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BULK EIGENVALUE FLUCTUATIONS OF SPARSE RANDOM MATRICES

BY YUKUN HE

Institute of Mathematics, University of Zürich, yukun.he@math.uzh.ch

We consider a class of sparse random matrices, which includes the ad-
jacency matrix of Erdős–Rényi graphs G(N,p) for p ∈ [Nε−1,N−ε]. We
identify the joint limiting distributions of the eigenvalues away from 0 and the
spectral edges. Our result indicates that unlike Wigner matrices, the eigen-
values of sparse matrices satisfy central limit theorems with normalization
N

√
p. In addition, the eigenvalues fluctuate simultaneously: the correlation

of two eigenvalues of the same/different sign is asymptotically 1/-1. We also
prove CLTs for the eigenvalue counting function and trace of the resolvent at
mesoscopic scales.

1. Introduction and statements of results. Let A be the adjacency matrix of a sparse
Erdős–Rényi graph G(N,p). That is, A is a symmetric N ×N matrix with independent upper
triangular entries satisfying

Aij =
{

1 with probability p,

0 with probability 1 − p.

Note that each row and column of A has typically Np nonzero entries, and we are interested
in the case when A is sparse; more precisely, we set p ∈ [N−1+ε,N−ε] for some fixed ε > 0.
It is convenient to introduce the normalized matrix

(1.1) A ..=
√

1

p(1 − p)N
A

so that the typical eigenvalue spacing of A is of order N−1. We also introduce the new vari-
able

q ..=√Np.

In this paper, we consider random matrices of the following class; it is an easy exercise to
check that A defined in (1.1) in terms of G(N,p) satisfies the following conditions.

DEFINITION 1.1 (Sparse matrix). Fix β ∈ (0,1/2) and set q ..= Nβ . A sparse matrix is
a real symmetric N × N matrix H = H ∗ ∈ R

N×N whose entries Hij satisfy the following
conditions.

(i) The upper-triangular entries (Hij : 1 ≤ i ≤ j ≤ N ) are independent.
(ii) The off-diagonal entries (Hij : i �= j ) are identically distributed.

(iii) We have EHij = 0 and EH 2
ij = (1 + O(δij ))/N for all i, j .

(iv) For any k ≥ 3, we have E|Hij |k ≤ Ck/(Nqk−2) for all i, j .

We define the adjacency matrix A by

A = H + f ee∗,
where e ..= N−1/2(1,1, . . . ,1)∗, and f ≥ 0.
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A special case of the above model is the Wigner matrix. Recall that Wigner matrix is an
N × N real symmetric matrix W satisfying the assumptions (i)–(iii) in Definition 1.1, and
‖Wij‖k 	 ‖Wij‖2 for all k ≥ 3. W is the Gaussian orthogonal ensemble (GOE) if we further
assume that Wij have Gaussian distributions.

The celebrated Wigner–Dyson–Mehta (WDM) universality conjecture asserts that the lo-
cal spectral properties of a random matrix do not depend on the explicit distribution of the
matrix entries, and they are only determined by the symmetry class of the matrix. During the
past decade, the universality conjecture for Wigner matrices has been established in a series
of papers [8–11, 24, 25] in great generality. In particular, it has been shown that for a sym-
metric Wigner matrix, the averaged n-point correlation functions and distribution of a single
eigenvalue gap coincide with those of the GOE.

The study of universality for sparse matrices was initiated in [6, 7], where the authors
proved local semicircle law on optimal scales, and established bulk universality for q ≥ N1/3.
Later in [17], the result was extended to all q ≥ Nε . In particular, it was proved that for the
eigenvalues λ1 ≤ · · · ≤ λN of A and the eigenvalues μ1 ≤ · · · ≤ μN of GOE, one has

(1.2) lim
N→∞E

[
f
(
N�(γi)(λi − λi+1)

)− f
(
N�(γi)(μi − μi+1)

)]= 0

whenever i ∈ [εN, (1 − ε)N ]. Here f ∈ C∞
c (R), � and γi are the semicircle density and its

ith N -quantile γi respectively, that is,

�(x) ..= 1

2π

√(
4 − x2

)
+andN

∫ γi

−2
�(x)dx = i − 1/2.

Unlike the averaged n-point correlation functions and single eigenvalue gaps, the fluctua-
tions of single eigenvalues are understood much later. The single eigenvalue fluctuation was
first considered in [12] for Gaussian unitary ensembles (GUE), where the author proved that

(1.3)
μi − γi√

2 logN

(4−γ 2
i )N2

d−→ N (0,1)

as N → ∞, for all bulk eigenvalues μi of GUE. In [22], the result was extended to GOE and
a special class of Wigner matrices. Recently in [3, 19], it was showed that (1.3) remains valid
for all Wigner matrices.

In this paper, we study the single eigenvalue fluctuation of the sparse matrices. For the
remaining of this paper we replace the assumption (iv) in Definition 1.1 by

(iv)′. For any k ≥ 3, we have E|Hij |k 	 1/(Nqk−2) for all i, j ,

so that H and A are strictly sparse. Let us denote

(1.4) ζ ..= min
{

1

2
− β,β

}
> 0.

We may now state our main result.

THEOREM 1.2 (Main result). Fix τ > 0. Let λ1 ≤ λ2 ≤ · · · ≤ λN be the eigenvalues of
A. Set

Xi
..= λi −Eλi

γi

√
1
2EH 4

12

for all i ∈ {1,2, . . . ,N}. We denote the index set I ..= ([τN,N/2 − N1−ζ/17] ∪ [N/2 +
N1−ζ/17, (1 − τN)]) ∩N. Then for any fixed k and i1, . . . , ik ∈ I ,

(1.5) (Xi1, . . . ,Xik )
d−→ Nk(0,J ),

where J ∈ R
k×k is the matrix of ones, that is, Jij = 1 for all i, j ∈ {1,2, . . . , k}.
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For limN→∞ i/N = 1/2, we have

λi −Eλi√
EH 4

12

d−→ 0.

By assumption (iv)′, we have γi

√
1
2EH 4

12 	 |γi |N−1/2−β . Thus (1.5) implies that, when
γi is away from 0, the corresponding λi fluctuates on a much larger scale than the bulk
eigenvalues of a Wigner matrix. Since the limiting covariance matrix J is the matrix of
ones, we see that all the eigenvalues fluctuate simultaneously. Note the phenomenon of the
co-existence of Theorem 1.2 and the gap universality (1.2): although the eigenvalues of A

fluctuate on large scales, the fluctuations of consecutive eigenvalues are almost identical, and
hence the fluctuations make little impact on the gap distribution.

We also remark on the fluctuation near the edge. For q � N1/6, the extreme eigenvalues
of A are known to exhibit Tracy–Widom fluctuations [6, 20]. When N1/9 � q � N1/6, it
was proved in [18] that

(1.6)
λN−1 − (2 + 1/q2 − 5/(4q4))√

2EH 4
12

d−→ N (0,1).

Note that

XN−1 = λN−1 −EλN−1√
2EH 4

12

(
1 + O

(
N−2/3)),

thus for N1/9 � q � N1/6, the bulk fluctuation (1.5) exhibits exactly the same behavior
as the edge fluctuation (1.6). In fact, in both cases the fluctuations come from the sparsity
of A. We believe that the source of the edge fluctuation remains the same for small q , and
Theorem 1.2 can be extended to the edge for all Nε ≤ q � N1/6.

We also have the following central limit theorem for the eigenvalue counting function of
A.

THEOREM 1.3. Fix τ > 0. Let �(E) ..= |{i : λi ≤ E}| denote the eigenvalue counting
function of A. For E ∈ [−2 + τ,−N−ζ/17] ∪ [N−ζ/17,2 − τ ], we have

�(E) −E�(E)

σ(E)

d−→ N (0,1),

where

σ(E) ..= E

√
4 − E2

(
EH 4

12

8π2

)1/2
N.

For limN→∞ E = 0, we have
√

N

q

(
�(E) −E�(E)

) d−→ 0.

Let F be a smooth test function independent of N . Recall that for a Wigner matrix W , the
macroscopic linear statistic TrF(W) fluctuates on the scale 1 (see [21]), while [19] shows
�W(E) fluctuates on the scale

√
logN � 1. This is due to the fact that as the derivative

of the test function becomes more singular, the leading contribution of the fluctuation will
start to come from the fluctuations of individual eigenvalues, which are much larger than the
averaging fluctuation from linear statistics.
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Our observation is that for a sparse matrix, �(E) should fluctuate on the same scale as
TrF(H). From [23] we know that TrF(H) fluctuates on the scale

√
N/q � √

logN . The
source of this is the fourth moment assumption E(

√
NH12)

4 	 N/q2 � 1, which gives rise to
large, but simultaneous fluctuations for all eigenvalues. When we switch from continuous to a
jump test function, the result remains the same, as the source of the fluctuation is unchanged.

To study λi and �(E), the main step is obtaining good estimates for linear statistics of
Green functions at small scales. Let us define the spectral domain

Dτ
..= {E + iη : ∣∣4 − E2∣∣+ η ≥ τ, |E| ≤ 4,N−1+τ ≤ η ≤ 4

}
.

We denote the resolvent of H by G(z) ..= (H − z)−1, where Im z �= 0. The key step of our
proof is a result on centered moments of mesoscopic linear statistics of the Green functions
(see Proposition 3.1 below), which in particular implies the optimal estimate

1

N
TrG(z) − 1

N
ETrG(z) ≺ 1

Nη
+ 1√

Nq

for all z = E + iη ∈ Dτ . Here “≺” is the notion of stochastic domination given in Defini-
tion 2.5 below.

By computing the high moments of N−1 TrG − N−1
ETrG using cumulant expan-

sion/Schur complement formula, it can be proven, as previously in [7] that

1

N
TrG(z) − 1

N
ETrG(z) ≺ 1

Nη
+ 1

q2 .

In order to improve the second term 1/q2 to the optimal scale 1/(
√

Nq), we need more ex-
pansions. However, each additional expansion, in the worst case, only results in an improve-
ment of factor 1/q2. When q = Nε , it is impossible to write down each expansion explicitly,
and one has to introduce general formulas that allows recursive expansions. In order to do so,
we implement the ideas in [14], to construct a hierarchy of Schwinger–Dyson equations for a
sufficiently large class of polynomials in the entries of the Green function. As [14] deals with
the covariance of two Green functions of Wigner matrices, we also need to adapt the method
to our current setting, which deals with high-moment estimates of Green functions of sparse
matrices. See Section 4.2 for more details.

We also apply Proposition 3.1 to prove the following CLT for mesoscopic linear statistics
of Green functions.

THEOREM 1.4. Let z = E + iη ∈ Dτ .

(i) When η � q/
√

N ,

(1.7)
1

m(z)m′(z)
√

2EH 4
12N

(
TrG(z) −ETrG(z)

) d−→ N (0,1),

where m is the Stieltjes transform of the Wigner semicircle law.
(ii) When η � q/

√
N ,

(1.8)
√

2η
(
TrG(z) −ETrG(z)

) d−→ NC(0,1).

Here NC(0,1) denotes the distribution of the standard complex Gaussian random variable.

Note that (1.8) coincides with the mesoscopic linear statistics for GOE [4], whose source
is the extrapolation of WDM (or sine-kernel) statistics to mesoscopic scales. On the other
hand, (1.7) comes from the sparsity of H . Thus our result shows that, although the eigen-
value statistics for sparse matrices are different from WDM statistics on large scales, WDM
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statistics remain valid on small enough mesoscopic scales. This bridges the results on micro-
scopic [6, 17] and macroscopic [1, 23] statistics of H .

The rest of the paper is organized as follows. In Section 2 we introduce the notations and
previous results that we use in this paper. In Section 3 we prove our main results, Theorems
1.2– 1.4, assuming a key result on centered moments of mesoscopic linear statistics, Proposi-
tion 3.1. In Section 4 we introduce a class of polynomials in the entries of the Green function,
and construct a hierarchy of its Schwinger–Dyson equations. We then use this construction
to prove Proposition 3.1. Finally in Section 5 we prove the general estimates for the class of
polynomials of Green function that we used in Section 4.

Conventions. Throughout this paper, we regard N as our fundamental large parameter.
Any quantities that are not explicitly constant or fixed may depend on N ; we almost always
omit the argument N from our notation. We use τ to denote some generic (small) positive
constant, whose value may change from one expression to the next. Similarly, we use C to
denote some generic (large) positive constant. For A,B > 0, we use A = O(B) to denote
A ≤ CB and A 	 B to denote C−1B ≤ A ≤ CB . When we write A � B and A � B , we
mean A ≤ CN−τB and A ≥ C−1NτB for some constants C,τ > 0 respectively.

2. Preliminaries. In this section we collect notations and tools that are used in the paper.
Let M be an N × N matrix. We denote M∗n ..= (M∗)n, M∗

ij
..= (M∗)ij = Mji , Mn

ij
..=

(Mij )
n, and the normalized trace of M by M ..= 1

N
TrM . We abbreviate 〈X〉 ..= X − EX

for any random variable X with finite expectation. For the Green function G, we have the
differential rule

(2.1)
∂Gij

∂Hkl

= −(GikGlj + GilGkj )(1 + δkl)
−1.

Let μ be the empirical spectral measure of H . Its Stieltjes transform is denoted by

G(z) ..= 1

N
TrG(z) =

∫
μ(x)

x − z
dx.

We also have

(2.2)
∂(H 2 − 1)

∂Hij

= 4

N
Hij (1 + δij )

−1 ≺ 1

Nq
and

∂2(H 2 − 1)

∂H 2
ij

= 4

N
(1 + δij )

−1.

For z ∈ C with Im z �= 0, the Stieltjes transform of the Wigner semicircle law is defined by

m(z) ..=
∫

�(x)

x − z
dx.

One elementary fact is that m is the unique solution of

(2.3) 1 + zm(z) + m(z)2 = 0

satisfying Imm(z) Im z > 0. Let us define the spectral domains

S = {E + iη : |E| ≤ 4,0 < η ≤ 4
}

and S̃τ = {E + iη : |E| ≤ 4,N−1+τ ≤ η ≤ 4
}
.

We denote the distance to spectral edge by

κ ≡ κE
..= min

{|2 − E|, |2 + E|}.
LEMMA 2.1 (Basic properties of m). We have∣∣m(z)

∣∣	 1 and
∣∣m′(z)

∣∣	 1√
κ + η

for all z ∈ S. In particular, |m′(z)| 	 1 for all z ∈ Dτ .
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PROOF. The proof is an elementary exercise using (2.3). �

If h is a real-valued random variable with finite moments of all order, we denote by Ck(h)

the kth cumulant of h, that is,

Ck(h) ..= (−i)k · (∂k
λ logEeiλh)|λ=0.

We state the cumulant expansion formula, whose proof is given in, for example, [16],
Appendix A.

LEMMA 2.2 (Cumulant expansion). Let f :R →C be a smooth function, and denote by
f (k) its kth derivative. Then, for every fixed � ∈ N, we have

(2.4) E
[
h · f (h)

]= �∑
k=0

1

k!Ck+1(h)E
[
f (k)(h)

]+R�+1,

assuming that all expectations in (2.4) exist, where R�+1 is a remainder term (depending on
f and h), such that for any t > 0,

R�+1 = O(1) ·
(
E sup

|x|≤|h|
∣∣f (�+1)(x)

∣∣2 ·E∣∣h2�+41|h|>t

∣∣)1/2 + O(1) ·E|h|�+2 · sup
|x|≤t

∣∣f (�+1)(x)
∣∣.

The following result gives bounds on the cumulants of the entries of H , whose proof
follows by the homogeneity of the cumulants.

LEMMA 2.3. For every k ∈ N we have

Ck(Hij ) = Ok

(
1/
(
Nqk−2))

uniformly for all i, j .

The following is a standard complex analysis result from [5].

LEMMA 2.4 (Helffer–Sjöstrand formula). Let f ∈ C2(R), and let f̃ be the almost ana-
lytic extension of f defined by

f̃ (x + iy) ..= f (x) + iyf ′(x).

Let χ ∈ C∞
c (R) be a cutoff function satisfying χ(0) = 1, and by a slight abuse of notation

write χ(z) ≡ χ(Im z). Then for any λ ∈ R we have

f (λ) = 1

π

∫
C

∂z̄(f̃ (z)χ(z))

λ − z
d2z,

where ∂z̄
..= 1

2(∂x + i∂y) is the antiholomorphic derivative and d2z the Lebesgue measure on
C.

The following definition introduces a (conventional) notion of a high-probability bound
that is used commonly in random matrix theory.

DEFINITION 2.5 (Stochastic domination). Let

X = (X(N)(u) : N ∈ N, u ∈ U(N)), Y = (Y (N)(u) : N ∈ N, u ∈ U(N))
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be two families of random variables, where Y (N)(u) are nonnegative and U(N) is a possibly
N -dependent parameter set. We say that X is stochastically dominated by Y , uniformly in u,
if for all (small) ε > 0 and (large) D > 0 we have

sup
u∈U(N)

P
[∣∣X(N)(u)

∣∣> NεY (N)(u)
]≤ N−D

for large enough N ≥ N0(ε,D). If X is stochastically dominated by Y , uniformly in u, we
use the notation X ≺ Y , or equivalently X = O≺(Y ). (Note that for deterministic X and Y ,
X = O≺(Y ) means X = Oε(N

εY ) for any ε > 0.)

Next we recall the local semicircle law for Erdős–Rényi graphs in [7].

THEOREM 2.6 (Theorem 2.8, [7]). Let H be a sparse matrix defined as in Definition 1.1.
We have

max
i,j

∣∣Gij (z) − δijm(z)
∣∣≺ 1

q
+
√

Imm(z)

Nη
+ 1

Nη

and

|G − m| ≺ 1

q
∧ 1

q2(η + κE)
+ 1

Nη

uniformly in z = E + iη ∈ S.

REMARK 2.7. Theorem 2.6 was proved in [7] under the additional assumption EH 2
ii =

1/N for all i. However, the proof is insensitive to the variance of the diagonal entries, and
one can easily repeat the steps in [7] under the general assumption EH 2

ij = Ci/N . A weak
local law for H with general variances on the diagonal can also be found in [15].

We also need the following result from [7] concerning the density of states of A.

LEMMA 2.8 (Theorem 2.10, [7]). Let μ̃ be the empirical eigenvalue density of A. For
any interval I ⊂ R, we have ∣∣μ̃(I ) − �(I)

∣∣≺ 1

N
+ |I |

q
.

We recall the magical Ward identity.

LEMMA 2.9 (Ward identity). We have∑
j

|Gij |2 = ImGii

η

for all z = E + iη ∈ S.

Finally, we collect some estimates in the following lemma, whose proof is postponed to
Appendix 5.2.

LEMMA 2.10. (i) For any fixed m,n ∈ N such that m + n ≥ 1, we have

(2.5)
〈
GmG∗n〉≺ η1−(m+n)

(
1

q
+ 1

Nη

)
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as well as

(2.6)
(
GmG∗n)

ij ≺
⎧⎪⎨⎪⎩

η1−(m+n) if i = j,

η1−(m+n)

(
1

q
+ 1√

Nη

)
if i �= j,

uniformly in i, j and z = E + iη ∈ S̃τ .
(ii) For any fixed m,n ∈ N such that m + n ≥ 1, we have∑

i

∣∣(GmG∗n)
ij

∣∣2 ≺ η1−2(m+n)

uniformly in j and z = E + iη ∈ S̃τ .
(iii) For k = 2,3, we have

EGk ≺
(

1

q
+ 1

Nη
+ η

)
η1−k

uniformly for all z = E + iη ∈ Dτ .
(iv) For any fixed n ∈N+,

(2.7) E
(
H 2 − 1

)n =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(n − 1)!!(2EH 4

12
)n/2 + O

(
1

(
√

Nq)n
· q√

N

)
if n is even,

O

(
1

(
√

Nq)n
· q√

N

)
if n is odd.

3. Proof of main results. For z = E + iη ∈ Dτ , we write

α ..= − logN η

so that η = N−α,α ∈ [0,1 − τ ]. We define

(3.1) δ ≡ δ(z) ..= min
{
β,

1

2
− β,

1 − α

2

}
> 0,

and

(3.2) ξ ≡ ξ(z) = 1

8
min
{
α

2
, δ

}
≥ 0.

We define the linear statistics with a random shift

[G] ≡ [G(z)
] ..= 1

N
TrG(z) − 1

N
ETrG(z) − (H 2 − 1

)
m(z)m′(z).

Note that (2.7) implies

(3.3)
1√

2EH 4
12

(
H 2 − 1

) d−→N (0,1) and H 2 − 1 ≺ N−1/2−β.

The term H 2 − 1 was introduced in [18] to study the eigenvalue fluctuations of A near the
edge.

In this section we shall prove Theorems 1.2–1.4 assuming the following proposition,
whose proof is postponed to Section 4.

PROPOSITION 3.1. Let m,n ∈ N+. We have

(3.4) E
∣∣[G]∣∣2n = n!

2n

(
1

Nη

)2n

+ O≺
(

N−ξ

(Nη)2n
+
(

N−δ/4
√

Nq

)2n)
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and

(3.5) E
[
G∗]n[G]m = O≺

(
N−ξ

(Nη)m+n
+
(

N−δ/4
√

Nq

)m+n)
for m �= n, uniformly for all z ∈ Dτ .

We observe that Theorem 1.4 is an immediate consequence of Lemma 2.1, Lemma 2.10(iv)
and Proposition 3.1. One can follow, for example, the steps in [13], to show Theorem 1.4 for
general test functions. We do not pursue it here.

3.1. Proof of Theorem 1.3. In this section, we prove the following result, which trivially
implies Theorem 1.3 by (3.3).

PROPOSITION 3.2. Let E ∈ [−2 + τ,2 − τ ]. We have

�(E) −E�(E) − E
√

4 − E2

4π

(
H 2 − 1

)
N ≺ N1/2−β−ζ/16.

PROOF. Let f ∈ C∞(R) such that f = 1 in (−3 + 1
N

,E − 1
N

] and f = 0 in (−∞,−3 −
1
N

] ∪ [E + 1
N

,+∞). We further assume |f ′| = O(N) and |f ′′| = O(N2). Let us write z =
x + iy and choose χ ≡ χ(y) such that χ(y) = 1 for |y| ≤ 1 and χ(y) = 0 for |y| ≥ 2. Note
that by Green’s theorem we have∫

C

∂z̄

(
f̃ (z)χ(z)

)
m(z)m′(z)d2z = 1

2

∫ 2

−2
f (x)

2 − x2
√

4 − x2
= E

√
4 − E2

4
+ O

(
N−1),

and Lemma 2.4 implies

Trf (H) −ETrf (H) = N

π

∫
C

∂z̄

(
f̃ (z)χ(z)

)〈G〉d2z.

Combining the above two relations, and together with (3.3), we have

Trf (H) −ETrf (H) − E
√

4 − E2

4π

(
H 2 − 1

)
N

= N

π

∫
C

∂z̄

(
f̃ (z)χ(z)

)[
G(z)

]
d2z + O≺

(
N−1/2−β).(3.6)

Recall the definition of ζ > 0 from (1.4). By (3.4) we have

[
G(z)

]≺ 1

Ny
+ N−ζ/16

√
Nq

uniformly for z = x + iy ∈ Dζ/2, and an N−3-net argument [2], Remark 2.7, shows

(3.7) sup
z∈Dζ/2

∣∣[G(z)
]∣∣( 1

Ny
+ N−ζ/16

√
Nq

)−1
≺ 1.

Fix ε > 0. By Theorem 2.6, (3.3) and an N−3-net argument, we see that

(3.8) sup
z∈S,N−1+ε≤y≤N−1+ζ/2

∣∣Ny
[
G(z)

]∣∣≺ ∑
N−1+ε≤y≤N−1+ζ/2

Ny

(
1

q
+ 1

Ny
+ 1√

Nq

)
≺ 1.

From Theorem 2.6, |m(z)| ≤ C, and an N−3-net argument, we have

sup
|x|≤4

max
i,j

∣∣Gij

(
x + iN−1+ε)∣∣≺ 1,
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and a deterministic monotonicity result [2], Lemma 10.2, shows

sup
z=x+iy∈S,y≤N−1+ε

max
i,j

∣∣NyGij (z)
∣∣≺ Nε.

Using the above relation, together with (3.3), (3.8) and the arbitrarity of ε, we have

(3.9) sup
z∈S,y≤N−1+ζ/2

∣∣Ny
[
G(z)

]∣∣≺ 1.

We split ∣∣∣∣Nπ
∫
C

∂z̄

(
f̃ (z)χ(z)

)[
G(z)

]
d2z

∣∣∣∣
≤ C

∣∣∣∣N ∫
1≤y≤2

(
f (x) + iyf ′(x)

)
χ ′(y)

[
G(x + iy)

]
d2z

∣∣∣∣
(3.10)

+ C

∣∣∣∣N ∫
0<y≤N−1+ζ/2

f ′′(x)yχ(y)
[
G(z)

]
d2z

∣∣∣∣
+ C

∣∣∣∣N ∫
N−1+ζ/2≤y≤2

f ′′(x)yχ(y)
[
G(z)

]
d2z

∣∣∣∣.
By (3.7) and ‖f ‖1 + ‖f ′‖1 ≤ C we have∣∣∣∣N ∫

1≤y≤2

(
f (x) + iyf ′(x)

)
χ ′(y)

[
G(x + iy)

]
d2z

∣∣∣∣
≺ N

(
1

N
+ N−ζ/16

√
Nq

)
≺ N1/2−β−ζ/16.

(3.11)

By (3.9) and ‖f ′′‖1 = O(N) we have∣∣∣∣N ∫
0<y≤N−1+ζ/2

f ′′(x)yχ(y)
[
G(z)

]
d2z

∣∣∣∣
≺ N ·

∫ N−1+ζ/2

0
1 dy = Nζ/2 ≤ N1/2−β−ζ/2.

(3.12)

For the last term on RHS of (3.10), we do integration by parts, first in x and then in y, and
get ∣∣∣∣N ∫

N−1+ζ/2≤y≤2
f ′′(x)yχ(y)

[
G(z)

]
d2z

∣∣∣∣
≤
∣∣∣∣N ∫

N−1+ζ/2≤y≤2
f ′(x)χ(y)

[
G(z)

]
d2z

∣∣∣∣
+
∣∣∣∣N ∫

1≤y≤2
f ′(x)yχ ′(y)

[
G(z)

]
d2z

∣∣∣∣
+
∣∣∣∣N ∫ f ′(x)N−1+ζ/2χ

(
N−1+ζ/2)[G(x + iN−1+ζ/2)]dx

∣∣∣∣,
and again by (3.7) we have

(3.13)
∣∣∣∣N ∫

N−1+ζ/2≤y≤2
f ′′(x)yχ(y)

[
G(z)

]
d2z

∣∣∣∣≺ N1/2−β−ζ/16.

From (3.6), (3.10)–(3.13) we have

(3.14) Trf (H) −ETrf (H) − E
√

4 − E2

4π

(
H 2 − 1

)
N = O≺

(
N1/2−β−ζ/16).
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Let �̃ be the eigenvalue counting function of H . Note that ‖H‖ ≤ 5/2 with overwhelming
probability. Thus∣∣Trf (H) − �̃(E)

∣∣ ≤ C
(
�̃
(
E + N−1)− �̃

(
E − N−1)+ �̃

(−3 + N−1))
= C

(
�̃
(
E + N−1)− �̃

(
E − N−1))+ O≺(1).

From Theorem 2.6 we know

�̃
(
E + N−1)− �̃

(
E − N−1)≤∑

i

2

N2(λi − E)2 + 1
= 2 ImG

(
E + iN−1)≺ 1,

and thus

(3.15) Trf (H) − �̃(E) ≺ 1.

Note that (3.15) also implies

(3.16) ETrf (H) −E�̃(E) ≺ 1.

By Cauchy interlacing theorem (e.g., [6], Lemma 6.1) we have

(3.17) �̃(E) − 1 ≤ �(E) ≤ �̃(E).

By (3.15)–(3.17) we have

(3.18) Trf (H) −ETrf (H) − (�(E) −E�(E)
)≺ 1.

Combining (3.14) and (3.18) completes the proof. �

3.2. Proof of Theorem 1.2. We shall prove the following result, and Theorem 1.2 then
follows by Lemma 2.10(iv).

PROPOSITION 3.3. Fix τ > 0. We denote the eigenvalues of A by λ1 ≤ λ2 ≤ · · · ≤ λN .
For all i ∈ [τN, (1 − τ)N ], we have

λi −Eλi − γi

2

(
H 2 − 1

)≺ N−1/2−β−ζ/16.

PROOF. Let μ̃ be the empirical eigenvalue density of A. Let us define the function g :
R →R by

g(a) ..= E

∫ a

−∞
μ̃(x)dx.

We claim that for any fixed (small) ε > 0, g has no jumps of size larger than N−1+ε . In fact,
by Lemma 2.8 we have

g
(
a + N−1+ε/2)− g(a) = Eμ̃(

(
a, a + N−1+ε/2])

= �(
(
a, a + N−1+ε/2])+ O≺

(
N−1)≤ CN−1+ε/2.

Pick i ∈ [τN, (1 − τ)N ]. We can then choose deterministic θi ∈ R satisfying∣∣∣∣E∫ θi

−∞
μ̃(x)dx − i

N

∣∣∣∣≤ N−1/2−β−ζ/2,

so that |E�(θi) − i| ≤ N1/2−β−ζ/2. Fix ε ∈ (0, ζ/16). Let us abbreviate ωi = θi −
N−1/2−β−ζ/16+ε . We have

P
(
λi − θi − (H 2 − 1

)
γi/2 ≤ −N−1/2−β−ζ/16+ε)

= P
(
�
(
ωi + (H 2 − 1

)
γi/2

)≥ i
)

(3.19)

= P
(
�
(
ωi + (H 2 − 1

)
γi/2

)−E�(ωi) ≥ E�(θi) −E�(ωi) + O
(
N1/2−β−ζ/2)).
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By Lemma 2.8 we know that

(3.20) μ̃(I ) − �(I) ≺ N−1/2−β−ζ

for any I satisfying |I | ≺ N−1/2−β . Together with (3.3) we have

�
(
ωi + (H 2 − 1

)
γi/2

)− �(ωi)

= N�
([

ωi,ωi + (H 2 − 1
)
γi/2

])+ O≺
(
N1/2−β−ζ )

(3.21)

=
√

4 − ω2
i

4π
N
(
H 2 − 1

)
γi + O≺

(
N1/2−β−ζ )

=
√

4 − ω2
i

4π
N
(
H 2 − 1

)
ωi + O≺

(
N1/2−β−ζ ).

In the last step of (3.21) we used |θi − γi | ≺ N−ζ , which also can be deduced from
Lemma 2.8. By (3.20),

E�(θi) −E�(ωi) = N�
([ωi, θi])+ O≺

(
N1/2−β−ζ )

=
√

4 − ω2
i

2π
N1/2−β−ζ/16+ε + O≺

(
N1/2−β−ζ ).(3.22)

A combination of (3.19), (3.21), and (3.22) shows that

P
(
λi − θi − (H 2 − 1

)
γi/2 ≤ −N−1/2−β−ζ/16+ε)

= P

(
�(ωi) −E�(ωi) −

√
4 − ω2

i

4π
N
(
H 2 − 1

)
ωi

≥
√

4 − ω2
i

2π
N1/2−β−ζ/16+ε + O≺

(
N1/2−β−ζ/2)).

Since ε is arbitrary, by Proposition 2.10 we see that(
λi − θi − (H 2 − 1

)
γi/2

)
− ≺ N−1/2−β−ζ/16.

Repeating the above process for

P
(
λi − θi − (H 2 − 1

)
γi/2 ≥ N−1/2−β−ζ/16+ε)

we can also show that (
λi − θi − (H 2 − 1

)
γi/2

)
+ ≺ N−1/2−β−ζ/16.

Thus

(3.23) λi − θi − (H 2 − 1
)
γi/2 ≺ N−1/2−β−ζ/16,

which also implies

(3.24) Eλi − θi ≺ N−1/2−β−ζ/16.

The proof then follows from (3.23) and (3.24). �
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4. Proof of Proposition 3.1. In this section we prove (3.4); the proof of (3.5) is similar,
and we omit the details. Throughout this section let us pick n ∈N+ and

(4.1) z = E + iη ∈ Dτ .

Let us define

M ..= ∥∥[G]∥∥2n = (E∣∣[G]∣∣2n) 1
2n ,

and we split

M2n = E
[
G∗]n[G]n−1〈G〉 −E

[
G∗]n[G]n−1(H 2 − 1

)
mm′.

The proof of (3.4) is immediate from the next lemma.

LEMMA 4.1. We have

E
[
G∗]n[G]n−1〈G〉
= n

2N2η2E
∣∣[G]∣∣2n−2 + O≺

(
N−δ)M2n(4.2)

+
2n∑

r=1

O≺
(

N−ξ

(Nη)r
+
(

N−δ/4
√

Nq

)r)
M2n−r ,

and

(4.3) E
[
G∗]n[G]n−1(H 2 − 1

)
mm′ =

2n∑
r=1

O≺
(

N−ξ

(Nη)r
+
(

N−δ/4
√

Nq

)r)
M2n−r .

In fact, Lemma 4.1 shows

M2n = n

2N2η2E
∣∣[G]∣∣2n−2 + O≺

(
N−δ)M2n

+
2n∑

r=1

O≺
(

N−ξ

(Nη)r
+
(

N−δ/4
√

Nq

)r)
M2n−r ,

(4.4)

and together with E|[G]|2n−2 ≤M2n−2 we have

M2n ≺
2n∑

r=1

(
1

(Nη)r
+
(

N−δ/4
√

Nq

)r)
M2n−r ,

which implies

M2n ≺ 1

(Nη)2n
+
(

N−δ/4
√

Nq

)2n

.

Since n is arbitrary, we have

(4.5) [G] ≺ 1

Nη
+ N−δ/4

√
Nq

.

Inserting (4.5) back into (4.4), we have

E
∣∣[G]∣∣2n = M2n = n

2N2η2E
∣∣[G]∣∣2n−2 + O≺

(
N−ξ

(Nη)2n
+
(

N−δ/4
√

Nq

)2n)
,

and (3.4) follows by iteration.
In Sections 4.1–4.5 we shall prove (4.2), and in Section 4.6 we prove (4.3).
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4.1. First estimates. By the resolvent identity zG = GH − I we have

(4.6) zE
[
G∗]n[G]n−1〈G〉 = E

〈[
G∗]n[G]n−1〉GH = 1

N

∑
i,j

E
〈[
G∗]n[G]n−1〉GijHji.

We calculate the RHS of (4.6) using the cumulant formula (2.4) with f = fij (H) ..=
〈[G∗]n[G]n−1〉Gij and h = Hji , and get

zE
[
G∗]n[G]n−1〈G〉

= 1

N2

∑
i,j

E
〈[
G∗]n[G]n−1〉∂Gij

∂Hji

(1 + δji)

+ 1

N2

∑
i,j

E
∂(〈[G∗]n[G]n−1〉)

∂Hji

Gij (1 + δji) +EK(4.7)

+
l∑

k=2

ELk + 1

N

∑
i,j

ER(j i)
l+1

=.. (a) + (b) + K +
l∑

k=2

Lk + 1

N

∑
i,j

ER(j i)
l+1,

where

(4.8) K = N−2
∑
i

∂(〈[G∗]n[G]n−1〉Gii)

∂Hii

(
NC2(Hii) − 2

)
,

and

(4.9) Lk = N−1 ·∑
i,j

(
1

k!Ck+1(Hji)
∂k(〈[G∗]n[G]n−1Gij )

∂Hk
ji

)
.

Here l is a fixed positive integer to be chosen later, and R(j i)
l+1 is a remainder term defined

analogously to Rl+1 in (2.4). Using the differential rule (2.1) we get

(a) = N−2
∑
i,j

E
〈[
G∗]n[G]n−1〉(−GijGij − GiiGjj )

= −N−1
E
[
G∗]n[G]n−1〈G2〉−E

[
G∗]n[G]n−1〈G〉2

− 2E
[
G∗]n[G]n−1〈G〉EG +E

[
G∗]n[G]n−1

E〈G〉2.

Similarly,

(b) = − 2

N2

(
nE
[
G∗]n−1[G]n−1(GG∗2 + 2HG∗m̄m̄′)

+ (n − 1)E
[
G∗]n[G]n−2(G3 + 2HGmm′)).

Altogether we obtain

E
[
G∗]n[G]n−1〈G〉

= 1

T

(
E
[
G∗]n[G]n−1〈G〉2 −E

[
G∗]n[G]n−1

E〈G〉2 + 1

N
E
[
G∗]n[G]n−1〈G2〉

(4.10)
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+ 2n − 2

N2 E
[
G∗]n[G]n−2(G3 + 2HGmm′)−EK −

l∑
k=2

ELk

+ 2n

N2E
[
G∗]n−1[G]n−1(GG∗2 + 2HG∗m̄m̄′)− 1

N

∑
i,j

ER(j i)
l+1

)
,

where T ..= −z − 2EG. Note that by (2.3) and Theorem 2.6 we have

(4.11)
1

T
= 1

−z − 2m
+ O≺

(
1

q
+ 1

Nη

)
= Oτ(1)

uniformly for all z ∈ Dτ . Let us look at the terms in (4.10). By (3.3) we have

(4.12) 〈G〉 = [G] + O≺
(
N−1/2−β).

Together with Lemma 2.10(i) and Hölder’s inequality we get

(4.13) E
[
G∗]n[G]n−1〈G〉2 ≺

(
1

q
+ 1

Nη

)
M2n +

(
1

q
+ 1

Nη

)
1√
Nq

M2n−1

and

(4.14) E
[
G∗]n[G]n−1

E〈G〉2 ≺
(

1

q
+ 1

Nη

)
M2n +

(
1

q
+ 1

Nη

)
1√
Nq

M2n−1.

Similarly, by Lemma 2.10(i), (iii) and Hölder’s inequality we have

(4.15)
1

N
E
[
G∗]n[G]n−1〈G2〉≺ (1

q
+ 1

Nη

)
1

Nη
M2n−1

and
2n − 2

N2 E
[
G∗]n[G]n−2G3

= 2n − 2

N2 E
[
G∗]n[G]n−2(〈G3〉+EG3)≺ ( 1

Nη
+ 1

q
+ η

)(
1

Nη

)2
M2n−2.

(4.16)

Note that

(4.17) HG = I + zG and |z| ≤ 6,

hence
4n − 4

N2 E
[
G∗]n[G]n−2HGmm′

= 4n − 4

N2 E
[
G∗]n[G]n−2(1 + zG)mm′ ≺ 1

N2M
2n−2.

(4.18)

From resolvent identity, Theorem 2.6 and Lemma 2.10(iii) we have

EGG∗2 = EG −EG∗

(2iη)2 − EG∗2

2iη
= −m − m̄

4η2 + O≺
((

1

q
+ 1

Nη
+ η

)
η−2
)
.

Thus
2n

N2E
[
G∗]n−1[G]n−1GG∗2

= 2n

N2E
[
G∗]n−1[G]n−1(〈GG∗2〉+EGG∗2)(4.19)

= −n(m − m∗)
2N2η2 E

∣∣[G]∣∣2n−2 + O≺
(

1

q
+ 1

Nη
+ η

)(
1

Nη

)2
M2n−2.
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Similarly, by NC2(Hii) 	 1 and the differential rule (2.1) one can easily check that

(4.20) EK ≺ 1

N
M2n−1 + 1

N2η
M2n−2.

The estimate for the remainder term can be done routinely. One can follow, for example, the
proof of Lemma 3.4 (iii) in [16], and readily check that

(4.21)
1

N

∑
i,j

ER(j i)
l+1 ≺ 1

N2n

for l large enough. From now on, we shall always assume the remainder term in cumulant
expansion is negligible. Inserting the above estimates (4.11), (4.13)–(4.16), (4.18)–(4.21) into
(4.10), we have

E
[
G∗]n[G]n−1〈G〉 = n

2N2η2E
∣∣[G]∣∣2n−2 − 1

T

l∑
k=2

ELk

+ O≺
(
N−δ)M2n + ∑

r=1,2

O≺
(

N−ξ

(Nη)r
+
(

N−δ

√
Nq

)r)
M2n−r ,

(4.22)

where we recall the definitions of δ, ξ from (3.1), (3.2). What is left, therefore, is the analysis
of ELk , k ≥ 2.

4.2. Abstract polynomials and the recursive estimates. We now introduce some addi-
tional notations that will be used frequently in the analysis of Lk . To motivate them, we note
that the proof relies on a calculus of products of expectations of random variables of the type
(Gm)ij , (G∗n)ij , [G], [G∗] evaluated at z ∈ Dτ , for example,

a
(
z, z∗)N3/2

E[G][G∗], ai1i2i3i4

(
z, z∗)N−1/2

E
(
G3)

i1i2
Gi3i4E

[
G∗]2,

where a(z, z∗) and ai1i2i3i4(z, z
∗) are uniformly bounded functions that may depend on N .

It is convenient to classify such expressions depending on the exponent ν1 ∈ R and on the
number ν0 of indices ik . Below, we introduce the notations U (ν0,ν1)(Y), V(ν0,ν1)(Y) for the set
of such expressions, where Y is the set of matrices appearing in them, in the above examples
Y = {G,G∗}.

To that end, we define a set of formal monomials in a set of formal variables. Here the
word formal refers to the fact that these definitions are purely algebraic and we do not assign
any values to variables or monomials. The formal variables are constructed from a finite set
of formal matrices Y and the infinite set of formal indices {i1, i2, . . .}.

• For ν0 ∈ N, ν1 ∈ R, denote by U (ν0,ν1)(Y) the set of monomials with coefficient
ai1,...,iν0

N−ν1 in the variables (Ym)xy and [Y ]. Here Y ∈ Y , m ∈ N+, x, y ∈ {i1, . . . , iν0},
and (ai1,...,iν0

)1≤i1,...,iν0≤N is some family of complex numbers that is uniformly bounded in
i1, . . . , iν0 .

• Set U(Y) =⋃ν0,ν1
U (ν0,ν1)(Y).

We also define the following subset of U(Y).

• We denote by V(ν0,ν1)(Y) the subset of U (ν0,ν1)(Y), where we further require m ∈
{1,2} for all variables (Ym)xy .

• Set V(Y) =⋃ν0,ν1
V(ν0,ν1)(Y) ⊂ U(Y).

Next, we define the following maps ν0, ν1, ν2, ν3, ν̃3, ν4: U(Y) →N.

(i) For U ∈ U (ν0,ν1)(Y), (ν0(U), ν1(U)) = (ν0, ν1).



2862 Y. HE

(ii) ν2(U) = sum of m − 1 of all (Ym)xy in U with Y ∈ Y .
(iii) ν3(U) = 2∧ (number of (Ym)xy in U with x �= y and Y ∈ Y). Set ν̃3(U) = 2−ν3(U).
(iv) ν4(U) = number of [Y ] in U with Y ∈ Y .

Next, we assign to each monomial U ∈ U (ν0,ν1)(Y) a value Ui1,...,iν0
as follows. Suppose

that the set Y consists of N × N random matrices. Then for any ν0-tuple (i1, . . . , iν0) ∈
{1,2, . . . ,N}ν0 we define the number Ui1,...,iν0

as the one obtained by taking the formal ex-
pression U and evaluating it with the laws of the matrices in Y and the numerical values of
i1, . . . , iν0 . In the following arguments, the set Y will consist of Green functions of H for the
spectral parameter z defined in (4.1), and the indices i1, . . . , iν0 will be summed over.

The next result is a straightforward consequence of Lemma 2.10(i), (iii) and Hölder’s
inequality whose proof we omit.

LEMMA 4.2. Let Y = {G,G∗}, and fix U ∈ U (ν0,ν1)(Y). Then

(4.23)
∑

i1,...,iν0

EUi1,...,iν0
= O≺

(
Nb0(U)) ·Mν4(U),

where b0(U) = ν0(U) − ν1(U) + αν2(U) + (α/2 − 1/2)ν3(U).

Our first estimate is the following improved bound for the LHS of (4.23), whose proof is
postponed to Section 5.1. The necessity of this result is explained in Remark 4.10 below.

LEMMA 4.3. Let us adopt the assumptions in Lemma 4.2. Let V ∈ V(ν0,ν1)(Y) satisfying
ν2(V ) ≥ 1, we have ∑

i1,...,iν0

EVi1,...,iν0
≺ B(V ),

where

B(V ) = Nb0(V )Mν4(V )+1 +
ν4(V )∑
k=0

Nb0(V ) 1

(Nη)k

(
η + 1

(Nη)ν̃3(V )/2

)
·Mν4(V )−k.

EXAMPLE 4.4. Let Y = {G,G∗} and set

U ≡ Uij
..= 1

N2C4(Hij )E[G]n−1[G∗]n−1(
G∗2)

iiG
∗
jjGiiGjj .

Note that Nq2C4(Hij ) 	 1, and thus U ∈ V(ν0,ν1)(Y) ⊂ U (ν0,ν1)(Y), with ν0 = 2 and ν1 =
2 + (1 + 2 logN q) = 3 + 2β . We also have ν2(U) = 2 − 1 = 1, ν3(U) = 2 ∧ 0 = 0, ν̃3(U) =
2 − 0 = 2, ν4(U) = 2n − 2, and b0(U) = −1 − 2β + α.

By Lemma 2.10, we have∑
i,j

Uij ≺ 1

N3q2 · N2 ·M2n−2 · 1

η
= 1

Nq2η
·M2n−2 = Nb0(U) ·M2n−2,

which agrees with Lemma 4.2. On the other hand, Lemma 4.3 implies the improved estimate

∑
i,j

Uij ≺ 1

Nq2η
M2n−1 +

2n−2∑
k=0

1

Nq2η

1

(Nη)k

(
η + 1

Nη

)
·M2n−2−k.

In order to handle all terms in Lk , we also need the following formal polynomials.
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• For ν0 ∈ N, ν1 ∈ R, denote by W(ν0,ν1)(Y) the set of monomials with coefficient
ai1,...,iν0

N−ν1 in the variable [Y ] and also contain exactly one factor of 〈Y (1)
x1y1 · · ·Y (k)

xkyk 〉. Here

Y,Y (1), . . . , Y (k) ∈ Y , k ∈ N+, x, y ∈ {i1, . . . , iν0}, and (ai1,...,iν0
)1≤i1,...,iν0≤N is some family

of complex numbers that is uniformly bounded in i1, . . . , iν0 .
• Set W(Y) =⋃ν0,ν1

W(ν0,ν1)(Y).

Next, we define the following maps ν0, ν1, ν3, ν̃3, ν4: W(Y) →N.

(i) For W ∈ W(ν0,ν1)(Y), (ν0(W), ν1(W)) = (ν0, ν1).
(ii) ν3(W) = 2∧ (number of Yxy in W with x �= y and Y ∈ Y). Set ν̃3(W) = 2 − ν3(W).

(iii) ν4(W) = number of [Y ] in W with Y ∈ Y .

The following is a trivial result from Lemma 2.9.

LEMMA 4.5. Let Y = {G,G∗}, and fix W ∈W(ν0,ν1)(Y). Then∑
i1,...,iν0

EWi1,...,iν0
= O≺

(
Nb1(W)) ·Mν4(W),

where b1(W) = ν0(W) − ν1(W) + (α/2 − 1/2)ν3(W).

We have the following improved estimate for Lemma 4.5, whose proof is postponed to
Section 5.2. The necessity of this result is explained in Remark 4.10 below.

LEMMA 4.6. Let us adopt the assumptions in Lemma 4.5. We have∑
i1,...,iν0

EWi1,...,iν0
≺ B(1)(W),

where

B(1)(W) = Nb1(W)

(
1

(Nη)ν̃3(W)/2 + 1√
Nq

+M
)

·Mν4(W)

+
ν4(V )∑
k=1

Nb1(W) 1

(Nη)k

(
η

q
+ 1

(Nη)ν̃3(W)/2

)
·Mν4(W)−k.

We close this section with the following estimate.

LEMMA 4.7. Let Y = {G,G∗}, and fix U ∈ U (ν0,ν1)(Y). For i, j ∈ {i1, . . . iν0}, we have

(4.24)
∑

i1,...,iν0

EHijUi1,...,iν0
= O≺

(
Nb2(U)) · ν4(U)∑

k=0

1

(Nη)k
Mν4(U)−k,

where b2(U) = ν0(U) − ν1(U) + αν2(U) − 1.

PROOF. The proof follows by applying Lemma 2.2 on LHS of (4.24) with h = Hij , and
then estimating the result by Lemma 4.2. We omit the details here. �

In the next two sections we shall estimate EL2 and EL3 using the above lemmas.
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4.3. The estimate of EL2. In this section we prove the following result.

LEMMA 4.8. Let L2 be as in (4.22). Let δ, ξ be as in (3.1), (3.2). We have

(4.25) EL2 ≺ N−δM2n +
2n∑

r=1

(
N−ξ

(Nη)r
+
(

N−δ/4
√

Nq

)r)
M2n−r .

PROOF. The differential ∂H 2
ij gives rise to terms of three types depending on how many

derivatives act on Gij . We deal with each type separately.
Step 1. Let us look at the case when both derivatives in L2 act on Gij , namely the term

EL2,1
..= N−1 ·∑

i,j

[
1

2!C3(Hji)E
〈[
G∗]n[G]n−1〉∂2Gij

∂H 2
ji

]
.

By Lemma 2.3 and the identity E〈X〉Y = EX〈Y 〉, we see that the worst term in L2,1 is

(4.26)
1

N2q

∑
i,j

CijE
[
G∗]n[G]n−1〈GiiGjjGij 〉 =..

∑
i,j

EWi,j ,

where Cij are constants uniformly bounded in i, j , and W ∈ W({G,G∗}). Note that ν0(W) =
2, ν1(W) = 2 + β , ν3(W) = 1, ν4(W) = 2n − 1, and b1(W) = −β − (1/2 − α/2). Thus
Lemma 4.6 shows∑

i,j

EWij ≺ 1√
Nηq

M2n + 1√
Nηq

(
1√
Nη

+ 1√
Nq

)
·M2n−1

+
2n−1∑
k=1

1√
Nηq

1

(Nη)k

(
η

q
+ 1√

Nη

)
·M2n−1−k

≺ N−βM2n + N−β

(
1

Nη
+ 1√

Nq

)
·M2n−1

+
2n∑

r=2

(
N−β

√
Nq

N−α/2

(Nη)r−1 + N−β

(Nη)r

)
M2n−r ,

which is bounded by the RHS of (4.25). Similarly, one can show that the other terms in L2,1
satisfy the same bound.

Step 2. Let us look at the case when only one derivative in L2 acts on Gij , namely the term

(4.27) EL2,2
..= N−1 ·∑

i,j

[
C3(Hji)E

∂〈[G∗]n[G]n−1〉
∂Hji

∂Gij

∂Hji

]
.

By (2.1), we see that the worst terms above will contain no off-diagonal terms of G from the
second differential. Let us pick a representative of these, which is

1

N3q

∑
i,j

CijE
[
G∗]n−1[G]n−1((G∗2)

ij + 2Hij

)
GiiGjj

= 1

N3q

∑
i,j

CijE
[
G∗]n−1[G]n−1(G∗2)

ijGiiGjj

(4.28)

+ O≺
(

1

N2q

) 2n−2∑
k=0

1

(Nη)k
M2n−2−k
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=..
1

N3q

∑
i,j

EVij + O≺
(

1

N2q

) 2n−2∑
k=0

1

(Nη)k
M2n−2−k.

Here Cij are constants uniformly bounded in i, j , and in the first step of (4.28) we used
Lemma 4.7. Note that V ∈ V satisfies ν0(V ) = 2, ν1(V ) = 3 + β , ν2(V ) = 1, ν3(V ) = 1,
ν4(V ) = 2n − 2, and b0(V ) = 3(α − 1)/2 − β . Thus Lemma 4.3 shows

1

N3q

∑
i,j

EVij

≺ 1

(Nη)3/2q
M2n−1 +

2n−2∑
k=0

1

(Nη)3/2q

(
1

Nη

)k(
η + 1√

Nη

)
·M2n−2−k(4.29)

≺ N−β

Nη
M2n−1 +

2n∑
r=2

(
1

(Nη)r−3/2Nq
+ N−β

(Nη)r

)
M2n−r .

By (4.29) and

1

(Nη)r−3/2Nq
= 1

(Nη)r−3/2(
√

Nq)3/2

(
q2

N

)1/4
≺
(

N−δ/8

(Nη)r
+ N−δ/4

√
Nq

)r

,

we see that (4.28) is bounded by the RHS of (4.25). Similarly, the other terms in L2,1 can be
shown to satisfy the same bound.

Step 3. Let us look at the case when no derivatives in L2 act on Gij , namely the term

EL2,3
..= N−1 ·∑

i,j

[
1

2!C3(Hji)E
∂2〈[G∗]n[G]n−1〉

∂H 2
ji

Gij

]
.

Similarly as in Step 2, one can use Lemma 4.3 to show that

EL2,3 ≺
2n∑

r=1

(
N−ξ

(Nη)r
+
(

N−δ/4
√

Nq

)r)
M2n−r .

From Steps 1–3 we conclude the proof. �

4.4. The estimate of EL3. Now let us look at the case k = 3. This is the crucial case
where we see the cancellation between 〈G〉 and (H 2 − 1)mm′. We shall prove the following
lemma.

LEMMA 4.9. Let L3 be as in (4.22). Let δ, ξ be as in (3.1), (3.2). We have

(4.30) EL3 ≺ N−δM2n +
2n∑

r=1

(
N−ξ

(Nη)r
+
(

N−δ/4
√

Nq

)r)
M2n−r .

PROOF. We still split the estimates basing on how many derivatives hit Gij .
Step 1. We investigate the case when all derivatives in L3 act on Gij , namely the term

EL3,1
..= N−1 ·∑

i,j

[
1

3!C4(Hji)E
〈[
G∗]n[G]n−1〉∂3Gij

∂H 3
ji

]
.

From Lemma 2.3 we see that the worst term in L3,1 is

1

N2q2

∑
i,j

CijE
[
G∗]n[G]n−1〈G2

iiG
2
jj

〉=..
1

N2q2

∑
i,j

EWij ,
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where W ∈ W . Note that ν0(W) = 2, ν1(W) = 2 + 2β , ν3(W) = 0, ν4(W) = 2n − 1, and
b1(W) = −2β . Thus Lemma 4.6 shows

1

N2q2

∑
i,j

EWij ≺ 1

q2M
2n + 1

q2

(
1

Nη
+ 1√

Nq

)
·M2n−1

+
2n−1∑
k=1

1

q2

1

(Nη)k

(
η

q
+ 1

Nη

)
·M2n−1−k

≺ N−2β ·M2n + N−2β

(
1

Nη
+ 1√

Nq

)
·M2n−1

+
2n∑

r=2

O≺
(

N−β/2

Nq2

N−β/2

(Nη)r−2 + N−2β

(Nη)r

)
·M2n−r ,

which is bounded by RHS of (4.30).
Step 2. Let us look at the case when only one derivative in L3 acts on Gij , namely the term

EL3,2
..= 1

2N
·∑

i,j

[
C4(Hji)E

∂2〈[G∗]n[G]n−1〉
∂H 2

ji

∂Gij

∂Hji

]
.

We see that one of the worst terms is

− n

2N3q2

∑
i,j

s4(1 + Ciδij )E
[
G∗]n−1[G]n−1(4(G∗2)

iiG
∗
jj − 4m̄m̄′)GiiGjj

= − n

2N3q2

∑
i,j

s4E
[
G∗]n−1[G]n−1(4(G∗2)

iiG
∗
jj − 4m̄m̄′)GiiGjj(4.31)

+ O≺
(

1

Nη

1

Nq2

)
M2n−2,

where s4 = Nq2C4(H12) 	 1, and Ci are constants uniformly bounded in i. Now let us look
at the first term on RHS of (4.31), which is

− 2n

N3q2

∑
i,j

s4E
[
G∗]n−1[G]n−1(G∗2)

iiG
∗
jjGiiGjj =..

∑
i,j

EVij ,

where V ∈ V({G,G∗}). By the resolvent identity z̄G∗ = HG∗ − I and Lemma 2.2, we have∑
i,j

EVij = 1

z̄ +EG∗
2s4n

N3q2

∑
i,j

E

[[
G∗]n−1[G]n−1G∗

jjGiiGjj

× (G∗
iiG

∗2 + (G∗2)
ii

〈
G∗〉+ 2N−1(G∗3)

ii

)
+ 1

N

[
G∗]n−1[G]n−1 · (2(G∗3)

ijG
∗
ijGiiGjj + 2

(
G∗2G

)
iiG

∗
jjGiiGjj

+ 2
(
G∗2G

)
ijG

∗
jjGiiGij

)
+ [G∗]n−1[G]n−1G∗

iiG
∗
jjGiiGjj − K̃ −∑

i

l∑
k=2

L̃k −
N∑

a=1

R̃(a)
l+1

]
,

where K̃ , L̃k , and R̃(a)
l+1 are defined similarly as K,Lk,R(ij)

l+1 in (4.7). By (2.2) and Lemmas
4.2,4.3, one can check that∑

i,j

EVij = 1

z̄ +EG∗
2s4n

N3q2

∑
i,j

E
([

G∗]n−1[G]n−1G∗
jjGiiGjjG

∗
iiG

∗2
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+ [G∗]n−1[G]n−1G∗
iiG

∗
jjGiiGjj

)
(4.32)

+
2n∑

r=1

O≺
(

N−ξ

(Nη)r
+
(

N−δ/4
√

Nq

)r)
M2n−r .

Similarly, for the first term on RHS of (4.32), we have

1

z̄ +EG∗
2s4n

N3q2

∑
i,j

E
[
G∗]n−1[G]n−1G∗

jjGiiGjjG
∗
iiG

∗2

= 1

−z̄ − 2EG∗
1

z̄ +EG∗
2s4n

N3q2

∑
i,j

E
[
G∗]n−1[G]n−1G∗

jjGiiGjjG
∗
iiG

∗(4.33)

+
2n∑

r=1

O≺
(

N−ξ

(Nη)r
+
(

N−δ/4
√

Nq

)r)
M2n−r .

By (4.32), (4.33) and Theorem 2.6, we have

∑
i,j

EVij = 2s4n

N3q2

1

z̄ + m̄

(
m̄3

−z̄ − 2m̄
+ m̄2

)∑
i,j

E
[
G∗]n−1[G]n−1GiiGjj

(4.34)

+
2n∑

r=1

O≺
(

N−ξ

(Nη)r
+
(

N−δ/4
√

Nq

)r)
M2n−r .

By m̄/(−z̄ − 2m̄) = m̄′ we have

(4.35)
1

z̄ + m̄

(
m̄3

−z̄ − 2m̄
+ m̄2

)
= −m̄m̄′.

Combining (4.31), (4.34) and (4.35), we see the crucial cancellation of the first two terms on
RHS of (4.31). As a result, we obtain

(4.31) ≺
2n∑

r=1

(
N−ξ

(Nη)r
+
(

N−δ/4
√

Nq

)r)
M2n−r

as desired. The other terms in EL3,2 can be directly estimated by (2.1) and Lemma 4.3, and
one readily checks that they satisfy the bound on RHS of (4.30).

Step 3. The remaining two cases, that is, when two derivatives or no derivative act on Gij ,
can be analyzed similarly using (2.1) and Lemma 4.3. Note that the estimate is easier than
those in Steps 1 and 2: by (2.1), every term now contains either at least two off diagonal
entries of the Green function or derivatives of H 2 − 1. We omit the details.

From Steps 1–3 we conclude the proof of Lemma 4.9. �

4.5. Put things together. Up to now, what is left, is the estimate of Lk for k ≥ 4. This is
similar but easier than the cases when k = 2,3. In fact, by Lemma 2.3 we see that there will be
additional factors of 1/q in Lk when k ≥ 4. By a direct estimate using (2.1) and Lemma 4.3,
we have

(4.36)
l∑

k=4

ELk ≺ N−δM2n +
2n∑

r=1

(
N−ξ

(Nη)r
+
(

N−δ/4
√

Nq

)r)
M2n−r

for any fixed l ∈ N+.
By (4.22), (4.36), Lemmas 4.8 and 4.9, we conclude the proof of (4.2).
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REMARK 4.10. The input of Lemmas 4.3 and 4.6 are essential in finishing the proof.
For example, in the estimate of (4.26), the bound from Lemma 4.2 only implies

(4.26) ≺ 1

N2q
· N2 · 1√

Nη
·M2n−1 = 1√

Nηq
M2n−1,

which is not enough to deduce (4.25). Also, in the estimate of (4.28), the trivial bound from
Lemma 4.5 only implies

1

N3q

∑
i,j

EVij ≺ 1

(Nη)3/2q
M2n−2,

which is not enough to deduce (4.25).

4.6. Proof of (4.3). The proof of (4.3) is similar to that of (4.2). We only sketch the main
steps.

Step 1. By Lemma 2.2, we have

E
[
G∗]n[G]n−1(H 2 − 1

)= 1

N

∑
i,j

EH 2
ij

[
G∗]n[G]n−1 −E

[
G∗]n[G]n−1

= E
[
G∗]n[G]n−1 − n

N
E
[
G∗]n−1[G]n−1(2HG2 + 4H 2mm′)

(4.37)

− n − 1

N
E
[
G∗]n[G]n−2(2HG∗2 + 4H 2m̄m̄′)

+EK̂ +
l∑

k=2

EL̂k,1 +
l∑

k=2

EL̂k,2 +∑
i,j

R̂(ij)
l+1 −E

[
G∗]n[G]n−1,

where

K̂ = N−2
∑
i

∂(Hii[G∗]n[G]n−1)

∂Hii

(
NC2(Hii) − 2

)
,

L̂k,1 = N−1 ·∑
i,j

(
1

k!Ck+1(Hji)Hij

∂k([G∗]n[G]n−1)

∂Hk
ji

)
and

L̂k,2 = N−1 ·∑
i,j

(
1

(k − 1)!Ck+1(Hji)
∂k−1([G∗]n[G]n−1)

∂Hk−1
ji

)
.

Here l is a fixed positive integer to be chosen later, and R̂(j i)
l+1 is a remainder term defined

analogously to Rl+1 in (2.4). Notice the cancellation between the first and last terms on RHS
of (4.37). By (3.3) and (4.17) we have

E
[
G∗]n[G]n−1(H 2 − 1

)
= O≺

(
1

N

)
M2n−1 + O≺

(
1

N2η

)
M2n−2 +

l∑
k=2

EL̂k,1 +
l∑

k=2

EL̂k,2.
(4.38)

Step 2. Let us estimate
∑l

k=2 EL̂k,1. By Lemma 2.2 we have

l∑
k=2

EL̂k,1 =
l∑

k=2

l′∑
s=1

N−1 ·∑
i,j

(
1

k!s!Ck+1(Hji)Cs+1(Hij )E
∂k+s([G∗]n[G]n−1)

∂Hk+s
j i

)
,
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assuming the remainder term is small enough for large l′. By Lemma 2.3 and

∂m[G]
∂Hm

ij

≺ 1

Nη
,

we have

l∑
k=2

EL̂k,1 ≺
2n∑

r=2

1

Nq

1

(Nη)r−1M
2n−r ≺

2n−r∑
r=2

(
N−1/4

(Nη)r
+
(

N−1/4
√

Nq

)r)
M2n−r .

Step 3. Now let us estimate at
∑l

k=2 EL̂k,2. Note that in Section 4.3, we have estimated
EL2,2 defined in (4.27). In particular, we have estimated the term

N−1
∑
i,j

[
C3(Hji)E

∂〈[G∗]n[G]n−1〉
∂Hji

GiiGjj

]
,

where the method used can be applied almost exactly in estimating EL̂2,2. Similarly, we have
estimated

1

2N

∑
i,j

[
C4(Hji)E

∂2〈[G∗]n[G]n−1〉
∂H 2

ji

GiiGjj

]

in Section 4.4, and this method can be applied in estimating EL̂3,2. Additionally, we can also
estimate EL̂k,2, k ≥ 4 using Lemmas 4.3 and 4.7. One can check that

(4.39)
l∑

k=2

EL̂k,2 ≺
2n∑

r=1

(
N−ξ

(Nη)r
+
(

N−δ/4
√

Nq

)r)
M2n−r .

Step 4. Combining (4.38)–(4.39) we conclude the proof of (4.3).

5. Estimates of general polynomials of Green functions. In this section we prove
Lemmas 4.3 and 4.6.

5.1. Proof of Lemma 4.3. To simplify notations, we shall prove the lemma for Y = {G},
and one easily checks that the proof is the same for Y = {G,G∗}. Let us take a general term
V ∈ V(ν0,ν1)({G}), and consider∑

i1,...,iν0

EVi1,...,iν0

= 1

Nν1

∑
i1,...,iν0

ai1,...,iν0
EGx1y1 · · ·Gxkyk

(
G2)

z1w1
· · · (G2)

zν2wν2
[G]ν4,

(5.1)

where x1, y1, . . . , xk, yk, z1,w1, . . . , zν2,wν2 ∈ {i1, . . . , iν0}, and ai1,...,iν0
are complex num-

bers uniformly bounded in i1, . . . , iν0 . We break the proof into four steps.
Step 1. Since ν2 ≥ 1, we can use resolvent identity z(G2)z1w1 = (HG2)z1w1 − Gz1w1 and

Lemma 2.2 to get

EVi1,...,iν0
= 1

Nν1
ai1,...,iν0

EGx1y1 · · ·Gxkyk

(
G2)

z1w1
· · · (G2)

zν2wν2
[G]ν4

= 1

−z −EG
E

[
Vi1,...,iν0

/
(
G2)

z1w1
· (Gz1w1G

2 + (G2)
z1w1

〈G〉 + 2N−1(G3)
z1w1

)
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+ 1

N

k∑
m=1

Vi1,...,iν0
/
((

G2)
z1w1

Gxmym

) · ((G3)
xmw1

Gz1ym + Gxmz1

(
G3)

w1ym

)

+ 1

N

ν2∑
m=2

Vi1,...,iν0
/
((

G2)
z1w1

(
G2)

zmwm

)
(5.2)

× ·((G4)
zmw1

Gz1wm + (G2)
zmz1

(
G3)

w1wm

+ (G4)
w1wm

Gz1zm + (G2)
z1wm

(
G3)

zmw1

)
+ 2ν4

N2 Vi1,...,iν0
/
((

G2)
z1w1

[G]) · ((G4)
z1w1

+ 2
(
HG2)

z1w1
mm′)

+ Vi1,...,iν0
/
(
G2)

z1w1
· Gz1w1 − K(1) −∑

i

l∑
k=2

L
(1,i)
k −∑

i

R(1,z1i)
l+1

]
,

where

K(1) = ai1,...,iν0

N1+ν1

∂(Gx1y1 · · ·Gxkyk
(G2)z1w1 · · · (G2)zν2wν2

[G]ν4)

∂Hz1z1

(
NC2(Hz1z1) − 2

)
,

and

L
(1,i)
k = ai1,...,iν0

Nν1

1

k!Ck+1(Hiz1)
∂k(Gx1y1 · · ·Gxkyk

(G2)iw1(G
2)z2w2 · · · (G2)zν2wν2

[G]ν4)

∂Hk
z1i

.

Here l is a fixed positive integer to be chosen later, and R(1,z1i)
l+1 is a remainder term defined

analogously to Rl+1 in (2.4). Again by a routine verification, the remainder term is negligible
for large l. Note that by Theorem 2.6 we have

1

−z −EG
= O(1)

uniformly for z ∈ Dτ . Also note that

(5.3) 〈G〉 = [G] + O≺
(

1√
Nq

)
= [G] + O≺

(
η + 1

Nη

)
.

Inserting (5.2) into (5.1), and by using (4.17), (5.3) and Lemma 4.2, we have∑
i1,...,iν0

EVi1,...,iν0

= ∑
i1,...,iν0

1

−z −EG
E

[
Vi1,...,iν0

/
(
G2)

z1w1
· Gz1w1G

2 −∑
i

l∑
k=2

L
(1,i)
k

]

+ O≺
(
B(V )

)
.

(5.4)

Step 2. Now let us look closely at L
(1,i)
k . When none of the derivatives ∂Hk

z1i
hit [G]ν4 ,

(2.1) shows that all the resulting terms are still in V . When at least one derivative hits [G]ν4 ,
we expand the factors [G] that were differentiated, and split the terms according to whether
(H 2 − 1) is differentiated or not. For example, when k = 2, let us take the term

ai1,...,iν0

Nν1

1

2!C2+1(Hiz1)Gx1y1 · · ·Gxkyk

(
G2)

iw1

(
G2)

z2w2
· · ·
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× (G2)
zν2wν2

[G]ν4−2ν4(ν4 − 1)

(
∂[G]
∂Hz1i

)2
(5.5)

=.. X
(

∂[G]
∂Hz1i

)2

from L
(1,i)
2 . Since

∂[G]
∂Hz1i

= −2N−1(G2)
z1i

− 4N−1mm′Hz1i ,

we can split (5.5) into

(5.6) X
(−2N−1(G2)

z1i

)2 + X
(
8N−2mm′Hz1i

(
G2)

z1i
+ 16N−2(mm′Hz1i

)2)
,

and note that the first term in (5.6) is in V({G}), and the second term in (5.6) contains at least
one derivative of H 2 − 1. In this way, we split

(5.7) L
(1,i)
k = L

(1,i,1)
k + L

(1,i,2)
k ,

where L
(1,i,1)
k are all the terms in L

(1,i)
k that do not contain the derivatives of (H 2 − 1). By

the above reasoning, we see that L
(1,i,1)
k is a finite linear combination of elements in V . Also

observe from (2.2) that when the derivatives hit (H 2 − 1), it gives us something small.
By Lemma 4.2, (2.2) and (5.4), one readily checks that∑

i1,...,iν0

EVi1,...,iν0

= ∑
i1,...,iν0

1

−z −EG
E

[
Vi1,...,iν0

/
(
G2)

z1w1
· Gz1w1G

2 −∑
i

l∑
k=2

L
(1,i,1)
k

]

+ O≺
(
B(V )

)
.

(5.8)

Step 3. Now let us handle the first term on RHS of (5.8). Define

V
(1)
i1,...in

..= Vi1,...,iν0
/
(
G2)

z1w1
· Gz1w1

= ai1,...,iν0

Nν1
Gx1y1 · · ·Gxkyk

(
G2)

z2w2
· · · (G2)

zν2wν2
[G]ν4Gz1w1,

and we look at

(5.9) EV
(1)
i1,...in

G2 = ai1,...,iν0

Nν1
EGx1y1 · · ·Gxkyk

(
G2)

z2w2
· · · (G2)

zν2wν2
[G]ν4Gz1w1G

2.

Similarly as in (5.2), we use zG2 = HG2 − G and Lemma 2.2 to expand (5.9). We get

EV
(1)
i1,...in

G2 = 1

T
E

[
V

(1)
i1,...,iν0

· (2G2〈G〉 + 2N−1G3)+ 2

N2

k∑
m=1

V
(1)
i1,...,iν0

/Gxmym · (G4)
xmym

+ 4

N2

ν2∑
m=2

V
(1)
i1,...,iν0

/
(
G2)

zmwm
· (G5)

zmwm

+ 2ν4

N2 V
(1)
i1,...,iν0

/[G] · (G4 + 2HG2mm′)(5.10)

+ V
(1)
i1,...,iν0

· G + 2

N2 V
(1)
i1,...,iν0

/Gz1m1

(
G4)

zmym
− K(2) −∑

i,j

l∑
k=2

L
(2,j i)
k
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− 1

N

∑
i,j

R(2,j i)
l+1

]
,

where R(2,j i)
l+1 is the remainder term,

K(2) = ai1,...,iν0

N2+ν1

∑
i

∂(Gx1y1 · · ·Gxkyk
(G2)z2w2 · · · (G2)zν2wν2

[G]ν4Gz1w1(G
2)ii)

∂Hii

× (NC2(Hii) − 2
)
,

and

L
(2,j i)
k

= ai1,...,iν0

N1+ν1

1

k!Ck+1(Hiz1)
∂k(Gx1y1 · · ·Gxkyk

(G2)z2w2 · · · (G2)zν2wν2
[G]ν4Gz1w1(G

2)ji)

∂Hk
ji

.

Recall that T = −z − 2EG satisfies (4.11). Similarly as in (5.7), we can split

L
(2,j i)
k = L

(2,j i,1)
k + L

(2,j i,2)
k ,

where L
(2,j i,1)
k is a finite linear combination of elements in V . By inserting (5.10) into (5.8),

applying (2.2) and Lemma 4.2, we have

∑
i1,...,iν0

EVi1,...,iν0
=

l∑
k=2

∑
i1,...,iν0 ,i,j

1

(z +EG)T
EL

(2,j i,1)
k

+
l∑

k=2

∑
i1,...,iν0 ,i

1

z +EG
EL

(1,i,1)
k + O≺

(
B(V )

)
.

(5.11)

Step 4. Now let us see how to further (recursively) expand (5.11) and why the expansion
ends in finitely many steps. Let V be as in (5.1). For any V∗ ∈ V satisfying ν4(V∗) ≤ ν4(V ),
let us define the ratio

I (V∗) ..= Nb0(V∗)

(Nη)−ν4(V )+ν4(V∗)Nb0(V )−1 .

From Lemma 4.2 we know that

(5.12)
∑

i1,...,iν0(V∗)

EV∗ ≺ Nb0(V∗)Mν4(V∗) ≤ I (V∗)B(V ).

By construction, L
(1,i,1)
k and L

(2,j i,1)
k are finite linear combinations of the elements in V . Let

us collect these elements in the set V(1). Pick arbitrary V (1) ∈ V(1). We see that ν2(V
(1)) ≥ 1,

ν3(V
(1)) ≥ ν3(V ), and ν4(V

(1)) ≤ ν4(V ). By Lemmas 2.3 and 4.2 one readily check that

(5.13) I
(
V (1))≤ I (V ) · (Nη)(ν3(V )−ν3(V

(1)))/2N−β = I (V ) · (Nη)(̃ν3(V
(1))−ν̃3(V ))/2N−β,

which together with (5.12) implies∑
i1,...,iν0,1

EV (1) ≺ I (V )(Nη)(̃ν3(V
(1))−ν̃3(V ))/2N−β ·B(V ).
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Here we abbreviate ν0,1
..= ν0(V

(1)). Repeat (5.11) we have

∑
i1,...,iν0,1

EV
(1)
i1,...,iν0,1

=
l∑

k=2

∑
i1,...,iν0,1 ,i,j

1

(z +EG)T
EL̃

(2,j i,1)
k

+
l∑

k=2

∑
i1,...,iν0,1 ,i

1

z +EG
EL̃

(1,i,1)
k + O≺

(
B
(
V (1))).

Note that (5.13) implies

B
(
V (1)) ..= Nb0(V

(1))Mν4(V
(1))+1

+
ν4(V

(1))∑
k=0

Nb0(V
(1)) 1

(Nη)k

(
η + 1

(Nη)ν̃3(V
(1))/2

)
·Mν4(V

(1))−k

≤ N−β(Nη)(̃ν3(V
(1))−ν̃3(V ))/2−ν4(V )+ν4(V

(1))

(
Nb0(V )Mν4(V

(1))+1

+
ν4(V

(1))∑
k=0

Nb0(V ) 1

(Nη)k

(
η + 1

(Nη)ν̃3(V
(1))/2

)
·Mν4(V

(1))−k

)
≤ N−βB(V ).

By construction, L̃
(1,i,1)
k and L̃

(2,j i,1)
k are finite linear combinations of the elements in V . Let

us collect these elements in the set V(2). Pick arbitrary V (2) ∈ V(2). We see that ν2(V
(2)) ≥ 1,

ν3(V
(2)) ≥ ν3(V

(1)) ≥ ν3(V ) and ν4(V
(2)) ≤ ν4(V

(1)) ≤ ν4(V ). By Lemmas 2.3, 4.2 and
(5.13) we have

I
(
V (2))≤ I

(
V (1)) · (Nη)(̃ν3(V

(2))−ν̃3(V
(1)))/2N−β ≤ I (V ) · (Nη)(̃ν3(V

(2))−ν̃3(V ))/2N−2β,

which together with (5.12) implies∑
i1,...,iν0,2

EV (2) ≺ I (V )(Nη)(̃ν3(V
(2))−ν̃3(V ))/2N−2β ·B(V ).

Here we abbreviate ν0,2
..= ν0(V

(2)). Repeating the above steps we get∑
i1,...,iν0

EVi1,...,iν0
= ∑

V (n)∈V(n)

∑
i1,...,iν0(V (n))

EV (n) + O≺
(
B(V )

)

for any n ∈N. Here |V(n)| ≤ Cn, and each V (n) ∈ V(n) satisfies∑
i1,...,iν0,n

EV (n) ≺ I (V )(Nη)(̃ν3(V
(n))−ν̃3(V ))/2N−nβ ·B(V ).

Since β > 0, ν̃3 ∈ {0,1,2} and I (V ) = N , setting n large enough we get∑
i1,...,iν0

EVi1,...,iν0
= O≺

(
B(V )

)
as desired.
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5.2. Proof of Lemma 4.6. Again, to simplify notations, we shall prove the lemma for
Y = {G}, and one easily checks that the proof is the same for Y = {G,G∗}. Let us take a
general term W ∈ W(ν0,ν1)({G}), and consider

(5.14)
∑

i1,...,iν0

EWi1,...,iν0
= 1

Nν1

∑
i1,...,iν0

ai1,...,iν0
E〈Gx1y1 · · ·Gxkyk

〉[G]ν4,

where x1, y1, . . . , xk, yk ∈ {i1, . . . , iν0}, and ai1,...,iν0
are complex numbers uniformly bounded

in i1, . . . , iν0 . Resolvent identity zGx1y1 = (HG)x1y1 − Ix1y1 and E〈X〉Y = EX〈Y 〉 gives

zE〈Gx1y1 · · ·Gxkyk
〉[G]ν4

= E(HG)x1y1Gx2y2 · · ·Gxkyk

〈[G]ν4
〉−Eδx1y1Gx2y2 · · ·Gxkyk

〈[G]ν4
〉
.

Similarly as in the proof of Lemma 4.3, we apply Lemma 2.2 to the above and get

EWi1,...,iν0
= ai1,...,iν0

Nν1
E〈Gx1y1 · · ·Gxkyk

〉[G]ν4

= ai1,...,iν0

−z −EG
E

[
1

Nν1
〈δx1y1Gx2y2 · · ·Gxkyk

〉[G]ν4

+ 1

Nν1

〈(〈G〉Gx1y1 + N−1(G2)
x1y1

)
Gx2y2 · · ·Gxkyk

〉[G]ν4

+ 1

N1+ν1

k∑
m=2

〈((
G2)

x1ym
Gy1xm + (G2)

x1xm
Gy1ym

)
(5.15)

× Gx2y2 · · ·Gxm−1ym−1Gxm+1ym+1 · · ·Gxkyk

〉[G]ν4

+ 2ν4

N2+ν1
Gx2y2 · · ·Gxkyk

((
G3)

y1x1
+ 2(HG)y1x1mm′)[G]ν4−1 − K(3)

−∑
i

l∑
k=2

L
(3,i)
k −∑

i

R(3,ix1)
l+1

]
,

where

K(3) = 1

N1+ν1
E

∂(Gx1y1 · · ·Gxkyk
〈[G]ν4〉)

∂Hx1x1

(
NC2(Hx1x1) − 2

)
,

and

L
(3,i)
k = 1

Nν1

1

k!Ck+1(Hix1)E
∂k((Giy1 · · ·Gxkyk

〈[G]ν4〉)
∂Hk

x1i

.

Now we insert (5.15) into (5.14), and by using (4.17), (5.3) and Lemma 4.2, we have∑
i1,...,iν0

EWi1,...,iν0

= ∑
i1,...,iν0

ai1,...,iν0

1

−z −EG
E

[
1

Nν1
〈δx1y1Gx2y2 · · ·Gxkyk

〉[G]ν4 −∑
i

l∑
k=2

L
(3,i)
k

]

+ O≺
(
B(1)(W)

)
.

Similarly as in (5.7), we split

L
(3,i)
k = L

(3,i,1)
k + L

(3,i,2)
k ,
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where L
(3,i,1)
k are all the terms in L

(3,i)
k that do not contain the derivatives of (H 2 − 1). By

(2.2) and Lemma 4.2, we see that the terms associated with L
(3,i,2)
k are negligible, thus∑

i1,...,iν0

EWi1,...,iν0

= ∑
i1,...,iν0

ai1,...,iν0

1

−z −EG
E

[
1

Nν1
〈δx1y1Gx2y2 · · ·Gxkyk

〉[G]ν4 −∑
i

l∑
k=2

L
(3,i,1)
k

]
(5.16)

+ O≺
(
B(1)(W)

)
.

Now let us look at the terms in (5.16) carefully. For any W∗ ∈ W satisfying ν4(W∗) = ν4(W),
we define the ratio

I (1)(W∗) ..= Nb1(W∗)

Nb1(W)−1 ,

where W is defined as in (5.14). By Lemma 4.5,
∑

EW∗ ≺ I (1)(W∗)B(1)(W). For L
(3,i,1)
k ,

we can apply all the differentials ∂Hk
x1i

and write L
(3,i,1)
k in the form of linear combinations

L
(3,i,1)
k =

n∑
s=1

csVs +
n′∑

t=1

c′
tWt ,

where Vs ∈ V , Wt ∈ W , and cs, c
′
t are constants. Each Vs is formed by requiring at least one

differential hit [G]ν4 , and we can use Lemma 4.3 to show that∑
i1,...,iν0 ,i

ai1,...,iν0

1

−z −EG
E(−csVs) = O≺

(
B(1)(W)

)
.

Each Wt is formed by requiring none of the differentials hit [G]ν4 , thus ν4(Wt) = ν4(W). By
Ck+1(Hx1i ) ≤ C/(Nq) we find that

I (1)(Wt) ≤ I (1)(W) · (Nη)(̃ν3(Wt ))−ν̃3(W))/2N−β,

which implies

(5.17)
∑

i1,...,iν0 ,i

ai1,...,iν0

1

−z −EG
E
(−c′

tWt

)≺ I (1)(W)(Nη)(̃ν3(Wt ))−ν̃3(W))/2N−βB(1)(W).

As for the first term on RHS of (5.16), one easily sees that it is small enough when x1 �≡ y1.
When xi ≡ yi for all i = 1, . . . , k, we rewrite (5.16) into∑

i1,...,iν0

EWi1,...,iν0

= ∑
i1,...,iν0

EW ′ + ∑
i1,...,iν0

ai1,...,iν0

1

−z −EG
E

[
−∑

i

n′∑
t=1

c′
tWt

]
+ O≺

(
B(1)(W)

)
,

(5.18)

where

W ′ = ai1,...,iν0

1

−z −EG

1

Nν1
〈Gx2y2 · · ·Gxkyk

〉[G]ν4,
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and each Wt in (5.18) satisfies (5.17). Note that I (1)(W) = I (1)(W ′), and νi(W) = νi(W
′) for

i = 0,1,3,4, thus we can repeat (5.18) with W replaced by W ′. By doing this k times, we
have ∑

i1,...,iν0

EWi1,...,iν0

= ∑
i1,...,iν0

EW(k) + ∑
i1,...,iν0

ai1,...,iν0

1

−z −EG
E

[
−∑

i

n(k)∑
t=1

c′
tWt

]
+ O≺

(
B(1)(W)

)

= ∑
i1,...,iν0

ai1,...,iν0

1

−z −EG
E

[
−∑

i

n(k)∑
t=1

c′
tWt

]
+ O≺

(
B(1)(W)

)
,

where we used

W(k) = ai1,...,iν0

1

−z −EG

1

Nν1
〈1〉[G]ν4 = 0.

To sum up, we have

(5.19)
∑

i1,...,iν0

EWi1,...,iν0
= ∑

i1,...,iν0

ai1,...,iν0

1

−z −EG
E

[
−∑

i

n′∑
t=1

c′
tWt

]
+ O≺

(
B(1)(W)

)
for some n′ ∈ N, where each Wt in (5.19) satisfies (5.17). In addition, note that I (1)(W) = N ,
ν̃3 ∈ {0,1,2}, and β > 0.

The above argument shows that, similarly as in Section 5.1, we can repeatably use (5.19)
finitely many times, and eventually get∑

i1,...,iν0

ai1,...,iν0
EWi1,...,iν0

= O≺
(
B(1)(W)

)
as desired.

APPENDIX: PROOF OF LEMMA 2.10

(i) From Theorem 2.6 we have∣∣〈G〉∣∣≤ |G − m| + |EG − m| ≺ 1

q
+ 1

Nη

uniformly for z = E + iη ∈ S, and this proves (2.5) for the case m + n = 1. In addition, by
an N−3-net argument and a deterministic monotonivity result [2], Remark 2.7, Lemma 10.2,
we have

(A.1) sup
z∈S

∣∣〈G(z)
〉∣∣(1

q
+ 1

Nη

)−1
≺ 1.

For m + n ≥ 2, note that

GmG∗n = η−(m+n)f

(
H − E

η

)
,

where

f (x) =
(

x + i

x2 + 1

)m( x − i

x2 + 1

)n

.
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Writing fη(x) = f (x−E
η

) and applying Lemma 2.4, we have

〈
GmG∗n〉= 1

πηm+n

∫
C

∂z̄

(
f̃η(z)χ(y/η)

)〈
G(z)

〉
d2z

= 1

2πηm+n

∫
R2

(
iyf ′′

η (x)χ(y/η) + i

η
fη(x)χ ′(y/η) − y

η
f ′

η(x)χ ′(y/η)

)
(A.2)

× 〈G(x + iy)
〉
dx dy,

where we set χ(y) = 1 for |y| ≤ 1 and χ(y) = 0 for |y| ≥ 2. Note that for m + n ≥ 2, f and
its derivatives are in L1(R). The proof of (2.5) then finishes by inserting (A.1) into (A.2).

The proof of (2.6) is similar. We omit the details.
(ii) The proof follows by∑

i

∣∣(GmG∗n)
ij

∣∣2 = (GnG∗mGmG∗n)
jj

and (2.6).
(iii) Let us first look at the case k = 2. By the resolvent identity zG = HG − I and

Lemma 2.2, we have

(A.3) EG2 = 1

T

(
EG + 2E〈G〉〈G2〉+ 1

N
EG3 −EK(4) −EL(4) −R(4)

l+1

)
,

where T = −z − 2EG, R(4)
l+1 is the remainder term,

K(4) = N−2
∑
i

∂(G2)ii

∂Hii

(
EH 2

ii − 2
)
,

and

L(4) = 1

N

∑
i,j

(
l∑

k=2

1

k!Ck+1(Hji)
∂k(G2)ij

∂HK
ji

)
.

The proof then follows by estimating the RHS of (A.3) by parts (i) and (ii).
The proof of the case k = 3 is similar, and we omit the details.
(iv) The proof is an elementary computation. One possible way is to write

E
(
H 2 − 1

)n = 1

N

∑
i,j

E

(
H 2

ij − 1

N

)(
H 2 − 1

)n−1

and apply Lemma 2.2 with h = H 2
ij . We omit the details.
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[11] ERDŐS, L., SCHLEIN, B. and YAU, H.-T. (2011). Universality of random matrices and local relaxation
flow. Invent. Math. 185 75–119. MR2810797 https://doi.org/10.1007/s00222-010-0302-7

[12] GUSTAVSSON, J. (2005). Gaussian fluctuations of eigenvalues in the GUE. Ann. Inst. Henri Poincaré
Probab. Stat. 41 151–178. MR2124079 https://doi.org/10.1016/j.anihpb.2004.04.002

[13] HE, Y. and KNOWLES, A. (2017). Mesoscopic eigenvalue statistics of Wigner matrices. Ann. Appl. Probab.
27 1510–1550. MR3678478 https://doi.org/10.1214/16-AAP1237

[14] HE, Y. and KNOWLES, A. (2020). Mesoscopic eigenvalue density correlations of Wigner matrices. Probab.
Theory Related Fields 177 147–216. MR4095015 https://doi.org/10.1007/s00440-019-00946-w

[15] HE, Y., KNOWLES, A. and MARCOZZI, M. (2019). Local law and complete eigenvector delocalization for
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