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In this work, we establish L2-exponential convergence for a broad class
of piecewise deterministic Markov processes recently proposed in the con-
text of Markov process Monte Carlo methods and covering in particular the
randomized Hamiltonian Monte Carlo (Trans. Amer. Math. Soc. 367 (2015)
3807–3828; Ann. Appl. Probab. 27 (2017) 2159–2194), the zig-zag process
(Ann. Statist. 47 (2019) 1288–1320) and the bouncy particle Sampler (Phys.
Rev. E 85 (2012) 026703; J. Amer. Statist. Assoc. 113 (2018) 855–867). The
kernel of the symmetric part of the generator of such processes is nontriv-
ial, and we follow the ideas recently introduced in (C. R. Math. Acad. Sci.
Paris 347 (2009) 511–516; Trans. Amer. Math. Soc. 367 (2015) 3807–3828)
to develop a rigorous framework for hypocoercivity in a fairly general and
unifying set-up, while deriving tractable estimates of the constants involved
in terms of the parameters of the dynamics. As a by-product we character-
ize the scaling properties of these algorithms with respect to the dimension of
classes of problems, therefore providing some theoretical evidence to support
their practical relevance.

1. Introduction. Consider a probability distribution π defined on the Borel σ -field X
of some domain X = R

d or X = T
d where T = R/Z. Assume that π has a density with re-

spect to the Lebesgue measure also denoted π and of the form π = e−U/
∫

X e−U(y) dy where
U : X → R is a continuously differentiable function and is referred to as the potential as-
sociated with π . Sampling from such distributions is of interest in computational statistical
mechanics and in Bayesian statistics and allows one, for example, to compute efficiently ex-
pectations of functions f : X →R with respect to π by invoking empirical process limit the-
orems, for example, the law of large numbers. In practical set-ups, sampling exactly from π

directly is either impossible or computationally prohibitive. A standard and versatile approach
to sampling from such distributions consists of using Markov chain Monte Carlo (MCMC)
techniques [32, 43, 56], where the ability of simulating realizations of ergodic Markov chains
leaving π invariant is exploited. Markov process Monte Carlo (MPMC) methods are the con-
tinuous time counterparts of MCMC but their exact implementation is most often impossible
on computers and requires additional approximation, such as time discretization of the pro-
cess in the case of the Langevin diffusion. A notable exception, which has recently attracted
significant attention, is the class of MPMC relying on piecewise deterministic Markov pro-
cesses (PDMP) [18, 19], which in addition to being simpler to simulate than earlier MPMC,
are nonreversible, offering the promise of better performance. We now briefly introduce a
class of processes covering existing algorithms. The generic mathematical notation we use in
the Introduction is fairly standard and fully defined at the end of the section.
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Known PDMP Monte Carlo methods rely on the use of the auxiliary variable trick, that
is the introduction of an instrumental variable and probability distribution μ defined on an
extended domain, of which π is a marginal distribution, which may facilitate simulation. In
the present set-up, one introduces the velocity variable v ∈ V ⊂ R

d associated with a prob-
ability distribution ν defined on the σ -field V of V, where the subset V is assumed to be
closed. Standard choices for ν include the centered normal distribution with covariance ma-
trix m2 Id , where Id is the d-dimensional identity matrix, the uniform distribution on the unit
sphere S

d−1, or the uniform distribution on V = {−1,1}d . Let E = X × V and define the
probability measure μ = π ⊗ ν. The aim is now to sample from the probability distribution
μ.

We denote by C2
b(E) the set of bounded functions of C2(E). The PDMP Monte Carlo

algorithms we are aware of fall in a class of processes associated with generators of the form,
for f ∈ C2

b(E) and (x, v) ∈ E,

L1f (x, v)

= v�∇xf (x, v) +
K∑

k=1

λk(x, v)(Bk − Id)f (x, v) + m
1/2
2 λref(x)Rvf (x, v),

(1)

where K ∈N, λk : E → R+ for k ∈ {1, . . . ,K}, λref : X → R+, (Rv,D(Rv)) and (Bk,D(Bk))

for k ∈ {1, . . . ,K} are operators we specify below, and for i ∈ {1, . . . , d} we assume

(2) m2 =
∫

V
v2
i dν(v),

which is assumed to be finite. For any k ∈ {1, . . . ,K}, λk will be referred to as a jump rate
and λref as the refreshment rate.

In the case where V = R
d and ν is the zero-mean Gaussian distribution on R

d with covari-
ance matrix m2 Id , we also consider generators of the form, for any f ∈ C2

b(E) and (x, v) ∈ E,

(3) L2f (x, v) = L1f (x, v) − m2F0(x)�∇vf (x, v),

where F0 : X → R
d .

For any k ∈ {1, . . . ,K}, the jump operators Bk we consider are associated with continuous
vector fields Fk : X → R

d of the form, for any f : E → R and (x, v) ∈ E,

Bkf (x, v) = f
(
x, v − 2

(
v�nk(x)

)
nk(x)

)
,

nk(x) =
{
Fk(x)/

∣∣Fk(x)
∣∣ if Fk(x) �= 0,

0 otherwise.

(4)

These operators correspond to reflections of the velocity through the hyperplanes orthog-
onal to Fk(X) at the event position X, that is, a flip of the component of the velocity
in the direction given by Fk inducing an elastic “bounce” of the position trajectory with
the hyperplane. As we shall see, the K + 1 vector fields Fk are tied to the potential U

by the relation ∇xU = ∑K
k=0 Fk , required to ensure that μ is left invariant by the asso-

ciated semigroup. Informally, assuming for the moment that λref = 0 and F0 = ∇xU0 for
some U0 : X → R, the corresponding process follows the solution of Hamilton’s equations
(ẋt , v̇t ) = (vt ,−∇xU0(xt )) for a random time of distribution governed by an inhomogeneous
Poisson process with rate (x, v) 	→∑K

k=1 λk(x, v). When an event occurs and the current state
of the process is (X,V ), one chooses between the K possible updates of the state available,
with probability proportional to λ1(X,V ), . . . , λK(X,V ), with the particularity here that the
position X is left unchanged.

The vector fields {Fk : X → R
d;k ∈ {1, . . . ,K}} and jump rates {λk : E → R+;k ∈

{1, . . . ,K}} are linked by the relations λk(x, v) − λk(x,−v) = v�Fk(x) for k ∈ {1, . . . ,K}
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and (x, v) ∈ E, together with other conditions, required to ensure that μ is an invariant dis-
tribution of the associated semigroup. A standard choice, sometimes referred to as canonical,
consists of choosing jump rates λk(x, v) = [v�Fk(x)]+ for k ∈ {1, . . . ,K} and (x, v) ∈ E.

Denote by L2(μ) the set of measurable functions g : E →R such that
∫

E g2 dμ < +∞. We
let ‖·‖2 be the norm induced by the scalar product

(5) for all f,g ∈ L2(μ), 〈f,g〉2 =
∫

E
fg dμ,

making L2(μ) a Hilbert space.
The operator Rv will be referred to as the refreshment operator, a standard example of

which is Rv = �v − Id where �v is the following orthogonal projector in L2(μ): for any
f ∈ L2(μ):

(6) �vf (x, v) =
∫

V
f (x,w)dν(w),

in which case the velocity is drawn afresh from the marginal invariant distribution, while
the position is left unchanged. In this scenario the informal description of the process given
above carries on with λref �= 0 added to the rate (x, v) 	→ ∑K

k=1 λk(x, v), �v an additional
possible update to the velocity chosen with probability proportional to λref. Another possible
choice is the generator of an Ornstein–Uhlenbeck operator leaving ν invariant.

In all the paper we assume the following condition to hold for either L1 or L2, a condition
satisfied by the examples covered in this manuscript.

A1.

(a) The operator L is closed in L2(μ), generates a strongly continuous contraction semi-
group (Pt )t≥0 on L2(μ), that is, P0 = Id, for any t, s ∈R+, Ps+t = PsPt , for any f ∈ L2(μ),
‖Ptf ‖2 ≤ ‖f ‖2 and limt→0 ‖Ptf − f ‖2 = 0.

(b) μ is a a stationary measure for (Pt )t≥0, that is, for any t ∈ R+, μPt = μ.
(c) There exists a core C for L such that C is dense in L2(μ) and C ⊂ D(L) ∩ D(L�),

where (L�,D(L�)) is the adjoint of L on L2(μ).

Note that if L generates a strongly continuous contraction semigroup then D(L) is dense
by [29], Theorem 2.12, and the adjoint of L on L2(μ) is therefore well-defined and closed
by [51], Theorem 5.1.5, and D(L�) is dense. Establishing that an operator L generates a
continuous contraction semigroup is well known to be difficult in general, although we note
recent progress in this direction in [33]. However as discussed in Section 3.2, concerned
with the application of our abstract results to PDMPs, operators such as defined in (1) and
(3) can be shown to arise from well-defined processes. Indeed [18] establishes the existence
of PDMP processes and identifies the extended generator solving the associated Martingale
problem. Building on this earlier work [26] have recently developed a general framework
to characterize the strong generator of a broad class of PDMPs for which Ck

b(E), the set of
real valued functions with up to order k ∈ N bounded differentials defined on a Riemanian
manifold E, can be shown to be a core.

We now describe how various choices of K and Fk lead to known algorithms. For sim-
plicity of exposition, we assume for the moment that V = R

d , ν is the zero-mean Gaussian
distribution with covariance matrix m2 Id and Rv = �v − Id, but as we shall see later our
results cover more general scenarios.

• The particular choice K = 0 and F0 = ∇xU corresponds to the procedure described in [25]
as a motivation for the popular hybrid Monte Carlo method. This process is also known as
the linear Boltzman/kinetic equation in the statistical physics literature [6] or randomized
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Hamiltonian Monte Carlo [12]. In this scenario the process follows the isocontours of μ

for random times distributed according to an inhomogeneous Poisson law of parameter
λref > 0, triggering events where the velocity is sampled afresh from ν.

• The scenario where K = d , F0 = 0 and for k ∈ {1, . . . , d}, x ∈ X,Fk(x) = ∂kU(x)ek where
(ek)k∈{1,...,d} is the canonical basis, corresponds to the zig-zag (ZZ) process [7], where the
x component of the process follows straight lines in the direction v which remains con-
stant between events. In this scenario, the choice of Bk to update the velocity, consists of
negating its kth component; see also [31] for related ideas motivated by other applications.

• The standard bouncy particle sampler (BPS) of [53], extended by [13], correspond to the
choice K = 1, F0 = 0 and F1 = ∇xU .

• More elaborate versions of the ZZ and BPS processes, motivated by computational consid-
erations, take advantage of the possibility to decompose the energy as U = ∑K

k=0 Uk and
corresponds to the choice Fk = ∇xUk [13, 45], where in the former the sign flip operation
is replaced with a component swap.

• It should be clear that one can consider more general deterministic dynamics with F0 �= 0,
effectively covering the Hamiltonian bouncy particle sampler, suggested in [57].

• We remark that the well-known Langevin algorithm corresponds to K = 0, F0 = ∇xU and
the situation where Rv is the Ornstein–Uhlenbeck process.

More general bounces involving randomization (see [46, 57, 60]) can also be considered in
our framework, at the cost of additional complexity and reduced tightness of our bounds.

The main aim of the present paper is the study of the long time behaviour for the class
of processes described above using hypercoercivity methods popularized by [59]. More pre-
cisely, consider (Pt )t≥0 the semigroup associated to the PDMP with generator L ∈ {L1,L2}
defined above, we aim to find simple and verifiable conditions on U,Fk,Rv and λref ensuring
the existence of A ≥ 1 and α > 0, and their explicit computation in terms of characteristics of
the data of the problem, such that for any f ∈ L2

0(μ) = {g ∈ L2(μ) : ∫E g dμ = 0} and t ≥ 0,

(7) ‖Ptf ‖2 ≤ Ae−αt‖f ‖2.

Establishing such a result is of interest to practitioners for multiple reasons. Explicit
bounds may provide insights into expected performance properties of the algorithm in vari-
ous situations or regimes. In particular the above leads to an upper bound on the integrated
autocorrelation, which is a performance measure of Monte Carlo estimators of

∫
E f dμ,

f ∈ L2
0(μ), defined by

lim
T →∞T Varμ

(
T −1

∫ T

0
f (Xt ,Vt )dt

)
/‖f ‖2

2 ≤ 2A/α,

where (Xt ,Vt )t≥0 is a trajectory of a PDMP process of generator L with (X0,V0) distributed
according to μ. For a class of problems of, say, increasing dimension d → ∞, weak depen-
dence of A and α on d indicates scalability of the method. It is worth pointing out that the
result above is equivalent to the existence of A ≥ 1 and α > 0 such that for any measure
ρ0 � μ such that ‖dρ0/dμ‖2 < ∞

‖ρ0Pt − μ‖TV =
∫

E

∣∣d(ρ0Pt)/dμ − 1
∣∣dμ ≤ ∥∥d(ρ0Pt)/dμ − 1

∥∥
L2(π)

≤ Ae−αt‖dρ0/dμ − 1‖L2(π),

(8)

where for t ≥ 0 the probability measure ρ0Pt on E is such that for (x, v) ∈ E and any mea-
surable function f such that the integrals exists, ρ0Ptf (x, v) = ∫

E Ptf (y,w)dρ0(y,w) and
the leftmost inequality is standard and a consequence of the Cauchy–Schwarz inequality. Our
hypocoercivity result therefore also allows characterization of convergence to equilibrium of
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PDMPs in various scenarios and regimes, leading in particular to the possibility to compare
performance of algorithms started from the same initial distribution. Establishing similar re-
sults for different metrics may be a useful complement to our characterization of algorithmic
computational complexity and is left for future work.

In [48, 59], convergence of the type (7) is established using an appropriate H1-norm as-
sociated with μ. The method which was developed in these papers is closely related to hy-
poellipticity theory [28, 40, 42] for partial differential equation and in particular the kinetic
Fokker–Planck equation. Convergence for linear Boltzman equations was first derived in [39,
48]. Since then, several works have extended and completed these results [1, 15, 23, 30, 38,
47].

Notation and conventions. Denote by (ei )i∈{1,...,d} the canonical basis of Rd and Id the
d-dimensional identity matrix. The Euclidean norm on R

d or Rd×d is denoted by |·|, and is
associated with the usual Frobenius inner product Tr(���) for any �,� in R

d or Rd×d .
Let M be a smooth submanifold of Rn, for n ∈ N. For any k ∈ N, denote by Ck(M,Rm)

the set of k-times differentiable functions from M to R
m, Ck

b(M,Rm) stands for the subset of
bounded functions in Ck(M,Rm) with bounded differentials up to order k. Ck(M) and Ck

b(M)

stand for Ck(M,R) and Ck
b(M,R) respectively.

For f : X → R and i ∈ {1, . . . , d}, x 	→ ∂xi
f (x) stands for the partial derivative of f with

respect to the ith-coordinate, if it exists. Similarly, for f : X →R, i, j ∈ {1, . . . , d}, denote by
∂xi,xj

f = ∂xi
∂xj

f when ∂xi
∂xj

f exists. For f = (f1, . . . , fm) ∈ C1(X,Rm), ∇xf stands for
the gradient of f defined for any x ∈ X by ∇xf (x) = (∂xj

fi(x))i∈{1,...,m},j∈{1,...,d} ∈ R
d×m.

For ease of notation, we also denote by (∇x,D(∇x)) the densely defined closed extension of
(∇x,C1

b(X)) on L2(π), see [61], page 88. For any f ∈ Ck(X,Rm), k ∈ N and p ≥ 0, define

‖f 2‖k,p = sup
x∈X

sup
(i1,...,ik)∈{1,...,d}k

{∥∥∂xi1 ,...,xik
f (x)

∥∥/(1 + ‖x‖p)}.
We set, for k ≥ 0,

Ck
poly

(
X,Rm)=

{
f ∈ Ck(X,Rm) : inf

p≥0
‖f ‖k,p < +∞

}
,

and Ck
poly(X) simply stands for Ck

poly(X,R). For any f ∈ C2(X,R), we let xf denote the
Laplacian of f . Id stands for the identity operator. For two self-adjoint operators (A,D(A))

and (B,D(B)) on a Hilbert space H equipped with the scalar product 〈·, ·〉 and norm ‖·‖,
denote by A � B if 〈f,Af 〉 ≥ 〈f,Bf 〉 for all f ∈ D(A) ∩ D(B). Then, define (AB,D(AB))

with domain, if not specified, D(AB) = D(B) ∩ {B−1D(A)}. For a bounded operator A on
H, we let |||A||| = supf ∈H,f �=0 ‖Af ‖/‖f ‖. � is said to be an orthogonal projection if � is a
bounded symmetric operator H and �2 = �. An unbounded operator (A,D(A)) is said to be
symmetric (respectively antisymmetric) is for any f,g ∈ D(A), 〈Af,g〉 = 〈f,Ag〉 (respec-
tively 〈Af,g〉 = −〈f,Ag〉). If A is densely defined, A is said to be self-adjoint if A = A�.
If in addition A is closed, C ⊂ D(A) is said to be a core for A if the closure of A C is A.
Denote by 1F the constant function equals to 1 from a set F to R. For any unbounded operator
(A,D(A)), we denote by Ran(A) = {Af : f ∈ D(A)} and Ker(A) = {f ∈ D(A) : Af = 0}.
For any probability measure m on a measurable space (M,F), we denote by L2(m) the Hilbert
space of measurable functions f satisfying

∫
M f 2 dm < +∞, equipped with the inner product

〈f,g〉m = ∫
M fg dm, and L2

0(m) = {f ∈ L2(m) : ∫M f dm = 0}. We will use the same notation
for vector and matrix fields �,� ∈ (Rd)M or (Rd×d)M, that is, 〈�,�〉m = ∫

M Tr(���)dm and
no confusion should be possible. When m = μ we replace m with 2 in this notation. For any
x ∈ M denote by δx the Dirac distribution at x. We define the total variation distance between
two probability measures m1,m2 on (M,F) by ‖m1 − m2‖TV = supA∈F |m1(A) − m2(A)|.
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For a square matrix A we let diag(A) be its main diagonal and for a vector v ∈ R
d we let

diag(v) be the square matrix of diagonal v and with zeros elsewhere. For a, b ∈ R we let
a ∧ b denote their minimum. For any i, j ∈ N, δi,j denotes the Kronecker symbol which is 1
if i = j and 0 otherwise. For any n1, n2 ∈ N, n1 < n2, we let

∑n1
n2

= 0. For any x ∈ R we let
(x)+ = max{0, x} be its positive part.

2. Main results and organization of the paper. We now state our main results. In the
following, for any densely defined operator (C,D(C)) we let (C�,D(C�)) denote its L2(μ)-
adjoint. First we specify conditions imposed on the potential U .

H1. The potential U ∈ C3
poly(X) and satisfies:

(a) there exists c1 ≥ 0 such that, for any x ∈ X, ∇2
xU(x) � −c1 Id ;

(b)

lim inf|x|→∞
{∣∣∇xU(x)

∣∣2/2 − xU(x)
}
> 0.

From [4, 52], 1 1-(b) is equivalent to assuming that π satisfies a Poincaré inequality on X,
that is the existence of CP > 0 such that, for any f ∈ C2(X) satisfying

∫
X f dπ = 0,

(9) ‖∇xf ‖2
2 ≥ CP‖f ‖2

2.

Further, H1-(b) also implies the existence of c2 > 0 and � ≥ 0 such that for any x ∈ X,

(10) xU(x) ≤ c2d
1+� + ∣∣∇xU(x)

∣∣2/2.

H1-(b) indeed implies that the quantity considered is bounded from below, the scaling in
d in front of c2 will appear natural in the sequel. We have opted for this formulation of
the assumption required of the potential to favour intuition and link it to the necessary and
sufficient condition for geometric convergence of Langevin diffusions, but our quantitative
bounds below will be given in terms of the Poincaré constant CP for simplicity (see [5],
Section 4.2, for quantitative estimates of CP depending on potentially further conditions on
U ). H1-(a) is realistic in most applications, can be checked in practice and has the advan-
tage of leading to simplified developments. It is possible to replace this assumption with
supx∈X{|∇2

xU(x)|/(1 +|∇xU(x)|)} < ∞ and rephrase our results in terms of any finite upper
bound of this quantity (see [23], Sections 2 and 3). Finally the Poincaré inequality (9) implies
by [5], Proposition 4.4.2, that there exists s > 0 such that

(11)
∫
Rd

es|x| dπ(x) < +∞.

H2. The family of vector fields {Fk : X →R
d;k ∈ {0, . . . ,K}} satisfies:

(a) for k ∈ {0, . . . ,K}, Fk ∈ C2(X,Rd);
(b) for all x ∈ X, ∇xU(x) =∑K

k=0 Fk(x);
(c) for all k ∈ {0, . . . ,K} there exists ak ≥ 0 such that for all x ∈ X,

(12) |Fk|(x) ≤ ak

{
1 + |∇xU |(x)

}
.

This assumption is in particular trivially true for the zig-zag and the bouncy particle
samplers. In turn we assume the jump rates to be related to the family of vector fields
{Fk : X →R

d;k ∈ {1, . . . ,K}} through the following conditions.
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H3. There exist a continuous function ϕ : R → R+, Cϕ ≥ 1 and cϕ ≥ 0 satisfying for
any s ∈ R,

(13) ϕ(s) − ϕ(−s) = s and |s| ≤ ϕ(s) + ϕ(−s) ≤ cϕm
1/2
2 + Cϕ|s|,

such that for any k ∈ {1, . . . ,K} and (x, v) ∈ E, λk(x, v) = ϕ(v�Fk(x)).

We note that the canonical choice ϕ(s) = (s)+ satisfies these conditions and that the first
condition of (13) is equivalent to ϕ(s) − (s)+ = ϕ(−s) − (−s)+, implying that ϕ(s) ≥ (s)+
for all s ∈ R and therefore that the left hand side inequality in (13) is automatically satisfied.
If we further assume the existence of C,c ≥ 0 such that for all s ∈ R, ϕ(s) ≤ cm

1/2
2 + C(s)+

then the second inequality is satisfied with Cϕ = C and cϕ = 2c. As remarked in [2], the first
condition of (13) holds for rates based on the choice

ϕ(s) = − log
(
φ
(
exp(−s)

))
,

such that φ : R+ → [0,1] satisfies rφ(r−1) = φ(r) for all r ∈ R+ \ {0}. The canonical choice
corresponds to φ(r) = 1 ∧ r , but the (smooth) choice φ(r) = r/(1 + r) is also possible.

H4. Assume that V and ν satisfy the following conditions:

(a) V is stable under bounces, that is, for all (x, v) ∈ E and k ∈ {1, . . . ,K}, v −
2(v�nk(x))nk(x) ∈ V, where nk(x) is defined by (4).

(b) For any A ∈ V , x ∈ X, we have ν({Id−2nk(x)nk(x)�}A) = ν(A), for any k ∈
{1, . . . ,K}.

(c) For any bounded and measurable function g : R2 → R, i, j ∈ {1, . . . , d} such that
i �= j ,

∫
V g(vi, vj )dν(v) = ∫

V g(−v1, v2)dν(v);
(d) ν has finite fourth order marginal moment and for i ∈ {1, . . . , d}

m4 = (1/3)
∥∥v2

i

∥∥2
2 = (1/3)

∫
V
v4
i dν(v) < +∞,

and for any i, j, k, l ∈ {1, . . . , d} such that card({i, j, k, l}) > 2∫
V
vivj vkvl dν(v) = 0.

Note that in the case where V and ν are rotation invariant, that is, for any rotation O on R
d ,

OV = V and for any A ∈ V , ν(OA) = ν(A), then H4-(a)-(b)-(c) are automatically satisfied.
By H4-(c), we have

∫
V v1v2 dν(x) = 0 taking g(v1, v2) = v1v2 for any (v1, v2) ∈ R

2 and
therefore for any i, j ∈ {1, . . . , d} such that i �= j ,

∫
V vivj dν(v) = 0. In addition, under H4-

(d), from the Cauchy–Schwarz inequality, we obtain that

m2,2 = ‖v1v2‖2
2 =

∫
V
v2

1v2
2 dν(v) < ∞,

and note that in the Gaussian case we have the relation m4 = m2,2 = m2
2. Finally, under H4,

for any f,g ∈ L2(μ) and k ∈ {1, . . . ,K}, 〈Bkf, g〉2 = 〈f,Bkg〉2, that is, Bk is symmetric on
L2(μ).

In this paper we consider operators (Rv,D(Rv)) on L2(μ) satisfying the following condi-
tions. In the sequel, we identify L2

0(ν) as a subset of L2
0(μ).

H5.

(a) Rv satisfies the detailed balance condition: Rv =R�
v and C2

poly(E) ⊂ D(Rv);
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(b) For any f ∈ L2(π) and g ∈ C2
poly(E) such that fg ∈ L2(μ) then fg ∈ D(Rv) and

Rv(fg) = fRv(g); in addition, Rv(1E) = 0.
(c) Rv admits a spectral gap of size 1 on L2

0(ν): for any g ∈ L2
0(ν)∩D(Rv), 〈−Rvg, g〉2 ≥

‖g‖2
2; in addition, it holds for any i ∈ {1, . . . , d}, vi ∈ D(Rv) and −Rv(vi) = vi .

Typically, Rv is of the form Id⊗R̃v where (R̃v,D(R̃v)) is a self-adjoint operator on
L2(ν) with spectral gap equals 1. Then, condition H5-(b) is equivalent to R̃v(1V) = 0, which
implies that for any g ∈ D(R̃v), we have∫

V
R̃vg dν = 〈1E,Rvg〉2 = 〈

R�
v(1V), g

〉
2 = 〈

Rv(1V), g
〉
2 = 0,

so that the process associated with R̃v preserves the probability measure ν.
Note that H5-(b) implies that Rv�v = 0, whereas H5-(c) implies that −Rv(v1�v) =

v1�v , where �v is defined by (6). Assumption H5 is satisfied when Rv = �v , or Rv =
Id⊗R̃v with R̃v the generator of the Ornstein–Uhlenbeck process defined for any g ∈
C2

b(R
d) by

R̃vg = −∇vg
�v + vg.

H6. The refreshment rate λref : X → R+ is bounded from below and from above as
follows: there exist λ > 0 and cλ ≥ 0 such that for all x ∈ X,

0 < λ ≤ λref(x) ≤ λ
(
1 + cλ

∣∣∇xU(x)
∣∣).

Under the previous assumptions we can prove exponential convergence of the semigroup.

THEOREM 1. Assume that Li , i ∈ {1,2} given by (1) or (3) satisfies A1 with C = C2
b(E)

and H1, H2, H3, H4, H5 and H6 hold. Then there exist A > 0 and α > 0 such that, for any
f ∈ L2

0(μ), and t ∈ R+,

‖Ptf ‖2 ≤ Ae−αt‖f ‖2.

The constants A and α are given in explicit form in (21) in Theorem 4 (Section 3), in terms
of the constant appearing in H1, H2, H4, H5 and H6, where ε can be taken to be ε0 given in
(23), λv = λ, λx = CP/(1 + CP) and R0 = (4 + 2

√
3) ∨ (λ/21/2) ∨ R0 where

R0 =
√

2m2,2 + 3(m4 − m2,2)+
m2

{
21/2(1 + Cϕ)κ1

κ2

K∑
k=1

ak + κ1

}

+ λ

21/2

{
1 + 2cλκ1

κ2

}
+ cϕK

21/2
,

(14)

κ1 = (1 + c1/2)
1/2 and κ−1

2 = C−1
P (1 + 4c2d

1+� + 16C2
P)

1/2.

PROOF. The proof is postponed to Section 4.1. �

The following details the expected scaling behaviour with d of A and α. The proof can be
found in Section 4.3.

COROLLARY 2. Consider the assumptions and notation of Theorem 1. Further suppose
that there exists mb > 0 satisfying

(15) m−1
2

√
2m2,2 + 3(m4 − m2,2)+ ≤ mb
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which, together with CP, c1, c2 and ‖a‖∞ = supk∈{1,...,K} ak , are independent of d . Then A ≤
31/2 and there exists Cα(CP, c1, c2,‖a‖∞,mb) > 0, independent of d,λ, cλ and Cϕ, cϕ , such
that for d large enough,

α > Cα(CP, c1, c2,‖a‖∞,mb

)
λm

1/2
2

× [{cϕK} ∨ {
(1 + Cϕ)d(1+�)/2K + 1

}∨ {
λ
(
1 + cλd

(1+�)/2)}]−2
.

(16)

Thus, if λ, cλ, Cϕ and cϕ are fixed, we get that α−1 is in general at most of order

O(m
−1/2
2 d1+�K2) if K ≥ 1.

We now discuss the assumptions of the theorem, and application of its conclusion to var-
ious instances of PDMP-MC and two examples of potentials. Assumption H1 is problem
dependent and verifiable in practice, while H2, H4, H5 and H6 are user controllable and we
have already discussed standard choices satisfying these conditions. More delicate may be
establishing that A1 holds and that C2

b(E) is indeed a core for the generator L. As shown in
[26], BPS and ZZ are well defined Markov process whose generators admit C2

b(E) as a core
and similar arguments can be used to establish that it is also a core for the RHMC. Further,
it is not difficult to show that for the class of processes described earlier, for any f ∈ C2

b(E),
〈Lf,1〉2 = 0, therefore implying that μ is an invariant distribution and that A1 holds.

First we note that the spectral gap is indeed expected to be proportional to m
1/2
2 ,

since if (Xt ,Vt )t≥0 is a PDMP with generator of the form (1) or (3) for m2 = 1, then
(X

m1/2t
,m

1/2V
m1/2t

)t≥0 is a PDMP with generator of the same form with m2 = m. We there-
fore set m2 = 1 below, a condition satisfied when ν is the uniform distribution on the sphere√

dSd−1 or {−1,1}d , or the d-dimensional zero-mean Gaussian distribution with covariance
matrix Id , all of which also satisfy (15). More generally, by Lemma S1 in Section S1.1 [3],
property (15) is satisfied if ν is a spherically symmetric distribution on R

d corresponding to
random variables V = B

1/2W for W uniformly distributed on the hypersphere
√

dSd−1 and
B a nonnegative random variable independent of W and of first and second order moments
γ1 and γ2 respectively such that γ

1/2
2 /γ1 is upper bounded by a constant independent of the

dimension.
By [5], Proposition 5.1.3, Corollary 5.7.2, independence of CP on d is satisfied for strongly

convex potentials U : that is, whenever there exists m > 0 such that ∇2
xU(x) � m Id for any

x ∈ R
d which implies that one can take CP = m. This is the case for U(x) =∑d

i=1(1+x2
i )β/2

or U(x) = (1 + |x|2)β with β ≥ 1, for which (10) is also satisfied with � = 0 and � =
1 − 1/β respectively (see Lemma S5 and Lemma S6 in Section S2.1). We note that from the
Holley–Stroock perturbation principle [41], uniformly bounded perturbations of a strongly
convex potential lead to independence of CP on d . For β ∈ [1/2,1) CP > 0, but is dependent
on d; see [5], Chapter 4. However, recent progress in the precise quantitative estimation of
spectral gaps of certain probability measures [10, 11] allows for the strong convexity property
to be relaxed to simple convexity and beyond, but leads to a dependence of CP on d which
can be characterised.

Now further assume that Cϕ, cϕ and that the refreshment rate are uniformly bounded in
the position x, implying cλ = 0. Then by Corollary 2-(16), there exists Cα(CP, c1, c2,‖a‖∞,

mb, cϕ,Cϕ) > 0 such that for d sufficiently large

α ≥ Cα(CP, c1, c2,‖a‖∞,mb, cϕ,Cϕ

){[
λ
(
1 + K2d1+� )−1/2]∧ λ−1},

from which we deduce the optimal scaling of the refreshment rate, namely C
λ
1 (1 +

K2d1+�)
1/2 ≤ λ ≤ C

λ
2 (1 + K2d1+�)

1/2 for C
λ
1 ,C

λ
2 > 0 (which we denote �((1 +

K2d1+�)
1/2) hereafter to alleviate notation). Using the description of RHMC, ZZ and BPS



HYPOCOERCIVITY OF PDMCMC 2487

TABLE 1
Left hand side: summary of the dependence of α on d for CP , c1, c2,‖a‖∞ constant, m2 = 1 and optimal choice

of λ. Right hand side: summary of application to two examples of potentials

U(x) =
λ α 1

2
∑d

i=1(1 + x2
i )β (1 + |x|2)β

RHMC �(1) ω(λ ∧ λ−1)

BPS �(d(1+�)/2) ω(d−(1+�)/2) β ≥ 1 β ≥ 1
ZZ (crude) �(d(3+�)/2) ω(d−(3+�)/2) � = 0 � = 1 − 1/β

ZZ (Section 5) �(1) ω(1) β ≥ 1 β = 2

provided in the Introduction we deduce the first three lines of Table 1, where α = ω(s) is used
as a short hand notation for α ≥ Cα(CP, c1, c2,‖a‖∞,mb, cϕ,Cϕ)s for s → 0. The fourth line
uses our specialised results of Section 5, showing that the conclusion of Theorem 2 is not
optimal for ZZ.

In [8] scaling limits of particular functionals of the ZZ and BPS processes are studied,
leading to quantitative estimates of the time required to achieve near independence at equi-
librium. More specifically they consider the scenario where the target distribution is a centred
normal distribution of covariance matrix Id and focus on the angular momentum, the negative
log-target density and the first coordinate of the process. Our more general results, obtained
using a different argument, are in agreement after noticing that [8] considered the scenario
m2 = d−1 and using our earlier remark on the dependence of our estimate of the absolute
spectral gap on m

1/2
2 . In [21] it is shown, again using an approach different from ours, that the

RHMC has dimension free convergence rate in a scenario similar to ours.
While nonreversibily of the processes considered here may be practically beneficial, it is

only recently that the tools allowing our work have been developed [58, 59]. Our method of
proof relies on the framework proposed recently in [14, 22, 23] to study the solutions of the
forward Kolmogorov equation associated with the linear kinetic process, but we study the
dual backward Kolmogorov equation for a broader class of processes as is the case in [34–
36] who provide the first rigorous derivation of the results of [14, 22, 23]. This, combined
with the flexibility of the framework of [14, 23] explains the differing inner product used
throughout, which we have found to lead to simpler computations while yielding identical
conclusions. The estimate (7) (with constant A = 1) would follow straightforwardly from
a Grönwall argument if the generator L of the semigroup was coercive, that is, it satisfied
〈Lf,f 〉2 ≤ −a‖f ‖2

2 for some a > 0 and any f in a core of L. Unfortunately, the symmetric
part of the generator corresponding to a PDMP is degenerate in general, in the sense that it has
a nontrivial null space. Hence, the aforementioned coercivity clearly fails to hold. However, it
is possible to equip L2(μ) with an equivalent scalar product derived from 〈·, ·〉2 with respect
to which L is coercive. The constant α is then given by the coercivity bound, while the
constant A can be obtained from estimates relating the two equivalent scalar products.

The paper is organised as follows. In Section 3 we develop our framework for hypocoer-
civity suited to PDMP-MC processes, based on the ideas of [23]. In addition to providing a
rigorous framework we further optimize the constants involved, ultimately leading to The-
orem 1. The proofs of Theorem 1 and its corollary are given in Section 4. In Section 5, we
specialize our results to the case of the zig-zag process for which better estimates are possible,
leading to attractive scaling properties with the dimension d . Various intermediate technical
results have been moved to Appendices where, for completeness, we have also included clas-
sical facts from functional analysis.
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3. The DMS framework for hypocoercivity. As stated above our results rely on the
ideas proposed by [14, 22, 23] for which a rigorous framework was subsequently given in
[34–37]. We derive here a novel proof, which borrows elements of [34–37] but leads to a
different set of conditions motivated by our application to PDMP-Monte Carlo methods. We
further provide explicit and optimized estimates of the constants involved in terms of acces-
sible characteristics of the process. We first present abstract results which form the core of all
of our proofs and then establish more specific ones common to all the processes considered
in this paper, implying some of the abstract conditions. More specific results relating to the
zig-zag process are treated in Section 5.

3.1. Abstract DMS results. We let S and T be the L2(μ)-symmetric and L2(μ)-
antisymmetric parts of a generator L satisfying A1, that is

(17) S = (
L+L�)/2 and T = (

L−L�)/2 defined on D(S) = D(T ) = C.

Consider the following additional assumption to A1.

A2. �vC ⊂ C where �v is defined by (6) and C is given in A1.

Note that since �vC ⊂ C, we have C ⊂ D(T �v) and the restriction of T �v to C ex-
ists. Under A1 and A2, T �v is a closable operator of closure (T �v,D(T �v)) since T is
antisymmetric and C is dense. Although this result follows easily from standard theory of
unbounded (anti)-symmetric operators on Hilbert space, a proof is given for completeness
in Lemma 26. We point out here the difference with the corresponding assumption of [34–
36], which justifies the development of a novel theoretical framework. Indeed, motivated by
our applications and what is currently understood of their theoretical properties, our starting
point is the restriction of T �v to the core C and we assume closability, while in [34], p. 3522,
or [36], p. 155 condition D4, the authors consider directly a closed extension of (T �v,C),
say (T �v,D). Applying the results of [34–36] would require showing that C is a core for
(T �v,D) which, to the best of our knowledge, appears to be very difficult for the processes
we are interested in.

Lemma 29 in Appendix B justifies the definition of the operator A,

(18) A = (
m2 Id+(T �v)

�(T �v)
)−1

(−T �v)
�, D(A) = D

(
(T �v)

�),
where m2 is given by (2) and (T �v,D(T �v)) and ((T �v)

�,D((T �v)
�)) are the closure

and the adjoint of (T �v,C) respectively. Key properties are that Ran(A) ⊂ D(T �v), A is
closable with A bounded, and T �vA is also closable of bounded closure. To show this result
we adapt [34], Lemma 2.4, since their lemma assumes that (T ,D(T )) is closed whereas,
motivated by our applications, we assume (T �v,C) to be a densely defined and closable
operator instead. Below |||·|||2 refers to the operator norm associated to ‖·‖2, as defined in the
notation paragraph in the Introduction.

LEMMA 3. Let (T ,D(T )) be an antisymmetric densely defined operator on L2(μ). As-
sume that there exists D ⊂ D(T �v)∩D(T ), such that (T �v,D) is a densely defined closable
operator.

(a) The closure of (T �v,D), (T �v,D(T �v)) satisfies D(T �v) ⊂ D((�vT )�) and for
any f ∈ D(T �v), (�vT )�f = −T �vf , where ((�vT )�,D((�vT )�)) is the adjoint of
(�vT ,D).

(b) The operator A defined by (18) satisfies Ran(A) ⊂ D(T �v), is closable and its clo-
sure A is a bounded operator on L2(μ) with |||A|||2 ≤ 1/(2m2)

1/2 and �vA = A on L2(μ).
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(c) Assume in addition that for any f ∈ D, �vT �vf = 0. Then, the operator (T �vA,

D(T �vA)) is also closable and its closure E is bounded and satisfies for any f ∈ L2(μ),
‖Ef ‖2 ≤ ‖(Id−�v)f ‖2.

PROOF. To establish this result, we make use of classical results on unbounded operators
in Hilbert spaces which for completeness, are given in Appendix B.

(a) Since T is assumed to be antisymmetric, we have for any f ∈ D(�vT ), g ∈ D,
〈�vT f,g〉2 = −〈f,T �vg〉2 since �vg ∈ D(T ) as D ⊂ D(T �v). By definition of (T �v)

�,
we obtain that D ⊂ D((�vT )�), and for any f ∈ D, T �vf = −(�vT )�f . Therefore
{(f,T �vf ) : f ∈ D} ⊂ {(f,−(�vT )�f ) : f ∈ D((�vT )�)}, and we obtain the desired re-
sult by definition of the operator (T �v,D(T �v)) since −(�vT )� is closed by [51], Theo-
rem 5.1.5.

(b) The fact that Ran(A) ⊂ D(T �v), A is closable and the bound follow directly
from Lemma 29 and Proposition 27-(a)-(d). We turn to the statement �vA = A. By
Lemma 29, the operator C = (m2 Id+(T �v)

�(T �v))
−1 is well defined, bounded and

Ran(C) = D((T �v)
�(T �v)). Therefore using Lemma 31-(a) (since T �v is densely defined),

we have for any f ∈ D(T ),

(19) Af = C�vT f = m−1
2

{
Id−(T �v)

�(T �v)C
}
�vT f,

where the argument for the last equality can found in the proof of Proposition 27. Therefore,
by applying �v to both sides and using Lemma 31-(b), we deduce that for any f ∈ D(T ),
�vAf =Af . The proof is then concluded upon noting that D(T ) is dense and �v is contin-
uous.

(c) For any f ∈ D, since �vT �vf = 0, (19) becomes

Af = C�vT (Id−�v)f = m−1
2

{
Id−(T �v)

�(T �v)C
}
�vT (Id−�v)f.

Therefore, we get for any f ∈ D

m2‖Af ‖2
2

= 〈
�vT (Id−�v)f,Af

〉
2 − 〈

(T �v)
�(T �v)C�vT (Id−�v)f,Af

〉
2

= 〈−(T �v)
�(Id−�v)f,Af

〉
2 − 〈

(T �v)
�(T �v)C�vT (Id−�v)f,Af

〉
2

= −〈(Id−�v)f, (T �v)Af
〉
2 − ∥∥(T �v)Af

∥∥2
2,

using successively that (Id−�v)f ∈ D(T ) since f ∈ D ⊂ D(T �v), Lemma 31 and
Af ∈ D(T �v). Using the Cauchy–Schwarz inequality we obtain that for any f ∈ D,
‖(T �v)Af ‖2 ≤ ‖(Id−�v)f ‖2. Using that D is dense in L2(μ) together with the bounded
linear transformation extension theorem [55], Theorem I.7, concludes the proof. �

The main result of [23] can be formulated under the following abstract assumption, which
we shall assume to hold from now on, and the proof of our main theorem relies on optimized
estimates of the constants involved.

A3 (DMS abstract conditions). Let C be as in A1. Assume further that it satisfies A2 and
the following conditions:

(a) there exists λv > 0 satisfying for any f ∈ C

−〈Sf,f 〉2 ≥ λvm
1/2
2

∥∥(Id−�v)f
∥∥2

2;
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(b) there exists λx ∈ (0,1) satisfying for any f ∈ C

(20) −〈AT �vf,f 〉2 ≥ λx‖�vf ‖2
2;

(c) there exists R0 ≥ 0 satisfying for any f ∈ C∣∣〈AT (Id−�v)f,f
〉
2 + 〈ASf,f 〉2

∣∣≤ R0
∥∥(Id−�v)f

∥∥
2‖�vf ‖2;

(d) for any f ∈ C, �vT �vf = 0;
(e) finally, Ran(�v) ⊂ Ker(S�).

THEOREM 4. Assume A1, A2 and A3.

(a) Then, for any f ∈ L2
0(μ), t ∈R+ and ε ∈ (0, (21/2λv)

−1 ∧ {4λx/(4λx + R2
0)})

‖Ptf ‖2 ≤ A(ε)e−α(ε)t‖f ‖2,

with

(21) α(ε) = λvm
1/2
2

�(ε)

1 + 21/2λvε
> 0 and A(ε) =

√
1 + 21/2λvε

1 − 21/2λvε
,

where

(22) �(ε) = 1 − ε(1 − λx) −
√

[1 − ε(1 − λx)]2 − 4ελx(1 − ε) + ε2R2
0

2
.

(b) Further, if 21/2R0 ≥ λv then α : (0,4λx/(4λx + R2
0)) →R+ has a unique maximum at

ε� such that α(ε0) < α(ε�) < 3α(ε0), with

(23) ε0 =
1 + λx − (1 − λx)

√
R0

2

R0
2+4λx

(1 + λx)2 + R0
2 ∈ (

0,
(
21/2λv

)−1 ∧ {
4λx/

(
4λx + R2

0
)})

,

so that A(ε0) < +∞ is well defined. In addition, if R0 ≥ 2 then ε0 < 3λx/(4λx + R2
0).

The main idea of [23] behind the proof of Theorem 4 is the Introduction of an equivalent
norm for ε ∈ R+ (instead of the L2(μ) norm, which corresponds to ε = 0)

Hε(f ) = (1/2)‖f ‖2
2 + ε〈f,Af 〉2,

for which (Pt )t≥0 is exponentially contracting. More precisely, [23], Theorem 2, shows that
for some ε ∈ (−(m2/2)

1/2, (m2/2)
1/2) there exists α(ε) > 0 such that for any f ∈ L2

0(μ),
Hε(Ptf ) ≤ e−α(ε)tHε(f ). Then, the convergence in L2

0(μ) follows by Lemma 3-(b) which
implies that Hε(·) defines a norm which is equivalent to ‖·‖2: for ε ∈ (−(m2/2)

1/2, (m2/2)
1/2)

and for any f ∈ L2(μ), it holds

(24)
(
1 − (m2/2)−1/2ε

)‖f ‖2
2 ≤ 2Hε(f ) ≤ (

1 + (m2/2)−1/2ε
)‖f ‖2

2.

Therefore, for a family {ft ∈ L2
0(μ)}t≥0, exponential decay of t 	→ Hε(ft ) is equivalent to

that of t 	→ ‖ft‖2
2, a property exploited in the following proof. We first establish the following

results which give estimates of the functional {Fi : i ∈ {1,2,3}} defined for any g ∈ D(L) by

(25) F1(g) = 〈Lg,g〉2, F2(g) = 〈Lg,Ag〉2, F3(g) = 〈ALg,g〉2.

LEMMA 5. Assume that L satisfies A1, A2 and A3. Then, for any g ∈ D(L), we have

F1(g) ≤ −λvm
1/2
2

∥∥(Id−�v)g
∥∥2

2,F2(g) ≤ ∥∥(Id−�v)g
∥∥2

2,

F3(g) ≤ −λx‖�vg‖2
2 + R0

∥∥(Id−�v)g
∥∥

2‖�vg‖2.
(26)
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PROOF. Note that since C is a core for L and A and �v are bounded, we only need to
show that (26) holds for all g ∈ C. In addition, since A is an extension of A by Lemma 3-(b),
and for any g ∈ C ⊂ D((T �v)

�) = D(A) from Lemma 31-(a) as �v(C) ⊂ C = D(T ) by A2,
we deduce

(27) Ag = Ag.

Using that S is symmetric, T is antisymmetric and C ⊂ D(L)∩ D(L�), we get that for any
g ∈ C, F1(g) = 〈Sg,g〉2 ≤ −λvm

1/2
2 ‖(Id−�v)g‖2 by A3-(a).

Second, using that �vA= A by Lemma 3-(b) and (27), we have for any g ∈ C,

F2(g) = 〈�vAg,Sg〉2 + 〈�vAg,T g〉2 = 〈�vAg,T g〉2,

where the last equality follows from Ran(�v) ⊂ Ker(S�). In addition, since �v is symmet-
ric, �vT �vg = 0, Ran(A) ⊂ D(T �v) ⊂ D((�vT )�) by Lemma 3-(a)-(b), so (�vT )�A =
−T �vA by Lemma 3-(a) and ‖T �vAg‖2 ≤ ‖(Id−�v)g‖2 by Lemma 3-(c), we obtain for
any g ∈ C,

F2(g) = 〈
Ag,�vT (Id−�v)g

〉
2 = 〈

(�vT )�Ag, (Id−�v)g
〉
2

= −〈T �vAg, (Id−�v)g
〉
2 ≤ ∥∥(Id−�v)g

∥∥2
2.

(28)

Finally, using A3-(b)-(c) we have that for any g ∈ C ⊂ D(L) ∩ D(L�) ∩ D(T �v),

F3(g) = 〈AT �vg,g〉2 + 〈
AT (Id−�v)g, g

〉
2 + 〈ASg,g〉2

≤ −λx‖�vg‖2
2 + R0

∥∥(Id−�v)g
∥∥

2‖�vg‖2. �

PROOF OF THEOREM 4. The first part of the proof follows along the same lines as [34],
Theorem 2.18. Let f ∈ L2

0(μ) and ε > 0. For ease of notation, set for any t ≥ 0, ft = Ptf .
From the Dynkin formula [29], Proposition 1.5, for any t > 0 ft ∈ D(L) and dft/dt = Lft .
Therefore, for any t > 0,

− d

dt
Hε(ft ) = −[F1(ft ) + ε

{
F2(ft ) + F3(ft )

}]
,

where {Fi : i ∈ {1,2,3}} are defined in (25). Then by Lemma 5, we obtain that for any t > 0,

− d

dt
Hε(ft ) ≥ λvm

1/2
2

∥∥(Id−�v)ft

∥∥2
2

+ ε
[
λx‖�vft‖2

2 − ∥∥(Id−�v)ft

∥∥2
2 − R0

∥∥(Id−�v)ft

∥∥
2‖�vft‖2

]

=
( ‖�vft‖2∥∥(Id−�v)ft

∥∥
2

)�(
ελx −εR0/2

−εR0/2 λvm
1/2
2 − ε

)( ‖�vft‖2∥∥(Id−�v)ft

∥∥
2

)

≥ �0(ε)‖ft‖2
2,

where

2�0(ε) = λvm
1/2
2 − ε(1 − λx)

−
√(

λvm
1/2
2 − ε(1 − λx)

)2 − [
4ελx

(
λvm

1/2
2 − ε

)− ε2R2
0

]
,

is the smallest eigenvalue of the symmetric matrix, positive for 0 ≤ ε ≤ 4λxλvm
1/2
2 /(4λx +

R2
0) from Lemma 23 in Appendix A (as λx ≤ 1 by A3-(b)). Using (24), we get

− d

dt
Hε(ft ) ≥ 2�0(ε)

1 + (m2/2)−1/2ε
Hε(ft ).
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From Grönwall’s lemma and (24), we obtain for 0 ≤ ε ≤ (m2/2)
1/2 ∧ {4λxλvm

1/2
2 /(4λx +

R2
0)}, ‖ft‖2 ≤ C0(ε)e−α0(ε)t‖f0‖2, where

α0(ε) = �0(ε)

1 + (m2/2)−1/2ε
and C0(ε) =

√
1 + (m2/2)−1/2ε

1 − (m2/2)−1/2ε
.

For notational simplicity we let ε = ε/(λvm
1/2
2 ) and note that with the definitions in (21)–

(22), for ε < 4λx/(4λx + R2
0), α(ε) = α0(ε) > 0 and λvm

1/2
2 �(ε) = �0(ε) > 0, and for ε ≤

(21/2λv)
−1 the two norms are equivalent and A(ε) = C0(ε) is well defined. This concludes

the proof of (a).
From Proposition 25 and associated notation in Appendix A, ε 	→ α(ε) has a unique, but

intractable, maximum, ε� ∈ (0,4λx/(4λx +R2
0)). However from Lemma 24-(b) and Proposi-

tion 25 the unique maximum ε0 ∈ (ε�,4λx/(4λx + R2
0)) of ε 	→ �(ε), defined by (66), pro-

vides us with a tractable proxy such that α(ε0) < α(ε�) < 3α(ε0). In addition, since λx ≤ 1
and for 21/2R0 ≥ λv we get

ε0 <
(1 + λx)

(1 + λx)2 + R2
0

≤ (2R0)
−1 ≤ (

21/2λv

)−1
,

which implies that A(ε0) is well defined (and the two norms equivalent). The last statement
follows from Lemma 24-(c) in Appendix A. �

The following lemma provides us with simple estimates of α(ε0) and A(ε0) defined in
Theorem 4.

LEMMA 6. Let ε 	→ α(ε),A(ε) and ε0 be as in Theorem 4 and let λx ∈ (0,1). Then:

(a) for any R0 ≥ 4 + 121/2,

(29) λx/
(
1 + R2

0
)≤ ε0 ≤ 2/

(
4 + R2

0
)≤ 1/(4R0),

(b) for any R0 ≥ (4 + 121/2) ∨ (λv/21/2),

A(ε0) ≤ 31/2 and λvλxm
1/2
2 ε0/8 ≤ α(ε0) ≤ 4λvλxm

1/2
2 ε0.

PROOF. The proof is postponed to Section 4.2. �

3.2. DMS for PDMP: Generic results.

PROPOSITION 7. Assume that Li , i ∈ {1,2}, defined by (1) or (3), with Bk given in (4),
satisfies A1 with C = C2

b(E) together with H1, H2, H3, H4 H5 and H6. Then the L2(μ)-
adjoint of Li for i ∈ {1,2} defined by (1) or (3) is given for any f ∈ C2

b(E) by

L�
i f = −v�∇xf + δi,2m2F

�
0 ∇vf +

K∑
k=1

ϕ
(−v�Fk

)[
(Bk − Id)f

]+ m
1/2
2 λrefRvf.

PROOF. We only consider the case i = 2 since the proof for i = 1 follows along the same
lines. In addition, since Rv is self-adjoint by H5 and C2

b(E) ⊂ D(Rv), we can consider the
case λref(x) = 0 for any x ∈ X. Based on (1)–(3), using that for any k ∈ {1, . . . ,K}, Bk is
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symmetric on L2(μ), for any (x, v) ∈ E, Bkλk(x, v) = λk(x,−v) and by integration by part,
for any f,g ∈ C2

b(E), we obtain

〈g,Lf 〉2 = 〈−v�∇xg + (
v�∇xU

)
g + m2F

�
0 ∇vg − (

v�F0
)
g,f

〉
2

+
〈

K∑
k=1

(Bk − Id)
[
λk(x, v)g

]
, f

〉
2

= 〈−v�∇xg + [
v�(∇xU − F0)

]
g + m2F

�
0 ∇vg, f

〉
2

+
〈

K∑
k=1

{
λk(x,−v)Bkg − λk(x, v)g

}
, f

〉
2

= 〈
L�

i g, f
〉
2 +

〈[
v�(∇xU − F0)

]
g + g

K∑
k=1

{
λk(x,−v) − λk(x, v)

}
, f

〉
2

.

Using that
∑K

k=0 Fk = ∇xU by H2-(b) and that λk(x, v) − λk(x,−v) = v�Fk(x) for any
k ∈ {1, . . . ,K} and (x, v) ∈ E by H3, concludes the proof. �

The following provides expressions for the L2(μ)-symmetric and L2(μ)-antisymmetric
parts of L for all the PDMP processes considered in this paper. Define λe

k : E → R+ for any
(x, v) ∈ E and k ∈ {1, . . . ,K} by

(30) λe
k(x, v) = λk(x, v) + λk(x,−v).

PROPOSITION 8. Assume that Li , i ∈ {1,2}, defined by (1) or (3), with Bk given in (4),
satisfies A1 with C = C2

b(E) together with H1, H2, H3, H4 H5 and H6. Let S and Ti be the
symmetric and antisymmetric parts of Li respectively, defined by (17).

(a) Then for any f ∈ C2
b(E), Tif = T̃if and Sf = S̃f where T̃i and S̃ are the operators

defined for any g ∈ C2
poly(E) by

T̃ig = v�∇xg − δi,2m2F
�
0 ∇vg + 1

2

K∑
k=1

(
v�Fk

)
(Bk − Id)g,(31)

S̃g = 1

2

K∑
k=1

λe
k(Bk − Id)g + m

1/2
2 λrefRvg.(32)

(b) S satisfies A3-(e).
(c) C1

poly(E) ⊂ D(T �
i ) ∩ D(S�) and for any f ∈ C1

poly(E), T �
i f = −T̃if and S�f = S̃f .

Note that the symmetric parts of Li for i ∈ {1,2} are the same and equal to S .

PROOF. (a) follows from Proposition 7 and the definitions of S and T in (17). (b) is a
direct consequence of the first result and the definition of (S�,D(S�)). Simple integration by
parts and definitions of (S�,D(S�)), (T �

i ,D(T �
i )) imply (c). �

We define the directional derivative operator

(33) for any f ∈ D(D) = C1
b(E), Df (x, v) = v�∇xf (x, v).

The operators (D,C1
b(E)) and (D�v,C1

b(E)) are densely defined on L2(μ) and closable. The
proof is similar to that for the operator ∇x and is omitted; see, for example, [61], page 88.
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Note that by (31), a simple computation gives that for any f ∈ C2
b(E) and i ∈ {1,2}, since

�vf ∈ C2
b(E),

(34) Ti�vf = D�vf.

LEMMA 9. Assume that Li , i ∈ {1,2}, defined by (1) or (3), with Bk given in (4), satisfies
A1 with C = C2

b(E) together with H1, H2, H3, H4 H5 and H6. Then, with Ti the antisym-
metric part of Li defined by (17) and the operator Ai defined by (18) relative to Ti , it holds:

(a) Ti satisfies A2 and A3-(d) with C = C2
b(E) and ((Ti�v),D(Ti�v)) = ((D�v),

D(D�v));
(b) C2

b(E) ⊂ D((Ti�v)
�Ti�v) and for any f ∈ C2

b(E), (Ti�v)
�Ti�vf = m2∇�

x∇x�vf ;
(c) {m2 Id+(Ti�v)

�Ti�v}−1�v = m−1
2 {Id+∇�

x∇x}−1�v on L2(μ);
(d) A�

i = m−1
2 (D�v){Id+∇�

x∇x}−1�v and for any f ∈ C2
b(E), there exists a unique func-

tion u ∈ C3
poly(X), such that m−1

2 {Id+∇�
x∇x}−1�vf = u and

(35) A�
i f = −v�∇xu = −m−1

2 (D�v)
{
Id+∇�

x∇x

}−1
�vf.

PROOF. (a) First note that C2
b(E) is a core for (D�v,D(D�v)) since for any f ∈

C1
b(E), there exists a sequence of functions (fn)n∈N such that for any n ∈ N, fn ∈ C2

b(E),
limn→+∞ ‖f − fn‖2 = 0 and limn→+∞ ‖∇xf − ∇xfn‖2 = 0. Then the proof is completed
upon using (33) and (34).

(b) By (34), we have for any f ∈ C2
b(E), that Ti�vf = v�∇x�vf . It suffices then to verify

that with g : (x, v) 	→ v�∇x(�vf )(x), then g ∈ D((Ti�v)
�) and (Ti�v)

�g = m2∇�
x∇x�vf ,

that is, for any h ∈ D(Ti�v), we have 〈Ti�vh, g〉2 = m2〈h,∇�
x∇x�vf 〉2. But D(Ti�v) =

C = C2
b(E) by assumption and definition see (17). Then using (33), (34) and an integration

by part we obtain for any h ∈ C2
b(E),

〈Ti�vh, g〉2 = 〈D�vh,g〉2 =
∫

E

{
v�∇x(�vh)(x)

}{
v�∇x(�vf )(x)

}
dμ(x, v)

= m2

∫
X

{∇x(�vh)(x)
}�∇x(�vf )(x)dπ(x)

= m2

∫
X
(�vh)(x)∇�

x∇x(�vf )(x)dπ(x)

= m2

∫
X
�v

[
h∇�

x∇x(�vf )
]
(x)dπ(x)

= m2

∫
E
h(x, v)∇�

x∇x(�vf )(x)dμ(x, v),

where we have used the definition of �v (6) in the last step.
(c) Note that we only need to show that {m2 Id+(Ti�v)

�Ti�v}−1 and m−1
2 {Id+∇�

x∇x}−1

are equal on a dense subset of L2(π) since they are bounded. We now show that this statement
is true choosing the subset m2{Id+∇�

x∇x}(C3
poly(X)). First, for any h ∈ C2

b(E), we have using
(a), (b) and the definition (33) that

(36)
{
m2 Id+(Ti�v)

�Ti�v

}
h = {

m2 Id+(Ti�v)
�Ti�v

}
h = m2

{
Id+∇�

x∇x�v

}
h.

Second, for any g ∈ C3
poly(X), there exists a sequence (gn)n∈N such that for any n ∈

N, gn ∈ C2
b(X), (gn)n∈N, (∇xgn)n∈N and (∇2

xgn)n∈N converge in L2(π) to g, ∇xg and
∇2

xg respectively, which implies that the sequences {[m2 Id+(Ti�v)
�Ti�v]gn}n∈N and

{m2[Id+(∇x)
�∇x]gn}n∈N are L2(π) convergent. Therefore, since {m2 Id+(Ti�v)

�Ti�v}
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and m2{Id+∇�
x∇x} are closed, we get that C3

poly(X) is included in the domain of these two

operators and (36) holds for any h ∈ C3
poly(X). [50], Theorem 2, or [16], Lemma 17,1 show

that for any f ∈ C2
b(X), there exists u ∈ C3

poly(X) such that m2{Id+∇�
x∇x}u = f . Therefore,

it holds that

C2
b(X) ⊂ m2

{
Id+∇�

x∇x

}(
C3

poly(X)
)
,

so the subset m2{Id+∇�
x∇x}(C3

poly(X)) is dense in L2(π). In addition, since we have

shown that the operators {m2 Id+(Ti�v)
�Ti�v} and m2{Id+∇�

x∇x} coincide on C3
poly(X),

{m2 Id+(Ti�v)
�Ti�v}−1 and m−1

2 {Id+∇�
x∇x}−1 coincide on m2{Id+∇�

x∇x}(C3
poly(X)).

(d) As Ai is bounded, it is sufficient to show that the operators A�
i and m−1

2 (D�v){Id+
∇�

x∇x}−1�v coincide on a dense subset of L2(μ). First, for all f,g ∈ C2
b(E), we get that

〈Aig, f 〉2 = 〈�vAig, f 〉2 by Lemma 3-(b). Now using the definition of Ai (18), that �v and
{m2 Id+(Ti�v)

�Ti�v}−1 are bounded and self-adjoint, since �v is an orthogonal projection
and by Proposition 27-(a)–(c), we get for any f ∈ C2

b(E),

〈Aig, f 〉2 = m−1
2

〈
(−�vTi )

�g,
{
Id+∇�

x∇x

}−1
�vf

〉
2

= m−1
2

〈
Ti�vg,

{
Id+∇�

x∇x

}−1
�vf

〉
2,

where we have used Lemma 31-(a) for the last equality and D(Ti ) = C2
b(E). [50], Theorem 2,

or [16], Lemma 17, show that there exists u ∈ C3
poly(X) satisfying m2{Id+∇�

x∇x}u = �vf

and therefore, we get that

〈Aig, f 〉2 = 〈Ti�vg,u〉2 = −〈g, v�∇xu
〉
2,

using an integration by part for the last identity. This result shows that for any f ∈ C2
b(E), we

have that A�
i f = −v�∇xu. In addition, for any g ∈ C1

poly(E), there exists a sequence (fn)n∈N
such that fn ∈ C1

b(E) and limn→+∞ ‖g − fn‖2 = 0, limn→+∞ ‖∇xg − ∇xfn‖2 = 0. There-
fore we get that C1

poly(E) ⊂ D(D�v) and for any g ∈ C1
poly(E), D�vg(x, v) = v�∇xg(x, v)

for any (x, v) ∈ E. Therefore, we get the desired conclusion that A�
i f = −v�∇xu =

−m−1
2 (D�v){Id+∇�

x∇x}−1�vf , which completes the proof. �

Establishing A3-(a) (referred to as microscopic coercivity in [23]) for the processes con-
sidered is fairly straightforward in the present framework.

PROPOSITION 10. Assume that Li , i ∈ {1,2} given by (1) or (3), where Bk is defined in
(4) satisfies A1 with C = C2

b(E). Assume in addition that H1, H2, H3, H4 H5 and H6 hold.
Let S be the symmetric part of Li defined by (17). Then A3-(a) is satisfied with λv = λ and
C = C2

b(E).

PROOF. From H5-(c) and H6, it holds that for any f ∈ C2
b(E), we have

(37) −〈λrefm
1/2
2 Rvf, f

〉
2 ≥ λm

1/2
2

〈
(Id−�v)f,f

〉
2.

In addition, any f ∈ C2
b(E) satisfies maxk∈{1,...,K} ‖v�Fkf ‖2 < +∞ by H1, (11) and

(12), then by H3 for any k ∈ {1, . . . ,K}, supk∈{1,...,K} ‖λe
kf ‖2 < +∞. Therefore, using

1Note that the result is stated for functions f ∈ C3
poly(Rd) but the proof can be easily extended to f ∈ C2

poly(X).
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the Cauchy–Schwarz inequality, that Bk is a symmetric involution on L2(μ) by H4, and
Bkλ

e
k = λe

k by definition (30), we obtain for any k ∈ {1, . . . ,K} and f ∈ C2
b(E),〈

λe
kBkf, f

〉
2 ≤ ∥∥(λe

k

)1/2
f
∥∥

2

∥∥(λe
k

)1/2Bkf
∥∥

2 = ∥∥(λe
k

)1/2
f
∥∥2

2.

As a result, we deduce 〈λe
k(Id−Bk)f, f 〉2 ≥ 0. Combining this result and (37) in the expres-

sion for S given in (32) in Proposition 8 completes the proof. �

The following lemma establishes equivalence between A3-(b) and the Poincaré inequality
H1, which allows one to refer to the expansive body of literature on the topic and implies
dependence on the properties of the potential U only.

PROPOSITION 11. Assume that Li , i ∈ {1,2} given by (1) or (3), where Bk as in (4)
satisfies A1 with C = C2

b(E). Assume in addition that H1, H2, H3, H4 H5 and H6 hold. Let
Ti be the antisymmetric part of Li defined by (17) and Ai be defined by (18) relative to Ti .
Then, A3-(b), that is, (20), holds with

(38) λx = CP/(1 + CP).

PROOF. From the assumed Poincaré inequality (9) we have for any f ∈ C1
b(E)∥∥m−1/2

2 D�vf
∥∥2

2 = ‖∇x�vf ‖2
2 ≥ CP‖�vf ‖2

2.

Then, by definition of D�v this inequality holds also for any f ∈ D(D�v) replacing D�vf

by D�vf . Therefore, we obtain since (D�v)
�� = D�v that for any f ∈ D((D�v)

�D�v),

(39)
〈
f,m−1

2 (D�v)
�D�vf

〉
2 ≥ CP‖�vf ‖2

2.

In addition by [51], Theorem 5.1.9, (D�v)
�D�v is a self-adjoint operator. These results and

(39) imply that Spec(m−1
2 (D�v)

�D�v) ⊆ [CP,∞) by [17], Theorem 4.3.1.
On the other hand, since by Lemma 9-(a), D�v = Ti�v , we have (D�v)

� = (Ti�v)
� and

Ai = −(m2 Id+(D�v)
�D�v

)−1
(D�v)

�.

Therefore, for any f ∈ D((D�v)
�D�v),

−AiD�vf = −AiD�vf = (
m2 Id+(D�v)

�D�v

)−1
(D�v)

�D�vf

= �
(
m−1

2 (D�v)
�D�v

)
f,

where �(z) = z/(1 + z). Since D((D�v)
�D�v) is a core for D�v by [51], Theorem 5.1.9,

from the spectral mapping theorem [17], Theorem 2.5.1, Corollary 2.5.4, and the fact that
� : [0,∞) → [0,1] is nondecreasing, we get that −AiD�v can be extended on L2(μ) as a
self-adjoint bounded operator E and Spec(E) ⊆ [�(CP),1).

Finally, from the fact that �v is a projector, we deduce from Lemma 3-(b) that
−AiTi�vf = −�vAiD�v�vf = �vE�vf for any f ∈ C2

b(E) ⊂ D(D�v) and therefore,
we get that for any f ∈ C2

b(E)

−〈�vf,ATi�vf 〉2 = 〈�vf,E�vf 〉2 ≥ CP

1 + CP
‖�vf ‖2

2 = λx‖�vf ‖2
2,

which concludes the proof. �

A3-(c) is usually a more involved condition to check. For f ∈ L2(μ) denote by

(40) uf = m−1
2

(
Id+∇�

x∇x

)−1
�vf.
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In the scenarios considered here, condition A3-(c) relies on estimates of ‖uf ‖2, ‖∇xuf ‖2 and
‖∇2

xuf ‖2 which are obtained by noticing that by definition uf is the solution of the following
partial differential equation

m2
(
Id+∇�

x∇x

)
uf = �vf.

In the next section, we show how general, but potentially rough, estimates can be obtained,
while in Section 5 we show how tighter bounds can be obtained in specific scenarios where
we can take advantage of the structure at hand, in particular when interested in the scaling
properties of the algorithm with d .

3.3. Computation of R0 in the general setting. In all this section, we consider uf defined
for any f ∈ L2(μ) by (40). Recall that from Lemma 9-(d), if f ∈ C2

b(E) then uf ∈ C3
poly(R

d)

and satisfies (35).

LEMMA 12. Assume that Li , i ∈ {1,2} given by (1) or (3), where Bk is given in (4),
satisfies A1 with C = C2

b(E). Assume in addition that H1, H2, H3, H4 H5 and H6 hold. Let
S be the symmetric part of Li defined by (17) and the operator Ai defined by (18) relative to
Ti .

(a) For any f ∈ C2
b(E),

∣∣〈AiS(Id−�v)f,f
〉
2

∣∣≤ ∥∥(Id−�v)f
∥∥

2

∥∥(Id−�v)S̃A�
i f
∥∥

2,

where S̃ is given by (32).
(b) For any f ∈ C2

b(E),

(41)
∥∥(Id−�v)S̃A�

i f
∥∥

2 = ∥∥G�∇xuf

∥∥
2,

with G given for any (x, v) ∈ E by

(42) G(x, v) =
K∑

k=1

λe
k(x, v)

(
n�
k (x)v

)
nk + m

1/2
2 λref(x)v,

and uf , {λe
k : E →R+ : k ∈ {1, . . . ,K}} are defined by (40) and (30) respectively. In addition

∥∥G�∇xuf

∥∥
2 ≤ m2

(‖λref∇xuf ‖2 + cϕK‖∇xuf ‖2
)

+ Cϕ

√
2m2,2 + 3(m4 − m2,2)+

K∑
k=1

∥∥F�
k ∇xuf

∥∥
2.

(43)

PROOF. We only consider the case i = 2 since the case i = 1 is obtained by taking
F0 = 0.

(a) By Lemma 3-(b), Ai is a bounded operator. Therefore, we have for any f ∈ C2
b(E) that

〈AiS(Id−�v)f,f 〉2 = 〈S(Id−�v)f,A�
i f 〉2. Then, by Lemma 9-(d), we have that A�

i f =
−v�∇xuf , with uf ∈ C3

poly(E). This result, Proposition 8-(c), and the fact that Id−�v is an
orthogonal projector imply that〈

AiS(Id−�v)f,f
〉
2 = 〈

(Id−�v)f, (Id−�v)S̃A�
i f
〉
2.

The proof is completed upon using the Cauchy–Schwarz inequality.
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(b) Notice that

S̃A�
2f = −

(
1

2

K∑
k=1

λe
k(Bk − Id) + m

1/2
2 λrefRv

)
v�∇xuf

=
K∑

k=1

λe
k

(
v�nk

)(
n�
k ∇xuf

)+ m
1/2
2 λrefv

�∇xuf = G�∇xuf ,

(44)

where we have used H5-(c) for the last equality. Combining (44) and the fact that �vS̃A�
2f =

0 completes the proof of (41).
We now show (43) for any f ∈ C2

b(E). But it is a direct consequence of the triangle inequal-
ity, the definition of {λe

k : E → R+;k ∈ {1, . . . ,K}} given in (30), H3, the Cauchy–Schwarz
inequality, Lemma S3 and the identity Fk = nk|Fk| for any k ∈ {1, . . . ,K}:∥∥SA�

2f
∥∥

2 ≤ m
1/2
2

∥∥λrefv
�∇xuf

∥∥
2

+
K∑

k=1

{
Cϕ

∥∥(v�nk

)2
F�

k ∇xuf

∥∥
2 + cϕm

1/2
2

∥∥(v�nk

)
n�
k ∇xuf

∥∥
2

}

= m2‖λref∇xuf ‖2 + m2cϕK‖∇xuf ‖2

+ Cϕ

√
2m2,2 + 3(m4 − m2,2)+

K∑
k=1

∥∥F�
k ∇xuf

∥∥
2. �

LEMMA 13. Assume that Li , i ∈ {1,2} given by (1) or (3), where Bk is given in (4),
satisfies A1 with C = C2

b(E). Assume in addition that H1, H2, H3, H4 H5 and H6 hold.
Let Ti be the antisymmetric part of Li defined by (17) and the operator Ai defined by (18)
relative to Ti . Then:

(a) For any f ∈ C2
b(E), we get∣∣〈AiTi (Id−�v)f,f

〉
2

∣∣≤ ∥∥(Id−�v)f
∥∥

2

∥∥(Id−�v)T̃iA�
i f
∥∥

2,

where T̃i is given in (31).
(b) For any f ∈ C2

b(E)

(45)
∥∥(Id−�v)T̃iA�

i f
∥∥

2 = 2m2,2‖M‖2
2 + 3(m4 − m2,2)

∥∥diag(M)
∥∥2

2,

with

(46) M = ∇2
xuf +

K∑
k=1

(
F�

k ∇xuf

)
nkn�

k ,

and uf defined by (40).

REMARK 14. A general, but potentially rough, bound on the right hand side of (45) can
be obtained as follows. From the fact that ‖diag(M)‖2 ≤ ‖M‖2, it holds that∥∥(Id−�v)T̃iA�

i f
∥∥

2 ≤
√

2m2,2 + 3(m4 − m2,2)+‖M‖2,

where from the triangle inequality and the property |nk(x)nk(x)�| = 1

‖M‖2 ≤ ∥∥∇2
xuf

∥∥
2 +

K∑
k=1

∥∥F�
k ∇xuf

∥∥
2.
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REMARK 15. Specific scenarios lead to simplifications of these bounds and the bounds
in Lemma 19:

(a) from Lemma S1 in Section S1.1, for radial distributions m4 = m2,2 leading to a sim-
plification of this bound,

(b) further if ν is the centred normal distribution of covariance m2 Id , then m2,2 = m2
2,

leading to further simplifications,
(c) if K = 0, and hence F0 = ∇xU , the scenario considered by [23], then one finds that

the bound depends on ‖∇2
xuf ‖2 only.

PROOF. We proceed as in the proof of Lemma 12. We only consider the case i = 2 since
the case i = 1 is obtained by taking F0 = 0.

(a) By Lemma 3-(b), A2 is a bounded operator. Therefore, we have for any f ∈ C2
b(E)

that 〈A2T2(Id−�v)f,f 〉2 = 〈T2(Id−�v)f,A�
2f 〉2. Then, by Lemma 9-(d), we have that

A�
2f = −v�∇xuf , with uf ∈ C3

poly(E). This result, Proposition 8-(c), the fact that Id−�v is
an orthogonal projector and Fk = nk|Fk|, imply that for any〈

A2T2(Id−�v)f,f
〉
2 = −〈(Id−�v)f, (Id−�v)T̃2A�

2f
〉
2.

The proof is completed upon using the Cauchy–Schwarz inequality.
(b) Notice that for any (x, v) ∈ E,

−T̃2A�
2f (x, v) = v�∇2

xuf (x)v − m2F
�
0 (x)∇xuf (x)

−
K∑

k=1

(
v�Fk(x)

)(
nk(x)nk(x)�v

)�∇xuf (x)(47)

= v�M(x)v − m2F
�
0 (x)∇xuf (x).

By (47), we obtain that for any f ∈ C2
b(E), (x, v) ∈ E,

−(Id−�v)T̃2A�
i f (x, v) = v�M(x)v − m2 Tr

(
M(x)

)
.

Combining this result and Lemma S3, we deduce
∥∥(Id−�v)T̃2A�

i f
∥∥2

2 = 2m2,2‖M‖2
2 + 3(m4 − m2,2)

∥∥diag(M)
∥∥2

2

≤ [
2m2,2 + 3(m4 − m2,2)+

]‖M‖2
2,

which completes the proof. �

REMARK 16. Combining Corollary 30 and Corollary 36 in Appendix C, by definition of
uf in (40) and using H6, we obtain that

m2‖∇xuf ‖2 ≤ 2−1/2‖�vf ‖2,

K∑
k=1

∥∥F�
k ∇xuf

∥∥
2 ≤ 21/2κ1

m2κ2

K∑
k=1

ak‖�vf ‖2,

m2‖λref∇xuf ‖2 ≤ λ

{
2−1/2 + 21/2cλκ1

κ2

}
‖�vf ‖2.
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4. Postponed proofs.

4.1. Proof of Theorem 1. In this section we prove that A2 and A3 holds for the dynam-
ics described in Section 2 in order to obtain Theorem 1 as a consequence of the abstract
Theorem 4. Under the assumptions of the theorem, we can set C to be C2

b(E). A2 and A3-
(d) hold by Lemma 9-(a). A3-(a) follows from Proposition 10 with λv = λ. A3-(b) follows
from Proposition 11 with λx = CP/(1 + CP). A3-(e) follows from Proposition 8-(b). We
are left with checking A3-(c). By Lemma 12-(b), Lemma 13-(b), Remark 14, we get setting
m =√

2m2,2 + 3(m4 − m2,2)+, for any f ∈ C2
b(E) that∥∥S̃A�

i f
∥∥

2 + ∥∥(Id−�v)T̃iA�
i f
∥∥

2

≤ m

{∥∥∇2
xuf

∥∥
2 + (1 + Cϕ)

K∑
k=1

∥∥F�
k ∇xuf

∥∥
2

}

+ m2‖λref∇xuf ‖2 + m2cϕK‖∇xuf ‖2

≤
[

m

m2

{
21/2(1 + Cϕ)κ1

κ2

K∑
k=1

ak + κ1

}
+ λ

21/2

{
1 + 2cλκ1

κ2

}
+ cϕK

21/2

]
‖�vf ‖2,

where we have used that ‖∇2
xuf ‖2 ≤ m−1

2 κ1‖�vf ‖2 by Proposition 34 in Appendix C and
Remark 16, with κ1 and κ2 given in (73) and (76) respectively. The proof of A3-(c) is then
completed using Lemma 13-(a) and Lemma 12-(a).

4.2. Proof of Lemma 6.

PROOF OF LEMMA 6. Fix λx ∈ (0,1).

(a) Using that t 	→ (1 + t)/[(1 + t)2 + R2
0] is nondecreasing on (0,1) since R0 ≥ 4, we

obtain that for any R0 ≥ 4 + 2
√

3, (29) is satisfied.
(b) Since for any a > 0, s 	→ (s + a)/(s − a) for s > a is nonincreasing, we deduce from

above that for R0 ≥ (4 + 2
√

3) ∨ (λv/21/2),

A(ε0)
2 ≤ 4R0 + 21/2λv

4R0 − 21/2λv

≤ 23/2λv + 21/2λv

23/2λv − 21/2λv

< 31/2.

For the second part of the statement, first note that

�(ε) = 2−1[1 − ε(1 − λx)
][

1 − (
1 − εb�(ε)

)1/2]
,

where b�(ε) = [4λx(1 − ε) − εR2
0]/[1 − ε(1 − λx)]2 ∈ [0, ε−1] for ε ≤ (21/2λv)

−1 ∧
{4λx/(4λx +R2

0)}. Using that for any a ∈ [0,1], a/2 ≤ 1 − (1 − a)1/2 ≤ a we deduce that for
ε ≤ (21/2λv)

−1 ∧ {4λx/(4λx + R2
0)},

4−1[1 − ε(1 − λx)
]
εb�(ε) ≤ �(ε) ≤ 2−1[1 − ε(1 − λx)

]
εb�(ε).

Further for R0 ≥ (4 + 2
√

3) ∨ (λv/21/2) we have ε0 ≤ (21/2λv)
−1 ∧ {3λx/(4λx + R2

0)} from
Theorem 4-(b), leading to

λx/
[
1 − ε0(1 − λx)

]2 ≤ b�(ε0) ≤ 4λx/
[
1 − ε0(1 − λx)

]2
,

and consequently, using (29),

ε0λx/4 ≤ �(ε0) ≤ 2λxε0/
[
1 − 2(1 − λx)/

(
4 + R2

0
)]≤ 4λxε0,
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where we have used that λx ≤ 1 for the last inequality. Finally we note that from (29)

1

2
≤ 1

1 + 23/2λv/(4 + R2
0)

≤ 1

1 + 21/2λvε0
≤ 1,

where the leftmost inequality follows from the fact that for 21/2R0 ≥ λv

23/2λv

4 + R2
0

≤ 23/2λv

4 + 2−1λ2
v

≤ 1. �

4.3. Proof of Theorem 2.

PROOF OF THEOREM 2. Since λv = λ and R0 ≥ (4 + 2
√

3) ∨ (λ/21/2) by Theorem 1,
from Theorem 4 and Lemma 6, A < 31/2 while with λx = CP/(1 + CP)

(48) λλxm
1/2
2 ε0/6 ≤ α(ε0) with λx/

(
1 + R2

0
)≤ ε0 ≤ 2/

(
4 + R2

0
)
.

By (14), if c1, c2,‖a‖∞,mb are fixed, there exist CR
1 (CP, c1, c2,‖a‖∞,mb) > 0, independent

of d,λ, cλ, Cϕ and cϕ such that

R0 ≤ CR
1
(
CP, c1, c2,‖a‖∞,mb

)
R1,

where R1 = cϕK + (1 + Cϕ)d(1+�)/2K + λ(1 + cλd
(1+�)/2). Combining this bound with

(48) concludes the proof. �

5. The zig-zag sampler–optimization. In this section, we specify our results in the case
of the zig-zag sampler for which better estimates can be obtained, leading to better scaling
properties with respect to d . The Zig-Zag process corresponds to the instantiation of (1) for
which F0 = 0, K = d , Fi(x) = ∂xi

U(x)ei , ni (x) = ei , λref(x) = λ > 0,2 for i ∈ {1, . . . , d}
and x ∈ X, and Rv = �v − Id. The corresponding generator takes the simplified form, for
f ∈ C2

b(E) and any (x, v) ∈ E

Lf (x, v) = v�∇xf (x) +
d∑

i=1

ϕ
(
vi∂xi

U(x)
)[

f
(
x,
(
Id−2eie�

i

)
v
)− f (x, v)

]

+ λref(x)m
1/2
2 Rvf (x, v),

(49)

where ϕ :R→R+ is a continuous function and satisfies (13) in H3.
In the next two subsections we first consider general velocity distributions and then show

how our results can be specialized to the scenario where V = {−m
1/2
2 ,+m

1/2
2 }d for m2 > 0 and

ν is the uniform distribution on V.

5.1. General velocity distribution.

THEOREM 17. Consider the zig-zag process with generator defined by (49) with λref =
λ, Rv = �v − Id and ϕ : R → R+ is a continuous function satisfying (13) in H3. Assume
A1 with C = C2

b(E), H1, H2, H4, H5, H6 hold and that there exists c3 ≥ 0 such that for any

g ∈ L2(π)
d

(50)
〈
g,
[∇2

xU − diag
(∇2

xU
)]

g
〉
2 ≥ −c3‖g‖2

2.

Then, Theorem 4 holds with λx as in (38), λv = λ and

(51) R0 = (6m4)
1/2(2 + Cϕ)

m2

(
(1 + c1/2)

1/2 + 1 + (c3/2)
1/2
)+ λ + cϕ

21/2
.

2which corresponds to cλ = 0 in H6.
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REMARK 18. From H1 we have for any g ∈ L2(π)
d

〈
g,∇2

xUg
〉
2 ≥ −c1‖g‖2

2

and therefore (50) holds if there exist c1 > 0 such that for any g ∈ L2(π)
d
,〈

g,diag
(∇2

xU
)
g
〉
2 ≤ c1‖g‖2

2,

which is itself implied by c1 Id � diag(∇2
xU(x)) for all x ∈ X, since the matrix diag(∇2

xU(x))

is symmetric. Note that this is the case when for all x ∈ X, |diag(∇2
xU(x))| ≤ c1 or

|∇2
xU(x)| ≤ c1, for example.

The proof is very similar to that of Theorem 1 and follows from the application of Theo-
rem 4 and the following lemmas whose proofs can be found in Section 5.3.

LEMMA 19. Consider the zig-zag process with generator L defined by (49) with λref = λ,
Rv = �v − Id and ϕ : R → R+ is a continuous function satisfying (13) in H3. Assume A1
with C = C2

b(E), H1, H2, H4, H5, H6 and (50) hold. Let S and T be the symmetric and
antisymmetric parts of L respectively and A the operator defined by (18) relative to T . Then
for any f ∈ C2

b(E),∥∥(Id−�v)S̃A�f
∥∥

2 ≤ (λ + cϕ)m2‖∇xuf ‖2

× (6m4)
1/2Cϕ

(∥∥∇2
xuf

∥∥
2 + ∥∥∇�

x∇xuf

∥∥
2 + c

1/2
3 ‖∇xuf ‖2

)
,

where uf is given by (40).

LEMMA 20. Consider the zig-zag process with generator L defined by (49) with λref = λ,
Rv = �v − Id and ϕ :R →R+ a continuous function satisfying (13) in H3. Assume A1 with
C = C2

b(E), H1, H2, H4, H5, H6 and (50) hold. Let T be the antisymmetric part of L and A
the operator defined by (18) relative to T . Then for any f ∈ C2

b(E)∥∥(Id−�v)T̃ A�f
∥∥

2

≤ [
6(4m4 − m2,2)

]1/2(∥∥∇2
xuf

∥∥
2 + ∥∥∇∗

x∇xuf

∥∥
2 + c

1/2
3 ‖∇xuf ‖2

)
,

where uf is defined by (40).

PROOF OF THEOREM 17. Checking A2 and A3-(a)-(b)-(d)-(e) is identical to the work
done in the proof of Theorem 1 with the constants λv = λ and λx given by (38). We are left
with checking A3-(c). By the improved bounds from Lemma 19 and Lemma 20, we have for
any f ∈ C2

b(E),∥∥S̃A�f
∥∥

2 + ∥∥(Id−�v)T̃ A�f
∥∥

2

≤ (λ + cϕ)m2‖∇xuf ‖2

+ (6m4)
1/2(2 + Cϕ)

(∥∥∇2
xuf

∥∥
2 + ∥∥∇∗

x∇xuf

∥∥
2 + c

1/2
3 ‖∇xuf ‖2

)
.

Using Proposition 34 and Corollary 36, we obtain that for any f ∈ C2
b(E),∥∥(Id−�v)S̃A�f

∥∥
2 + ∥∥(Id−�v)T̃ A�f

∥∥
2

≤
{
(6m4)

1/2(2 + Cϕ)

m2

(
(1 + c1/2)

1/2 + 1 + (c3/2)
1/2
)+ λ + cϕ

21/2

}
‖�vf ‖2.

The proof is then completed by Lemma 12-(a) and Lemma 13-(a). �
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We discuss in the following the dependence on the dimension of the convergence rate
α(ε0) and the constant A(ε0) given by Theorem 4 based on the constant provided by The-
orem 17. Similar to the general case, we need to impose some conditions on m2 and m4.
Here, we assume that m

1/2
4 /m2 does not depend on d , which holds in the case where ν is the

uniform distribution on V = {−1,1}d or the d-dimensional zero-mean Gaussian distribution
with covariance matrix Id .

In the case where π is the i.i.d. product of one-dimensional distributions πi on (R,B(R))

associated with potentials Ui : R → R satisfying H1, that is, for any x ∈ X, U(x) =∑d
i=1 Ui(xi), ∇2

xU(x) = diag(∇2
xU(x)) for any x ∈ X and therefore (50) holds with c3 = 0.

Then, the convergence rate α(ε0) and the constant A(ε0) in Theorem 4 do not depend on the
dimension but only on the constants c1, c2, λ, cλ and CP associated to each Ui .

Consider now the case where the potential U is strongly convex and gradient Lipschitz,
that is, there exist m,L > 0 such that m Id � ∇2

xU(x) � L Id for any x ∈ X. Then, since
for any i ∈ {1, . . . , d} and x ∈ X, ∂xi,xi

U(x) = e�
i ∇2

xU(x)ei ≤ L by assumption, Remark 18
implies that (50) holds for c3 = L − m. In addition, H1 holds with c1 = 0 and c2 = L and by
[5], Proposition 5.1.3, Corollary 5.7.2, U satisfies (9) with CP = m. Then, the convergence
rate α(ε0) and the constant A(ε0) in Theorem 4 do not depend on the dimension but only
on L, m, λ and λ. In addition, we observe that the larger L − m is, the larger R0 given in
(51) is, which in turn make the convergence rate α(ε0) worse since it is of order O(1/R2

0) as
R0 → +∞ by Lemma 6. This result is expected in the Gaussian case U(x) = x��x for any
x ∈ X, since L − m is the diameter of the set of eigenvalues of � which is a characterization
of the conditioning of the problem.

5.2. d-dimensional Radmacher distribution. We now consider the case V = {−m
1/2
2 ,

+m
1/2
2 }d and ν is the uniform distribution on V which corresponds to the original setting

of the zig-zag process. This process has been proved to be ergodic [9] even in the absence of
refreshment, that is λref = 0. We note that in this scenario m4 = m2

2/3 and m2,2 = m2
2 which

leads to simplified expressions for the bounds in Lemma 19 and Lemma 20 upon revisiting
their proofs. However this has no qualitative impact. In this section we show that hypocoer-
civity holds with our techniques for λref(x) = 0 for “most of X” for a particular type of partial
refreshment update.

Consider the scenario where Rv is a mixture of the bounces {Bk, k = 1, . . . , d}, for any
f ∈ L2(μ), (x, v) ∈ E,

(52) λrefRvf (x, v) =
d∑

k=1

λref,k(x)
[
f (x, v − 2vkek) − f (x, v)

]
,

with λref,k : X → R+ for k ∈ {1, . . . , d} satisfying H6, and λref = ∑d
k=1 λref,k , that is when

the process refreshes, k ∈ {1, . . . , d} is chosen at random with probability proportional to
(λref,1, . . . , λref,d) and the component vk of v is updated to −vk .

PROPOSITION 21. Consider the zig-zag process with generator L and refreshment op-
erator as in (49) and (52) respectively, with ϕ : R → R+ is a continuous function satisfying
(13) in H3. Assume A1 with C = C2

b(E), H1, H2, H4, H5, H6 and (50) hold. Let S be the
symmetric part of L defined by (17).

(a) the symmetric part of the generator is given for any f ∈ C2
b(E), (x, v) ∈ E by

Sf (x, v) =
d∑

k=1

{ϕ(vk∂xk
U(x)) + ϕ(−vk∂xk

U(x))

2

+ m
1/2
2 λref,k(x)}[f (x, v − 2vkek) − f (x, v)

];
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(b) the microscopic coercivity condition A3-(a) is satisfied, that is, for any f ∈ C2
b(E),

(x, v) ∈ E

− 〈Sf,f 〉2 ≥ λvm
1/2
2

∥∥(Id−�v)f
∥∥2

2

with λv = min
k∈{1,...,d},x∈X

{ |∂xk
U(x)|
2

+ λref,k(x)

}
.

(53)

REMARK 22. In other words A3-(a) holds if for any ε > 0, for all k ∈ {1, . . . , d}, λref,k
vanishes everywhere, except on {x ∈ X : ∃k ∈ {1, . . . , d} | |∂xk

U |(x) < ε}. We also note that
a similar result holds for the case where Rv = �v − Id, that is A3-(a) holds whenever λref
vanishes everywhere, except on {x ∈ X : ∃k ∈ {1, . . . , d}, | |∂xk

U |(x) < ε} for ε > 0.

PROOF. The first statement is a direct application of Proposition 8-(a). For the sec-
ond statement, using that ν is the uniform distribution on V = {−m

1/2
2 ,m

1/2
2 }d , from the

polarization identity and since ϕ satisfies H3, we get for any f ∈ C2
b(E), setting ϕe(s) =

ϕ(s) + ϕ(−s),

−〈Sf,f 〉2 = 1

2

∫
E

d∑
k=1

{
ϕe(vk∂xk

U(x))

2
+ m

1/2
2 λref,k(x)

}

× [
f (x, v) − f

(
x,
(
Id−2eke�

k

)
v
)]2 dμ(x, v)

≥ (
λvm

1/2
2 /2

) ∫
E

d∑
k=1

[
f (x, v) − f

(
x,
(
Id−2eke�

k

)
v
)]2 dμ(x, v),

(54)

where λv is defined in (53). Now by the Poincaré inequality for any g ∈ L2
0(ν) (see, e.g., [49],

page 52), it holds that

(55) (1/2)

∫
V

d∑
k=1

[
g(v) − g

((
Id−2eie�

i

)
v
)]2 dν(v) ≥

∫
V

d∑
k=1

g2(v)dν(v).

Now since for any f ∈ C2
b(E), 〈Sf,f 〉2 = 〈S(Id−�v)f, (Id−�v)f 〉2 and for any x ∈ X,

v 	→ (Id−�v)f (x, v) ∈ L2
0(ν), then combining (54) and (55) and using Fubini’s theorem

concludes the proof of (53). �

5.3. Postponed proofs.

PROOF OF LEMMA 19. We use Lemma 12 and its notation, where K = d , for k ∈
{1, . . . , d}, Fk = ∂xk

U and nk = sgn(∂xk
U)ek . In this setting and by (42), it follows that for

any (x, v) ∈ E,

G(x, v) =
d∑

k=1

λe
k(x, v)vkek + λm

1/2
2 v.

By the triangle inequality and since
∫

V g(vi)g(vj )vivj dν(v) = 0 for i, j ∈ {1, . . . , d}, i �= j ,
and any even measurable bounded function g : R→R by H4-(c), we get∥∥G�∇xuf

∥∥
2

≤
∥∥∥∑d

k=1

{
ϕ(vk∂xk

U) + ϕ(−vk∂xk
U)

}
vk∂xk

uf

∥∥∥
2
+ λm2‖∇xuf ‖2(56)

=
[

d∑
k=1

∥∥{ϕ(vk∂xk
U) + ϕ(−vk∂xk

U)
}
vk∂xk

uf

∥∥2
2

]1/2

+ λm2‖∇xuf ‖2.
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Then by H3, H4-(c), the triangle inequality (on L2(μ)d ) and since for any i ∈ {1, . . . , d},∫
V v4

i dν(v) = 3m4 by H4-(d) we obtain

[
d∑

k=1

∥∥(cϕm
1/2
2 + Cϕ|vk∂xk

U |)vk∂xk
uf

∥∥2
2

]1/2

≤ cϕm
1/2
2

[
d∑

k=1

‖vk∂xk
uf ‖2

2

]1/2

+ Cϕ

[
d∑

k=1

∥∥|vk∂xk
U |vk∂xk

uf

∥∥2
2

]1/2

≤ cϕm2‖∇xuf ‖2 + Cϕ(3m4)
1/2

[
d∑

k=1

‖∂xk
U∂xk

uf ‖2
2

]1/2

.

Plugging this result in (56), we get

(57)
∥∥G�∇xuf

∥∥
2 ≤ (cϕ + λ)m2‖∇xuf ‖2 + Cϕ(3m4)

1/2

[
d∑

k=1

‖∂xk
U∂xk

uf ‖2
2

]1/2

.

To bound the sum we note that for k ∈ {1, . . . , d} ∂xk
U∂xk

uf = ∂2
xk

uf + ∂∗
xk

∂xk
uf by

Lemma 32-(a) which, together with the fact (a + b)2 ≤ 2(a2 + b2), leads to

‖∂xi
U∂xi

uf ‖2
2 ≤ 2

(∥∥∂2
xi

uf

∥∥2
2 + ∥∥∂∗

xi
∂xi

uf

∥∥2
2

)
.

Then, using that for a, b ≥ 0
√

a + b ≤ √
a + √

b twice and (61), we deduce

(
d∑

k=1

‖∂xk
U∂xk

uf ‖2
2

)1/2

≤ 21/2

{
d∑

k=1

(∥∥∂2
xk

uf

∥∥2
2 + ∥∥∂∗

xk
∂xk

uf

∥∥2
2

)}1/2

≤ 21/2

{(
d∑

k=1

∥∥∂2
xk

uf

∥∥2
2

)1/2

+
(

d∑
k=1

∥∥∂∗
xk

∂xk
uf

∥∥2
2

)1/2}
(58)

≤ 21/2
(∥∥∇2

xuf

∥∥
2 + ∥∥∇∗

x∇xuf

∥∥
2 + c

1/2
3 ‖∇xuf ‖2

)
.

Then combining (57) and (58) completes the proof by Lemma 12-(b). �

For a, b ∈ R
d (A,B ∈ R

d×d ), we denote by a � b ∈ R
d (A � B ∈ R

d×d ) the Hadamard
product between a and b defined for any i ∈ {1, . . . , d} (i, j ∈ {1, . . . , d}) by (a � b)i = aibi

((A � B)i,j = Ai,jBi,j ).

PROOF OF LEMMA 20. We use Lemma 13 and its notation, where K = d , for k ∈
{1, . . . , d}, Fk = ∂xk

Uek and nk = sgn(∂xk
U)ek . In this setting and by (46), it follows that

M(x) = ∇2
xuf (x) + diag(∇xuf � ∇xU).

Since ‖M‖2
2 = ‖diag(M)‖2

2 + ‖M − diag(M)‖2
2, we obtain

2m2,2‖M‖2
2 + 3(m4 − m2,2)

∥∥diag(M)
∥∥2

2

= 2m2,2
∥∥M − diag(M)

∥∥2
2 + (3m4 − m2,2)

∥∥diag(M)
∥∥2

2(59)

≤ 2m2,2
∥∥∇2

xuf

∥∥2
2 + (3m4 − m2,2)

∥∥diag(M)
∥∥2

2.
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We now bound ‖diag(M)‖2
2. First, we apply the triangle inequality and use Lemma 32-(a),

to deduce that

∥∥diag(M)
∥∥2

L2(π) =
d∑

k=1

∥∥2∂2
xk

uf − ∂2
xk

uf + ∂xk
U∂xk

uf

∥∥2
2

≤
d∑

k=1

(
2
∥∥∂2

xk
uf

∥∥
2 + ∥∥−∂2

xk
uf + ∂xk

U∂xk
uf

∥∥
2

)2(60)

≤
d∑

k=1

(
8
∥∥∂2

xk
uf

∥∥2
2 + 2

∥∥∂∗
xk

∂xk
uf

∥∥2
2

)
,

where we have used for the last inequality that (a + b)2 ≤ 2a2 + 2b2 for any a, b ∈ R. By
Lemma 32-(a), (72), (11) and the fact that U ∈ C3

poly(X) by H1, using that same reasoning as
to establish (74), it holds for any k ∈ {1, . . . , d},∥∥∂�

xk
∂xk

uf

∥∥2
2 = ∥∥∂2

xk
uf

∥∥2
2 + 〈∂xk

uf , ∂xk,xk
U∂xk

uf 〉2,∥∥∇∗
x∇xuf

∥∥2
2 = ∥∥∇2

xuf

∥∥2
2 + 〈∇xuf ,∇2

xU∇xuf

〉
2.

These identities and the condition (50) imply

d∑
i=1

∥∥∂∗
xi

∂xi
uf

∥∥2
2 = ∥∥diag

(∇2
xuf

)∥∥2
2 + 〈∇xuf ,diag

(∇2
xU

)∇xuf

〉
2

≤ ∥∥∇2
xuf

∥∥2
2 + 〈∇xuf ,diag

(∇2
xU

)∇xuf

〉
2

≤ ∥∥∇∗
x∇xuf

∥∥2
2 − 〈∇xuf ,

(∇2
xU − diag

(∇2
xU

))∇xuf

〉
2

≤ ∥∥∇∗
x∇xuf

∥∥2
2 + c3‖∇xuf ‖2

2.

(61)

Combining (60) and (61), we obtain

∥∥diag(M)
∥∥2

2 ≤ 8
d∑

k=1

∥∥∂2
xk

uf

∥∥2
2 + 2

(∥∥∇∗
x∇xuf

∥∥2
2 + c3‖∇xuf ‖2

2
)
.

From this inequality, (59) and Lemma 13-(b), we deduce∥∥(Id−�v)T̃ A�f
∥∥2

2 ≤ 6(4m4 − m2,2)
∥∥∇2

xuf

∥∥2
2

+ 2(3m4 − m2,2)
(∥∥∇∗

x∇xuf

∥∥2
2 + c3‖∇xuf ‖2

2
)

≤ 6(4m4 − m2,2)
(∥∥∇2

xuf

∥∥
2 + ∥∥∇∗

x∇xuf

∥∥
2 + c

1/2
3 ‖∇xuf ‖2

)2
,

since for a, b, c ≥ 0, a2 + b2 + c2 ≤ (a + b + c)2. �

6. Discussion and link to earlier work. As pointed out earlier the scenario K = 0
where F0 = ∇xU is considered in [23] where the authors establish hypercoercivity but also in
[12], Theorem 3.9, where the authors establish geometric convergence, that is the existence
of constants A,α > 0 and a measurable function V : E → R+ satisfying μ({V = ∞}) = 0,
such that for any (x, v) ∈ E and t ≥ 0,

(62)
∥∥Pt

(
(x, v), ·)− μ(·)∥∥TV ≤ AV (x, v)e−αt .

Similar results have been obtained in [20] and [27] for the Bouncy particle sampler and
in [9] for the zig-zag process. All these methods rely on guessing such a suitable Lyapounov
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function V and establishing a so-called drift condition for this function, in conjunction with
a minorization condition [44]. Here we have established L2(μ)-exponential convergence, or
equivalently that there exists an absolute L2(μ)-absolute spectral gap [24], Proposition 22.3.2
(by considering the skeleton of the process) and is therefore μ-a.e. uniformly convergent by
[24], Proposition 22.3.3 and Proposition 22.3.5, that is (62) holds with V = 1 and μ-a.e.

An advantage of our approach is that it provides explicit and relatively simple bounds in
terms of interpretable quantities which, we show, are informative, and is in contrast with those
on minorization and drift conditions in most scenarios. One exception is the study of BPS on
the torus carried out in [27] for U = 0, using an appropriate coupling argument, which leads
to a rate of convergence for the total variation distance with a favourable �(d1/2) scaling.
Although we have shown that for the zig-zag sampler with Rademacher distribution λref is
not required to be bounded away from zero on X, the results of [9] hold with λref = 0. It
would be interesting to further investigate whether our results can be specialized to consider
the scenario λref = 0.

Although we have shown that the theory developed in this paper covers numerous sce-
narios in a unified set-up, various possible extensions are possible. For example, we have
restricted this first investigation to deterministic bounces of the type given in (4), but there
does not seem to be any obstacle to the extension of our results to the more general set-
ups such as considered in [46, 57, 60]. In the same vein, great parts of our calculations
could be used to consider distributions of the velocity ν that are neither Gaussian, nor the
uniform distribution on the hypersphere. For ν of density proportional to exp(−K(v)) with
K : Rd → R the Liouville operator involved in the definition of (3) would take the form
∇vK(v)�∇xf (x, v) − m2F

�
0 ∇vf (x, v), leading to a different expression for T . Such modi-

fied kinetic energies have been proposed to speed up the computation, introducing the modi-
fied Langevin dynamics for which convergence to equilibrium has been studied in [54].

APPENDIX A: OPTIMIZATION AND ESTIMATES OF THE RATE OF
CONVERGENCE α(ε)

We let R∗+ = (0,∞). Consider the functions R, α̃ :R∗+ →R
∗+ given for any ε ≥ 0 by

R(ε) = [
1 − ε(1 − λx)

]2 − 4ελx(1 − ε) + ε2R2
0

(63)

= R2
1

(
ε − 1 + λx

R2
1

)2
+ 1 − (1 + λx)

2

R2
1

> 0,

α̃(ε) = �(ε)

1 + 21/2λvε
= 1 − ε(1 − λx) − R

1/2(ε)

2(1 + 21/2λvε)
,(64)

where

(65) R2
1 = (1 + λx)

2 + R2
0,

and � is given in (22). We show that optimizing ε 	→ �(ε) is a good enough proxy for
optimizing ε 	→ α̃(ε), whose maximum is unique, but intractable. Since ε 	→ α(ε) defined by
(21) is proportional to ε 	→ α̃(ε), the same conclusion holds for this function.

LEMMA 23. Let � : R+ →R be defined by (22). Then with λx ∈ (0,1) and R0 > 0:

(a) �(ε) ≥ 0 for ε ∈ [0,4λx/(4λx + R2
0)] and �(0) = 0.

(b) � has first order derivative

�′(ε) = −(1/2)
[
(1 − λx)R

1/2(ε) + εR2
1 − (1 + λx)

]
R−1/2(ε),

and �′(0) = λx > 0.
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(c) � : R+ →R has a unique stationary point (�′(ε0) = 0)

(66) ε0 = (1 + λx) − (1 − λx)[R2
0/(R2

0 + 4λx)]1/2

(1 + λx)2 + R2
0

> 0,

such that �(ε0) > 0.

PROOF. From (22) we see that �(ε) ≥ 0 requires

0 ≤ ε ≤ 1

1 − λx

∧ 4λx

4λx + R2
0

= 4λx

4λx + R2
0

,

where the equality follows from λx > 0, which completes the proof of (a). The proof of (b)
is a simple calculation and is omitted. We now show (c). If we set �′(ε) = 0, it implies that
ε > 0 satisfies

(67) (1 + λx) − εR2
1 = R

1/2(ε)(1 − λx),

and imposes the condition (1 + λx) − εR2
1 ≥ 0 so

(68) ε ∈
[
0,

1 + λx

(1 + λx)2 + R2
0

]
.

Squaring both sides of (67) implies the following sequence of equalities using (63)

(1 − λx)
2R(ε) = [

εR2
1 − (1 + λx)

]2
,

(1 − λx)
2[R2

1ε2 − 2(1 + λx)ε + 1
]= R4

1ε2 − 2R2
1(1 + λx)ε + (1 + λx)

2,

which is equivalent by (65) to

R2
1ε2[(1 − λx)

2 − R2
1
]− 2ε(1 + λx)

[
(1 − λx)

2 − R2
1
]− 4λx = 0,[

(1 + λx)
2 + R2

0
]
ε2[−4λx − R2

0
]− 2ε(1 + λx)

[−4λx − R2
0
]− 4λx = 0,[

(1 + λx)
2 + R2

0
]
ε2 − 2(1 + λx)ε + 4λx/

(
R2

0 + 4λx

)= 0.

The two strictly positive roots are

ε± = (1 + λx) ± [(1 + λx)
2 − 4λx{(1 + λx)

2 + R2
0}/(R2

0 + 4λx)]1/2

(1 + λx)2 + R2
0

> 0,

where the inequality follows from λx > 0 and R0 > 0. Further

(1 + λx)
2(R2

0 + 4λx

)− 4λx

[
(1 + λx)

2 + R2
0
]= R2

0
[
(1 + λx)

2 − 4λx

]= R2
0[1 − λx]2,

and since λx ≤ 1, this yields the simplified expression for the two roots

ε± = (1 + λx) ± (1 − λx)[R2
0/(R2

0 + 4λx)]1/2

(1 + λx)2 + R2
0

.

From the conditions on ε given by (a) and (68), and the fact that λx ≤ 1, we retain ε0 = ε−
only. The last statement follows from the second statement and the fact that �′ is continuous.

�

The following lemma establishes in particular that ε0 is a global maximum.

LEMMA 24. Let � : R∗+ →R be defined by (22). Then with λx ∈ (0,1) and R0 > 0:

(a) for any ε > 0, �′′(ε) < 0 (implying concavity),
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(b) � is maximized at ε0 defined by (66) and 0 < ε0 ≤ (4λx)/(4λx + R2
0).

(c) If in addition R0 ≥ 2, ε0 ≤ 3λx/(4λx + R2
0).

PROOF.

(a) We differentiate ε 	→ −2�(ε) = −[1 − ε(1 − λx)] + R
1/2(ε) twice, yielding the first

order derivative

ε 	→ (1 − λx) + (1/2)R′(ε)R−1/2(ε)

and the second order derivative follows

ε 	→ (1/4)R−3/2(ε)
(
2R′′(ε)R(ε) − [

R′(ε)
]2)

.

Now from (63), R(ε) = aψ(ε) with ψ(ε) = (ε − b)2 + c with all constants b, c nonnegative.
Further ψ ′(ε) = 2(ε − b) and ψ ′′(ε) = 2 and therefore

2ψ ′′(ε)ψ(ε) − ψ ′(ε)2 = 4
[
(ε − b)2 + c − (ε − b)2]= 4c > 0,

which implies that �′′(ε) ≤ 0 for any ε ≥ 0.
(b) From the concavity we deduce that ε0 is a maximum, and the inequality on ε0 follows

from the fact that this is required for �(ε0) ≥ 0.
(c) Using that for any s ≥ 0, (1 + s)

1/2 ≤ 1 + s/2, and 4λx ≤ (1 + λx)
2, we get that

ε0 = R0
(1 + λx)(4λx/R

2
0 + 1)

1/2 − (1 − λx)

[(1 + λx)2 + R2
0](R2

0 + 4λx)
1/2

≤ 2λxR0 + 2λx(1 + λx)/R0

[(1 + λx)2 + R2
0]1/2(R2

0 + 4λx)

≤ 2λx + 2λx(1 + λx)/R
2
0

R2
0 + 4λx

.

(69)

The assumption R0 ≥ 2 completes the proof. �

PROPOSITION 25. The function α̃ : R+ →R+, defined by (64), has a unique maximizer
ε� ∈ (0, ε0), where ε0 is given in (66). In addition, if 21/2R0 ≥ λv then

(70) α̃(ε0) ≤ α̃
(
ε�)≤ 3α̃(ε0).

PROOF. First note that for any ε ≥ 0,

α̃′(ε) = �(ε)

(1 + 21/2λvε)2 ,

with

�(ε) = �′(ε)
(
1 + 21/2λvε

)− 21/2λv�(ε).

Then from Lemma 24, for any ε ≥ 0

� ′(ε) = (
1 + 21/2λvε

)
�′′(ε) < 0 and �(ε0) = −21/2λv�(ε0) < 0.(71)

Together with �(0) = �′(0) = λx > 0, and the fact that ε → �(ε) is continuous, we deduce
the existence and uniqueness of ε� ∈ (0, ε0) satisfying α̃′(ε�) = 0, and maximizing α̃ on R+.
Further since α̃′(ε�) = 0 and ε 	→ �(ε) is nonincreasing, using the first equality of (71) and
the definition of α̃ given in (64), we deduce

sup
ε∈[ε�,ε0]

∣∣α̃′(ε)
∣∣≤ |�(ε0)|

(1 + 21/2λvε�)2 = 21/2λv

1 + 21/2λvε0

(1 + 21/2λvε�)2 α̃(ε0).
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From Taylor’s theorem, we obtain

α̃
(
ε�)− α̃(ε0) ≤ (

ε0 − ε�)21/2λv

1 + 21/2λvε0

(1 + 21/2λvε�)2 α̃(ε0),

from which we conclude that

α̃(ε0) ≤ α̃
(
ε�)≤

[
1 + (

ε0 − ε�)21/2λv

1 + 21/2λvε0

(1 + 21/2λvε�)2

]
α̃(ε0).

Now if we use 21/2R0 ≥ λv we have by (66) that

λvε0 <
(1 + λx)λv

(1 + λx)2 + R2
0

≤ λv(2R0)
−1 ≤ 2−1/2,

implying

(
ε0 − ε�)21/2λv

1 + 21/2λvε0

(1 + 21/2λvε�)2 ≤ 21/2λvε0
(
1 + 21/2λvε0

)≤ 2,

which completes the proof of (70). �

APPENDIX B: SOME RESULTS ON CLOSED OPERATORS ON HILBERT SPACES

In this section we gather classical results concerning densely defined closed operators on
a Hilbert space to which we repeatedly refer throughout the manuscript.

We start this section with a well-know result regarding the closure of antisymmetric oper-
ators, for which a proof is given for completeness.

LEMMA 26. Let (T ,D(T )) be a densely defined antisymmetric operator on a Hilbert
space H, of inner product 〈·, ·〉 and induced norm ‖·‖. In addition, let A be a bounded op-
erator on H. Then, (T ,D(T )) and (T A,D(T A)) are closable operators. In particular, if
AD(T ) ⊂ D(T ), then (T A,D(T )) is closable.

PROOF. Since T is densely defined, its adjoint (T �,D(T �)) is well defined and closed
by [51], Theorem 5.1.5, and since T is antisymmetric, (T �,D(T �)) is therefore a closed
extension of (T ,D(T )) which implies that (T ,D(T )) is closable. Finally, it is easy to verify
that (T �A,D(T �A)) is closed since (T �,D(T �)) is and is an extension of (T A,D(T A)).
This completes the proof. �

PROPOSITION 27. Let B be a closed and densely defined operator on a Hilbert space H
of inner product 〈·, ·〉, induced norm ‖·‖ and operator norm |||·|||.

(a) Id+B�B is a positive self-adjoint operator on H bijective from D(B�B) to H. In addi-
tion, (Id+B�B)−1 is a positive self-adjoint bounded operator on H and B(Id+B�B)−1 is a
bounded operator.

(b) For any h ∈ H,∥∥(Id+B�B
)−1

h
∥∥2 + 2

∥∥B(Id+B�B
)−1

h
∥∥2 ≤ ‖h‖2.

(c) B�B(Id+B�B)−1 is a bounded operator on H which satisfies∣∣∣∣∣∣B�B
(
Id+B�B

)−1∣∣∣∣∣∣≤ 1.

(d) The operator ((Id+B�B)−1B�,D(B�)) is closable, its closure is a bounded operator
and |||(Id+B�B)−1B�||| ≤ 1.
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REMARK 28. Note that under the condition of Proposition 27, we get that (Id+
B�B)−1B� can be extended to a bounded operator and∣∣∣∣∣∣(Id+B�B

)−1∣∣∣∣∣∣≤ 1,
∣∣∣∣∣∣B(Id+B�B

)−1∣∣∣∣∣∣≤ 1/21/2.

PROOF. (a) and (b) follow from [51], Theorem 5.1.9, and inspection of the proof. We
now show (c).

First note that (Id+B�B − Id)(Id+B�B)−1 = Id−(Id+B�B)−1, from which we deduce
that it is a self-adjoint and bounded operator by the triangle inequality with norm less or equal
than 2. To prove the tighter upper bound we use [51], Proposition 3.2.27 p. 99 (twice), the
identity for any h ∈ H∣∣〈B�B

(
Id+B�B

)−1
h,h

〉∣∣
= max

{‖h‖2 − 〈(
Id+B�B

)−1
h,h

〉
,
〈(

Id+B�B
)−1

h,h
〉− ∥∥h2∥∥},

that (Id+B�B)−1 is positive and |||(Id+B�B)−1||| ≤ 1 from the first statement.
It remains to prove (d). Since B is closed and densily defined, D(B�) is dense and therefore

{(Id+B�B)−1B�}� is closed and densely defined by [51], Theorem 5.1.5. By (a), we have for
any h1 ∈ D(B�) and h2 ∈ H, we have〈(

Id+B�B
)−1B�h1, h2

〉
2 = 〈

h1,B
(
Id+B�B

)−1
h2
〉
2,

which implies that {(Id+B�B)−1B�}� = B(Id+B�B)−1. Therefore, the operator {(Id+
B�B)−1B�}∗∗ is bounded on H. The proof then follows by [51], Theorem 5.1.5, which implies
that (Id+B�B)−1B� is closable and(

Id+B�B
)−1B� = ((

Id+B�B
)−1B�)∗∗

. �

A similar result can be obtained by using that B is closable only, as a consequence of the
following lemma.

LEMMA 29. Assume that (B,D(B)) is a densely defined closable operator. Let (B,D(B))

be the closure of (B,D(B)) and m > 0. Then, the conclusions of Proposition 27 hold chang-
ing B to B.

PROOF. This result is a just a consequence of [51], Theorem 5.1.5, which implies that
B� is densely defined, B = (B�)� and B� = B�

. �

We would like to apply Proposition 27 to the densely defined and closed operator m−1/2∇x

for m > 0, which does not fully fit in the framework of Proposition 27 since it is an operator
from L2(π) to L2(π)d . This is easily fixed upon noting that the operator ∇x on L2(π) can
be extended as an operator on L2(π)d as follows: for any f̃ = (f1, . . . , fd) ∈ L2(π)d , f1 ∈
D(∇x), define Bf̃ = m−1/2∇xf1. Then, a direct consequence of Proposition 27 applied to the
operator B for m > 0, on L2(π)d is the following taking f̃ = (f,0, . . . ,0), for f ∈ L2(π).

COROLLARY 30. Let m > 0. The operators ∇x(m Id+∇�
x∇x)

−1 and ∇�
x∇x(m Id+

∇�
x∇x)

−1 are bounded on L2(π)d with∣∣∣∣∣∣∇x

(
m Id+∇�

x∇x

)−1∣∣∣∣∣∣
L2(π) ≤ 1/(2m)

1/2,
∣∣∣∣∣∣∇�

x∇x

(
m Id+∇�

x∇x

)−1∣∣∣∣∣∣
L2(π) ≤ 1.

In addition, for any f ∈ L2(π),∥∥(m Id+∇�
x∇x

)−1
f
∥∥2

2 + (2/m)
∥∥∇x

(
m Id+∇�

x∇x

)−1
f
∥∥2

2 ≤ {‖f ‖2/m
}2

,
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and ∥∥∇�
x∇x

(
m Id+∇�

x∇x

)−1
f
∥∥

2 ≤ ‖f ‖2.

We conclude this section by the following results which can be found in [34].

LEMMA 31 ([34], Lemma 2.2). Let (T ,D(T )) be a antisymmetric operator on L2(μ)

and � be an orthogonal projection on L2(μ). Assume that there exists D ⊂ D(T ) such that
�(D) ⊂ D(T ) and D is dense in L2(μ). Then the following statements hold.

(a) D(T ) ⊂ D((T �)�) and for any f ∈ D(T ), (T �)�f = −�T f .
(b) For any f ∈ D((T �)�), �(T �)�f = (T �)�f .

APPENDIX C: ELLIPTIC REGULARITY ESTIMATES

We preface this section with some complements on the adjoint of ∇x seen as an operator
on L2(π)d .

LEMMA 32. Assume H1. Consider the operator (∇x,D(∇x)) from the Hilbert space
L2(π) to L2(π)d endowed with the inner product defined by (5). Then it holds

(a) for any i ∈ {1, . . . , d}, the L2(π)-adjoint of ∂xi
is given for any g ∈ C1

poly(X) by

∂�
xi

g = −∂xi
g + g∂xi

U ;
(b) the L2(π)-adjoint of ∇x is given for any G ∈ C1

poly(X,Rd) by

∇�
xG = −divx G + ∇xU

�G.

REMARK 33. Note that Lemma 32 implies that for any g ∈ C2
poly(X) and G ∈

C2
poly(X,Rd), we have

(72) ∇�
x∇xg = −xg + ∇xU

�∇xg and ∇x∇�
xG = ∇�

x∇xG + ∇2
xUG,

where we have defined ∇�
x∇xG ∈ Cpoly(E,Rd) for any (x, v) ∈ E and i ∈ {1, . . . , d} by

{∇�
x∇xG(x, v)

}
i = ∇�

x∂xi
G(x, v) =

d∑
j=1

−∂xj ,xi
Gj (x, v) + ∂xj

U(x)∂xi
G(x, v).

PROOF. The proof just follows by integration by parts. �

PROPOSITION 34. Let m > 0 and assume H1. Then for any f ∈ C2
b(E),

(73)
∥∥∇2

x

(
m Id+∇�

x∇x

)−1
�vf

∥∥
2 ≤ κ1‖�vf ‖2 where κ1 = (

1 + c1/(2m)
)1/2

.

PROOF. Let f ∈ C2
b(E) and consider u = (m Id+∇�

x∇x)
−1�vf . By [50], Theorem 2,

u ∈ C3
poly(X). Therefore we obtain by (72), (11) and the fact that U ∈ C3

poly(X) using H1,

∥∥∇2
xu
∥∥2

2 = 〈∇2
xu,∇2

xu
〉
2 = 〈∇xu,

(∇�
x∇x

)[∇xu]〉2
= 〈∇xu,

(∇x∇�
x

)[∇xu] − ∇2
xU∇xu

〉
2(74)

= ∥∥∇�
x∇xu

∥∥2
2 − 〈∇xu,∇2

xU∇xu
〉
2.
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From the definition of u, using Corollary 30 and H1-(a) we conclude that∥∥∇2
xu
∥∥2

2 ≤ ‖�vf ‖2
2 + c1‖∇xu‖2

2 ≤ ‖f ‖2
2 + c1‖�vf ‖2

2/(2m). �

In order to bound terms of the form ‖F�
k ∇xu‖ in Section 3.3 we need the following Lemma

which is a quantitative version of [23], Lemma 6. Consider the function W : Rd → R+ de-
fined for any x ∈ R

d by

(75) W(x) = {
1 + ∣∣∇xU(x)

∣∣2}1/2
.

LEMMA 35 ([23], Lemma 6). Assume H1. Then for any ϕ ∈ D(∇x),

‖∇xϕ‖2 ≥ [
4
(
1 + c2d

1+�/
(
4C2

P
))1/2]−1‖ϕ∇xU‖2,

where c2 and CP are defined in (10) and (9) respectively. As a corollary, it holds for any
ϕ ∈ D(∇x),

‖∇xϕ‖2 ≥ κ2‖ϕW‖2 where

κ−1
2 = (

C−2
P + 16

(
1 + c2d

1+�/
(
4C2

P
)))1/2

= C−1
P
(
1 + 4c2d

1+� + 16C2
P
)1/2 ≥ C−1

P .

(76)

PROOF. Note that we only need to consider ϕ ∈ C∞
c (X) since C∞

c (X) is a core for
(∇x,D(∇x)). First since ∇xU ∈ L2(μ), for any ε > 0, we get

2〈ϕ∇xU,∇xϕ〉2 ≤ ε−1‖∇xϕ‖2
2 + ε‖ϕ∇xU‖2

2.

We then bound from below the left-hand side. Using the carré du champ identity, that is,
for any f,g ∈ C2

poly(X), 〈∇xf,∇xg〉2 = 〈∇xU
�∇xf − xf,g〉2, we get using that ∇x[ϕ2] =

2ϕ∇xϕ,

2〈ϕ∇xU,∇xϕ〉2 = 〈∇x

[
ϕ2],∇xU

〉
2 = ‖ϕ∇xU‖2

2 − 〈
ϕ2,xU

〉
2.

By (10) and (9), we obtain

2〈ϕ∇xU,∇xϕ〉2 ≥ ‖ϕ∇xU‖2
2/2 − c2d

1+�‖ϕ‖2
2

≥ ‖ϕ∇xU‖2
2/2 − (

c2d
1+�/C2

P
)‖∇xϕ‖2

2.

From this result and (C), it follows that

‖ϕ∇xU‖2
2/2 − (

c2d
1+�/C2

P
)‖∇xϕ‖2

2 ≤ ε−1‖∇xϕ‖2
2 + ε‖ϕ∇xU‖2

2.

Rearranging terms and setting ε = 1/4 completes the proof. The last statement is a direct
consequence of the first one using the definition of W in (75). �

Putting this with Proposition 34, this implies the following.

COROLLARY 36. Let m > 0 and assume H1 and H2. For any f ∈ L2(μ) and k ∈
{1, . . . ,K}, we have∥∥F�

k

{∇x

(
m Id+∇�

x∇x

)−1
�vf

}∥∥
2 ≤ 21/2ak

∥∥W{∇x

(
m Id+∇�

x∇x

)−1
�vf

}∥∥
2

≤ 21/2akκ1

κ2
‖�vf ‖2,

where ak , W , κ1 and κ2 are defined by (12), (75), (73) and (76) respectively.
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PROOF. Note first that since ∇x(m Id+∇�
x∇x)

−1 is a bounded operator by Corollary 30,
it is sufficient by density to show this result for f ∈ C2

b(E). Let f ∈ C2
b(E) and u = (m +

∇�
x∇x)

−1�vf . By [50], Theorem 2, u ∈ C3
poly(X). Second since for any t, s ≥ 0, s + t ≤

21/2
√

s2 + t2, H2-(c) implies for any x ∈ X,

|Fk|(x) ≤ ak

(
1 + |∇xU |(x)

)≤ 21/2akW(x).

Therefore using Lemma 35 and Proposition 34 successively, we obtain

∥∥F�
k ∇xu

∥∥
2 ≤ ∥∥|Fk|∇xu

∥∥
2 ≤ 21/2ak‖W∇xu‖2 = 21/2ak

(
d∑

i=1

‖W∂xi
u‖2

2

)1/2

≤ (
21/2ak/κ2

)( d∑
i=1

∥∥∇x[∂xi
u]∥∥2

2

)1/2

= (
21/2ak/κ2

)∥∥∇2
xu
∥∥

2

≤ (
21/2akκ1/κ2

)‖�vf ‖2. �
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