Translator Disclaimer
December 2020 Stochastic methods for the neutron transport equation II: Almost sure growth
Simon C. Harris, Emma Horton, Andreas E. Kyprianou
Ann. Appl. Probab. 30(6): 2815-2845 (December 2020). DOI: 10.1214/20-AAP1574


The neutron transport equation (NTE) describes the flux of neutrons across a planar cross-section in an inhomogeneous fissile medium when the process of nuclear fission is active. Classical work on the NTE emerges from the applied mathematics literature in the 1950s through the work of R. Dautray and collaborators (Méthodes Probabilistes Pour les équations de la Physique (1989) Eyrolles; Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 6: Evolution Problems. II (1993) Springer; Mathematical Topics in Neutron Transport Theory: New Aspects (1997) World Scientific). The NTE also has a probabilistic representation through the semigroup of the underlying physical process when envisaged as a stochastic process (cf. Méthodes Probabilistes pour les équations de la Physique (1989) Eyrolles; Introduction to Monte-Carlo Methods for Transport and Diffusion Equations (2003) Oxford Univ. Press; IMA J. Numer. Anal. 26 (2006) 657–685; Publ. Res. Inst. Math. Sci. 7 (1971/72) 153–179). More recently, Cox et al. (J. Stat. Phys. 176 (2019) 425–455) and Cox et al. (2019) have continued the probabilistic analysis of the NTE, introducing more recent ideas from the theory of spatial branching processes and quasi-stationary distributions. In this paper, we continue in the same vein and look at a fundamental description of stochastic growth in the supercritical regime. Our main result provides a significant improvement on the last known contribution to growth properties of the physical process in (Publ. Res. Inst. Math. Sci. 7 (1971/72) 153–179), bringing neutron transport theory in line with modern branching process theory such as (Ann. Probab. 44 (2016) 235–275; Ann. Probab. 43 (2015) 2545–2610). An important aspect of the proofs focuses on the use of a skeletal path decomposition, which we derive for general branching particle systems in the new context of nonlocal branching generators.


Download Citation

Simon C. Harris. Emma Horton. Andreas E. Kyprianou. "Stochastic methods for the neutron transport equation II: Almost sure growth." Ann. Appl. Probab. 30 (6) 2815 - 2845, December 2020.


Received: 1 January 2019; Revised: 1 February 2020; Published: December 2020
First available in Project Euclid: 14 December 2020

Digital Object Identifier: 10.1214/20-AAP1574

Primary: 60J75, 60J80, 82D75
Secondary: 60J99

Rights: Copyright © 2020 Institute of Mathematical Statistics


This article is only available to subscribers.
It is not available for individual sale.

Vol.30 • No. 6 • December 2020
Back to Top