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We obtain several quantitative bounds on the mixing properties of an
“ideal” Hamiltonian Monte Carlo (HMC) Markov chain for a strongly log-
concave target distribution π on R

d . Our main result says that the HMC
Markov chain generates a sample with Wasserstein error ε in roughly
O(κ2 log( 1

ε )) steps, where the condition number κ = M2
m2

is the ratio of the
maximum M2 and minimum m2 eigenvalues of the Hessian of − log(π). In
particular, this mixing bound does not depend explicitly on the dimension d.
These results significantly extend and improve previous quantitative bounds
on the mixing of ideal HMC, and can be used to analyze more realistic HMC
algorithms. The main ingredient of our argument is a proof that initially “par-
allel” Hamiltonian trajectories contract over much longer steps than would be
predicted by previous heuristics based on the Jacobi manifold.

1. Introduction. Markov chain Monte Carlo (MCMC) methods are ubiquitous in
Bayesian statistics and other areas, and Hamiltonian Monte Carlo (HMC) Markov chains
are some the most widely-used MCMC methods [13, 23, 45]. In this paper, we improve upon
the best earlier1 analysis of the following “ideal” version of the HMC Markov chain for
sampling from a distribution π on R

d with density q(x) ∝ e−U(x):

Markov Chain 1 Ideal HMC with integration time T , initial point X0

for i = 1,2, . . . do
Sample pi according to the standard Gaussian.
Set Xi+1 = QXi

T (pi), as in equation (2.3) below.
end for

In this “ideal” version of HMC, the map Qx
T defined in equation (2.3) below is the exact

solution to a system of ordinary differential equation (ODE) called Hamilton’s equations. In
essentially all realistic situations, the solution Qx

T must be approximated using for example,
the leapfrog integrator or other numerical integration methods. It turns out to be the case
that a careful analysis of Markov chain 1 can be used as a key ingredient in the analysis of
numerical Markov chain algorithms. We use the present paper this way in our companion
paper [42] and followup [43].
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1Our initial arXiv paper [40] combined the results in this paper, our companion [42], and some other results.

Since [40] was released, many authors have produced strong analyses of HMC. We defer discussion of these
developments, and most related work, to Section 3.
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Our main contribution is an analysis of this Markov chain under the following assumption:

ASSUMPTION 1.1. There exist 0 < m2,M2 < ∞ and set X ⊂ R
d so that

m2Id � ∇2U(x) � M2Id

for all x ∈ X , where � is the usual Loewner order on matrices and Id is the d-dimensional
identity matrix.

A C2-smooth log-density U satisfies Assumption 1.1 if and only if it is m2-strongly con-
vex and has M2-Lipschitz gradient. Let κ = M2

m2
, the condition number of U . Under Assump-

tion 1.1 with X = R
d , our main result says that the Wasserstein mixing time of Markov

chain 1 is O(κ2) for appropriate choice of T = 1
2
√

2

√
m2

M2
(see Theorem 1 below for details).

Our result improves on the previous best bounds in [53] in two significant ways. They
make the stronger assumption that π is exactly Gaussian (which we replace with the strictly-
weaker Assumption 1.1), and they obtain the weaker conclusion that the Wasserstein mixing
time is O(d2c(m2,M2)) for some nonexplicit function c (while we remove entirely the de-
pendence on dimension and give quantitative bounds on c(m2,M2)). We discuss the practical
significance of these changes below.

Like [53], our proof strategy is to analyze an explicit coupling of two copies of the same
Markov chain, showing that these two copies get closer (on average). Both our work and [53]
rely on the observation that initially-parallel solutions to Hamilton’s equations get closer for
a short time under Assumption 1.1. More precisely, in our paper we show that

∥∥Qx
T (p) − Q

y
T (p)

∥∥ ≤
(

1 − 1

4
m2T

2
)
‖x − y‖(1.1)

for all x, y,p ∈ R
d and all T = T (x, y,p) sufficiently small. We obtain stronger results than

[53] primarily because we give a more careful analysis of Hamilton’s equations, allowing
us to verify that something like inequality (1.1) holds for much larger values of T . See Sec-
tion 3.1 for a more detailed discussion.

Another large difference between our paper and [53] is that our Assumption 1.1 is much
weaker than the assumption made in [53], which says that the logdensity is a Gaussian distri-
bution. As one example application with non-Gaussian log-density, we consider the problem
of Bayesian logistic “ridge” regression (also discussed in Section 5 of our companion paper
[42]). Here one wishes to sample from the log-density

U(x) = 1

2
x��x −

r∑
i=1

Yi log
(
σ

(
x�Xi

)) + (1 − Yi ) log
(
σ

(−x�Xi

))
,(1.2)

where X1, . . . ,Xr are the independent variable data vectors, Y1, . . . ,Yr ∈ {0,1} are the bi-
nary dependent variable data labels, σ(s) ≡ 1

e−s+1 is the sigmoid function, and 1
2x��x is the

Gaussian log-prior with positive definite matrix �. This log-density satisfies our Assump-
tion 1.1 with m2 = λmin(�

−1) and M2 = λmax(�
−1 +∑r

i=1 XiX�
i ). We note that even though

the ridge regression prior is Gaussian, the posterior density ∝ e−U(x) we want to sample from
is non-Gaussian because of the sigmoid function terms in equation (1.2).

Moreover, even if one replaces the Gaussian prior in equation (1.2) with a non-Gaussian
prior, oftentimes we still have, with high probability, that the posterior log-density for logistic
regression is still strongly convex in the “bulk” of the distribution containing most of its prob-
ability measure. Roughly speaking, this is true if the data comes from a distribution whose
covariance matrix has all its eigenvalues bounded away from zero (see, e.g., Lemma 6.2 of
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[30] for details). In such settings where our assumptions are satisfied in the bulk of the dis-
tribution containing most of the probability measure, our results can oftentimes be extended
using “gluing” arguments (see the last paragraph of this section for more discussion on how
one can extend our result to such settings).

Readers familiar with HMC will immediately notice that there are many realistic situations
where our results do not directly apply, due to the following two problems:

1. It is almost never possible to compute the solution Qx
T (p) exactly, and

2. Assumption 1.1 is oftentimes not satisfied on all of Rd .

At first glance, this might make an analysis of our “ideal” Markov chain seem pointless. In
fact, a careful analysis of the “ideal” version of HMC can be a critical step in obtaining good
estimates in more realistic settings:

We study the first problem in our own followup papers [42, 43]. The basic idea is to show
that commonly-used approximations of Qx

T are small perturbation of the ideal dynamics in
some realistic settings. In this small-perturbation regime, the real-world HMC algorithm in-
herits the good mixing properties of our “ideal” HMC Markov chain. This approach allows
us to apply our main result (Theorem 1) to show that real-world HMC algorithms have com-
putational complexity that scale with dimension like O(d0.25), providing the first rigorous
results that match the famous heuristic in [1].

The second problem has been studied in several papers, including our followup [39]. We
briefly sketch one approach to the issue. Consider the situation that Assumption 1.1 holds
only on a compact subset X of Rd . In this setting, we can “glue together” three estimates:
(i) our bounds for the behaviour of the chain on X , (ii) other bounds for the behaviour on
X c, and (iii) very rough estimates on how much time is spent in X . Useful and generic
“gluing” arguments are given in [22]. This approach allows one to use our main bounds as a
critical step in analyzing models that don’t satisfy Assumption 1.1 on all of Rd ; this includes
for example, mixtures of Gaussians (see our followup [39]) and also, as mentioned earlier,
logistic regression with non-Gaussian priors. We call attention to the analysis of HMC [31],
which has a particularly strong method for allowing one to ignore small-measure subsets on
which assumptions may fail.

Section 3 gives further discussion on how our results can be applied, as well as the existing
literature on analysis of HMC and related Markov chains.

1.1. Paper overview. In Section 2, we give notation and a precise statement of our main
results. In Section 3, we discuss related work (including work that has appeared since the first
version of this note) and give more detailed discussion of our proof techniques and companion
papers. In Section 4 we state the main lemmas required for our main theorems and give proofs
of the simplest and most important bounds (the proofs of the remaining technical bounds are
deferred to the Appendix). In particular, Section 4 contains a proof of our main contraction
result (Theorem 3). Section 5 contains a proof of a related drift bound (the proof of this latter
result is deferred to the Appendix). Finally, Section 6 contains some open problems.

2. Main notation and results.

2.1. Preliminary notation. For any function f : Ra → R, we use the shorthand f ′ :=
∇f , and denote by Dvf := 〈v,∇f 〉 the directional derivative in the direction v. For a
vector-valued function g = (g1, . . . , gb)

�, we define the coordinate-wise directional deriva-
tive Dvg := (Dvg1, . . . ,Dvgb).

Throughout the paper, we will consider a function U that satisfies Assumption 1.1. Recall
that any function satisfying Assumption 1.1 with X = R

d has a unique minimizer; we assume
without loss of generality that this minimum occurs at 0 in order to simplify notation.
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Throughout the paper, we make a few small abuses of notation. For any function f : X →
Y between two sets, and any S ⊂ X, we define

f (S) = {
f (x) : x ∈ S

}
.

In addition, we will generally write x for the single-element set {x} when this does not result
in any ambiguity.

2.1.1. Distributions and mixing. We denote the distribution of a random variable X by
L(X) and write X ∼ ν as a shorthand for L(X) = ν.

For two probability measures ν1, ν2 on R
d , define the Wasserstein-k distance

Wk(ν1, ν2)
k = inf

(X,Y )∈C(ν1,ν2)
E

[‖X − Y‖k] ∀k ∈ N,

where C(ν1, ν2) is the set of all random variables on R
d ×R

d with marginal distributions ν1
and ν2. For k = ∞, define

W∞(ν1, ν2) = inf
(X,Y )∈C(ν1,ν2)

inf
{
B ∈ R : P(‖X − Y‖ ≤ B

) = 1
}
.

Denote by K a reversible transition kernel on R
d with unique invariant measure π . Recall

that K acts as an operator from L2(π) to L2(π), and the absolute spectral gap of such an
operator is given by

1 − sup
{|λ| : λ ∈ (−1,1), (K − λId) is not invertible

}
.

We define the relaxation time τrel(K) of a transition kernel K to be the reciprocal of its
spectral gap.

For measures ν1, ν2 on a measurable space (
,F), the total variation distance between
ν1, ν2 is given by

‖ν1 − ν2‖TV = sup
A∈F

(
ν1(A) − ν2(A)

)
.

Finally, denote by B(x, r) := {y ∈ R
d : ‖x −y‖ ≤ r} the Euclidean ball with center x ∈ R

d

and radius r > 0.

2.1.2. Big-O notation. For two nonnegative functions or sequences f , g, we write
f = O(g) as shorthand for the statement: there exists a constant 0 < C < ∞ so that for
all x1, . . . , xn, we have f (x1, . . . , xn) ≤ Cg(x1, . . . , xn). We write f = 
(g) for g = O(f ),
and we write f = �(g) if both f = O(g) and g = O(f ). Relatedly, we write f = o(g) as
shorthand for the statement: limx1,...,xn→∞ f (x1,...,xn)

g(x1,...,xn)
= 0.

2.1.3. Ideal HMC dynamics. A Hamiltonian of a simple system is written as

H(q,p) = U(q) + 1

2
‖p‖2,(2.1)

where q represents “position,” p represents “momentum,” U represents “potential energy,”
and 1

2‖p‖2 represents “kinetic energy.”
For fixed q ∈ R

d , p ∈ R
d , we denote by {qt (q,p)}t≥0, {pt(q,p)}t≥0 the solutions to Hamil-

ton’s equations:

dqt (q,p)

dt
= pt(q,p),

dpt(q,p)

dt
= −U ′(qt (q,p)

)
,(2.2)
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FIG. 1. The Hamiltonian Monte Carlo Markov chain X1,X2, . . . with momentum p1,p2, . . . .

with initial conditions

q0(q,p) = q, p0(q,p) = p.

When the initial conditions (q,p) are clear from the context, we write qt , pt in place of
qt (q,p) and pt(q,p), respectively. The dependence of these solutions on the Hamiltonian H

is always suppressed in our notation, as it will always be clear from the context.
For a fixed integration time T ∈ R

+ and starting point q ∈ R
d , we define the solution map

Qq
T :Rd →R

d by

Qq
T (p) := qT (q,p).(2.3)

In the context of HMC, we refer to qt as the position variable and pt as the momentum
variable.

In this paper we study Markov chain 1, the simplest Hamiltonian Monte Carlo Markov
chain (see Figure 1).

Note that the sequence {Xi}i≥0 appearing in the description of Markov chain 1 is a deter-
ministic function of the initial value X0 and the i.i.d. sequence {pi}i≥0 of momentum updates.
In the Markov chain literature, this fact is summarized by saying that this set of rules (given
in the description of Markov chain 1) defines a random mapping representation of {Xi}i≥0
with update sequence {pi}i≥0 (see Chapter 1.2 of [35]). In particular, the fact that this gives a
random mapping representation means that it is possible to define a coupling of two Markov
chains evolving according to this set of rules by defining a coupling of the momentum up-
dates. Finally, note that this set of rules also naturally defines the nonreversible Markov chains
{(Xi,pi)}i≥0 on the larger state space R

2d .

2.2. Main results. For simplicity, all main results are stated for the largest integration

time T = 1
2
√

2

√
m2

M2
allowed by our proofs. We observe that these results can still be applied

for any 0 < T ≤ 1
2
√

2

√
m2

M2
, since a potential U that satisfies Assumption 1.1 for constants m2,

M2 will also satisfy it for any pair m′
2, M ′

2 satisfying 0 < m′
2 < m2 ≤ M2 < M ′

2 < ∞.

THEOREM 1 (Mixing for strongly log-concave targets). Let K be the transition kernel

defined by the ideal HMC Markov chain (Markov chain 1) with parameter T = 1
2
√

2

√
m2

M2
. Let

Assumption 1.1 hold with X = R
d . Then K satisfies the contraction bound

sup
x,y∈Rd

Wk(K(x, ·),K(y, ·))
‖x − y‖ ≤ 1 − 1

64

(
m2

M2

)2
∀k ∈ N(2.4)

and the spectral bound

τrel(K) ≤ 64
(

M2

m2

)2
.(2.5)
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In particular, inequality (2.4) implies that for all ε > 0 there exists an I = O((M2
m2

)2 log(D
ε
)),

where D = Wk(L(X0),π), such that

Wk

(
L(Xi),π

) ≤ ε ∀i ≥ I, k ∈ N∪ {∞}.(2.6)

PROOF. Inequality (2.4) follows immediately from Theorem 3, which we state and prove
in Section 4. Inequality (2.5) follows immediately from inequality (2.4) and Proposition 30
of [47]. Inequality (2.6) follows from inequality (2.4) by a standard Markov chain coupling
argument. �

We also give a bound for convergence of a slightly modified HMC Markov chain to the
target distribution π in the total variation norm (Corollary 2). This bound is given for a
slight modification of Markov chain 1, where one adds a very small random vector uniformly
distributed on a very small ball to the final step of the Markov chain. 2

COROLLARY 2. Let Z1,Z2, . . . be independent random vectors uniformly distributed on

the unit ball, and let X̂i = Xi + ε
√

m2

144M2
√

d log
1
2 (

M2
(m2ε)

)
Zi for every i. Then for all ε > 0 there

exists an Î = O((M2
m2

)2 log(D×dM2
ε
√

m2
)), where D = Wk(X0, π), such that

∥∥L(X̂i) − π
∥∥

TV ≤ ε ∀i ≥ Î.

The content of the following remarks (Remarks 2.1 and 2.2) are mentioned as some of
the primary motivation for the papers [11, 32]. For this reason, we leave them here in their
original forms, even though these later papers have made a great deal of progress on them
(and [11] proves that our conjecture in the second remark is correct):

REMARK 2.1. The ratio M2
m2

that appears prominently in the conclusions of Theorem 1
can be made much smaller for realistic examples by the use of appropriate preconditioning
steps. We give details in the arXiv version [40] and in the companion paper [42].

REMARK 2.2. We do not know if this dependence on the ratio M2
m2

is sharp, but we do
know that the dependence cannot be removed entirely. In Section 5 of [39], we find a sequence
{πn}n∈N of target distributions satisfying our assumptions for which the ratio {M2(n)

m2(n)
}n∈N goes

to infinity and the associated relaxation times τrel(n) satisfy τrel(n) = 
(M2
m2

). We conjecture
that this lower bound is sharp.

3. Related work and techniques.

3.1. Discussion of coupling improvements. Our main techniques in this paper are ex-
plicit comparisons of ODEs and probabilistic coupling bounds. To obtain these bounds, we
use comparison theorems for ODEs to prove that initially “parallel” Hamiltonian trajectories
contract for a relatively long time. It is well known and straightforward to check that, under
a strong log-concavity assumption, all trajectories contract if they are sufficiently short (see
inequality (4.3)). However, the final bounds on the mixing of the HMC Markov chain depend
quite strongly on how long a trajectory can typically be before the contraction rate gets close
to 0.

2In the arXiv version of our paper [40], we give a TV bound for the original Markov chain 1 with no modifica-
tions. However, that bound is weaker than the one in Corollary 2, and the proof is much longer.
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FIG. 2. Coupling two copies X1,X2, . . . (blue) and Y1, Y2, . . . (green) of HMC by choosing the same momen-
tum pi at every step. Note that contraction is guaranteed at each step, despite the fact that the trajectory from
X1 to X2 is not the shortest path between those two points. This is in contrast to typical comparison theorems
from differential geometry, such as the Rauch comparison theorem, which require the assumption that paths are
length-minimizing.

By way of comparison, the previous work [53] was also based on an analysis of the con-
traction of HMC trajectories. The authors recall that Hamiltonian trajectories are exactly
geodesics on an associated Jacobi manifold, then use the Rauch comparison theorem from
differential geometry to show that the distance in the Jacobi metric between these geodesics
contracts at least until one of the geodesics reaches a point that is “conjugate” to its initial
point. In other words, [53] show that the trajectories contract until one of the trajectories no
longer minimizes the distance between its initial point and the current point, if distance is
measured in the Jacobi metric.

Since the Rauch comparison theorem is sharp, it is natural to guess that contraction only
occurs until one of the trajectories reaches its conjugate point under the Jacobi metric. One
of the main differences between the present paper and [53] is that we show that contraction
persists for trajectories that are vastly longer than this heuristic would suggest in high dimen-

sions. We show contraction up to a time T = �(
√

m2
M2

)„3 which in high dimensions is much
longer than the time for which contraction was proved to occur (with high probability) in
[53]. 4

This long-term contraction is illustrated in the first move shown in Figure 2, where the
trajectory associated with X1 does a “U-turn” (and in particular passes a conjugate point with
respect to the Jacobi metric), but one can see clearly that contraction in the Euclidean distance
between the two trajectories continues throughout the length of the trajectory.

3.2. Relationship to companion paper and other works. In our companion paper [42],
we use the bounds on the “ideal” HMC Markov chain obtained in this paper to bound the
computational costs of a numerical implementation of HMC. The contents of this paper and
its companion paper are posted together on arXiv as a single long paper [40].

Our main result in the companion paper [42] uses the main result of this paper to show that
a simple numerical implementation of HMC can approximately sample from the stationary

distribution in a number of gradient evaluations that grows at rate d
1
2 in the dimension, if pa-

rameters M2, m2 do not grow with the dimension. For comparison, the best available mixing
time bound for the unadjusted Langevin algorithm on strongly log-concave π grows roughly
linearly in d , a much larger dependence on dimension than our bound for this numerical
implementation of HMC [18, 19].

3Note that T = �(

√
m2

M2
) is a “long time” in the strongly log-concave setting when

√
m2√
M2

is small (the extra

factor of 1√
M2

is a scaling factor which does not affect the mixing time bounds). However, if the target logdensity

has a strong convexity constant m2 that is very small in comparison to M2, then T will be small as well.
4The contraction time in [53] is shorter by a factor of roughly d−1 than the contraction time we prove here,

which results in a mixing time bound that is slower by a factor of roughly d−2.
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Under an additional separability assumption, the arXiv version [40] of our paper shows
that an unadjusted numerical implementation of HMC based on a kth-order numerical inte-
grator allows one to approximately sample the stationary distribution in a number of gradient

evaluations that grows at rate of d
1

2k in the dimension. Most implementations of HMC use

second-order (k = 2) integrators, giving a dimension dependence of d
1
4 , which matches the

famous heuristic derived in [1].
Our bounds also compare favorably to the ball walk Markov chain, whose best available

mixing time bound is roughly O(d2 M2
2

m2
2

log(1
ε
)) [55] in the strongly log-concave setting where

M2
m2

is small in comparison to the dimension d . On the other hand, in other settings which lack

smoothness or strong convexity, or where M2
m2

is large in comparison to the dimension d , or
where the support of the distribution is constrained to a convex body, the ball walk, and the
closely related hit-and-run algorithm, oftentimes provide the best available bounds (see, e.g.,
[9, 34, 37, 38, 44] for bounds in various settings).

While discussing related literature in the remainder of this section, we include the main
results of the companion paper [42] when referring to “the present work.” Since the present
paper discusses only ideal HMC while the companion paper discusses only numerical imple-
mentation, we trust that this will not cause undue confusion. We also discuss related results
for the Langevin and ball walk algorithms.

3.3. Literature review. There is a large literature on obtaining quantitative bounds on the
convergence rates of Markov chains (see [27] for an introduction to the statistical literature on
the topic, and [16] for connections in other fields, including Computer Science). In general,
it is difficult to obtain good quantitative bounds for large classes of chains. As such, the
literature focuses on either finding very tight bounds for specific chains (see, e.g., [17]) or
on quantitative bounds on the running time of the algorithm as a function of the problem
complexity (see, e.g., [3] or essentially any paper in the large Computer Science literature on
the subject). Our work falls in the latter category.

Despite the popularity of HMC and the widespread belief that HMC outperforms other
algorithms in high-dimensional statistical problems (see, e.g., [1]), its theoretical properties
have not been as well-understood as some of its older cousins, especially the random walk
Metropolis (RWM) algorithm with space-invariant proposal kernels (see [55] for a survey
of results on the closely related ball walk algorithm) and to a lesser degree the Metropolis-
adjusted Langevin algorithm (MALA) [5, 19, 50, 56]. This lack of theoretical results can
make it harder to optimize HMC algorithms, and it means we do not have a good understand-
ing of when HMC is better than other popular algorithms.

Several recent papers have begun to bridge this gap, most notably by proving ergodicity [8]
and geometric ergodicity [6, 36] of different versions of HMC under certain conditions, and
also establishing some quantitative bounds on the rate of convergence for Gaussian target
distributions [53]. A number of other papers, most prominently [1], have also worked on
the problem of calculating the computational complexity of HMC algorithms by computing
the rate at which certain proxies for the mixing or relaxation time of HMC increase with
the dimension of the target distribution under reasonable conditions (see [51] for a general
discussion relating results similar to [1] to the usual notions of complexity). Several other
papers give calculations that imply or suggest quantitative bounds, though we are not aware
of any that are close to tight (see, e.g., the discussion in Section 7.5 of [36]).

Finally, in recent independent work [33], the authors have obtained quantitative bounds
for a different version of HMC, called Riemannian HMC. Their bounds apply to a class of
target distributions that include distributions that are not log-concave, although like [53] their
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bounds only apply to trajectories with very short step sizes and consequently do not imply
the results in this paper.

Our work is most directly comparable to [53] (which studies the same Markov chain, but
has quite different assumptions and conclusions) and [18] (which studies a different Markov
chain, but has very similar assumptions and almost directly-comparable conclusions).

To our knowledge, [53] is the only previous paper giving quantitative nonasymptotic
bounds on the mixing of HMC. In the present paper, we improve on their conclusions by
greatly improving the dependence of their bounds on the dimension of the target distribution,
extending their analysis from Gaussian to general strongly log-concave targets, and proving
convergence in stronger norms. In our companion paper [42], we apply these results to study
numerical implementations of HMC, which are not studied in [53].

The results in this paper and [42] most closely resemble those of [18], which studies the
nonasymptotic mixing properties of the Langevin algorithm on strongly log-concave distri-
butions. Their main results hold under essentially the same conditions as our Theorem 1. For
closely related work, see [14], which studies very similar conditions to [18]. Recent inde-
pendent work [12] also gives quantitative bounds for a second-order “underdamped” version
of the Langevin algorithm that improve on those of [18] for some target distributions. See
[28] and [46] for why “standard” HMC is believed to be more efficient than second-order
Langevin Monte Carlo.

Although our results are far from providing a complete understanding of HMC, the
strongly log-concave distributions are an important special case. Many important posterior
distributions in statistics are strongly log-concave, such as the “ridge regression” posterior
associated with Gaussian priors for logistic regression which was mentioned in the Intro-
duction (see the examples in [18, 19] for calculations of the associated constants). Other
distributions are strongly log-concave except on a set of small stationary measure. In addi-
tion to this, we expect most MCMC Markov chains to perform well for strongly log-concave
targets. For these reasons, the performance of many Monte Carlo Markov chains has been
studied extensively in the strongly log-concave setting [18]. This has the added advantage
of allowing us to give a sensible comparison of the performance of HMC to its competitors,
such as the Langevin algorithm and the ball walk.

REMARK 3.1. Roughly, geometric ergodicity results [6, 36] state that for each tar-
get distribution π and starting point x there exits a number λπ(x) > 0 such that, after
i = O(λπ(x) log(1

ε
)) steps,

∥∥L(Xi) − π
∥∥

TV ≤ ε

for the HMC Markov chain Xi started at X0 = x. However, [6, 36] do not give a quantitative
bound on λπ . In contrast, we give a quantitative bound of O((M2

m2
)2 log(D

ε
)) on the number of

steps i until the distance Wk(L(Xi),π) (in the k-Wasserstein metric for any k ∈ N) between
the distribution of the Markov chain and the stationary distribution satisfies Wk(L(Xi),π) ≤
ε, where D = Wk(X0, π).

While they do not provide quantitative bounds on the “mixing time,” the geometric er-
godicity results of [6, 36] apply under more general assumptions than our results, including
for certain nonconvex log-densities. We suspect that the best analyses of HMC will combine
results such as ours (for sharp analysis of the behaviour of HMC on the “bulk” of the target)
with results such as theirs (for coarser analysis of the behaviour in the “tails” of the target),
gluing them together as in [22].
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3.3.1. Subsequent developments. Since the first arXiv version of our paper, there have
been a number of improvements to the analysis of HMC in the literature, some of which
make use of, or are motivated by, the results in our paper. In this section we provide a very
brief collection of references to some work that has appeared since the first version of this
paper (note that most of these papers cite the first arXiv version of our paper [40], which is
substantially longer and has a slightly different title).

The paper [4] is probably the most similar to the present paper. Like our paper, it analyzes
contractive couplings of HMC, though the details are different. Among other results, they
extend our results to certain classes of nonconvex functions which are nevertheless strongly
convex in a subset of Rd .

The papers [11, 32] provide improvements to the polynomial dependence on M2
m2

in our
Theorem 1; see the related work section of [11] for a summary of these subsequent develop-
ments. The paper [4] combines the contractive coupling introduced in our paper with a “syn-
chronous” coupling to obtain fast mixing bounds for target distributions which are, roughly
speaking, strongly log-concave in a sublevel set containing most of the target probability
measure but need not be strongly log-concave in the tails. See also [2, 7, 10, 15, 26, 31, 43,
48].

It is not always easy to directly compare the results of the above papers to the present
work. However, we find that it is particularly straightforward to see that [31] improves on our
results in several important ways.

4. Technical results. In this section, we give some useful bounds related to the solutions
of Hamilton’s equations (2.2). We begin with some notation and estimates that will be used
for the remainder of the section, give a short proof sketch in Section 4.2, then prove the
results.

4.1. Definitions and notation. Throughout this section, we assume that the potential
U satisfies Assumption 1.1 with X = R

d , and we consider two solutions (q
(1)
t , p

(1)
t ) and

(q
(2)
t , p

(2)
t ) of equation (2.2). Denote by q̃t := q

(2)
t − q

(1)
t and p̃t := p

(2)
t − p

(1)
t the differ-

ences between these solutions, and denote by q̂t := ‖q̃t‖ and p̂t := ‖p̃t‖ the magnitudes of
these differences.

Hamilton’s equations give

dq̃t

dt
= p̃t ,

dp̃t

dt
= −(

U ′(q(2)
t

) − U ′(q(1)
t

))
,(4.1)

so we have

dq̂t

dt
= d

dt
‖q̃t‖ = 〈p̃t , q̃t 〉

‖q̃t‖ ≤ ‖p̃t‖ = p̂t

and

dp̂t

dt
= d

dt
‖p̃t‖ = 〈 d

dt
p̃t , p̃t 〉
‖p̃t‖ ≤

∥∥∥∥ d

dt
p̃t

∥∥∥∥ Eq. (4.1)= ∥∥U ′(q(2)
t

) − U ′(q(1)
t

)∥∥.
This implies the following system of differential inequalities

dq̂t

dt
≤ p̂t ,

dp̂t

dt
≤ ∥∥U ′(q(2)

t

) − U ′(q(1)
t

)∥∥,(4.2)

with initial conditions q̂0 and p̂0.
Finally, for two points u, v ∈ R

d , we define the unit-speed parametrization of the line
connecting u and v to be �s(u, v) := u + s v−u

‖v−u‖ for all 0 ≤ s ≤ ‖v − u‖. We keep this last
notation for the remainder of the paper.
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4.2. Proof sketch. We will consider contraction of two Hamiltonian trajectories started
in parallel, so that p̃0 = 0. Using equation (4.1) and the strong convexity part of Assump-

tion 1.1, it is straightforward to check that dq̂t

dt
= 0 and d2q̂t

dt2 ≤ −m2q̂t at t = 0. Taylor’s
theorem suggests that there is some small T > 0 for which

d2q̂t

dt2 ≤ −1

2
m2q̂0(4.3)

over the interval t ∈ [0, T ]. Standard ODE comparison results (see Lemma 4.2) can be used
to “solve” inequalities of this form to give conclusions such as q̂t ≤ q̂0 − 1

4m2q̂0t
2 over some

time interval.
The bulk of our proof involves checking that a slightly more complicated inequality similar

to (4.3) holds for a relatively large value of T , specifically, for T = 1
2
√

2

√
m2

M2
. Technically, the

main ingredients are checking that q̂t , as well as certain related quantities, don’t change too
quickly over the time interval [0, T ] of interest (see Lemma 4.3), then using this to show that
d2

dt2 q̂t � 0 for t ∈ [0, T ] (see inequality (4.23) of Lemma 4.4), and finally concluding that q̂T

is much smaller than q̂0 (see Lemma 4.4).

REMARK 4.1. The upper bounds in Lemmas 4.3 and 4.4 are only used in the regime

where t ≤ T , for T = 1
2
√

2

√
m2

M2
. The particular forms of the upper bounds come from

Lemma 4.2, and we have made no effort to obtain good bounds for values of t much larger
than T .

4.3. ODE comparison theorem. We make frequent use of the following comparison the-
orem for systems of ordinary differential equations, a generalization of Grönwall’s inequality
originally stated in Proposition 1.4 of [29]:

LEMMA 4.2 (ODE comparison theorem, Proposition 1.4 of [29], originally proved in
Chapter 10 of [54]). Let U ⊂ R

n and I ⊂ R be open, nonempty, and connected. Let
f,g : I × U →R

n be continuous and locally Lipschitz maps. Then the following are equiva-
lent:

1. For each pair (t0, y), (t0, y) with t0 ∈ I and y, y ∈ U , the inequality y ≤ y implies
z(t) ≤ z(t) for all t ≥ t0, where

d

dt
z = f (t, z), z(t0) = y,

d

dt
z = g(t, z), z(t0) = y.

2. For all i ∈ {1,2, . . . , n} and all t ≥ t0, the inequality

g
(
t,

(
x[1], . . . , x[i − 1], x[i], x[i + 1], . . . , x[n]))[i]

≥ f
(
t,

(
x[1], . . . , x[i − 1], x[i], x[i + 1], . . . , x[n]))[i]

holds whenever x[j ] ≥ x[j ] for every j �= i.

4.4. Error bounds for HMC. We give a simple estimate, showing that solutions to equa-
tion (2.2) don’t diverge by very much on a small timescale:

LEMMA 4.3. With notation as above:
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1. For t ≥ 0 we have

q̂t ≤ k1e
t
√

M2 + k2e
−t

√
M2,

p̂t ≤ k1
√

M2e
t
√

M2 − k2
√

M2e
−t

√
M2,

(4.4)

where k1 = 1
2(q̂0 + p̂0√

M2
), k2 = 1

2(q̂0 − p̂0√
M2

).

2. Suppose that q̂0 = 0, and that τ > 0 is any positive real number. Then

q̂t ≥ p̂0
(
t − √

M2 sinh(τ
√

M2) × t2) ∀t ∈ [0, τ ].(4.5)

3. Suppose instead that p̂0 = 0 and that τ > 0 is such that q̂t ≤ 2q̂0 on all t ∈ [0, τ ]. Then

q̂t ≥ q̂0
(
1 − 2M2t

2) ∀t ∈ [0, τ ].(4.6)

PROOF. Recalling ‖DvU
′‖ ≤ M2‖v‖ for all v ∈R

d , we have the initial estimate:∥∥∥∥dp̃t

dt

∥∥∥∥ = ∥∥U ′(q(2)
t

) − U ′(q(1)
t

)∥∥ =
∥∥∥∥
∫ ‖q̃t‖

0
D q̃t‖q̃t ‖

U ′|
�s(q

(1)
t ,q

(2)
t )

ds

∥∥∥∥
≤

∫ ‖q̃t‖
0

∥∥D q̃t‖q̃t ‖
U ′|

�s(q
(1)
t ,q

(2)
t )

∥∥ ds ≤
∫ ‖q̃t‖

0
M2 ds = ‖q̃t‖M2.

(4.7)

We now prove our three conclusions in order.

Proving conclusion 1. Equations (4.2) and (4.7) together give the system of differential
inequalities

dq̂t

dt
≤ p̂t := f1(q̂t , p̂t ),

dp̂t

dt
≤ M2q̂t := f2(q̂t , p̂t ).

Define q̂
t and p̂

t to be the solution to the system of differential equations

dq̂
t

dt
= p̂

t = f1
(
q̂
t , p̂


t

)
,

dp̂
t

dt
= M2q̂


t = f2

(
q̂
t , p̂


t

)
(4.8)

with initial conditions q̂
0 = q̂0 and p̂

0 = p̂0. We now compute q̂
t . Turning the system of

equations (4.8) into a single second-order equation gives

d2q̂
t

dt2 = M2q̂

t

which has solution

q̂
t = k1e

t
√

M2 + k2e
−t

√
M2

for some constants k1, k2. Using the initial conditions to solve for the constants

k1 = 1

2

(
q̂0 + p̂0√

M2

)
, k2 = 1

2

(
q̂0 − p̂0√

M2

)
.

Noting that

q̂t ≤ q̂
t , p̂t ≤ p̂

t , t ∈ [0,∞)

and then applying Lemma 4.2 separately to each n-dimensional vector q̂t and p̂t completes
the proof of inequalites (4.4).
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Proving conclusions 2 and 3. Define zt := d
dt

q̂t . Fix τ > 0. Suppose that C > 0 is a num-
ber such that q̂t ≤ C for all t ∈ [0, τ ], to be fixed later in the proof. Now,

∣∣∣∣ d

dt
zt

∣∣∣∣ =
∣∣∣∣〈

d
dt

p̃t , q̃t 〉
‖q̃t‖

∣∣∣∣ ≤
∥∥∥∥ d

dt
p̃t

∥∥∥∥ ≤ M2q̂t ,(4.9)

which implies

dq̂t

dt
= zt := g1(q̂t , zt ),

dzt

dt
≥ −M2q̂t ≥ −M2C := g2(q̂t , zt ) ∀t ∈ [0, τ ].

Define q̂
†
t and z

†
t to be the solution to the system of differential equations

dq̂
†
t

dt
= ẑ

†
t = g1

(
q̂

†
t , ẑ

†
t

)
,

dẑ
†
t

dt
= −M2C = g2

(
q̂

†
t , ẑ

†
t

)
(4.10)

with initial conditions q̂
†
0 = q̂0 and z

†
0 = z0.

Since g1 and g2 are nondecreasing in each variable, Lemma 4.2, applied to the 2n-
dimensional vector [q̂t ; p̂t ], implies

q̂t ≥ q̂
†
t , p̂t ≥ z

†
t , t ∈ [0, τ ].

Hence, all we need to do is solve for z
†
t . We can turn the system of equations (4.10) into

the following second-order equation:

d2q̂
†
t

dt2 = −M2C,

whose solutions are of the form

q̂
†
t = −M2Ct2 + z0t + q̂0.

Therefore, we have

q̂t ≥ q̂
†
t = −M2Ct2 + z0t + q̂0 ∀t ∈ [0, τ ].

In the special case that q̂0 = 0, we have that z0 = p̂0. By inequality (4.4), for any τ > 0
we also have in this special case that q̂t ≤ p̂0√

M2
sinh(τ

√
M2) for all t ∈ [0, τ ]. So setting

C = p̂0√
M2

sinh(τ
√

M2) completes the proof of inequality (4.5).

In the special case that p̂0 = 0, we have |z0| ≤ |p̂0| = 0. Suppose that τ > 0 is such that
q̂t ≤ 2q̂0 holds for all t ∈ [0, τ ]. Then setting C = 2q̂0 completes the proof of inequality (4.6).�

4.5. Contraction for strongly log-concave targets. In this section, we show that two so-
lutions to Hamilton’s equations with the same initial momenta will tend to move closer to
each other over a moderate time interval (see again Figure 2).

For this section, we define the error function

F(t) := sinh2(t)

1 − 2t2(4.11)

for all t ≥ 0 (note that F(t) ≈ t2 for t > 0 sufficiently small; see Figure 3 for a plot of F(t)

and the functions �T (t) and ψ(t) used in Lemma 4.4 for specific values of T , m2, M2). We
can now prove the following contraction estimate.
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FIG. 3. A plot of the functions F(t), �T (t) and ψ(t), for t ∈ [0, T ]. In these plots we take T = 1
2
√

2

√
m2

M2
,

m2 = 1, and M2 = 1.

LEMMA 4.4. Define

�T (t) :=
(
−1

2
+ M2

m2
F(T

√
M2)

)
· 1

2
(
√

m2t)
2 + 1,

ψ(t) := −2M2t
2 + 1.

Suppose that 0 < T ≤ 1
2
√

2

√
m2

M2
. Then if p̃0 = 0,

q̂0ψ(t) ≤ q̂t ≤ q̂0�T (t) ∀t ∈ [0, T ].(4.12)

PROOF. We have〈−(
U ′(q(2)

t

) − U ′(q(1)
t

))
, q

(2)
t − q

(1)
t

〉 ≤ −m2
∥∥q(2)

t − q
(1)
t

∥∥2
.(4.13)

Note that

d

dt
‖q̃t‖ = 〈p̃t , q̃t 〉

‖q̃t‖ ,(4.14)

so that

‖q̃t‖ d

dt
‖q̃t‖ = 〈p̃t , q̃t 〉.(4.15)

Taking derivatives,

d

dt

(
‖q̃t‖ d

dt
‖q̃t‖

)
= d

dt
〈p̃t , q̃t 〉 =

〈
p̃t ,

dq̃t

dt

〉
+

〈
dp̃t

dt
, q̃t

〉

= ‖p̃t‖2 +
〈
dp̃t

dt
, q̃t

〉
Eq. (4.1)= ‖p̃t‖2 + 〈−(

U ′(q(2)
t

) − U ′(q(1)
t

))
, q

(2)
t − q

(1)
t

〉
Eq. (4.13)≤ ‖p̃t‖2 − m2

∥∥q(2)
t − q

(1)
t

∥∥2
.

(4.16)

Applying the chain rule to the LHS of equation (4.15),

d

dt

(
‖q̃t‖ d

dt
‖q̃t‖

)
= ‖q̃t‖ d2

dt2 ‖q̃t‖ +
(

d

dt
‖q̃t‖

)
×

(
d

dt
‖q̃t‖

)

≥ ‖q̃t‖ d2

dt2 ‖q̃t‖.
(4.17)
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Combining equality (4.17) with inequality (4.16), we get

‖q̃t‖ d2

dt2 ‖q̃t‖ ≤ ‖p̃t‖2 − m2‖q̃t‖2,

and rearranging

d2

dt2 ‖q̃t‖ ≤ ‖p̃t‖2

‖q̃t‖ − m2‖q̃t‖.(4.18)

Recall that we assume p̃0 = 0 in the statement of this Lemma. Inequality (4.12) is obvi-
ously true if q̂0 = 0, so without loss of generality we may also assume that q̂0 > 0. By the fact
that solutions to Hamilton’s equations are continuous (first shown in [49]) and our assump-

tions that p̃0 = 0 and ‖q̃0‖ = q̂0 �= 0, there must exist an ε > 0 such that ‖p̃t‖2

‖q̃t‖ − m2‖q̃t‖ < 0
for every t ∈ (0, ε]. Recall that q̂t := ‖q̃t‖ and define

τ1 := max
{
τ ∈ [0, T ] : q̂t ≤ 2q̂0 ∀t ∈ [0, τ ]},

where a maximum value exists by continuity of q̂t . By parts 3 and 1, respectively, of
Lemma 4.3, we have

‖q̃t‖ ≥ −2M2q̂0t
2 + q̂0 ∀t ∈ [0, τ1](4.19)

and

‖p̃t‖ ≤ 1

2
q̂0

√
M2

(
et

√
M2 − e−t

√
M2

)
.(4.20)

Hence, inequalities (4.18), (4.19), and (4.20) together imply that for all t ∈ [0, τ1] we have

d2

dt2 ‖q̃t‖ ≤ ‖p̃t‖2

‖q̃t‖ − m2‖q̃t‖ ≤ [1
2 q̂0

√
M2(e

t
√

M2 − e−t
√

M2)]2

−2M2q̂0t2 + q̂0
− m2‖q̃t‖

= −m2‖q̃t‖ +
1
4 q̂0M2(e

t
√

M2 − e−t
√

M2)2

−2(t
√

M2)2 + 1
.

(4.21)

But T ≤ 1
2
√

2

√
m2√
M2

1√
M2

implies that F(t
√

M2) is nondecreasing on t ∈ [0, T ], so by inequality

(4.21) we have

d2

dt2 ‖q̃t‖ ≤ −m2‖q̃t‖ + q̂0M2F(T
√

M2) ∀t ∈ [0, τ1].(4.22)

Define

τ2 := max
{
τ ∈ [0, T ] : q̂t ≥ 1

2
q̂0 ∀t ∈ [0, τ ]

}
,

where a maximum value exists by continuity of q̂t . Then by inequality (4.22),

d2

dt2 ‖q̃t‖ ≤ −m2

2
q̂0 + q̂0M2F(T

√
M2) ∀t ∈ [0, τ1] ∩ [0, τ2].(4.23)

Let q̂
‡
t be the solution to the differential equation

d2

dt2 q̂
‡
t = −m2

2
q̂0 + q̂0M2F(T

√
M2),
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with initial conditions q̂
‡
0 = q̂0 and d

dt
q̂

‡
0 = p̂0 = 0. Since the RHS of the differential inequal-

ity (4.23) is nondecreasing in both variables q̂t and d
dt

q̂t , we have, by Lemma 4.2 applied to
the 2n-dimensional vector [q̂t ; d

dt
q̂t ], that

q̂t ≤ q̂
‡
t ∀t ∈ [0, τ1] ∩ [0, τ2].(4.24)

Solving the differential equation for q̂
‡
t gives

q̂
‡
t =

(
−m2

2
q̂0 + q̂0M2F(T

√
M2)

)
· 1

2
t2 + p̂0t + q̂0

=
(
−m2

2
q̂0 + q̂0M2F(T

√
M2)

)
· 1

2
t2 + q̂0

= q̂0

[(
−1

2
+ M2

m2
F(T

√
M2)

)
· 1

2
(
√

m2t)
2 + 1

]
,

where the second line uses the fact that p̂0 = 0. Therefore, by inequality (4.24), this implies

q̂t ≤ q̂0

[(
−1

2
+ M2

m2
F(T

√
M2)

)
· 1

2
(
√

m2t)
2 + 1

]
(4.25)

for all t ∈ [0, τ1] ∩ [0, τ2].
Note that

√
m2√
M2

≤ 1, so

T ≤ 1

2
√

2

√
m2√
M2

1√
M2

≤ 1

2
√

2

1√
M2

.(4.26)

Hence,

ψ(t) = −2M2t
2 + 1 ≥ 3

4
∀t ∈ [0, T ].(4.27)

We calculate

M2

m2
F(T

√
M2) = M2

m2

sinh2(
√

M2T )

1 − 2(
√

M2T )2
≤ M2

m2

sinh2(
√

M2T )

1 − 2(
√

M2T )2
≤ 1

4
,(4.28)

where both inequalities use the fact that T ≤ 1
2
√

2

√
m2√
M2

1√
M2

and the first also uses the fact that

sinh2(t) ≤ 1.2t2 for all t ∈ [0, 1
2 ]. This bound implies

�T (t) ≤ 1 − 1

4
· 1

2
(
√

m2t)
2 ≤ 1 ∀t ∈ [0, T ].(4.29)

Therefore, inequalities (4.27) and (4.29), respectively, imply that

q̂0ψ(t) ≥ 3

4
q̂0 and q̂0�T (t) ≤ q̂0 ∀t ∈ [0, T ].(4.30)

We now define τ3 to be supremum of all values of 0 ≤ τ ≤ T so that the following inequal-
ities hold:

3

4
q̂0 ≤ q̂0ψ(t) ≤ q̂t ≤ q̂0�T (t) ≤ q̂0 ∀t ∈ [0, τ ].(4.31)

Observe that �T (0) = ψ(0) = 1, which implies τ3 ≥ 0. Moreover, since q̂t , ψ(t), and �T (t)

are continuous on t ∈ [0, T ], inequalities (4.31) are satisfied for t = τ3. We now prove by
contradiction that in fact τ3 = T .
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CLAIM: τ3 = T . Suppose (toward a contradiction) that τ3 < T . Since q̂t is continuous
on t ∈ R, equation (4.31) (which is satisfied for τ = τ3) implies that there exists a number δ

with 0 < δ ≤ T − τ3 such that

1

2
q̂0 ≤ q̂t ≤ 2q̂0 ∀t ∈ [0, τ3 + δ].(4.32)

Equation (4.32) implies that τ3 + δ ≤ τ1 and τ3 + δ ≤ τ2. Therefore, by equation (4.25), we
have

q̂t ≤ q̂0�T (t) ∀t ∈ [0, τ3 + δ](4.33)

and by part 3 of Lemma 4.3 we have

q̂0ψ(t) ≤ q̂t ∀t ∈ [0, τ3 + δ].(4.34)

Hence, equations (4.30), (4.33), and (4.34) together imply that

3

4
q̂0 ≤ q̂0ψ(t) ≤ q̂t ≤ q̂0�T (t) ≤ q̂0 ∀t ∈ [0, τ3 + δ].(4.35)

But equation (4.35) implies that equation (4.31) is satisfied for τ = τ3 + δ, which contradicts
the fact that τ = τ3 is the largest value of τ that satisfies equation (4.31). Therefore, by
contradiction, our assumption that τ3 < T must be false. �

Therefore, τ3 = T , and so equation (4.31) is satisfied for τ = T :

3

4
q̂0 ≤ q̂0ψ(t) ≤ q̂t ≤ q̂0�T (t) ≤ q̂0 ∀t ∈ [0, T ].

This completes the proof of the Lemma. �

This bound quickly implies the main result of this section:

THEOREM 3 (Contraction For Hamiltonian mechanics with convex potentials). For 0 ≤
T ≤ 1

2
√

2

√
m2

M2
,

q̂T ≤
[
1 − 1

8
(
√

m2T )2
]

× q̂0.(4.36)

In particular, if T = 1
2
√

2

√
m2

M2
, then

q̂T ≤
[
1 − 1

64

(
m2

M2

)2]
× q̂0.(4.37)

PROOF. By inequality (4.28),

M2

m2
F(T

√
M2) ≤ 1

4
.(4.38)

This implies

�T (t) ≤ 1 − 1

4
· 1

2
(
√

m2t)
2 ∀t ∈ [0, T ].(4.39)

Applying Lemma 4.4, equation (4.39) implies that

q̂T ≤
[
1 − 1

8
(
√

m2T )2
]

× q̂0.

This completes the proof of inequality (4.36). Inequality (4.37) is an immediate consequence
of inequality (4.36). �
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5. Drift condition. Although this paper focuses on mixing bounds, we feel it is worth
mentioning that the strong log-concavity assumption will also imply a quantitatively useful
drift condition:

THEOREM 4 (Drift conditions for HMC: quadratic tails). Fix 1 < C < ∞ and define

S = {
x ∈R

d : ‖x‖ ≤ C
}
.

Let Assumption 1.1 hold for X = Sc. Let {Xt }t≥0 be the ideal HMC Markov chain (Markov

chain 1) with parameter T =
√

m2

2
√

2M2
. Then

E
[
e‖X1‖|X0

] ≤ e−1e‖X0‖ + A,(5.1)

where the constant 0 < A < ∞ satisfies

log(A) = O

(
max

(
d

m2
,M2,

(
M2

m2

)5
m−2

2 ,

(
M2

m2

)2.5
m−0.5

2 ,C

√
M2

m2

))
.

PROOF. The proof is given in Appendix B. �

REMARK 5.1 (Other drift bounds in the HMC literature). Quantitative drift conditions
are useful for extending quantiative mixing bounds in the present paper to more general distri-
butions, which may have log-concave bulks but not tails. Finding such bounds is not generally
easy, and is beyond the scope of this paper, but we mention some existing related work. Al-
though we are not aware of published work obtaining general quantitative drift conditions
in the HMC literature, there has been substantial work on finding drift conditions without
explicit quantitative bounds, most noteably in [36] and [20]. Of course it is possible to obtain
quantitative bounds by following the calculations in for example, Theorem 5.4 of [36]. How-
ever, in order to obtain useful results for the ideal HMC integrator, additional assumptions
are required. We briefly sketch the difficulty.

In the last clause in the last sentence of the proof of Proposition 5.10, they assert that
a certain sum is strictly positive because all of its terms are nonnegative and at least one
is strictly positive. The continuous analogue to this argument fails: the analogous integral
cannot be bounded away from 0 simply by noting that the integrand is strictly positive at at
least one point. In order to avoid this problem, it is sufficient to add an assumption that U ′(q)

changes slowly with q .

6. Discussion. In this paper, we provide useful bounds on the convergence rate of HMC
under rather strong assumptions of strong log-concavity. These bounds improve on several
earlier results, and in particular give mixing bounds with optimal dependence on dimension,
but we leave many important questions open. In this section, we mention those that are most
interesting to us.

6.1. Relationship to the Jacobi metric. The biggest difference between the approach of
the previous paper that finds quantitative mixing bounds for HMC, [53], and our paper, is as
follows. [53] uses concentration of measure to analyze contraction of “typical” Hamiltonian
trajectories with parallel initial momenta on strongly convex potentials by expressing them
as geodesic trajectories on a positively curved manifold under the Jacobi metric, applying
the Rauch comparison theorem from differential geometry. Our paper instead proves con-
traction of all Hamiltonian trajectories with parallel initial momenta by applying comparison
theorems for ordinary differential equations (ODEs) directly to the Hamilton’s equations that
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define the Hamiltonian trajectories. Because the Jacobi manifold is never defined on the en-
tire state space of an HMC Markov chain, it does not seem possible to extend an approach
based on the Jacobi manifold to obtain uniform contraction estimates for all Hamiltonian
trajectories. As a result, we are able to achieve bounds that do not grow explicitly with the
dimension d , while the Jacobi metric approach in [53] yields bounds that grow like d2.

We found this slightly surprising: the Jacobi metric is a natural tool for analyzing HMC,
and it is far from clear to us if the technical difficulties that appear in [53] can be overcome.
We leave as an open problem the question of whether the Jacobi metric approach of [53] can
be refined to obtain bounds that do not grow explicitly with d , as well as to possibly further

strengthen the relaxation time bound in our Theorem 1 from roughly O(
M2

2
m2

2
) to the conjec-

tured value of roughly O(M2
m2

). (We propose the conjectured dependences on M2 and m2 here
based on the best available bounds for the Langevin diffusion [21] and the closely related
geodesic walk [41], as well as exact solutions to Hamilton’s equations that are available in
the special case of a Gaussian target measure.)

6.2. Riemannian HMC. This paper analyzes one of the simplest possible HMC algo-
rithms. However, many other variants exist. Riemannian HMC, introduced in [23], is one
of the most popular. This approach seems to obviate the need for the preconditioning step
discussed in Remark 2.1, but there are very few rigorous results on the performance of this
algorithm. It would be interesting to check that Riemannian HMC does have this property,
and that no additional problems arise.

6.3. Quantitative drift conditions. As discussed in [36], it is more difficult to obtain a
Lyapunov condition for HMC than for RWM. Obtaining much more general quantitative
drift conditions for HMC would allow us to check that bad behavior “in the tails” of the
target distribution does not greatly influence mixing.

6.4. De-biasing with coupling for parallel processing. In [25], a coupling similar to the
one described in Figure 2 is used to provide unbiased samples of the target density from
HMC Markov chains that are numerically implemented in parallel. As the authors of [25] ask
in their discussion section, it would be interesting to see if the contraction bounds obtained
in our paper could be used to provide stronger convergence guarantees for their algorithm.

APPENDIX A: PROOF OF COROLLARY 2

PROOF. Fix ε > 0 as in the statement of Corollary 2 and set Î = I × 103 log(D ×
144M2d

2 log
1
2 ( κ

ε
)

ε
√

m2
) = O(κ2 log(D×dM2

ε
√

m2
)), where I is the number in Theorem 1.

Next consider some i ≥ Î . By equation (2.6) of Theorem 1, W∞(L(Xi),π) ≤
ε
√

m2

144M2d
2 log

1
2 ( κ

ε
)
. Hence, there is a random variable Y ∼ π coupled to Xi such that ‖Xi −Y‖ ≤

ε
√

m2

144M2d
2 log

1
2 ( κ

ε
)

with probability 1.

By Assumption 1.1, and our assumption that U(x) has a global minimum at x = 0, we
have

π(x) = 1∫
Rd e−U(x) dx

e−U(x) ≤ 1∫
Rd e−M2‖x‖2 dx

e−m2‖x‖2

=
∫
Rd e−m2‖x‖2

dx∫
Rd e−M2‖x‖2 dx

× 1∫
Rd e−m2‖x‖2 dx

e−m2‖x‖2 = κ
d
2 × 1∫

Rd e−m2‖x‖2 dx
e−m2‖x‖2

.

(A.1)
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Thus, letting ξ ∼ N(0, Id) be a standard normal random variable, we have

P

(
‖Y‖2 ≥ s + d

m2

)
Eq. (A.1)≤ κ

d
2 P

(
1

m2
‖ξ‖2 ≥ s + d

m2

)

= κ
d
2 P

(‖ξ‖2 ≥ m2s + d
)

≤ κ
d
2 e−m2s

8 ∀s >
d

m2
,

where the last inequality holds by the Hason–Wright inequality [52].
Hence, we have

P

(
‖Y‖ ≥ 9

√
d√
m2

log
1
2

(
κ

ε

))
≤ ε

8
.

Hence, since U has M2-Lipschitz gradient, with probability at least 1 − ε
8 , we have that

U(Y ) − ε

8
≤ U(Y + z) ≤ U(Y ) + ε

8
∀z ∈ B

(
0,

ε
√

m2

72M2
√

d
log− 1

2

(
κ

ε

))
,

and hence that

e− ε
8 ≤ π(Y + z)

π(Y )
≤ e

ε
8 ∀z ∈ B

(
0,

ε
√

m2

72M2
√

d log
1
2 (κ

ε
)

)
,(A.2)

with probability at least 1 − ε
8 .

Let S ⊂ R
d be the subset of points Y ∈ R

d for which inequality (A.2) holds. Then

P(S) ≥ 1 − ε

8
.(A.3)

Let ζ be uniformly distributed on the unit ball B(0,1) and let Ŷ = Y + ε
√

m2

144M2
√

d log
1
2 ( κ

ε
)
ζ . Let

V be the volume of the ball of radius R, where R := ε
√

m2

72M2
√

d log
1
2 ( κ

ε
)
. Let ρ be the density

of Ŷ . Then at any point ŷ ∈ R
d , the density ρ(ŷ) is exactly the integral

ρ(ŷ) = 1

V

∫
B(ŷ,R)

π(z) dz.

Inequality (A.2) implies that for any point ŷ ∈ S + B(0,R), where “+” denotes the
Minkowski sum, we have

e− ε
8 = 1

V

∫
B(ŷ,R)

e− ε
8 dz ≤ 1

V

∫
B(ŷ,R)

π(z)dz ≤ 1

V

∫
B(ŷ,R)

e
ε
8 dz = e

ε
8 ,

and hence that

e− ε
8 ≤ ρ(ŷ) ≤ e

ε
8 ∀ŷ ∈ S + B(0,R).(A.4)

Therefore, inequalities (A.3) and (A.4) together imply that

∥∥L(Ŷ ) −L(Y )
∥∥

TV

Eq. (A.4)≤ 1 − P
(
Ŷ ∈ (

S + B(0,R)
)) + (

e
1
8 − 1

)
≤ 1 − P(Y ∈ S) + (

e
1
8 − 1

)
Eq. (A.3)≤ 1

8
+ (

e
1
8 − 1

)
≤ ε

3
.

(A.5)
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But we also have that

‖Xi − Y‖ ≤ ε
√

m2

144M2d2 log
1
2 (κ

ε
)
,(A.6)

with probability 1. Moreover, inequality (A.6) implies that B(Xi,
ε
√

m2

144M2
√

d log
1
2 ( κ

ε
)
) ⊆

B(Y,
ε
√

m2

72M2
√

d log
1
2 ( κ

ε
)
).

Hence, since X̂i = Xi + ε
√

m2

144M2
√

d log
1
2 ( κ

ε
)
Zi and Ŷ = Y + ε

√
m2

144M2
√

d log
1
2 ( κ

ε
)
ζ , standard con-

centration inequalities for the unit ball imply that∥∥L(X̂i) −L(Ŷ )
∥∥

TV ≤ ε

8
.(A.7)

Therefore, by inequalities (A.5) and (A.7), we have that∥∥L(X̂i) − π
∥∥

TV = ∥∥L(X̂i) −L(Y )
∥∥

TV ≤ ε

2
. �

APPENDIX B: PROOF OF THEOREM 4

In order to prove Theorem 4, we need the following very rough bound on the distance that
can be travelled by solutions to Hamilton’s equations.

LEMMA B.1. Assume that there exists some 0 < C < ∞ so that∥∥U ′(q)
∥∥ ≤ C‖q‖(B.1)

for all q ∈ R
d . Let (qt ,pt ) be solutions to Hamilton’s equations (2.2) with initial conditions

(q0,p0) = (q,p) ∈ R
2d . Then for all t ≥ 0,

‖qt − q‖ ≤ 1

2C

(
e−√

Ct (e√
Ct − 1

)(√
C‖p‖(

e
√

Ct + 1
) + C‖q‖(

e
√

Ct − 1
)))

.

PROOF. Note that

f (t) ≡ 1

2C

(
e−√

Ct (e√
Ct − 1

)(√
C‖p‖(

e
√

Ct + 1
) + C‖q‖(

e
√

Ct − 1
)))

is a solution to the system of equations

f (0) = 0,

f ′(0) = ‖p‖,
f ′′(t) = Cf (t) + C‖q‖, t ≥ 0.

By Hamilton’s equations (2.2) and inequality (B.1),

d2

dt2 ‖qt − q0‖ ≤ ∥∥U ′(qt )
∥∥

≤ C‖qt‖
≤ C‖qt − q0‖ + C‖q0‖.

We also have

d

dt
|t=0‖qt − q0‖ ≤ ‖p0‖.
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By Lemma 4.2, this implies

‖qt − q0‖ ≤ f (t)

= 1

2C

(
e−√

Ct (e√
Ct − 1

)(√
C‖p‖(

e
√

Ct + 1
) + C‖q‖(

e
√

Ct − 1
)))

for all t ≥ 0. This completes the proof. �

The following lemma gives us the main bounds in the proof of Theorem 4.

LEMMA B.2 (Lyapunov function for Hamiltonian dynamics: Gaussian-like tails). Let U

satisfy Assumption 1.1 with X = R
d . Fix an initial position (q,p) ∈ R

2d that satisfies

1√
2m2

‖p‖ − 1

512κ2 ‖q‖ ≤ −1(B.2)

and let (qt ,pt )t≥0 be a solution to equation (2.2) with initial conditions q0 = q, p0 = p. Then

for T = 1
2
√

2

√
m2

M2
,

e‖qT ‖ ≤ e−1e‖q‖(B.3)

and also

inf
0≤s≤T

‖qs‖ ≥ ‖q‖
2

− ‖p‖
2
√

M2
.(B.4)

PROOF. Let (α(t), β(t))t≥0 be a solution to equation (2.2) with initial conditions α(0) =
0, β(0) = p. By Theorem 3,

∥∥α(T ) − qT

∥∥ ≤
[
1 − 1

64
(
√

m2T )2
]

× ∥∥α(0) − q
∥∥

=
(

1 − 1

64
m2T

2
)
‖q‖.

(B.5)

By conservation of energy for Hamilton’s equations,

1

2

∥∥β(T )
∥∥2 + U

(
α(T )

) = 1

2

∥∥β(0)
∥∥2 + U

(
α(0)

) = 1

2

∥∥β(0)
∥∥2

,

so

U
(
α(T )

) ≤ 1

2

∥∥β(0)
∥∥2

.(B.6)

By our assumptions, for q ∈ R
d we have

U(q) ≥ m2‖q‖2.

Combining this with inequality (B.6), we have

m2
∥∥α(T )

∥∥2 ≤ 1

2

∥∥β(0)
∥∥2

,

so that

∥∥α(T )
∥∥ ≤ 1√

2m2

∥∥β(0)
∥∥.(B.7)
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Combining this with inequality (B.5) and then the assumption (B.2),

‖qT ‖ ≤ ∥∥α(T )
∥∥ + ∥∥α(T ) − qT

∥∥
≤ 1√

2m2
‖p‖ +

(
1 − 1

64
m2T

2
)
‖q‖

= 1√
2m2

‖p‖ +
(

1 − 1

512κ2

)
‖q‖

≤ ‖q‖ − 1.

We conclude that

e‖qT ‖ ≤ e−1e‖q0‖,

completing our proof of inequality (B.3).
We prove inequality (B.4) by an application of Lemma B.1, which gives

‖qs‖ ≥ ‖q0‖ − ‖q0 − qs‖

≥ ‖q‖ − 1

2M2

(
e−√

M2s
(
e
√

M2s − 1
)(√

M2‖p‖(
e
√

M2s + 1
) + M2‖q‖(

e
√

M2s − 1
)))

≥ ‖q‖
(

1 − 1

2

(
e
√

M2s − 1
)) − ‖p‖

2
√

M2

(
e
√

M2s − e−√
M2s

)
for all s ≥ 0. We note that the RHS is monotone nonincreasing in s. Thus, setting s = T on
the RHS and using the bounds 0 ≤ m2

M2
≤ 1 and

√
M2T ≤ 1

2
√

2
,

inf
0≤s≤T

‖qs‖ ≥ ‖q‖
(

1 − 1

2

(
e
√

M2T − 1
)) − ‖p‖

2
√

M2

(
e
√

M2T − e−√
M2T

)

≥ ‖q‖
(

1 − 1

2

(
e

1
2
√

2 − 1
)) − ‖p‖

2
√

M2

(
e

1
2
√

2 − e
− 1

2
√

2
)

≥ ‖q‖
2

− ‖p‖
2
√

M2
,

completing the proof. �

We apply this lemma to prove Theorem 4:

PROOF OF THEOREM 4. For q ∈R
d , define the associated “good” set to be

G(q) = {
p ∈ R

d : ‖p‖ ≤ min
(
c1‖q‖ − c3, c2‖q‖ − c4

)}
,

where

c1 =
√

2m2.5
2

512M2
2

, c2 = max(1,
√

M2), c3 = √
2m2, c4 = 2C

√
M2.

The condition p ∈ G(q) guarantees that the solution to Hamilton’s equations (qt ,pt )
T
t=0 with

initial conditions (q,p) will satisfy the following two properties:

• It will stay outside of the set S (by inequality (B.4) of Lemma B.2), and
• It will “drift” toward the origin (for a precise statement, see inequality (B.3) of Lemma B.2).
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We now make this precise. Define � to be the standard Gaussian in d dimensions. Fix
X0 = x ∈ R

d as in the statement of the theorem, let p ∼ �, and set X1 = Q(X0)
T (p); note that

X1 has the distribution required by the statement of the theorem. By Lemma B.2, we have

e‖X1‖1p∈G(X0) ≤ e−1e‖X0‖.(B.8)

Mimicking the calculation leading to inequality (B.7), we also have for any initial position
and velocity the deterministic inequality

m2‖X1‖2 ≤ M2‖X0‖2 + 1

2
‖p‖2,

so that

‖X1‖ ≤ √
κ‖X0‖ + 1√

2m2
‖p‖.(B.9)

Combining inequalities (B.8) and (B.9),

E
[
e‖X1‖|X0

] = E
[
e‖X1‖1p∈G(X0)|X0

] +E
[
e‖X1‖1p/∈G(X0)|X0

]
≤ e−1e‖X0‖ +E

[
e‖X1‖1p/∈G(X0)|X0

]
≤ e−1e‖X0‖ + e

√
M2

m2
‖X0‖

∫
p/∈G(X0)

e
1√
2m2

‖p‖
d�(p).

Defining A = supx∈Rd e

√
M2

m2
‖x‖ ∫

p/∈G(x) e
1√
2m2

‖p‖
d�(p) < ∞, this implies

E
[
e‖X1‖|X0

] ≤ e−1e‖X0‖ + A.

This completes the proof of inequality (5.1) with no bound on A. We will now bound A.
For R ≥ 2�, let X ∼ �1. We then have the bound∫

‖p‖>R
e�‖p‖d�(p) = 1√

2π
d

∫
‖x‖>R

e�‖x‖e−‖x‖2

2 dx

≤ e
�2
2

1√
2π

d

∫
‖x‖>R

e− (‖x‖−�)2

2 dx

≤ e
�2
2

1√
2π

d

∫
‖x‖>R

e−‖x‖2

8 dx

≤ 2
d
2 e

�2
2 P

[
2‖X‖ > R

]
≤ 2

d
2 e

�2
2 e−R2

8 ,

(B.10)

where the last inequality holds only for all R > R0 larger than a single universal constant
(see, e.g., inequalities (1.2) and (1.3) of [24]). For all �, R (and in particular for R < 2�), we
have the trivial bound ∫

‖p‖>R
e�‖p‖d�(p) ≤

∫
e�‖p‖d�(p)

≤ ed �2
2 .

(B.11)
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Thus, defining

log
(
B1(x)

) =
√

M2

m2
x + d + 1

8m2
− 1

8

(
c1x − c3 −

√
2

m2

)2
,

log
(
B2(x)

) =
√

M2

m2
x + d + 1

8m2
− 1

8

(
c2x − c4 −

√
2

m2

)2
,

log(B3) =
√

M2

m2c1

(
c3 +

√
2

m2

)
+ d

4m2
,

log(B4) =
√

M2

m2c2

(
c4 +

√
2

m2

)
+ d

4m2
,

for x ∈ R
+, we have by inequalities (B.10) and (B.11)

A = sup
x∈Rd

e

√
M2

m2
‖x‖ ∫

p/∈G(x)
e

1√
2m2

‖p‖
d�(p)

≤ max
(

sup
x∈R+

max
(
B1(x),B2(x)

)
,B3,B4

)
.

(B.12)

Noting that log(B1(x)) and log(B2(x)) are quadratic, we can optimize these expressions by
hand. In particular, for a quadratic of the form f (x) = αx + β − (γ x − δ)2 for constants
α,β, γ, δ > 0, we have

sup
x∈R

f (x) = O

(
max

(
β, δ2,

α2

γ 2

))
.

Applying this with inequality (B.12) (and using the relationship 0 < m2 ≤ M2 < ∞, d ≥ 1 to
remove some terms that cannot possibly be the largest) completes the proof of the bound on
A, and thus the proof of the lemma. �

Acknowledgements. We are grateful to Natesh Pillai and Alain Durmus for helpful
discussions. Oren Mangoubi was supported by a Canadian Statistical Sciences Institute
(CANSSI) Postdoctoral Fellowship, and by an NSERC Discovery grant. Aaron Smith was
supported by an NSERC Discovery grant. We are grateful to the anonymous reviewers of an
earlier version of this paper for their helpful comments and suggestions.

Funding. Oren Mangoubi was supported by a Canadian Statistical Sciences Institute
(CANSSI) Postdoctoral Fellowship, and by an NSERC Discovery grant. Aaron Smith was
supported by an NSERC Discovery grant.

REFERENCES

[1] BESKOS, A., PILLAI, N., ROBERTS, G., SANZ-SERNA, J.-M. and STUART, A. (2013). Optimal tuning
of the hybrid Monte Carlo algorithm. Bernoulli 19 1501–1534. MR3129023 https://doi.org/10.3150/
12-BEJ414

[2] BISWAS, N. and JACOB, P. E. (2019). Estimating convergence of Markov chains with L-lag couplings.
Preprint. Available at arXiv:1905.09971.

[3] BORGS, C., CHAYES, J. T., FRIEZE, A., KIM, J. H., TETALI, P., VIGODA, E. and VU, V. H. (1999).
Torpid mixing of some Monte Carlo Markov chain algorithms in statistical physics. In 40th Annual
Symposium on Foundations of Computer Science (New York, 1999) 218–229. IEEE Comput. Soc., Los
Alamitos, CA. MR1917562 https://doi.org/10.1109/SFFCS.1999.814594

[4] BOU-RABEE, N., EBERLE, A. and ZIMMER, R. (2020). Coupling and convergence for Hamiltonian Monte
Carlo. Ann. Appl. Probab. 30 1209–1250. MR4133372 https://doi.org/10.1214/19-AAP1528

http://www.ams.org/mathscinet-getitem?mr=3129023
https://doi.org/10.3150/12-BEJ414
http://arxiv.org/abs/arXiv:1905.09971
http://www.ams.org/mathscinet-getitem?mr=1917562
https://doi.org/10.1109/SFFCS.1999.814594
http://www.ams.org/mathscinet-getitem?mr=4133372
https://doi.org/10.1214/19-AAP1528
https://doi.org/10.3150/12-BEJ414


2044 O. MANGOUBI AND A. SMITH

[5] BOU-RABEE, N. and HAIRER, M. (2013). Nonasymptotic mixing of the MALA algorithm. IMA J. Numer.
Anal. 33 80–110. MR3020951 https://doi.org/10.1093/imanum/drs003

[6] BOU-RABEE, N. and SANZ-SERNA, J. M. (2017). Randomized Hamiltonian Monte Carlo. Ann. Appl.
Probab. 27 2159–2194. MR3693523 https://doi.org/10.1214/16-AAP1255

[7] BUCHHOLZ, A., CHOPIN, N. and JACOB, P. E. (2018). Adaptive tuning of Hamiltonian Monte Carlo within
sequential Monte Carlo. Preprint. Available at arXiv:1808.07730.

[8] CANCÈS, E., LEGOLL, F. and STOLTZ, G. (2007). Theoretical and numerical comparison of some sam-
pling methods for molecular dynamics. ESAIM Math. Model. Numer. Anal. 41 351–389. MR2339633
https://doi.org/10.1051/m2an:2007014

[9] CHEN, Y., DWIVEDI, R., WAINWRIGHT, M. J. and YU, B. (2018). Fast MCMC sampling algorithms on
polytopes. J. Mach. Learn. Res. 19 2146–2231.

[10] CHEN, Y., DWIVEDI, R., WAINWRIGHT, M. J. and YU, B. (2020). Fast mixing of metropolized Hamilto-
nian Monte Carlo: Benefits of multi-step gradients. J. Mach. Learn. Res. 21 Paper No. 92. MR4119160

[11] CHEN, Z. and VEMPALA, S. S. (2019). Optimal convergence rate of Hamiltonian Monte Carlo for strongly
logconcave distributions. Preprint. Available at arXiv:1905.02313.

[12] CHENG, X., CHATTERJI, N. S., BARTLETT, P. L. and JORDAN, M. I. (2018). Underdamped Langevin
MCMC: A non-asymptotic analysis. In Conference on Learning Theory 300–323.

[13] CHEUNG, S. H. and BECK, J. L. (2009). Bayesian model updating using hybrid Monte Carlo simulation
with application to structural dynamic models with many uncertain parameters. J. Eng. Mech. 135
243–255.

[14] DALALYAN, A. S. (2017). Theoretical guarantees for approximate sampling from smooth and log-concave
densities. J. R. Stat. Soc. Ser. B. Stat. Methodol. 79 651–676. MR3641401 https://doi.org/10.1111/rssb.
12183

[15] DELIGIANNIDIS, G., PAULIN, D. and DOUCET, A. (2018). Randomized Hamiltonian Monte Carlo as scal-
ing limit of the bouncy particle sampler and dimension-free convergence rates. Preprint. Available at
arXiv:1808.04299.

[16] DIACONIS, P. (2009). The Markov chain Monte Carlo revolution. Bull. Amer. Math. Soc. (N.S.) 46 179–205.
MR2476411 https://doi.org/10.1090/S0273-0979-08-01238-X

[17] DIACONIS, P., KHARE, K. and SALOFF-COSTE, L. (2008). Gibbs sampling, exponential families and
orthogonal polynomials. Statist. Sci. 23 151–178. With comments and a rejoinder by the authors.
MR2446500 https://doi.org/10.1214/07-STS252

[18] DURMUS, A. and MOULINES, E. (2016). Sampling from strongly log-concave distributions with the unad-
justed Langevin algorithm. Preprint. Available at arXiv:1605.01559.

[19] DURMUS, A. and MOULINES, É. (2017). Nonasymptotic convergence analysis for the unadjusted Langevin
algorithm. Ann. Appl. Probab. 27 1551–1587. MR3678479 https://doi.org/10.1214/16-AAP1238

[20] DURMUS, A., MOULINES, E. and SAKSMAN, E. (2017). On the convergence of Hamiltonian Monte Carlo.
Preprint. Available at arXiv:1705.00166.

[21] EBERLE, A. (2016). Reflection couplings and contraction rates for diffusions. Probab. Theory Related Fields
166 851–886. MR3568041 https://doi.org/10.1007/s00440-015-0673-1

[22] EBERLE, A. and MAJKA, M. B. (2019). Quantitative contraction rates for Markov chains on general state
spaces. Electron. J. Probab. 24 1–36. MR3933205 https://doi.org/10.1214/19-EJP287

[23] GIROLAMI, M. and CALDERHEAD, B. (2011). Riemann manifold Langevin and Hamiltonian Monte Carlo
methods. J. R. Stat. Soc. Ser. B. Stat. Methodol. 73 123–214. With discussion and a reply by the authors.
MR2814492 https://doi.org/10.1111/j.1467-9868.2010.00765.x

[24] HASHORVA, E. and HÜSLER, J. (2003). On multivariate Gaussian tails. Ann. Inst. Statist. Math. 55 507–
522. MR2007795 https://doi.org/10.1007/BF02517804

[25] HENG, J. and JACOB, P. E. (2019). Unbiased Hamiltonian Monte Carlo with couplings. Biometrika 106
287–302. MR3949304 https://doi.org/10.1093/biomet/asy074

[26] HOFFMAN, M., SOUNTSOV, P., DILLON, J. V., LANGMORE, I., TRAN, D. and VASUDEVAN, S. (2019).
Neutra-lizing bad geometry in Hamiltonian Monte Carlo using neural transport. Preprint. Available at
arXiv:1903.03704.

[27] JONES, G. L. and HOBERT, J. P. (2001). Honest exploration of intractable probability distributions
via Markov chain Monte Carlo. Statist. Sci. 16 312–334. MR1888447 https://doi.org/10.1214/ss/
1015346317

[28] KENNEDY, A. D. and PENDLETON, B. (2001). Cost of the generalised hybrid Monte Carlo algorithm for
free field theory. Nuclear Phys. B 607 456–510. MR1850796 https://doi.org/10.1016/S0550-3213(01)
00129-8

[29] KIRKILIONIS, M. and WALCHER, S. (2004). On comparison systems for ordinary differential equations.
J. Math. Anal. Appl. 299 157–173. MR2091278 https://doi.org/10.1016/j.jmaa.2004.06.025

http://www.ams.org/mathscinet-getitem?mr=3020951
https://doi.org/10.1093/imanum/drs003
http://www.ams.org/mathscinet-getitem?mr=3693523
https://doi.org/10.1214/16-AAP1255
http://arxiv.org/abs/arXiv:1808.07730
http://www.ams.org/mathscinet-getitem?mr=2339633
https://doi.org/10.1051/m2an:2007014
http://www.ams.org/mathscinet-getitem?mr=4119160
http://arxiv.org/abs/arXiv:1905.02313
http://www.ams.org/mathscinet-getitem?mr=3641401
https://doi.org/10.1111/rssb.12183
http://arxiv.org/abs/arXiv:1808.04299
http://www.ams.org/mathscinet-getitem?mr=2476411
https://doi.org/10.1090/S0273-0979-08-01238-X
http://www.ams.org/mathscinet-getitem?mr=2446500
https://doi.org/10.1214/07-STS252
http://arxiv.org/abs/arXiv:1605.01559
http://www.ams.org/mathscinet-getitem?mr=3678479
https://doi.org/10.1214/16-AAP1238
http://arxiv.org/abs/arXiv:1705.00166
http://www.ams.org/mathscinet-getitem?mr=3568041
https://doi.org/10.1007/s00440-015-0673-1
http://www.ams.org/mathscinet-getitem?mr=3933205
https://doi.org/10.1214/19-EJP287
http://www.ams.org/mathscinet-getitem?mr=2814492
https://doi.org/10.1111/j.1467-9868.2010.00765.x
http://www.ams.org/mathscinet-getitem?mr=2007795
https://doi.org/10.1007/BF02517804
http://www.ams.org/mathscinet-getitem?mr=3949304
https://doi.org/10.1093/biomet/asy074
http://arxiv.org/abs/arXiv:1903.03704
http://www.ams.org/mathscinet-getitem?mr=1888447
https://doi.org/10.1214/ss/1015346317
http://www.ams.org/mathscinet-getitem?mr=1850796
https://doi.org/10.1016/S0550-3213(01)00129-8
http://www.ams.org/mathscinet-getitem?mr=2091278
https://doi.org/10.1016/j.jmaa.2004.06.025
https://doi.org/10.1111/rssb.12183
https://doi.org/10.1214/ss/1015346317
https://doi.org/10.1016/S0550-3213(01)00129-8


MIXING OF HMC 2045

[30] LEE, H., MANGOUBI, O. and VISHNOI, N. K. (2019). Online sampling from log-concave distributions.
Available at arXiv:1902.08179.

[31] LEE, Y. T., SHEN, R. and TIAN, K. (2020). Logsmooth gradient concentration and tighter runtimes for
metropolized Hamiltonian Monte Carlo. In Conference on Learning Theory 2565–2597. PMLR.

[32] LEE, Y. T., SONG, Z. and VEMPALA, S. S. (2018). Algorithmic theory of odes and sampling from well-
conditioned logconcave densities. Preprint. Available at arXiv:1812.06243.

[33] LEE, Y. T. and VEMPALA, S. S. (2018). Convergence rate of Riemannian Hamiltonian Monte Carlo and
faster polytope volume computation. In STOC’18—Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing 1115–1121. ACM, New York. MR3826321 https://doi.org/10.
1145/3188745.3188774

[34] LEE, Y. T. and VEMPALA, S. S. (2018). Stochastic localization + Stieltjes barrier = tight bound for log-
Sobolev. In STOC’18—Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Com-
puting 1122–1129. ACM, New York. MR3826322

[35] LEVIN, D. A., PERES, Y. and WILMER, E. L. (2009). Markov Chains and Mixing Times. Amer. Math.
Soc., Providence, RI. MR2466937 https://doi.org/10.1090/mbk/058

[36] LIVINGSTONE, S., BETANCOURT, M., BYRNE, S. and GIROLAMI, M. (2016). On the geometric ergodicity
of Hamiltonian Monte Carlo. Preprint. Available at arXiv:1601.08057.

[37] LOVÁSZ, L. and VEMPALA, S. (2006). Fast algorithms for logconcave functions: Sampling, rounding,
integration and optimization. In 2006 47th Annual IEEE Symposium on Foundations of Computer
Science (FOCS’06) 57–68. IEEE.

[38] LOVÁSZ, L. and VEMPALA, S. (2006). Simulated annealing in convex bodies and an O∗(n4) volume algo-
rithm. J. Comput. System Sci. 72 392–417. MR2205290 https://doi.org/10.1016/j.jcss.2005.08.004

[39] MANGOUBI, O., PILLAI, N. S. and SMITH, A. (2018). Does Hamiltonian Monte Carlo mix faster than a
random walk on multimodal densities? Preprint. Available at arXiv:1808.03230.

[40] MANGOUBI, O. and SMITH, A. (2017). Rapid mixing of Hamiltonian Monte Carlo on strongly log-concave
distributions. Preprint. Available at arXiv:1708.07114.

[41] MANGOUBI, O. and SMITH, A. (2018). Rapid mixing of geodesic walks on manifolds with positive curva-
ture. Ann. Appl. Probab. 28 2501–2543. MR3843835 https://doi.org/10.1214/17-AAP1365

[42] MANGOUBI, O. and SMITH, A. (2019). Mixing of Hamiltonian Monte Carlo on strongly log-concave distri-
butions 2: Numerical integrators. In The 22nd International Conference on Artificial Intelligence and
Statistics 586–595.

[43] MANGOUBI, O. and VISHNOI, N. (2018). Dimensionally tight bounds for second-order Hamiltonian Monte
Carlo. In Advances in Neural Information Processing Systems 6027–6037.

[44] MANGOUBI, O. and VISHNOI, N. K. (2019). Faster polytope rounding, sampling, and volume computation
via a sub-linear ball walk. In 2019 IEEE 60th Annual Symposium on Foundations of Computer Science
1338–1357. IEEE Comput. Soc. Press, Los Alamitos, CA. MR4228229

[45] MEHLIG, B., HEERMANN, D. W. and FORREST, B. M. (1992). Hybrid Monte Carlo method for condensed-
matter systems. Phys. Rev. E 45 679.

[46] NEAL, R. M. (2011). MCMC using Hamiltonian dynamics. In Handbook of Markov Chain Monte Carlo.
Chapman & Hall/CRC Handb. Mod. Stat. Methods 113–162. CRC Press, Boca Raton, FL. MR2858447

[47] OLLIVIER, Y. (2009). Ricci curvature of Markov chains on metric spaces. J. Funct. Anal. 256 810–864.
MR2484937 https://doi.org/10.1016/j.jfa.2008.11.001

[48] PIPONI, D. and HOFFMAN, M. D. (2018). Antithetic sampling with Hamiltonian Monte Carlo.
[49] POINCARÉ, H. (1899). Les Methods Nouvelles de la Mécanique Céleste. Gauthier-Villars, Paris.
[50] RAGINSKY, M., RAKHLIN, A. and TELGARSKY, M. (2017). Non-convex learning via stochastic gradient

Langevin dynamics: A nonasymptotic analysis. In Conference on Learning Theory 1674–1703.
[51] ROBERTS, G. O. and ROSENTHAL, J. S. (2016). Complexity bounds for Markov chain Monte Carlo al-

gorithms via diffusion limits. J. Appl. Probab. 53 410–420. MR3514287 https://doi.org/10.1017/jpr.
2016.9

[52] RUDELSON, M. and VERSHYNIN, R. (2013). Hanson–Wright inequality and sub-Gaussian concentration.
Electron. Commun. Probab. 18 no. 82. MR3125258 https://doi.org/10.1214/ECP.v18-2865

[53] SEILER, C., RUBINSTEIN-SALZEDO, S. and HOLMES, S. (2014). Positive curvature and Hamiltonian
Monte Carlo. In Advances in Neural Information Processing Systems 586–594.

[54] SMOLLER, J. (1983). Shock Waves and Reaction–Diffusion Equations. Grundlehren der Mathematis-
chen Wissenschaften [Fundamental Principles of Mathematical Science] 258. Springer, New York.
MR0688146

[55] VEMPALA, S. (2005). Geometric random walks: A survey. In Combinatorial and Computational Geometry.
Math. Sci. Res. Inst. Publ. 52 577–616. Cambridge Univ. Press, Cambridge. MR2178341

[56] ZHANG, Y., LIANG, P. and CHARIKAR, M. (2017). A hitting time analysis of stochastic gradient Langevin
dynamics. In Conference on Learning Theory 1980–2022.

http://arxiv.org/abs/arXiv:1902.08179
http://arxiv.org/abs/arXiv:1812.06243
http://www.ams.org/mathscinet-getitem?mr=3826321
https://doi.org/10.1145/3188745.3188774
http://www.ams.org/mathscinet-getitem?mr=3826322
http://www.ams.org/mathscinet-getitem?mr=2466937
https://doi.org/10.1090/mbk/058
http://arxiv.org/abs/arXiv:1601.08057
http://www.ams.org/mathscinet-getitem?mr=2205290
https://doi.org/10.1016/j.jcss.2005.08.004
http://arxiv.org/abs/arXiv:1808.03230
http://arxiv.org/abs/arXiv:1708.07114
http://www.ams.org/mathscinet-getitem?mr=3843835
https://doi.org/10.1214/17-AAP1365
http://www.ams.org/mathscinet-getitem?mr=4228229
http://www.ams.org/mathscinet-getitem?mr=2858447
http://www.ams.org/mathscinet-getitem?mr=2484937
https://doi.org/10.1016/j.jfa.2008.11.001
http://www.ams.org/mathscinet-getitem?mr=3514287
https://doi.org/10.1017/jpr.2016.9
http://www.ams.org/mathscinet-getitem?mr=3125258
https://doi.org/10.1214/ECP.v18-2865
http://www.ams.org/mathscinet-getitem?mr=0688146
http://www.ams.org/mathscinet-getitem?mr=2178341
https://doi.org/10.1145/3188745.3188774
https://doi.org/10.1017/jpr.2016.9

	Introduction
	Paper overview

	Main notation and results
	Preliminary notation
	Distributions and mixing
	Big-O notation
	Ideal HMC dynamics

	Main results

	Related work and techniques
	Discussion of coupling improvements
	Relationship to companion paper and other works
	Literature review
	Subsequent developments


	Technical results
	Deﬁnitions and notation
	Proof sketch
	ODE comparison theorem
	Error bounds for HMC
	Contraction for strongly log-concave targets

	Drift condition
	Discussion
	Relationship to the Jacobi metric
	Riemannian HMC
	Quantitative drift conditions
	De-biasing with coupling for parallel processing

	Appendix A: Proof of Corollary 2
	Appendix B: Proof of Theorem 4
	Acknowledgements
	Funding
	References

