the exact asymptotic
behavior of the variance

lim
T →∞

Var(MT (u)[1])
T

= 2φ(u)2
∫ +∞

0
C0(τ ) dτ = φ(u)2

∫
R

C0(τ ) dτ.

Now assume β0 < 1. Let ε > 0, thanks to Condition 1.3, there exists M > 0 such that, for
τ > M ,

(36) sup
�∈Ñ

∣∣∣∣G�(τ)

C�(0)
− 1

∣∣∣∣< ε,

and we can write (from (35))

Var
(
MT (u)[1])

= 2T φ(u)2
∫ M

0

(
1 − τ

T

)
C0(τ ) dτ + 2T φ(u)2

∫ T

M

(
1 − τ

T

)
C0(τ ) dτ

= O(1) + 2T φ(u)2
∫ M

0
C0(τ ) dτ + 2T φ(u)2

∫ T

M

(
1 − τ

T

)
C0(τ ) dτ.

(37)

Consider the last integral on the right hand side of (37) and write

1

T 1−β0

∫ T

M

(
1 − τ

T

)
C0(τ ) dτ = C0(0)

T 1−β0

∫ T

M

(
1 − τ

T

)
(1 + τ)−β0 dτ

+ C0(0)

T 1−β0

∫ T

M

(
1 − τ

T

)(
G0(τ )

C0(0)
− 1

)
(1 + τ)−β0 dτ.

We have

(38) lim
T →∞

C0(0)

T 1−β0

∫ T

M

(
1 − τ

T

)
(1 + τ)−β0 dτ = C0(0)

(1 − β0)(2 − β0)
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and

(39) lim
T →∞

C0(0)

T 1−β0

∫ T

M

(
1 − τ

T

)(
G0(τ )

C0(0)
− 1

)
(1 + τ)−β0 dτ = 0.

The proof of (38) is straightforward; recall that by assumption C0(0) > 0. It remains to prove
(39). For T > M

C0(0)

T 1−β0

∫ T

M

(
1 − τ

T

)∣∣∣∣G0(τ )

C0(0)
− 1

∣∣∣∣(1 + τ)−β0 dτ

≤ ε
C0(0)

T 1−β0

∫ T

M
(1 + τ)−β0 dτ

= ε
C0(0)

1 − β0

((
1 + 1

T

)1−β0 −
(

M + 1

T

)1−β0
)

≤ ε
C0(0)

1 − β0

(
1 + 1

T

)1−β0

.

Hence

lim sup
T →+∞

∣∣∣∣C0(0)

T 1−β0

∫ T

M

(
1 − τ

T

)(
G0(τ )

C0(0)
− 1

)
(1 + τ)−β0 dτ

∣∣∣∣≤ ε
C0(0)

1 − β0

and the result follows, ε being arbitrary. Plugging (38) and (39) into (37) we find

lim
T →∞

Var(MT (u)[1])
T 2−β0

= 2φ(u)2C0(0)

(1 − β0)(2 − β0)
, β0 ∈ (0,1)

and this concludes the proof. �

4.2. Second order chaotic projections. Our next step is a careful analysis for the variance
of the second order chaotic component MT (u)[2], which will play a dominating role in most
long memory scenarios (see Section 2.1). For q = 2 we have

Var
(
MT (u)[2])= u2φ(u)2

2

∫
[0,T ]2

∫
S2×S2

�
(〈x, y〉, t − s

)2
dx dy dt ds.

Now, thanks to (3) and (4),∫
[0,T ]2

∫
S2×S2

�
(〈x, y〉, t − s

)2
dx dy dt ds

=
∫
[0,T ]2

∫
S2×S2

( ∞∑
�=0

C�(t − s)
(2� + 1)

4π
P�

(〈x, y〉))2

dx dy dt ds

=
∞∑

�1,�2=0

∫
[0,T ]2

C�1(t − s)C�2(t − s)
(2�1 + 1)(2�2 + 1)

(4π)2

×
∫
S2×S2

P�1

(〈x, y〉)P�2

(〈x, y〉)dx dy dt ds

=
∞∑

�1,�2=0

∫
[0,T ]2

C�1(t − s)C�2(t − s)
(2�1 + 1)(2�2 + 1)

(4π)2

(4π)2

2�1 + 1
1�1=�2 dt ds

=
∞∑

�1=0

(2�1 + 1)

∫
[0,T ]2

C�1(t − s)2 dt ds.

Hence

Var
(
MT (u)[2])= u2φ(u)2

2

∞∑
�=0

(2� + 1)

∫
[0,T ]2

C�(t − s)2 dt ds.
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The next result is of fundamental importance for the study of the asymptotic behavior of
Var(MT (u)[2]); its proof will be given in the Appendix.

LEMMA 4.4. Fix � ∈ Ñ. If 2β� < 1, then

lim
T →∞

1

T 2−2β�

∫
[0,T ]2

C2
� (t − s) dt ds = C�(0)2

(1 − β�)(1 − 2β�)
.

If 2β� = 1, then

lim
T →∞

1

T logT

∫
[0,T ]2

C2
� (t − s) dt ds = 2C�(0)2.

If 2β� > 1, then

lim
T →∞

1

T

∫
[0,T ]2

C2
� (t − s) dt ds =

∫
R

C�(τ)2 dτ.

Let us write

Var
(
MT (u)[2])= u2φ(u)2

2

∫
[0,T ]2

C0(t − s)2 dt ds

+ u2φ(u)2

2

∞∑
�=1

(2� + 1)

∫
[0,T ]2

C�(t − s)2 dt ds.

(40)

Now recall the definition of β�� in (14).

PROPOSITION 4.5. Assume u 	= 0. For 2β�� < 1 and β�� ≤ β0, we have that

(41) lim
T →∞

Var(MT (u)[2])
T 2−2β��

= u2φ(u)2

2(1 − 2β��)(1 − β��)

∑
�∈I�

(2� + 1)C�(0)2;

for 2β�� < 1 and β0 < β�� ,

lim
T →∞

Var(MT (u)[2])
T 2−2β0

= u2φ(u)2

2(1 − 2β0)(1 − β0)
C0(0)2;

for 2β�� = 1 and β�� ≤ β0,

(42) lim
T →∞

Var(MT (u)[2])
T logT

= u2φ(u)2
∑
�∈I�

(2� + 1)C�(0)2;

for β�� = 1
2 and β0 < β�� ,

lim
T →∞

Var(MT (u)[2])
T 2−2β0

= u2φ(u)2

2(1 − 2β0)(1 − β0)
C0(0)2;

for 2β�� > 1 and 2β0 > 1,

(43) lim
T →∞

Var(MT (u)[2])
T

= u2φ(u)2

2

∞∑
�=0

(2� + 1)

∫
R

C�(τ)2 dτ ;

for 2β�� > 1 and 2β0 = 1,

lim
T →∞

Var(MT (u)[2])
T logT

= u2φ(u)2
∫
R

C0(τ )2;
finally, for 2β�� > 1 and 2β0 < 1,

lim
T →∞

Var(MT (u)[2])
T 2−2β0

= u2φ(u)2

2(1 − 2β0)(1 − β0)
C0(0)2.
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Recall that by assumption C0(0) > 0, and for � ∈ I� we have C�(0) > 0 (see (14)); as
a consequence, Proposition 4.5 gives the exact rate for the variance, the limiting constants
being strictly positive.

REMARK 4.6. In words, for β�� ≤ β0, when 2β�� < 1 (resp. 2β�� = 1), we have a form of
long-range dependence and the second order chaotic component of the functional MT (u) is
dominated by a subset of the multipoles; the variance scales as order T 2−2β�� (resp. T logT ).
On the contrary, when 2β�� > 1, a form of short-range dependence holds and all frequencies
contribute with variance terms of order T .

In order to prove Proposition 4.5 we will also need the following technical results. The
proofs of Lemma 4.7 and 4.8 are given in the Appendix Section 5.5, the proofs of Lemma 4.9
and Lemma 4.10 are indeed similar and we omit the details for brevity.

LEMMA 4.7. Let ε,M > 0 be as in (36). For � such that β� = 1 and T > max(1,M)

(44)
1

T

∫
[0,T ]2

C�(t − s)2 dt ds ≤ 2C�(0)2
(
M + 2

(ε + 1)2

α − 1

)
,

where α ≥ 2 comes from the definition in (10).

LEMMA 4.8. Let ε,M > 0 be as in (36) and 2β�� < 1.

• For � ∈ I�, β� < 1 and T > max(1,M)

(45)
1

T 2−2β��

∫
[0,T ]2

C�(t − s)2 dt ds ≤ 2C�(0)2
(
M + (ε + 1)2

−2β�� + 1

(
1 + 1

M

)1−2β��
)
.

• Let m(β��) := maxx>0
log(1+x)

x1−2β��
and Tm the corresponding arg max. For � /∈ I�, � ≥ 1, β� <

1 and T > max(1,M,Tm) we have

1

T 2−2β��

∫
[0,T ]2

C�(t − s)2 dt ds

≤ 2C�(0)2
(
M + 2m(β��)(ε + 1)212β���=1

+ (ε + 1)2 1

−2β��� + 1

(
1 + 1

M

)−2β���+1
12β���<1

+ (ε + 1)2 1

2β��� − 1

(
1

1 + M

)2β���−1
12β���>1

)
.

(46)

LEMMA 4.9. Let ε,M > 0 be as in (36) and 2β�� = 1.

• For � ∈ I�, β� < 1 and T > max(1,M, e)

1

T logT

∫
[0,T ]2

C�(t − s)2 dt ds ≤ 2C�(0)2(M + log(e + 1)
)
.

• For � /∈ I�, � ≥ 1, β� < 1 and T > max(1,M)

1

T logT

∫
[0,T ]2

C�(t − s)2 dt ds ≤ 2C�(0)2
(
M +

∫
R

(
1 + |τ |)−2β��� ) dτ

)
.
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LEMMA 4.10. Let ε,M > 0 be as in (36). If 2β�� > 1, for � ≥ 1 and β� < 1 we have

1

T

∫
[0,T ]2

C�(t − s)2 dt ds ≤ 2C�(0)

(
M + (ε + 1)2

∫
R

(
1 + |τ |)−2β�� dτ

)
whenever T > max(1,M).

We are now in the position to prove Proposition 4.5.

PROOF OF PROPOSITION 4.5. Assume first that 2β�� < 1 and β�� ≤ β0. For the asymp-
totic behavior of the first term on the right hand side of (40)) we refer to Lemma 4.4:

(47) lim
T →∞

∫
[0,T ]2 C0(t − s)2 dt ds

T 2−2β��
=
⎧⎪⎨⎪⎩

0 if β�� < β0,

C0(0)2

(1 − β��)(1 − 2β��)
if β�� = β0.

Now, since from (4) we have

(48)
+∞∑
�=0

(2� + 1)C�(0)2 < +∞,

thanks to Lemma 4.7 and Lemma 4.8 we can apply dominate convergence theorem and then
Lemma 4.4 to get

lim
T →∞

∑
�∈I�

(2� + 1)

T 2−2β��

∫
[0,T ]2

C�(t − s)2 dt ds

= ∑
�∈I�

lim
T →∞

(2� + 1)

T 2−2β��

∫
[0,T ]2

C�(t − s)2 dt ds =
∑

�∈I�(2� + 1)C�(0)2

(1 − β��)(1 − 2β��)
.

(49)

Let us now prove that

(50) lim
T →∞

∑
�/∈I�,�≥1

(2� + 1)

T 2−2β��

∫
[0,T ]2

C�(t − s)2 dt ds = 0.

Thanks again to Lemma 4.7 and Lemma 4.8, since (48) holds, we can apply dominated con-
vergence theorem to obtain (50). More precisely, we have to distinguish between some dif-
ferent cases: from Lemma 4.4

lim
T →∞

∑
�≥1:β��<β�<

1
2

(2� + 1)

T 2−2β��

∫
[0,T ]2

C�(t − s)2 dt ds

= ∑
�≥1:β��<β�<

1
2

(2� + 1) lim
T →∞

T 2−2β�

T 2−2β��︸ ︷︷ ︸
→0

1

T 2−2β�

∫
[0,T ]2

C�(t − s)2 dt ds︸ ︷︷ ︸
→C�(0)2(1−β�)

−1(1−2β�)
−1

= 0;

moreover

lim
T →∞

∑
�≥1:β�= 1

2

(2� + 1)

T 2−2β��

∫
[0,T ]2

C�(t − s)2 dt ds

= ∑
�≥1:β�= 1

2

(2� + 1) lim
T →∞

T logT

T 2−2β��︸ ︷︷ ︸
→0

1

T logT

∫
[0,T ]2

C�(t − s)2 dt ds︸ ︷︷ ︸
→2C�(0)2

= 0;
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and

lim
T →∞

∑
�≥1:β�>

1
2

2� + 1

T 2−2β��

∫
[0,T ]2

C�(t − s)2 dt ds

= ∑
�≥1:β�>

1
2

(2� + 1) lim
T →∞

T

T 2−2β��︸ ︷︷ ︸
→0

1

T

∫
[0,T ]2

C�(t − s)2 dt ds︸ ︷︷ ︸
→∫

R
C�(τ)2 dτ

= 0.

Putting together (47), (49) and (50) we immediately get (41) in Proposition 4.5.
Now assume 2β0 > 1 and 2β�� > 1. Then obviously 2β� > 1 for each � ∈ Ñ and hence,

using Lemma 4.7 and 4.10 and Lemma 4.4 as before, we have

lim
T →∞

Var(MT (u)[2])
T

= lim
T →∞

u2φ(u)2

2

∞∑
�=0

(2� + 1)
1

T

∫
[0,T ]2

C�(t − s)2 dt ds

= u2φ(u)2

2

∞∑
�=0

(2� + 1) lim
T →∞ 2

∫ T

0

(
1 − τ

T

)
C2

� (τ ) dτ

= u2φ(u)2

2

∞∑
�=0

(2� + 1)

∫ +∞
−∞

C�(τ)2 dτ,

which is (43). Note that we automatically get

∞∑
�=0

(2� + 1)

∫ +∞
−∞

C�(τ)2 dτ < +∞,

and the proof is concluded, the remaining cases requiring analogous proofs. �

4.3. Higher order chaotic projections. In this subsection we want to investigate the be-
havior of higher order chaotic components. Let q ≥ 3, from (29) we can write

(51) Var
(
MT (u)[q])= φ(u)2Hq−1(u)2

q!
∫
[0,T ]2

∫
S2×S2

�
(〈x, y〉, t − s

)q
dx dy dt ds.

Thanks to (3) we have that∫
[0,T ]2

∫
S2×S2

�
(〈x, y〉, t − s

)q
dx dy dt ds

=
∫
[0,T ]2

∫
S2×S2

( ∞∑
�=0

C�(t − s)
(2� + 1)

4π
P�

(〈x, y〉))q

dx dy dt ds

=
∞∑

�1,�2,...,�q=0

∫
[0,T ]2

∫
S2×S2

C�1(t − s)C�2(t − s) · · ·C�q (t − s)

× 2�1 + 1

4π
P�1

(〈x, y〉)2�2 + 1

4π
P�2

(〈x, y〉) · · · 2�q + 1

4π
P�q

(〈x, y〉)dx dy dt ds.

Recall the addition formula for spherical harmonics [23], (3.42),

4π

2� + 1

�∑
m=−�

Y�,m(x)Y�,m(y) = P�

(〈x, y〉), x, y ∈ S
2,
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and the definition of generalized Gaunt integral in (22) to write∫
S2×S2

2�1 + 1

4π
P�1

(〈x, y〉)2�2 + 1

4π
P�2

(〈x, y〉) · · · 2�q + 1

4π
P�q

(〈x, y〉)dx dy

=
�1∑

m1=−�1

· · ·
�q∑

mq=−�q

(
Gm1···mq

�1···�q

)2
.

(52)

On the other hand, exploiting again (22)∫
S2×S2

2�1 + 1

4π
P�1

(〈x, y〉)2�2 + 1

4π
P�2

(〈x, y〉) · · · 2�q + 1

4π
P�q

(〈x, y〉)dx dy

= 4π

( q∏
i=1

√
2�i + 1

4π

)
G0···0

�1�2···�q
.

(53)

In particular G0...0
�1...�q

≥ 0. In order to check (53) recall that

Y�,0(θx, ϕx) =
√

2� + 1

4π
P�(cos θx),

where (θx, ϕx) are the angular coordinates of the point x ∈ S
2; then, letting o be the north

pole of the sphere, we have∫
S2×S2

√
2�1 + 1

4π
P�1

(〈x, y〉) · · ·
√

2�q + 1

4π
P�q

(〈x, y〉)dx dy

= 4π

∫
S2

√
2�1 + 1

4π
P�1

(〈x, o〉) · · ·
√

2�q + 1

4π
P�q

(〈x, o〉)dx

= 4π

∫
S2

√
2�1 + 1

4π
P�1(cos θx) · · ·

√
2�q + 1

4π
P�q (cos θx) dx = 4πG0···0

�1...�q
.

As a consequence, from (51) we can write

(54) Var
(
MT (u)[q])) = 4πHq−1(u)2φ(u)2

q!
∞∑

�1,...,�q=0

k�1...�q (T )

( q∏
i=1

√
2�i + 1

4π

)
G0···0

�1...�q
,

where

(55) k�1,...,�q (T ) :=
∫
[0,T ]2

C�1(t − s)C�2(t − s) · · ·C�q (t − s) dt ds.

Note that

k�1,...,�q (T ) = E

[(∫
[0,T ]

a�1,0(t) · · ·a�q,0(t) dt

)2]
.

In order to study the asymptotic behavior, as T → +∞, of (54) we will need the following
result whose proof is given in the Appendix.

LEMMA 4.11. Let �1, . . . , �q be such that β�1 + · · · + β�q < 1, then

(56) lim
T →∞

k�1...�q (T )

T
2−(β�1+···+β�q )

= C�1(0) · · ·C�q (0)

(1 − (β�1 + · · · + β�q ))(2 − (β�1 + · · · + β�q ))
.
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and if β�1 + · · · + β�q = 1

lim
T →∞

k�1...�q (T )

T logT
= 2C�1(0) · · ·C�q (0).

On the contrary, let �1, . . . , �q be such that β�1 + · · · + β�q > 1, then

(57) lim
T →∞

k�1...�q (T )

T
=
∫ +∞
−∞

C�1(τ )C�2(τ ) · · ·C�q (τ ) dτ.

Recall (54).

PROPOSITION 4.12. Let q ≥ 3. If qβ�� < 1 and β�� ≤ β0 then

lim
T →∞

Var(MT (u)[q])
T 2−qβ��

= 4πHq−1(u)2φ(u)2

q!(1 − qβ��)(2 − qβ��)

∑
�1,�2,...,�q∈I�

( q∏
i=1

√
2�i + 1

4π
C�i

(0)

)
G0···0

�1...�q
;

on the other hand, if qβ�� < 1 and β�� > β0 then

lim
T →∞

Var(MT (u)[q])
T 2−qβ0

= Hq−1(u)2φ(u)2

(4π)q−2q!
C0(0)q

(1 − qβ0)(2 − qβ0)
.

If qβ�� = 1 and β�� ≤ β0 then

lim
T →∞

Var(MT (u)[q])
T logT

= 8πHq−1(u)2φ(u)2

q!
∑

�1,�2,...,�q∈I�

( q∏
i=1

√
2�i + 1

4π
C�i

(0)

)
G0···0

�1...�q
;

if qβ�� = 1 and β�� > β0 then

lim
T →∞

Var(MT (u)[q])
T 2−qβ0

= Hq−1(u)2φ(u)2

(4π)q−2q!
C0(0)q

(1 − qβ0)(2 − qβ0)
.

On the other hand, if qβ�� > 1 and qβ0 > 1, then

lim
T →∞

Var(MT (u)[q])
T

= s2
q,

where

s2
q := 4πHq−1(u)2φ(u)2

q!
∞∑

�1,�2,...,�q=0

G0···0
�1···�q

∫ +∞
−∞

( q∏
i=1

√
2�i + 1

4π
C�i

(τ )

)
dτ ;

moreover if qβ�� > 1 and qβ0 = 1, then

lim
T →∞

Var(MT (u)[q])
T logT

= Hq−1(u)2φ(u)2

(4π)q−2q! 2C0(0)q;
finally if qβ�� > 1 and qβ0 < 1, then

lim
T →∞

Var(MT (u)[q])
T 2−qβ0

= Hq−1(u)2φ(u)2

(4π)q−2q!
C0(0)q

(1 − qβ0)(2 − qβ0)
.

In order to prove Proposition 4.12 we will also need the following technical results; the
proofs of Lemma 4.13 and Lemma 4.14 are postponed to the Appendix Section 5.5, the proofs
of the remaining lemmas are very similar and we omit the details.
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LEMMA 4.13. Let ε,M > 0 be as in (36). If there is at least one index j ∈ {1, . . . , q}
such that β�j

= 1 we have for T > max(1,M),

k�1...�q (T )

T
≤ 2C�1(0) . . .C�q (0)

(
M + 1

q min(β0, β��)

(
ε + 1

(1 + M)min(β0,β�� )

)q)
.

LEMMA 4.14. Let ε,M > 0 be as in (36) and qβ�� < 1.

• For �1, . . . , �q ∈ I�, β�j
< 1 for every j and T > max(1,M) we have

k�1...�q (T )

T 2−qβ��
≤ 2C�1(0) · · ·C�q (0)

(
M + (ε + 1)q

1 − qβ��

(
1 + 1

M

)1−qβ��
)
.

• For (�1, . . . , �q) /∈ (I�)q , �j ≥ 1, β�j
< 1 for every j and T > max(1,M,Tm)

k�1...�q (T )

T 2−qβ��

≤ 2C�1(0) . . .C�q (0)

×
(
M + (ε + 1)q

−(β��� + (q − 1)β��) + 1

(
1 + 1

M

)−(β���+(q−1)β�� )+1
1β���+(q−1)β��<1

+ 2(ε + 1)qm(β��)1β���+(q−1)β��=1

+ (ε + 1)q

β��� + (q − 1)β�� − 1

(
1

M + 1

)β���+(q−1)β��−1
1β���+(q−1)β��>1

)
.

LEMMA 4.15. Let ε,M > 0 be as in (36) and qβ�� = 1.

• For �1, . . . , �q ∈ I�, β�j
< 1 for every j and T > max(1,M, e)

k�1...�q (T )

T logT
≤ 2C�1(0) · · ·C�q (0)

(
M + log(e + 1)

)
.

• For (�1, . . . , �q) /∈ (I�)q , �j ≥ 1, β�j
< 1 for every j and T > max(1,M, e)

k�1...�q (T )

T logT
≤ 2C�1(0) · · ·C�q (0)

(
M + (ε + 1)q

∫
R

(
1 + |τ |)−(β���+(q−1)β�� )

dτ

)
.

LEMMA 4.16. Let ε,M > 0 be as in (36) and qβ�� > 1. Then for T > max(1,M)

k�1�2···�q (T )

T
≤ 2C�1(0) · · ·C�q (0)

(
M + (1 + M)

qβ�� − 1

(
1 + ε

(1 + M)β��

)q)
for any �1, . . . , �q such that β�j

< 1, �j ≥ 1 for every j .

LEMMA 4.17. Let ε,M > 0 be as in (36), and set U := U(�1, . . . , �q) = {j ∈ {1, . . . , q} :
�j = 0}. If β�� ≤ β0

k�1...�q−#U 0...0(T ) ≤ 2T C�1(0) · · ·C�q−#U
(0)C0(0)#U

×
(
M + (ε + 1)q

∫
[M,T ]

(
1 + |τ |)−((q−1)β��+β0) dτ

)
,

otherwise if β�� > β0

k�1...�q−#U 0...0(T ) ≤ 2T C�1(0) · · ·C�q−#U
(0)C0(0)#U

(
M + (ε + 1)q

∫
[M,T ]

(
1 + |τ |)−qβ0 dτ

)
.
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We are now in the position to prove Proposition 4.12.

PROOF OF PROPOSITION 4.12. Note first that

(58)
∞∑

�1,...,�q=0

( q∏
i=1

√
2�i + 1

4π
C�i

(0)

)
G0···0

�1...�q
< +∞,

since the following estimate (see [27], Section 4.2.1):

(59) G0···0
�1···�q

≤
√

(2�1 + 1)(2�2 + 1) · · · (2�q−1 + 1)

(4π)q−2(2�q + 1)

and (4) hold. Now, assume qβ�� < 1 and β�� ≤ β0 and recall equation (54). Let J :=
{(�1, . . . , �q) : there is at least one index j ∈ {1, . . . q} such that �j = 0}. Then, thanks to
Lemma 4.17, we can apply dominated convergence theorem and then Lemma 4.11 to get

lim
T →∞

∑
(�1,...�q)∈J

k�1...�q (T )

T 2−qβ��

( q∏
i=1

√
2�i + 1

4π

)
G0···0

�1�2···�q

=

⎧⎪⎪⎨⎪⎪⎩
0 if β�� < β0,∑
(�1,...,�q )∈(I�)q∩J

C�1(0) · · ·C�q (0)

(1 − qβ��)(2 − qβ��)

( q∏
i=1

√
2�i + 1

4π

)
G0···0

�1...�q
if β�� = β0.

(60)

Now, thanks to Lemma 4.13, Lemma 4.14, Lemma 4.17 and (58) together with Lemma 4.11
we have

lim
T →∞

∑
(�1,...,�q)∈(I�)q

k�1�2···�q (T )

T 2−qβ��

( q∏
i=1

√
2�i + 1

4π

)
G0···0

�1�2···�q

= ∑
(�1,...,�q )∈(I�)q

lim
T →∞

k�1�2···�q (T )

T 2−qβ��

( q∏
i=1

√
2�i + 1

4π

)
G0···0

�1�2···�q
(61)

= ∑
(�1,...,�q )∈(I�)q

C�1(0) · · ·C�q (0)

(1 − qβ��)(2 − qβ��)

( q∏
i=1

√
2�i + 1

4π

)
G0···0

�1�2···�q
.

Analogously

(62) lim
T →∞

∑
(�1,...,�q )/∈(I�)q

k�1�2···�q (T )

T
2−(β�1+···+β�q )

( q∏
i=1

√
2�i + 1

4π

)
G0···0

�1�2···�q
= 0.

Le us check (62). We have

lim
T →∞

∑
(�1,�2,...,�q )/∈I�:

β�1+···+β�q <1,�j≥1

k�1�2···�q (T )

T 2−qβ��

( q∏
i=1

√
2�i + 1

4π

)
G0···0

�1�2···�q

= ∑
(�1,�2,...,�q )/∈I�:

β�1+···+β�q <1,�j≥1

lim
T →∞

k�1�2···�q (T )

T
2−(β�1+···+β�q )︸ ︷︷ ︸

→ C�1
(0)···C�q

(0)

(1−(β�1
+···+β�q

))(2−(β�1
+···+β�q

))

× T
2−(β�1+···+β�q )

T 2−qβ��︸ ︷︷ ︸
→0

( q∏
i=1

√
2�i + 1

4π

)
G0···0

�1�2···�q
= 0.
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Analogously

lim
T →∞

∑
(�1,�2,...,�q)/∈I�:

β�1+···+β�q =1,�j≥1

k�1�2···�q (T )

T 2−qβ��

( q∏
i=1

√
2�i + 1

4π

)
G0···0

�1�2···�q
= 0

and finally

lim
T →∞

∑
(�1,�2,...,�q)/∈I�:

β�1+···+β�q >1,�j≥1

k�1�2···�q (T )

T 2−qβ��

( q∏
i=1

√
2�i + 1

4π

)
G0···0

�1�2···�q
= 0,

so that (62) is proved.
On the other hand, if we assume qβ0 > 1 and qβ�� > 1, then obviously qβ� > 1 for all � ∈

Ñ, and β�1 + · · ·+β�q > 1 for all �1, . . . , �q ∈ Ñ. Then, thanks to Lemma 4.11, Lemma 4.13,
Lemma 4.16 and Lemma 4.17,

lim
T →∞

Var(MT (u)[q]))
T

= 4π

∞∑
�1,�2,...,�q=0

lim
T →∞

k�1�2···�q (T )

T

( q∏
i=1

√
2�i + 1

4π

)
G0···0

�1�2···�q

= 4π

∞∑
�1,�2,...,�q=0

G0···0
�1···�q

∫ +∞
−∞

( q∏
i=1

√
2�i + 1

4π
C�i

(τ )

)
dτ,

which concludes the proof. In particular, we have proved that the series on the right hand side
of the previous formula converges. The remaining cases can be treated analogously. �

5. Proofs of the main results.

5.1. Proof of Theorem 2.2. PROOF. Recall (33). Assume first that u 	= 0 and β0 <

min(2β��,1). For the first chaotic projection, since β0 < 1, from Lemma 4.2 we have

(63) lim
T →∞

Var(MT (u)[1])
T 2−β0

= 2φ(u)2C0(0)

(1 − β0)(2 − β0)
.

Let Q ∈ {2,3, . . . } be such that

Qβ�� > 1.

For q ∈ {2,3, . . . ,Q − 1} we have, from Proposition 4.5 and Proposition 4.12, since β0 <

2β�� ,

(64) lim
T →∞

Q−1∑
q=2

Var(MT (u)[q])
T 2−β0

=
Q−1∑
q=2

lim
T →∞

Var(MT (u)[q])
T 2−β0

= 0.

Let us now prove that

(65) lim
T →∞

+∞∑
q=Q

Var(MT (u)[q])
T 2−β0

= 0.

Recall (54); thanks to (59) we can write for any �1, . . . , �q ≥ 0

4πHq−1(u)2φ(u)2

q!
( q∏

i=1

√
2�i + 1

4π

)
G0···0

�1...�q

≤ (4π)2Hq−1(u)2φ(u)2

q!
( q∏

i=1

2�i + 1

4π

)
=: bq(�1, . . . , �q;u).
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For q ≥ Q we have of course qβ�� > 1. Let ε,M > 0 be as in (36). From Lemma 4.16 we
have for T > max(1,M)

∑
�1,�2,...,�q≥1
β�1 ,...,β�q <1

bq(�1, . . . , �q;u)
k�1,...,�q (T )

T 2−β0

≤ ∑
�1,�2,...,�q≥1
β�1 ,...,β�q <1

bq(�1, . . . , �q;u)
k�1,...,�q (T )

T

≤ 2
∑

�1,�2,...,�q≥1
β�1 ,...,β�q <1

bq(�1, . . . , �q;u)C�1(0) · · ·C�q (0)

(
M + (1 + M)

qβ�� − 1

(
1 + ε

(1 + M)β��

)q)
(66)

≤ 2
∑

�1,�2,...,�q≥0

bq(�1, . . . , �q;u)C�1(0) · · ·C�q (0)

(
M + (1 + M)

qβ�� − 1

(
1 + ε

(1 + M)β��

)q)

= 2
(4π)2Hq−1(u)2φ(u)2

q!
(
M + (1 + M)

qβ�� − 1

(
1 + ε

(1 + M)β��

)q)
,

recalling (8). The following estimate holds (see, e.g., [15], Proposition 3): for every q ≥ 0
and x ∈R ∣∣e−x2/4Hq(x)

∣∣≤ c
√

q!q−1/12,

hence the series whose term is the right hand side of (66) is finite, that is,

(67)
+∞∑
q=Q

Hq−1(u)2φ(u)2

q!
(
M + (1 + M)

qβ�� − 1

(
1 + ε

(1 + M)β��

)q)
< +∞,

as soon as M is sufficiently large. Repeating the same argument as for (66), using Lemma 4.13
and Lemma 4.17, and thanks to (67), we can apply dominated convergence theorem and then
Proposition 4.5 and Proposition 4.12 to get

lim
T →∞

+∞∑
q=Q

Var(MT (u)[q])
T 2−β0

=
+∞∑
q=Q

lim
T →∞

Var(MT (u)[q])
T 2−β0

= 0,

which is (65). Putting together (63), (64) and (65) we finally find that

lim
T →∞

Var(MT (u))

T 2−β0
= 2φ(u)2C0(0)

(1 − β0)(2 − β0)
=: K0(u).

Note that, if u = 0, then MT (u)[2] ≡ 0 and the sufficient condition in order to have (65) is
β0 < min(3β��,1).

This implies that, if either u 	= 0 and β0 < min(2β��,1) or u = 0 and β0 < min(3β��,1),
then

M̃T (u) = MT (u)[1]√
K0(u)T 1−β0/2

+ oP(1).

Consequently, since MT (u)[1] is Gaussian for any T > 0, it is clear that the asymptotic
distribution of M̃T (u) is standard Gaussian. �
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5.2. Proof of Theorem 2.7. We will need the following well-known result.

THEOREM 5.1 ([13, 38]). Let ξ(t), t ∈ R, be a real measurable mean-square continuous
stationary Gaussian process with mean E[ξ(t)] and covariance function ρ(t − s) = ρ(|t −
s|) = Cov(ξ(t), ξ(s)). Moreover, assume that

(68) ρ(t − s) = L(|t − s|)
|t − s|β with 0 < β < 1,

where L is a slowly varying function. Let F : R → R be a Borel function such that
E[F(N)2] < +∞, where N is a standard Gaussian random variable. Then it is a well-known
fact that can be expanded as follows

F(ξ) =
∞∑

k=0

bk

k! Hk(ξ) where bk =
∫
R

F(ξ)Hk(ξ)φ(ξ) dξ.

Assume there exists an integer r , the so-called Hermitian rank, such that b0 = b1 = · · · =
br−1 = 0 and br 	= 0. Then, if β ∈ (0,1/r), we have that the finite-dimensional distributions
of the random process

XT (s) = 1

T 1−βr/2L(T )r/2

∫ T s

0

[
F
(
ξ(t)

)− b0
]
dt, 0 ≤ s ≤ 1,

converge weakly, as T → ∞, to the ones of the Rosenblatt process of order r , that is

Xβ(s) := br

r!
∫
(Rr )′

ei(λ1+···+λr )s − 1

i(λ1 + · · · + λr)

W(dλ1) · · ·W(dλr)

|λ1 · · ·λr |(1−β)/2 dt, 0 ≤ s ≤ 1,

where W is a complex Gaussian white noise.

PROOF OF THEOREM 2.7. Recall that u 	= 0 and 2β�� < min(β0,1). From Lemma 4.2
we have

lim
T →∞

Var(MT (u)[1])
T 2−2β��

= 0.

Moreover, thanks to Proposition 4.12, as for the proof of Theorem 2.2 (in particular (65)), we
have, as T → +∞,

lim
T →∞

∑
q≥3 Var(MT (u)[q])

T 2−2β��
= 0,

so that, recalling also Proposition 4.5,

(69)
MT (u)

T 1−β��
= MT (u)[2]

T 1−β��
+ oP(1).

Moreover, since in L2(�) we have the following equality:

(70) MT (u)[2] = J2(u)

2

∞∑
�=0

�∑
m=−�

∫ T

0
H2
(
a�m(t)

)
dt,

it holds that

(71)
MT (u)[2]

T 1−β��
= 1

T 1−β��

∑
�∈I�

�∑
m=−�

J2(u)

2

∫ T

0
H2
(
a�,m(t)

)
dt + oP(1).



2338 D. MARINUCCI, M. ROSSI AND A. VIDOTTO

Indeed, arguing exactly as in the Proposition 4.5, we have that

lim
T →∞E

[(
MT (u)[2]

T 1−β��
− 1

T 1−β��

∑
�∈I�

�∑
m=−�

J2(u)

2

∫ T

0
H2
(
a�,m(t)

)
dt

)2]

= lim
T →∞

J2(u)2

2T 2−2β��

∑
�/∈I�

(2� + 1)

∫ T

0

∫ T

0
C�(t − s)2 dt ds = 0.

From (69) and (71), in order to understand the asymptotic distribution of MT (u), it suffices
to investigate the leading term on the right hand side of (71). Recall Condition 1.3, for � ∈ I�

we have that

C�(τ) = G�(τ)

(1 + |τ |)β��
,

where in particular G� is a slowly varying function. Hence, setting ξ(t) = a�,m(t), we auto-
matically have that ρ = ρ� = C�, L = L� = G� and, as a consequence, that

X
�,m
T := 1

C�(0)T 1−β��

∫ T

0

J2(u)

2
H2
(
a�,m(t)

)
dt

d−→ J2(u)

2a(β��)
Xm;β��

as T → ∞,

for all m = −�, . . . , �, where, for each m, Xm;β��
is a standard Rosenblatt random variable

(16) of parameter β�� . Moreover, since the X
�,m
T are all independent for each T we have that

M̃T (u) =
√

T 1−β��

Var(MT (u)[2])
∑
�∈I�

C�(0)

�∑
m=−�

∫ T
0

J2(u)
2 H2(a�,m(t)) dt

C�(0)T 1−β��
+ oP(1)

d→
(

J2(u)2

2

∑
�∈I�

(2� + 1)C�(0)2

(1 − β��)(1 − 2β��)

)−1/2 ∑
�∈I�

C�(0)

�∑
m=−�

J2(u)

2a(β��)
Xm;β�

�

= ∑
�∈I�

C�(0)√
v�

�∑
m=−�

Xm;β��
,

where

v� = a(β��)2
∑
�∈I�

2(2� + 1)C�(0)2

(1 − β��)(1 − 2β��)
,

and the proof is concluded. �

5.3. Proof of Theorem 2.9. First of all assume that 3β�� < min(1, β0). Since we are in
the case where u = 0, we have that all even chaotic projections vanish and hence that

Var(MT ) = Var
(
MT [1])+ Var

(
MT [3])+∑

q≥2

Var
(
MT [2q + 1]),

where we used the notation MT (0) =: MT . As a consequence, as in the proof of Theo-
rem 2.2, we have

lim
T →∞

Var(MT )

T 2−3β��

= lim
T →∞

Var(MT [1])
T 2−3β��

+ lim
T →∞

Var(MT [3])
T 2−3β��

+∑
q≥2

lim
T →∞

Var(MT [2q + 1])
T 2−3β��

.
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Now,

lim
T →∞

Var(MT [1])
T 2−3β��

= 0;
while from Proposition 4.12 we know that

lim
T →∞

Var(MT [3])
T 2−3β��

= 2

3!(1 − 3β��)(2 − 3β��)

∑
�1,�2,�3∈I�

( 3∏
i=1

√
2�i + 1

4π
C�i

(0)

)
G000

�1�2�3

=: K3.

Moreover

lim
T →∞

∑
q≥2 Var(MT [2q + 1])

T 2−3β��
= 0,

which of course implies that

M̃T (u) = MT (u)[3]
√

K3T
1− 3

2 β��
+ oP(1),

as claimed.

5.4. Proof of Theorem 2.12. The result below is just [31], Theorem 6.3.1, restated for
our framework as a lemma. Recall the definition of cumulants for a random variable [23],
Section 4.3.

LEMMA 5.2. Assume that the functional M̃T (u) in (13) satisfies the following condi-
tions:

(a) For each q ≥ 1, Var(M̃T (u)[q]) → σ 2
q , as T → ∞ and for some σ 2

q ≥ 0;
(b) σ 2 :=∑∞

q=1 σ 2
q < +∞;

(c) For each q ≥ 2, Cum4(M̃T (u)[q]) → 0, as T → ∞;
(d) limQ→∞ supT >0

∑∞
q=Q+1 Var(M̃T (u)[q]) = 0.

Then M̃T (u)
d→ Z, as T → ∞, where Z ∼ N (0, σ 2).

We will use Lemma 5.2 to prove Theorem 2.12. Let us first focus on Condition (c).

PROPOSITION 5.3. Assume β0 = 1. If either u 	= 0 and 2β�� > 1 or u = 0 and 3β�� > 1
we have

M̃T (u)[q] d→ Z as T → ∞,

where Z ∼ N (0, σ 2
q ) is a Gaussian random variable whose variance is given by

σ 2
q := s2

q∑+∞
k=1 s2

k

∈ [0,+∞),

where the sequence {s2
k , k ≥ 1} is defined in Theorem 2.12.

REMARK 5.4. Note that some of the chaoses might converge to a degenerate Gaussian
(that is, with zero expected value and variance).



2340 D. MARINUCCI, M. ROSSI AND A. VIDOTTO

PROOF OF PROPOSITION 5.3. It suffices to check [31], Theorem 5.2.7, that the fourth
cumulant goes to zero as T → +∞, that is,

lim
T →∞ Cum4

(
M̃T (u)[q])= 0.

Recall (26). For any 1 ≤ α ≤ q − 1, we have (see, e.g., [23], Section 4.3, in particular Sec-
tion 4.3.1)

Cum4

(∫ T

0

∫
S2

Hq

(
Z(x, t)

)
dx dt

)
=
∫
[0,T ]4

∫
(S2)4

dx1 dx2 dx3 dx4 dt1 dt2 dt3 dt4

× Cum
(
Hq

(
Z(x1, t1)

)
,Hq

(
Z(x2, t2)

)
Hq

(
Z(x3, t3)

)
Hq

(
Z(x4, t4)

))
≤ c

∫
[0,T ]4

∫
(S2)4

∣∣E[Z(x1, t1)Z(x2, t2)
]∣∣q−α∣∣E[Z(x2, t2)Z(x3, t3)

]∣∣α
× ∣∣E[Z(x3, t3)Z(x4, t4)

]∣∣q−α∣∣E[Z(x4, t4)Z(x1, t1)
]∣∣α dx1 dx2 dx3 dx4 dt1 dt2 dt3 dt4.

For x, y positive numbers, it holds that

xαyβ ≤ xα+β + yα+β,

as a consequence,

Cum4

(∫ T

0

∫
S2

Hq

(
Z(x, t)

)
dx dt

)
≤ c

∫
[0,T ]4

∫
(S2)4

∣∣E[Z(x1, t1)Z(x2, t2)
]∣∣q−α∣∣E[Z(x2, t2)Z(x3, t3)

]∣∣α
× ∣∣E[Z(x3, t3)Z(x4, t4)

]∣∣q dx1 dx2 dx3 dx4 dt1 . . . dt4

= c

∫
[0,T ]4

∫
(S2)4

∣∣�(〈x1, x2〉, t2 − t1
)∣∣q−α∣∣�(〈x2, x3〉, t3 − t2

)∣∣α
× ∣∣�(〈x3, x4〉, t4 − t3

)∣∣q dx1 dx2 dx3 dx4 dt1 . . . dt4

≤ cT

∫
(S2)4

∫
[−T ,T ]

∣∣�(〈x1, x2〉, s1
)∣∣q−α

ds1

∫
[−T ,T ]

∣∣�(〈x2, x3〉, s2
)∣∣α ds2

×
∫
[−T ,T ]

∣∣�(〈x3, x4〉, s3
)∣∣q ds3 dx1 dx2 dx3 dx4

≤ cT

∫
[−T ,T ]

+∞∑
�=0

(2� + 1)

4π
C�(0)

∣∣∣∣C�(s1)

C�(0)

∣∣∣∣q−α

ds1

∫
[−T ,T ]

+∞∑
�=0

(2� + 1)

4π
C�(0)

∣∣∣∣C�(s2)

C�(0)

∣∣∣∣α ds2

×
∫
[−T ,T ]

+∞∑
�=0

(2� + 1)

4π
C�(0)

∣∣∣∣C�(s3)

C�(0)

∣∣∣∣q ds3,

where for the last inequality we used Jensen inequality, recalling (8). For k = 1, . . . , q −1 we
have that, as T → +∞,∫

[−T ,T ]

+∞∑
�=0

(2� + 1)

4π
C�(0)

∣∣∣∣C�(τ)

C�(0)

∣∣∣∣k dτ = O
(
T 1−kβ�� (1 + 1kβ��=1 logT )

)
whereas for k = q (since qβ�� > 1)∫

[−T ,T ]

+∞∑
�=0

(2� + 1)

4π
C�(0)

∣∣∣∣C�(τ)

C�(0)

∣∣∣∣q dτ = O(1).
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Hence, as T → +∞,

Cum4

(∫ T

0

∫
S2

Hq

(
Z(x, t)

)
dx dt

)
= O

(
T 3−qβ��

(
1 + δ1

(q−α)β��
logT

)(
1 + δ1

αβ��
logT

))
.

From Proposition 4.12 we know that Var(MT (u)) ∼ T
∑+∞

k=1 s2
k thus as T → +∞

Cum4

( MT (u)[q]√
Var(MT (u))

)
= O

(
T 1−qβ�� (1 + 1(q−α)β��=1 logT )(1 + 1αβ��=1 logT )

)
so that

lim
T →∞ Cum4

( MT (u)[q]√
Var(Mu(T )[q])

)
= 0

and the proof is concluded. �

We are now in the position to prove Theorem 2.12.

PROOF OF THEOREM 2.12. Here we have β0 = 1. From Lemma 4.2 and Condition 1.3
we know that

lim
T →∞

Var(MT (u)[1])
T

= φ(u)2
∫ +∞
−∞

C0(τ ) dτ > 0.

Assume first that u 	= 0 and 2β�� > 1, then, using Propositions 4.5 and 4.12 we have that

lim
T →∞

Var(MT (u)[2])
T

= u2φ(u)2

2

∞∑
�=0

(2� + 1)F�,

and for q ≥ 3, since of course qβ�� > 1,

lim
T →∞

Var(MT (u)[q])
T

= s2
q,

where we recall that

s2
q = 4πHq−1(u)2φ(u)2

q!
∞∑

�1,�2,...,�q=0

G0···0
�1···�q

q∏
i=1

√
2�i + 1

4π

∫ +∞
−∞

C�1(τ )C�2(τ ) · · ·C�q (τ ) dτ.

As in the proof of (65), thanks to dominated convergence theorem, we can write

lim
T →∞

Var(MT (u))

T
= lim

T →∞
Var(MT (u)[1])

T
+ lim

T →∞
Var(MT (u)[2])

T

+∑
q≥3

lim
T →∞

Var(MT (u)[q])
T

= φ(u)2
∫ +∞
−∞

C0(τ ) dτ + u2φ(u)2

2

∞∑
�=0

(2� + 1)F� +∑
q≥3

s2
q .

Now assume that u = 0 and 3β�� > 1, then analogously

lim
T →∞

Var(MT (u))

T
= lim

T →∞
Var(MT (u)[1])

T
+∑

q≥1

lim
T →∞

Var(MT (u)[2q + 1])
T

= φ(u)2
∫ +∞
−∞

C0(τ ) dτ +∑
q≥1

s2
2q+1.
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In order to prove convergence in distribution to a Gaussian random variable, we are going
to check the four conditions of Lemma 5.2. Conditions (a) and (b) are verified thanks to
Theorem 2.12 and Proposition 4.12. Condition (c) of Lemma 5.2 is immediately verified by
Proposition 5.3, thanks to the fourth moment theorem [33], Theorem 1. Let us now check
Condition (d). Recall that

φ(u)2
∫
R

C0(τ ) dτ > 0.

Fix ε > 0 such that

φ(u)2
∫
R

C0(τ ) dτ − ε > 0.

Then we have for some Tε > 0

Var(MT (u)[1])
T

≥ φ(u)2
∫
R

C0(τ ) dτ − ε,

for every T > Tε . Hence

sup
T >Tε

∞∑
q=Q

Var(MT (u)[q])
Var(MT (u))

≤ supT >Tε

∑∞
q=Q

Var(MT (u)[q])
T

φ(u)2
∫
R

C0(τ ) dτ − ε
→ 0,

as Q → ∞. As a consequence, Condition (d) of Lemma 5.2 is satisfied and the proof is
concluded. �

5.5. Proof of Proposition 3.1. PROOF. From Theorem 2.7 we have

(72) lim
T →∞

Var(MT (u))

T 2−2β��
= u2φ(u)2

2(1 − 2β��)(1 − β��)

(
2�� + 1

)
C��(0)2.

Let us study the variance of mT ;��(u).

Var
(
mT ;��(u)

)= u2φ(u/σ��)2

2σ 2
��

∫
(S2)2×[0,T ]2

C��(t − s)2

C��(0)2 P��

(〈x, y〉)2 dx dy dt ds

= u2φ(u/σ��)2

2σ 2
��

∫
[0,T ]2

(4π)2

2�� + 1

C��(t − s)2

C��(0)2 dt ds

= u2φ(u/σ��)2

2σ 2
��

2T

∫
[0,T ]

(4π)2

2�� + 1

(
1 − τ

T

)
C��(τ )2

C��(0)2 dτ.

From Proposition 4.4

lim
T →∞

2T

T 2−2β��

∫ T

0

(
1 − τ

T

)
C2

��(τ ) dτ = C��(0)2

(1 − β��)(1 − 2β��)

so that

(73) lim
T →∞

Var(mT ;��(u))

T 2−2β��
= u2φ(u/σ��)2

2σ 2
��

(4π)2

2�� + 1

1

(1 − β��)(1 − 2β��)
.

Let us now compute the covariance between MT (u) and mT ;��(u): by orthogonality of
Wiener chaoses

Cov
(
MT (u),mT ;��(u)

)
= Cov

(
MT (u)[2],mT ;��(u)

)
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=
J2(u)J2(

u
σ��

)

4

∫
[0,T ]2

∫
S2×S2

E

[
H2
(
Z(x, t)

)
H2

(
Z��(y, s)

σ��

)]
dx dy dt ds

=
J2(u)J2(

u
σ��

)

2

∫
[0,T ]2

∫
S2×S2

E

[
Z(x, t)

Z��(y, s)

σ��

]2
dx dy dt ds

=
J2(u)J2(

u
σ��

)

2

∫
[0,T ]2

∫
S2×S2

E

[
Z��(x, t)

Z��(y, s)

σ��

]2
dx dy dt ds

=
J2(u)J2(

u
σ��

)

2σ 2
��

∫
[0,T ]2

∫
S2×S2

C��(t − s)2
(

2�� + 1

4π

)2
P��

(〈x, y〉)2 dx dy dt ds

= (
2�� + 1

)J2(u)J2(
u

σ��
)

2σ 2
��

∫
[0,T ]2

C��(t − s)2 dt ds.

As before

(74) lim
T →∞

Cov(MT (u),mT ;��(u))

T 2−2β��
= (

2�� + 1
)J2(u)J2(

u
σ��

)

2σ 2
��

C��(0)2

(1 − β��)(1 − 2β��)
.

Plugging (72) and (73) into (74) we get

lim
T →∞ Corr

(
MT (u),mT ;��(u)

)= lim
T →∞

Cov(MT (u),mT ;��(u))√
Var(MT (u))Var(mT ;��(u))

= 1,

that concludes the proof. �

APPENDIX: PROOFS OF TECHNICAL LEMMAS

From Remark 4.3∫
[0,T ]2

C�(t − s)2 dt ds = 2T

∫
[0,T ]

(
1 − τ

T

)
C�(τ)2 dτ

≤ 2T

(∫
[0,M]

C�(τ)2 dτ +
∫
[M,T ]

C�(τ)2 dτ

)
(75)

≤ 2T C�(0)2
(
M + (ε + 1)2

∫
[M,T ]

gβ�
(τ )2 dτ

)
.

PROOF OF LEMMA 4.4. If β� ∈ (1/2,1] then from Remark 4.3, thanks to dominated
convergence theorem,

lim
T →∞

1

T

∫
[0,T ]2

C2
� (t − s) dt ds = lim

T →∞

∫ T

−T

(
1 − |τ |

T

)
C�(τ)2 dτ =

∫
R

C�(τ)2 dτ.

Now assume that 2β� < 1 and recall Condition 1.3, then as in Remark 4.3 and the proof of
Lemma 4.2 we fix ε > 0 and we know there exists M > 0 such that, for τ > M ,

sup
�

∣∣∣∣G�(τ)

C�(0)
− 1

∣∣∣∣< ε

(as in (36)), so that∫
[0,T ]2

C2
� (t − s) dt ds

= 2T

∫ T

0

(
1 − τ

T

)
C2

� (τ ) dτ
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= 2T

∫ M

0

(
1 − τ

T

)
C2

� (τ ) dτ + 2T

∫ T

M

(
1 − τ

T

)
C2

� (τ ) dτ.

(76)

= O(1) + 2T

∫ M

0
C2

� (τ ) dτ + 2T C�(0)2
∫ T

M

(
1 − τ

T

)(
G�(τ)

C�(0)
− 1

)2
(1 + τ)−2β� dτ

+ 4T C�(0)2
∫ T

M

(
1 − τ

T

)(
G�(τ)

C�(0)
− 1

)
(1 + τ)−2β� dτ

+ 2T C�(0)2
∫ T

M

(
1 − τ

T

)
(1 + τ)−2β� dτ.

For the second and the last summands of (76) it is straightforward to check that

lim
T →∞

2T

T 2−2β�

∫ M

0
C2

� (τ ) dτ = 0,

lim
T →∞

2T C�(0)2

T 2−2β�

∫ T

M

(
1 − τ

T

)
(1 + τ)−2β� dτ = C�(0)2

(1 − β�)(1 − 2β�)
.

On the other hand, for the third and the fourth summands

lim
T →∞

2T C�(0)

T 2−2β�

∫ T

M

(
1 − τ

T

)(
G�(τ)

C�(0)
− 1

)2
(1 + τ)−2β� dτ = 0,(77)

lim
T →∞

4T C�(0)

T 2−2β�

∫ T

M

(
1 − τ

T

)(
G�(τ)

C�(0)
− 1

)
(1 + τ)−2β� dτ = 0.(78)

Indeed, we have that

lim sup
T →+∞

2T C�(0)

T 2−2β�

∫ T

M

(
1 − τ

T

)(
G�(τ)

C�(0)
− 1

)2
(1 + τ)−2β� dτ

≤ ε2 lim sup
T →+∞

2C�(0)

T 1−2β�

∫ T

M
(1 + τ)−2β� dτ ≤ ε2 4C�(0)

1 − 2β�

,

and likewise

lim sup
T →+∞

4T C�(0)

T 2−2β�

∫ T

M

(
1 − τ

T

)∣∣∣∣G�(τ)

C�(0)
− 1

∣∣∣∣(1 + τ)−2β� dτ ≤ ε
8C�(0)

1 − 2β�

,

and (77) follows, ε being arbitrary. When 2β� = 1, then one can prove using the same argu-
ments that

lim
T →∞

1

T logT

∫
[0,T ]2

C2
� (t − s) dt ds = 2C�(0)2

and the proof of the lemma is concluded. �

PROOF OF LEMMA 4.7. For β� = 1 from (75) we have, for T > max(1,M),

1

T

∫
[0,T ]2

C�(t − s)2 dt ds

≤ 2C�(0)2
(
M + (ε + 1)2

∫
[M,T ]

g1(τ )2 dτ

)
≤ 2C�(0)2

(
M + (ε + 1)2

∫
R

g1(τ )2 dτ

)

≤ 2C�(0)2
(
M + (ε + 1)2

∫
R

∣∣g1(τ )
∣∣dτ

)
= 2C�(0)2

(
M + 2

(ε + 1)2

α − 1

)
,

where we used the fact that |g1(τ )| ≤ 1 for every τ ∈R, see (10). �
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PROOF OF LEMMA 4.8. Let us start with (45). For � ∈ I�, β� < 1 we have

1

T 2−2β��

∫
[0,T ]2

C�(t − s)2 dt ds

≤ 2C�(0)2

T 1−2β��

(
M + (ε + 1)2

∫
[M,T ]

(1 + τ)−2β�� dτ

)

= 2C�(0)2

T 1−2β��

(
M + (ε + 1)2

−2β�� + 1

(
(1 + T )−2β��+1 − (1 + M)−2β��+1))

≤ 2C�(0)2

T 1−2β��

(
M + (ε + 1)2

−2β�� + 1
(1 + T )−2β��+1

)

≤ 2C�(0)2
(
M + (ε + 1)2

−2β�� + 1

(
1 + 1

M

)−2β��+1)
,

where for the last inequality we recall that T > max(1,M). Let us now prove (46). From
(75), for � /∈ I�, � ≥ 1 and β� < 1,

1

T 2−2β��

∫
[0,T ]2

C�(t − s)2 dt ds ≤ 2C�(0)2

T 1−2β��

(
M + (ε + 1)2

∫
[M,T ]

(1 + τ)−2β��� dτ

)
.

Now for 2β��� = 1 we have

1

T 1−2β��

∫
[M,T ]

(1 + τ)−2β��� dτ ≤ 2m(β��),

while for 2β��� < 1 we have

1

T 1−2β��

∫
[M,T ]

(1 + τ)−2β��� dτ ≤ 1

−2β��� + 1

(
1 + 1

M

)−2β���+1
,

otherwise

1

T 1−2β��

∫
[M,T ]

(1 + τ)−2β��� dτ ≤ 1

2β��� − 1

(
1

1 + M

)2β���−1
,

which concludes the proof. �

Let us write

k�1...�q (T ) = 2T

∫
[0,T ]

(
1 − τ

T

)
C�1(τ ) · · ·C�q (τ ) dτ

= 2T

(∫
[0,M]

(
1 − τ

T

)
C�1(τ ) · · ·C�q (τ ) dτ

+
∫
[M,T ]

(
1 − τ

T

)
C�1(τ ) · · ·C�q (τ ) dτ

)
.

(79)

PROOF OF LEMMA 4.13. The proof is similar to the proof of Lemma 4.7. Assume that
there is at least one index j ∈ {1, . . . , q} such that β�j

= 1. Let U := U(�1, . . . , �q) = {j ∈
{1, . . . , q} : β�j

= 1}. We have, from (79), for T > max(1,M),

k�1...�q (T )

T
≤ 2C�1(0) . . .C�q (0)

(
M + (ε + 1)q

∫
[M,T ]

(1 + τ)
−#Uα−(β�1+···β�q −#U)

dτ

)
≤ 2C�1(0) . . .C�q (0)

(
M + (ε + 1)q

∫
[M,T ]

(1 + τ)−#Uα−(q−#U)min(β0,β�� ) dτ

)
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≤ 2C�1(0) . . .C�q (0)

(
M + (ε + 1)q

(q − #U)min(β0, β��) + #Uα − 1

×
(

1

1 + M

)(q−#U)min(β0,β�� )+#Uα−1)
≤ 2C�1(0) . . .C�q (0)

(
M + 1

q min(β0, β��) + #U(α − min(β0, β��)) − 1

×
(

ε + 1

(1 + M)min(β0,β�� )

)q( 1

1 + M

)#U(α−min(β0,β�� ))−1)
.

For α ≥ 2 we have #U(α − min(β0, β��)) − 1 ≥ 0 hence

k�1...�q (T )

T
≤ 2C�1(0) . . .C�q (0)

(
M + 1

q min(β0, β��)

(
ε + 1

(1 + M)min(β0,β�� )

)q)
,

which concludes the proof. �

PROOF OF LEMMA 4.11. This proof is similar to the one of Lemma 4.4. Consider ε,M >

0 as in (36). Then, using Remark 4.3, we have

k�1�2···�q (T ) =
∫
[0,T ]2

C�1(t − s)C�2(t − s) · · ·C�q (t − s) dt ds

= 2T

∫ M

0

(
1 − τ

T

)
C�1(τ )C�2(τ ) · · ·C�q (τ ) dτ(80)

+ 2T

∫ T

M

(
1 − τ

T

)
C�1(τ )C�2(τ ) · · ·C�q (τ ) dτ.

Now assume that β�1 + · · · + β�q < 1. For the first summand on the right hand side of (80)
we have

lim
T →∞

2

T
1−(β�1+···+β�q )

∫ M

0

(
1 − τ

T

)∣∣C�1(τ )C�2(τ ) · · ·C�q (τ )
∣∣dτ

≤ lim
T →∞ 2

C�1(0) · · ·C�q (0)

T
1−(β�1+···+β�q )

M = 0.

For the second summand on the right hand side of (80) we write∫ T

M

(
1 − τ

T

)
C�1(τ )C�2(τ ) · · ·C�q (τ ) dτ

= C�1(0) · · ·C�q (0)

∫ T

M

(
1 − τ

T

)
(1 + τ)

−(β�1+···+β�q )

(81)

×
q∑

k=1

∑
k1+···+kq=k
k1,...,kq∈{0,1}

(
G�1(τ )

C�1(0)
− 1

)k1 · · ·
(

G�q (τ )

C�q (0)
− 1

)kq

dτ

+ C�1(0) · · ·C�q (0)

∫ T

M

(
1 − τ

T

)
(1 + τ)

−(β�1+···+β�q )
dτ.

For the first term on the right hand side of the previous equality it holds that

lim
T →∞

C�1(0) · · ·C�q (0)

T
1−(β�1+···+β�q )

∫ T

M

(
1 − τ

T

)
(1 + τ)

−(β�1+···+β�q )

(82)



NON-UNIVERSAL FLUCTUATIONS ON S2 ×R 2347

×
q∑

k=1

∑
k1+···+kq=k
k1,...,kq∈{0,1}

(
G�1(τ )

C�1(0)
− 1

)k1 · · ·
(

G�q (τ )

C�q (0)
− 1

)kq

dτ = 0.

Let us prove (82). Actually, for τ > M we have∣∣∣∣∣
q∑

k=1

∑
k1+···+kq=k
k1,...,kq∈{0,1}

(
G�1(τ )

C�1(0)
− 1

)k1 · · ·
(

G�q (τ )

C�q (0)
− 1

)kq

∣∣∣∣∣≤
q∑

k=1

(
q

k

)
εk,

and (82) follows, ε being arbitrary. On the other hand, for the second summand on the right
hand side of (81),

lim
T →∞

C�1(0) · · ·C�q (0)

T
1−(β�1+···+β�q )

∫ T

M

(
1 − τ

T

)
(1 + τ)

−(β�1+···+β�q )
dτ

= C�1(0) · · ·C�q (0)

(1 − (β�1 + · · · + β�q ))(2 − (β�1 + · · · + β�q ))
.

Analogously, if β�1 + · · · + β�q = 1

lim
T →∞

k�1...�q (T )

T logT
= 2C�1(0) · · ·C�q (0).

Otherwise, if β�1 + · · · + β�q > 1, it immediately follows from equation (80) that, as T →
+∞,

k�1...�q (T ) = 2T

∫ +∞
0

C�1(τ )C�2(τ ) · · ·C�q (τ ) dτ + O(1).

Note that the limiting constant ∫
R

C�1(τ )C�2(τ ) · · ·C�q (τ ) dτ

in (57) is finite (see the proof of Proposition 4.12). �

PROOF OF LEMMA 4.14. The proof is similar to the proof of Lemma 4.8. For
�1, . . . , �q ∈ I�, β�j

< 1 for every j and T > max(1,M), from (79), we have

k�1...�q (T )

T 2−qβ��
≤ 2C�1(0) . . .C�q (0)

T 1−qβ��

(
M + (ε + 1)q

∫
[M,T ]

(1 + τ)−qβ�� dτ

)

≤ 2C�1(0) . . .C�q (0)

(
M + (ε + 1)q

1 − qβ��

(
1 + 1

M

)1−qβ��
)
.

Finally for (�1, . . . , �q) /∈ I�, �j ≥ 1, β�j
< 1 for every j and T > max(1,M), from (79)

(note that β�1 + · · ·β�q ≥ β��� + (q − 1)β�� > qβ��), we have

k�1...�q (T )

T 2−qβ��
≤ 2C�1(0) . . .C�q (0)

T 1−qβ��

(
M + (ε + 1)q

∫
[M,T ]

(1 + τ)−(β���+(q−1)β�� ) dτ

)

≤ 2C�1(0) . . .C�q (0)

(
M + (ε + 1)q

1

T 1−qβ��

∫
[M,T ]

(1 + τ)−(β���+(q−1)β�� ) dτ

)
.

Now if β��� + (q − 1)β�� < 1 then

1

T 1−qβ��

∫
[M,T ]

(1 + τ)−(β���+(q−1)β�� ) dτ ≤ (1 + 1
M

)−(β���+(q−1)β�� )+1

−(β��� + (q − 1)β��) + 1
;
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if β��� + (q − 1)β�� = 1, then

1

T 1−qβ��

∫
[M,T ]

(1 + τ)−1 dτ ≤ 1

T 1−2β��

∫
[M,T ]

(1 + τ)−1 dτ ≤ 2m(β��),

where m(β��) is a constant defined in Lemma 4.7. Finally if β��� + (q − 1)β�� > 1 then

1

T 1−qβ��

∫
[M,T ]

(1 + τ)−(β���+(q−1)β�� ) dτ ≤ (M + 1)−(β���+(q−1)β��−1)

β��� + (q − 1)β�� − 1

and the proof is concluded. �
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