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We resolve a long-standing conjecture of Wilson (Ann. Appl. Probab. 14
(2004) 274–325), reiterated by Oliveira (2016), asserting that the mixing time
of the interchange process with unit edge rates on the n-dimensional hyper-
cube is of order n. This follows from a sharp inequality established at the
level of Dirichlet forms, from which we also deduce that macroscopic cycles
emerge in constant time, and that the log-Sobolev constant of the exclusion
process is of order 1. Beyond the hypercube, our results apply to cartesian
products of arbitrary graphs of fixed size, shedding light on a broad conjec-
ture of Oliveira (Ann. Probab. 41 (2013) 871–913).

1. Introduction.

1.1. Interchange process. Let G = (VG,EG) be a finite undirected connected graph. The
interchange process (IP) on G is the continuous-time random walk (ξt )t≥0 on the symmet-
ric group S(VG) with initial condition ξ0 = id and the following Markov generator: for all
observables f : S(VG) →R,

(1) LIP
Gf (σ) := ∑

e∈EG

(
f (στe) − f (σ)

)
,

where τe denotes the transposition of the endpoints of the edge e. One may think of each
vertex as carrying a labelled particle, and of the edges as being equipped with independent
unit-rate Poisson clocks: whenever a clock rings, the particles sitting at the endpoints of the
corresponding edge simply exchange their positions.

Since LIP
G is symmetric and irreducible, the law of ξt converges to that of a uniform permu-

tation ξ� as t → ∞. We shall here be interested in the time-scale on which this convergence
occurs, as traditionally measured by the total-variation mixing time:

(2) t IP
MIX(G) := min

{
t ≥ 0 : max

A⊆S(VG)

∣∣P(ξt ∈ A) − P(ξ� ∈ A)
∣∣ ≤ 1

e

}
.

Understanding the relation between this fundamental quantity and the geometry of G is a
challenging problem, to which a remarkable variety of tools have been applied: representation
theory [9, 13], couplings [2, 23, 27, 30], eigenvectors [18, 30], functional inequalities [8, 22,
31], comparison methods [4, 11], etcetera. The question is of course particularly meaningful
when the number of states becomes large, and one is thus naturally led to study asymptotics
along various growing sequences of graphs (Gn)n≥1.

The case of the n-clique Gn = Kn has been extensively studied under the name random
transposition shuffle. In particular, Diaconis and Shahshahani [13] proved that

(3) t IP
MIX(Kn) = logn

n

(
1 + o(1)

)
.
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In fact, this was shown for any precision ε ∈ (0,1) instead of 1
e

in (2), thereby extablishing the
very first instance of what is now called a cutoff phenomenon [10]. Another well-understood
case is the n-path Pn, for which Lacoin [21] recently proved cutoff at time

(4) t IP
MIX(Pn) = n2 logn

2π2

(
1 + o(1)

)
.

There are, however, many simple graph sequences along which even the order of magni-
tude of t IP

MIX(Gn) is unknown. An emblematic example (which was the initial motivation for
our work) is the boolean hypercube Z

n
2, for which Wilson [30] conjectured in 2004 that

(5) t IP
MIX

(
Z

n
2
) � n.

This was reiterated as Problem 4.2 of the AIM workshop Markov chains mixing times [26].
Here and throughout the paper, � and � denote equality and inequality up to universal posi-
tive multiplicative constants. The current best estimates are

(6) n � t IP
MIX

(
Z

n
2
)
� n logn.

The lower bound is due to Wilson ([30], Section 9.1) and the upper bound was recently
obtained by Alon and Kozma ([4], Corollary 10), as a special case of a much more general
estimate which we will now discuss.

1.2. The big picture. An important observation about the IP is that the motion of a single
particle is itself a Markov process. The generator is the usual graph Laplacian, which acts on
functions f : VG →R by

(7) LRW
G f (x) := ∑

y : {x,y}∈EG

(
f (y) − f (x)

)
.

It is natural to expect the mixing properties of LIP
G and LRW

G to be intimately related. Indeed,
a celebrated conjecture of Aldous, now resolved by Caputo, Liggett and Richthammer [8],
asserts that the relaxation times (inverse spectral gaps) of these two operators coincide:

(8) t IP
REL(G) = tRW

REL(G).

Recall that tRW
REL(G) classically controls the mixing time tRW

MIX(G) of the single-particle dy-
namics (7), up to a correction which is only logarithmic in the number of vertices:

(9) tRW
MIX(G) � tRW

REL(G) log |VG|.
Inspired by the identity (8), Oliveira [27] conjectured that the same control applies to t IP

MIX(G).
More precisely, he proposed the following simple-looking but far-reaching estimate, which
is sharp in the three very different graph examples mentioned above (see Table 1).

CONJECTURE 1 (Oliveira [27]). For any connected graph G,

(10) t IP
MIX(G) � tRW

REL(G) log |VG|.

TABLE 1
Some classical orders of magnitude

G |VG| tRW
REL(G) tRW

MIX(G) t IP
MIX(G)

Kn n 1/n 1/n (logn)/n

Pn n n2 n2 n2 logn

Z
n
2 2n 1 logn n
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Some partial progress on Conjecture 1 can be found in [16]. It is easy to prove that
tRW
rel log |V | is comparable up to some universal constants to the mixing time of |V | inde-

pendent particles ([16], §2.1), and thus Oliveira’s conjecture has the following probabilistic
interpretation. It is saying that the mixing time of the interchange process is at most some
universal constant multiple of the mixing time of |V | independent particles (in fact, this is
how it is phrased in [27]).

One of the most powerful techniques to bound the mixing time of a complicated Markov
chain consists in comparing its Dirichlet form with that of a better understood chain having
the same state space and stationary law, see the seminal paper by Diaconis and Saloff-Coste
[11]. In the case of IP, the Dirichlet form is given by

(11) E IP
G(f ) := 1

2|VG|!
∑

σ∈S(VG)

∑
e∈EG

(
f (στe) − f (σ)

)2
,

and a natural candidate for the comparison is the mean-field version E IP
K , where K denotes the

complete graph on the same vertex set as G. Let us therefore define the comparison constant
of the IP on G as the smallest number χ IP

G such that the inequality

(12) E IP
K (f ) ≤ χ IP

GE IP
G(f )

holds for all f : S(VG) →R. This constant is the optimal price to pay in order to systemati-
cally transfer quantitative estimates from IP on K to IP on G. In a recent breakthrough, Alon
and Kozma [4], Theorem 1, established the following remarkably general estimate.

THEOREM 1.1 (Alon and Kozma [4]). For any regular connected graph G,

(13) χ IP
G � |VG|tRW

MIX(G).

In particular, they deduced the following bound on the mixing times.

COROLLARY 1.2 (Alon and Kozma [4]). For any regular connected graph G,

(14) t IP
MIX(G) � tRW

MIX(G) log |VG|.

Note that this proves Conjecture 1 along sequences (Gn)n≥1 satisfying tRW
MIX(Gn) �

tRW
REL(Gn). Examples include Kn, Pn, or the discrete tori Zn, Z2

n, Z3
n, etc. On the other hand,

for various other graphs such as the hypercube Z
n
2 or bounded-degree expanders, one has

(15)
tRW
REL(Gn)

tRW
MIX(Gn)

−−−→
n→∞ 0,

and Theorem 1.1 fails at capturing the conjectured asymptotics. In light of this, the next
step towards Conjecture 1 should naturally consist in understanding the mixing properties of
the IP on graphs satisfying (15). This is precisely the program to which the present paper is
intended to contribute.

2. Results.

2.1. Comparison constant and mixing time. A natural and important class of graphs sat-
isfying (15) are the “high-dimensional” graphs obtained by taking cartesian products of a
large number of small graphs. Recall that the cartesian product G = G1 × · · · × Gn of n

graphs G1, . . . ,Gn is the graph with vertex set VG1 × · · · × VGn , and where the neighbors of
a vertex x = (x1, . . . , xn) are obtained by replacing an arbitrary coordinate xi (1 ≤ i ≤ n) with
an arbitrary neighbor of xi in the graph Gi . Note that G is connected as soon as G1, . . . ,Gn
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are. We will allow the dimension n to grow arbitrarily but will keep the side-length fixed,
meaning that

(16) VG1 = · · · = VGn = {1, . . . , 	}
for some fixed integer 	 ≥ 2. Two simple examples are the n-dimensional torus Z

n
	 = Z	 ×

· · · × Z	, and the n-dimensional Hamming graph Kn
	 = K	 × · · · × K	. In particular, when

	 = 2, we recover the hypercube. Our main result is the determination of the exact order of
magnitude of χ IP

G on all product graphs of fixed side-length.

THEOREM 2.1 (Comparison). All connected product graphs of side-length 	 ≥ 2 satisfy

(17) χ IP
G �	 |VG|,

where �	 means equality up to multiplicative constants that depend only on 	.

Our estimate on χ IP
G classically yields an upper bound on the mixing time, even in the

strong L2 sense (see [4], Lemma 6). Moreover, a standard application of Wilson’s method
(see [18], Proposition 1.2) yields a matching lower bound. We thus obtain the following
result, which confirms in particular Wilson’s long-standing prediction (5).

COROLLARY 2.2 (Mixing time). All connected product graphs of side-length 	 ≥ 2 sat-
isfy

(18) t IP
MIX(G) �	 log |VG|.

Note that on product graphs, the single-particle dynamics (7) updates each coordinate
independently. Consequently, any connected product graph of side-length 	 ≥ 2 satisfies

tRW
REL(G) �	 1,(19)

tRW
MIX(G) �	 log log |VG|.(20)

(The double logarithm comes from the fact that there are log	 |VG| coordinates, and that the
time it takes to update all of them a constant number of times is logarithmic in the number
of coordinates.) Thus, our Corollary 2.2 resolves Conjecture 1 for all product graphs of fixed
side-length, in a regime where Theorem 1.1 always fails at doing so.

REMARK (Pre-cutoff). Let us comment on the constants hidden in our results, at least for
the Hamming graph Kn

	 . Wilson’s eigenvector method [30] produces the precise lower bound

(21) lim inf
n→∞

{
t IP
MIX(Kn

	 )

	n

}
≥ c	,

with the constant c	 > 0 being completely explicit (e.g., we have c2 = ln 4
2 ). On the other

hand, our Corollary 2.2 guarantees that

(22) lim sup
n→∞

{
t IP
MIX(Kn

	 )

	n

}
≤ C	,

for some constant C	 < ∞ that can certainly be made explicit as well, by a careful exami-
nation of our proof. However, we did not try to optimize the value of C	, nor even to extract
its rough dependency in 	, because we believe that our comparison-based approach is inher-
ently too rough to produce sharp constants anyway. Nevertheless, we note that neither Wil-
son’s lower bound c	 nor our upper bound C	 change if we replace 1

e
by any other precision

ε ∈ (0,1) in the definition (2), thereby establishing what is known as a pre-cutoff. Improving
this to a true cutoff (i.e., C	 = c	) remains a fascinating open problem.
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We would like to close this section with a plausible extension of Theorem 2.1, inspired by
an analogous result that we recently obtained for the Zero-Range Process [17], Corollary 3.

CONJECTURE 2 (General comparison). All finite connected graphs satisfy

(23) χ IP
G � |VG|tRW

REL(G).

Note that a proof of this would immediately imply Conjecture 1.

2.2. Emergence of macroscopic cycles. One statistics of particular interest is the cy-
cle structure of the random permutation ξt , as a function of the time t . On the infinite
d-dimensional lattice Z

d with d ≥ 3, a long-standing conjecture of Tóth [29] predicts a
phase transition, indicated by the sudden emergence of infinite cycles at some critical time
t = tc ∈ (0,∞). This is related to a major open problem about the so-called quantum Heisen-
berg ferromagnet in statistical mechanics. To the best of our knowledge, the phase transition
has only been proved on infinite regular trees [5, 15].

In the case of a large finite graph G, the relative lengths of cycles in a uniform random
permutation asymptotically follow the Poisson–Dirichlet distribution (see, e.g., [28]). In par-
ticular, ξt is likely to contain a macroscopic cycle at time t ≥ t IP

MIX(G). By analogy with Tóth’s
conjecture, one should however expect macroscopic cycles to emerge much before the mix-
ing time. This was established in a precise sense by Schramm [28] in the mean-field case
where G = Kn, see also [6, 7]. Alas, results on other finite graphs are quite limited. In [3],
Alon and Kozma obtained intriguing identities—involving the irreducible representations of
the symmetric group—for the expected number of cycles of a given size in ξt on any finite
graph. Using these identities, they obtained a comparison-based estimate on the quantity

(24) t IP
CYC(G) := min

{
t ≥ 0 : P

(
ξt contains a cycle of length ≥ |VG|

2

)
≥ 1

4

}
.

THEOREM 2.3 (Alon and Kozma [4]). All finite graphs G satisfy

(25) t IP
CYC(G) � χ IP

G

|VG| .

Thus, our main result implies that on high-dimensional graphs, macroscopic cycles do
indeed emerge much before a single particle even mixes (recall (20)).

COROLLARY 2.4 (Giant cycles). All connected product graphs G of side-length 	 satisfy

(26) t IP
CYC(G) �	 1.

We note that Corollary 2.4 may not be sharp: it is actually quite possible that the macro-
scopic cycles already emerge at time 
(1/n) (where n is the number of terms in the product),
although proving this would require new ideas beyond the Alon–Kozma estimate (25). When
specialized to the hypercube Z

n
2, Corollary 2.4 complements a result of Koteckỳ, Miłoś and

Ueltschi [20] regarding the appearance of mesoscopic cycles. It also complements a recent
result by Adamczak, Kotowski and Miłoś [1], who established a phase transition for the emer-
gence of macroscopic cycles on the 2-dimensional Hamming graph K2

n. Finally, we note that,
by virtue of [4], Theorem 13, our main result also has direct implications on the magnetisation
of the quantum Heisenberg ferromagnet.
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2.3. Exclusion process. Another widely-studied interacting particle system is the exclu-
sion process [14, 19, 24, 25]. For a finite graph G and an integer 0 < k < |VG|, the k-particle
exclusion process (EX-k) on G is a Markov chain on the set

(VG

k

)
of k-element subsets of VG,

with generator given by

(27) LEX-k
G f (S) := ∑

e∈∂S

(
f (S ⊕ e) − f (S)

)
,

where ⊕ denotes the symmetric difference and ∂S the edge-boundary of S in G. This process
describes the set occupied by k fixed particles under the IP. More precisely, the EX-k (ζt )t≥0

with initial condition S ∈ (VG

k

)
can be constructed from the IP (ξt )t≥0 by setting ζt := ξ−1

t (S).
This observation, together with (8), easily implies that

(28)
tRW
REL(G)

tRW
REL(K)

≤ χ EX-k
G ≤ χ IP

G ,

where K denotes the complete graph on VG, and χ EX-k
G the optimal constant in the functional

inequality EEX-k
K (·) ≤ χ EX-k

G EEX-k
G (·). Recalling (19) and the fact that tRW

REL(K) = 1/|VG|, we
obtain the following corollary.

COROLLARY 2.5 (Comparison constant for EX-k). For all connected product graphs G

of side-length 	 ≥ 2, and all 0 < k < |VG|, we have χ EX-k
G �	 |VG|.

As a consequence, one can transfer many quantitative estimates from K to G. This includes
the inverse log-Sobolev constant ρEX-k

G , defined as the smallest number such that

(29) E[f logf ] −E[f ] logE[f ] ≤ ρEX-k
G EEX-k

G (
√

f )

for all f : (VG

k

) → (0,∞), where E[·] is expectation under the uniform law. This constant
provides powerful controls on the underlying Markov semi-group [12]. It is easy to see that

(30)
1

2
tRW
REL(G) ≤ ρEX-k

G ≤ χ EX-k
G ρEX-k

K .

On the other hand, the log-Sobolev constant of the exclusion process on the complete graph
(Bernoulli–Laplace model) was determined by Lee and Yau [22], Theorem 5:

(31) ρEX-k
Kn

� 1

n
log

n2

k(n − k)
.

In particular, this allows us to pinpoint the exact order of ρEX-k
G in the dense-particle regime.

COROLLARY 2.6 (Log–Sobolev for EX-k). Fix ε ∈ (0,1), 	 ≥ 2. Then, for all connected
product graphs G of side-length 	 and all k ∈ [ε|VG|, (1 − ε)|VG|], we have ρEX-k

G �	,ε 1.

Finally, we note that our main result also implies an upper bound of order n (uniformly
in 1 ≤ k ≤ 2n) on the L2 mixing time of EX-k on the hypercube Z

n
2, complementing a total-

variation estimate recently obtained by Hermon and Pymar [16] (as part of a much more
general result).

3. Proof of the main result.

3.1. Proof outline. The lower bound in Theorem 2.1 is easy. Indeed, if G is any fi-
nite graph and if K denotes the complete graph on VG, then the very definition of χ IP

G
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implies

(32) χ IP
G ≥ t IP

REL(G)

t IP
REL(K)

= tRW
REL(G)

tRW
REL(K)

= |VG|tRW
REL(G),

where the first equality uses (8). For a graph product of side-length 	, we deduce

(33) χ IP
G �	 |VG|.

The remainder of the paper is devoted to proving a matching upper bound. To do so, we
combine four simple ideas, each one corresponding to a step of the proof.

1. Our first step consists in reducing the analysis of IP on a general n-dimensional graph-
product G of side-length 	 to the special case of the Hamming graph Kn

	 . This reduction relies
on the classical method of canonical paths. An important simplification is that, by a standard
path-lifting procedure, it is actually enough to just compare the single-particle on G to that
on Kn

	 . See Section 3.2 for details.
2. Our second step consists in re-interpreting the single-particle dynamics on Kn

	 as a
random walk on the additive group Z

	
n, with the increment law μ being uniform over vectors

with a single nonzero coordinate. This algebraic reformulation is performed in Section 3.3. It
will allow one to use group-theoretical methods.

3. The third step consists in exploiting the celebrated octopus inequality [8], Theorem 2.3,
to compare the IP with increment law μ to the IP with increment law μ�t = μ� · · · �μ (t-fold
convolution), at a cost of order t . This is directly inspired by what Alon and Kozma did in
[4]. However, instead of taking t = 
(n logn) so as to ensure that μ�t is close to uniform (all
coordinates being refreshed with high probability), we crucially take t = 
(n) only, with the
prefactor being carefully adjusted so that only roughly half of the coordinates get refreshed
under μ�t . This important point is made rigorous by an application of the de Moivre–Laplace
local limit theorem, see Section 3.4.

4. Finally, the last step consists in showing that, although the increment law μ�t is still
very far from uniform (because of our choice of t), the associated Dirichlet form is actually
comparable to the one with uniform increments. This is achieved by constructing canonical
paths of length 2, the underlying intuition being that randomizing all coordinates of a vector
can be achieved by randomizing half the coordinates in one step, and the other half in a
second step. This is described in Section 3.5.

3.2. Canonical paths. Our starting point is a powerful tool for comparing Dirichlet forms
known as canonical paths; see, for example, [11]. As a warm-up, consider the single-particle
dynamics (7) with Dirichlet form

(34) ERW
G (f ) := 1

2|VG|
∑

{x,y}∈EG

(
f (x) − f (y)

)2
.

As usual, a path in G will be a finite sequence of vertices γ = (γ0, . . . , γk) (k ≥ 0) such
that ei := {γi−1, γi} ∈ EG for each 1 ≤ i ≤ k. We call k the length of the path and denote
it by |γ |. Also, we refer to γ0, γk as the endpoints of the path γ , and to e1, . . . , ek as the
traversed edges. By a random path in G, we simply mean a random variable taking value in
the (countable) set of all paths in G. We write E[·] for the corresponding expectation.

THEOREM 3.1 (Canonical paths, see e.g., [11]). Let G, H be connected graphs on the
same vertex set. For each edge f ∈ EH , let γf be any random path in G with the same
endpoints as f . Then, ERW

H ≤ κERW
G where κ is the congestion, defined as follows:

(35) κ = max
e∈EG

{ ∑
f ∈EH

E
[|γf |1(γf traverses e)

]}
.
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We now make three elementary but important remarks.

REMARK (Trivial choice). Even in the worst-case situation where H is the complete
graph on VG, we can always achieve the poor bound

(36) κ ≤ |VG|3
4

,

by considering a spanning tree T of G and letting γf be the unique simple path in T con-
necting the endpoints of f . Note that this path is actually nonrandom. Exploiting randomness
and the particular structure of H to design paths with a low congestion is a matter of art.

REMARK (Congestion behaves well under products). If for 1 ≤ i ≤ n, we can compare
Gi to Hi with congestion κi , then we can compare G1 × · · · × Gn to H1 × · · · × Hn with
congestion

(37) κ = max(κ1, . . . , κn),

by considering paths that only evolve along a single coordinate, in the obvious way.

REMARK (Cayley graphs). Theorem 3.1 simplifies when G = Cay(G,A) and H =
Cay(G,B) are Cayley graphs generated by subsets A, B of a finite group G. Indeed, any
word ω = (ω1, . . . ,ωk) ∈ Ak can be used to define a path

(38) γx,xb := (x, xω1, . . . , xω1 · · ·ωk)

in G from x ∈ G to xb, where b = ω1 · · ·ωk is the evaluation of ω in G. Consequently,
we only have to specify, for each b ∈ B , a random word ωb over A whose evaluation is b.
Moreover, a straightforward computation shows that the resulting congestion is simply

(39) κ = max
a∈A

{∑
b∈B

E
[|ωb|N(a,ωb)

]}
,

where |ω| denotes the length of a word ω, and N(a,ω) the number of occurrences of a in it.

Remark 3.2 applies in particular to the IP on any graph G. Indeed, one has

(40) E IP
G = ERW

Cay(G,A),

with G= S(VG) and A = {τe : e ∈ EG}. Moreover, any path in G with endpoints f = {x, y}
and traversed edges e1, . . . , ek can be lifted to a word over A that evaluates to τf , namely:

(41) ω := (τe1, . . . , τek−1, τek
, τek−1, . . . , τe1).

Since the congestion is multiplied by at most 4 (2 for the length of the word, and 2 for the
number of occurrences of a letter in it), we obtain the following classical result.

COROLLARY 3.2 (From canonical paths for RW to canonical paths for IP). Under the
exact same assumptions (and notation) as in Theorem 3.1, we also have

(42) E IP
H ≤ 4κE IP

G .

Combining this with Remarks 3.2 and 3.2, we obtain the following inequality, which re-
duces the upper bound of Theorem 2.1 to the extremal case where G is the (n, 	)-Hamming
graph:

(43) Kn
	 := K	 × · · · ×K	︸ ︷︷ ︸

n times

.
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COROLLARY 3.3. For any n-dimensional connected product graph G of side-length 	,

(44) E IP
Kn

	
≤ 	3E IP

G .

In light of this result, the upper bound in Theorem 2.1 now boils down to the claim

(45) sup
n≥1

{χ IP
Kn

	

	n

}
< ∞,

for each 	 ≥ 2, to which the remainder of the paper is devoted.

3.3. The octopus inequality. From now on, we fix the side-length 	 ≥ 2 and the dimen-
sion n ≥ 1. Writing K for the complete graph on {1, . . . , 	}n, our goal is to establish the
comparison

(46) E IP
K ≤ c	nE IP

Kn
	
,

where c does not depend on n. We start by observing that the random walks on Kn
	 and on K

can both be conveniently viewed as random walks on the group

(47) G := Z
n
	,

equipped with coordinate-wise addition mod 	 (which we will simply denote by +). Given
a probability measure μ on G, we recall that the random walk with increment law μ has
Dirichlet form

(48) ERW
μ (f ) := 1

2|G|
∑

x,z∈G
μ(z)

(
f (x + z) − f (x)

)2
,

for all f : G →R. In particular, we have the representation

(49) ERW
K = (

	n − 1
)
ERW

π , ERW
Kn

	
= n(	 − 1)ERW

ρ1
,

where π and ρk (0 ≤ k ≤ n) respectively denote the uniform distributions on G and on

(50) Gk := {
x ∈ G : ∣∣supp(x)

∣∣ = k
}
.

Here supp(x) = {i : xi 
= 0} naturally denotes the support of x = (x1, . . . , xn) ∈ G. Similarly,
the IP on G with increment law μ has Dirichlet form

(51) E IP
μ (f ) := 1

2|G|!
∑

σ∈S(G)

∑
x,z∈G

μ(z)
(
f (στ{x,x+z}) − f (σ)

)2
,

for f : S(G) → R, with the interpretation τ{x,x+z} = id when z = 0. In view of (49) (with IP

instead of RW), our claim (46) rewrites as

(52) E IP
π ≤ cnE IP

ρ1
,

for some (possibly different) constant c < ∞ that is only allowed to depend on 	. The proof
will crucially rely on the following elegant application of the octopus inequality [8], Theo-
rem 2.3, which we borrow from Alon and Kozma [4]. We include a short proof as our setting
here is slightly different. The convolution of two probability measures μ, ν on G is defined
by

(53) (μ � ν)(x) := ∑
z∈G

μ(z)ν(x − z).

Also, we say that a measure μ on G is symmetric if μ(z) = μ(−z) for all z ∈ G.
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LEMMA 3.4 (Comparison for convolutions). For any symmetric probability measure μ

on G,

(54) E IP
μ�μ ≤ 2E IP

μ .

PROOF. If μ(0) = 0, the octopus inequality [8], Theorem 2.3, asserts that∑
σ∈S(G),z∈G

μ(z)
(
f (στ{x,x+z}) − f (σ)

)2

≥ 1

2

∑
σ∈S(G),(u,v)∈G2

μ(u)μ(v)
(
f (στ{x+u,x+v}) − f (σ)

)2
,

for all f : S(G) →R and x ∈ G (the factor 1
2 on the right-hand side compensates for the fact

that we are here summing over all ordered pairs (u, v) ∈ G
2). Averaging over all x ∈ G, and

applying the (bijective) change of variables (x,u, v) �→ (x + u,−u, v − u) on the right-hand
side, we obtain

(55) 2E IP
μ (f ) ≥ 1

2|G|!
∑

σ∈S(G),(x,u,v)∈G3

μ(−u)μ(v − u)
(
f (στ{x,x+v}) − f (σ)

)2
,

which is precisely 2E IP
μ (f ) ≥ E IP

μ�μ(f ) by symmetry of μ. This proves the claim when μ(0) =
0. In the general case, we write μ = (1 − θ)ρ0 + θν with ν(0) = 0, and we observe that

E IP
μ = θE IP

ν , E IP
μ�μ = θ2E IP

ν�ν + 2θ(1 − θ)E IP
ν .

Thus, the claim E IP
μ�μ ≤ 2E IP

μ is equivalent to E IP
ν�ν ≤ 2E IP

ν . �

For reasons that will become clear later, we henceforth set

t := 2�log2 n
 ∈ [n,2n],(56)

θ := n
(
1 − e− ln 2

t
) ∈ (0,1),(57)

p := 	 − 1

	
.(58)

Let us introduce the measure μ defined by

(59) μ := (1 − θp)ρ0 + θpρ1.

Since μ is symmetric and t is a power of 2, we may iterate Lemma 3.4 to get

(60) E IP
μ�t ≤ tE IP

μ = θptE IP
ρ1

≤ 2nE IP
ρ1

,

where μ�t = μ � · · · � μ denotes the t-fold convolution of μ. Thus, our goal (52) now boils
down to showing that

(61) E IP
π ≤ cE IP

μ�t

for some constant c < ∞ that only depends on 	. To this end, we analyze the convolution μ�t

accurately using the de Moivre–Laplace local limit theorem.
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3.4. Local limit theorem. As a warm-up, consider the binomial expansion of the uniform
law: π = ∑n

k=0 bkρk , where

(62) bk :=
(
n

k

)
(1 − p)kpn−k.

The classical de Moivre–Laplace local limit theorem provides uniform estimates on the co-
efficients b0, . . . , bn. Although a specific value of p was chosen at (58), the statement is of
course valid for any p ∈ (0,1).

THEOREM 3.5 (de Moivre–Laplace). There is C < ∞ depending only on p such that

(63)
∣∣∣∣bk − e− x2

2√
2πnp(1 − p)

∣∣∣∣ ≤ C

n3/2 ,

for all 0 ≤ k ≤ n, with x = (k − np)/
√

np(1 − p).

We can use this to approximate Eπ with EρI
, where ρI is defined as follows:

ρI := 1

|I |
∑
k∈I

ρk;(64)

I := (
np − 2

√
np(1 − p),np + 2

√
np(1 − p)

) ∩ {0, . . . , n}.(65)

LEMMA 3.6 (Plateau proxy for E IP
π ). There is c < ∞ depending on 	 only, such that

(66) E IP
π ≤ cE IP

ρI
.

PROOF. If ν is a symmetric distribution on G, the Cauchy–Schwarz inequality yields√
(ν � ν)(x)

π(x)
≥ ∑

z∈G

√
ν(z)ν(z − x)

≥ ∑
z∈G

ν(z) ∧ ν(z − x)

≥ ∑
z∈G

[
ν(z) −

(
ν(z) − 1

|G|
)

+
−

(
1

|G| − ν(z − x)

)
+

]

= 1 − 2dTV(ν,π),

for all x ∈ G, where dTV(·, ·) denotes the total-variation distance. In particular, when
dTV(ν,π) ≤ 1

4 , we obtain (ν � ν)(x) ≥ π(x)/4 for all x ∈ G and hence

(67) E IP
π ≤ 4E IP

ν�ν.

Let us now apply this general observation to the restriction of π to
⋃

k∈I Gk :

(68) ν := 1

q

∑
k∈I

bkρk, q := ∑
k∈I

bk.

Note that dTV(ν,π) = 1 − q , and that q ≥ 3/4 thanks to our definition of I and Chebychev’s
inequality for the Binomial(n,p). Thus, (67) applies and yields

E IP
π ≤ 4E IP

ν�ν

≤ 8E IP
ν
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= 8

q

∑
k∈I

bkE IP
ρk

≤ 32|I |
3

(
max
k∈I

bk

)
E IP

ρI
,

where the second inequality uses Lemma 3.4, and the third q ≥ 3/4. Finally, Theorem 3.5
ensures that |I |maxk∈I bk is bounded by a quantity which only depends on p. �

In order to establish (61), we will now approximate μ�t by the distribution

ρJ := 1

|J |
∑
k∈J

ρk;(69)

J :=
(

np

2
− 2

√
np(1 − p),

np

2
+ 2

√
np(1 − p)

)
∩ {0, . . . , n}.(70)

Note that the center of J is twice smaller than that of I .

LEMMA 3.7 (Plateau proxy for μ�t ). There is c > 0 depending on 	 only, such that

(71) μ�t ≥ cρJ .

PROOF. The convolution with μ describes the following transformation on G-valued
random variables: pick one of the n coordinates uniformly at random and, with probability θ ,
replace it with a fresh uniform sample from Z	. Consequently, we may construct a random
variable X = (X1, . . . ,Xn) with law μ�t by setting

(72) Xi :=
{
Zi if i ∈ {U1, . . . ,UN },
0 otherwise,

where N,U1, . . . ,Ut ,Z1, . . . ,Zn are independent random variables with the following laws:

• N is binomial with parameters t and θ ;
• U1, . . . ,Ut are uniform on {1, . . . , n};
• Z1, . . . ,Zn are uniform on Z	.

In particular, setting S := | supp(X)|, we have

(73) μ�t =
n∑

k=0

P(S = k)ρk,

and our proof boils down to establishing that

(74) min
k∈J

P(S = k) ≥ c√
n
,

for some constant c > 0 that only depends on 	. Now, conditionally on N , the variable

(75) R := ∣∣{U1, . . . ,UN }∣∣
counts the number of distinct coupons collected by time N in the standard coupon-collector
problem of size n. Thus,

(76) E[R|N ] = n

(
1 −

(
1 − 1

n

)N)
, Var(R|N) ≤ n

4
.

Recalling our definitions (57), and since N is a Binomial(t, θ) variable, we easily deduce

(77) E[R] = n

(
1 −

(
1 − θ

n

)t)
= n

2
, Var(R) ≤ n.
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Consequently, Chebychev’s inequality yields

(78) P

(
R ∈

[
n

2
− 2

√
n,

n

2
+ 2

√
n

])
≥ 3

4
.

Now, conditionally on R, the random variable S is just a Binomial with parameters R, p. In
particular, Theorem 2.1 with R instead of n ensures that

(79) min
k∈J

P

(
S = k

∣∣∣R ∈
[
n

2
− 2

√
n,

n

2
+ 2

√
n

])
≥ c√

n
,

where c > 0 only depends on p. Combining (78) and (79) establishes the claim. �

3.5. Final comparison. In view of Lemmas 3.6 and 3.7, our objective (61) now reduces
to establishing the following.

PROPOSITION 3.8 (Final comparison). There exists c < ∞ depending only on 	, such
that

(80) E IP
ρI

≤ cE IP
ρJ

.

The crucial ingredient of the proof is the following lemma.

LEMMA 3.9. For any i, j ∈ {0, . . . , n} with i + j ∈ {0, . . . , n}, we have

(81) E IP
ρi+j

≤ 8|Gi |
|Gi | ∧ |Gj |E

IP
ρi

+ 8|Gj |
|Gi | ∧ |Gj |E

IP
ρj

.

PROOF. Let (X,Y ) denote a random element from the set

(82)
{
(x, y) ∈ Gi ×Gj : supp(x) ∩ supp(y) = ∅

}
.

Then ω := (X,Y ) is a random word of length 2 over Gi ∪ Gj , whose evaluation X + Y is
uniform over Gi+j . By Corollary 3.2 and Remark 3.2, we deduce that

(83) E IP
Cay(G,Gi+j )

≤ 4κE IP
Cay(G,Gi∪Gj ),

where the congestion κ is given by

κ = 2|Gi+j | max
b∈Gi∪Gj

{
P(X = b) + P(Y = b)

}
(84)

= 2|Gi+j |
|Gi | ∧ |Gj |(1 + 1(i=j)).(85)

The second line follows from the observation that X and Y are uniformly distributed on Gi

and Gj , respectively. On the other hand, the definitions of ρi , ρj , ρi+j imply

E IP
Cay(G,Gi+j ) = |Gi+j |E IP

ρi+j
,(86)

(1 + 1(i=j))E IP
Cay(G,Gi∪Gj ) = |Gi |E IP

ρi
+ |Gj |E IP

ρj
.(87)

The claim readily follows. �

PROOF OF PROPOSITION 3.8. Our definitions of I , J ensure that |I | = |J | and that

(88) I ⊆ {
i + j : (i, j) ∈ P

}
,where P := {

(i, j) ∈ J 2 : j ∈ {i, i + 1}}.
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In particular, we have

(89) E IP
ρI

≤ 1

|J |
∑

(i,j)∈P
E IP

ρi+j
.

Now, since |Gi | = (n
i

)
(	 − 1)i for all i ∈ {0, . . . , n}, we have

(90)
|Gi+1|
|Gi | = (	 − 1)(n − i)

(i + 1)
.

As i varies across J , this ratio remains bounded away from 0 and ∞ uniformly in n. Conse-
quently, Lemma 3.9 ensures that for all (i, j) ∈ P ,

(91) E IP
ρi+j

≤ cE IP
ρi

+ cE IP
ρj

,

where c < ∞ depends only on 	. Inserting this above, we obtain

E IP
ρI

≤ c

|J |
∑

(i,j)∈P

(
E IP

ρi
+ E IP

ρj

)
(92)

≤ 4c

|J |
∑
j∈J

E IP
ρj

= 4cE IP
ρJ

.(93)

This concludes the proof. �
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