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In this paper we characterize the distribution of the first exit time from
an arbitrary open set for a class of semi-Markov processes obtained as time-
changed Markov processes. We estimate the asymptotic behaviour of the sur-
vival function (for large t) and of the distribution function (for small t) and
we provide some conditions for absolute continuity. We have been inspired
by a problem of neurophyshiology and our results are particularly usefull in
this field, precisely for the so-called Leaky Integrate-and-Fire (LIF) models:
the use of semi-Markov processes in these models appear to be realistic un-
der several aspects, for example, it makes the intertimes between spikes a r.v.
with infinite expectation, which is a desiderable property. Hence, after the
theoretical part, we provide a LIF model based on semi-Markov processes.

1. Introduction. This paper deals with the problem of studying the distribution of the
exit time from an arbitrary open set for a class of semi-Markov processes, constructed as time-
changed Markov processes. More precisely, let M(t), t ≥ 0, be a Markov process and σ(t)

an independent stricly increasing Lévy process. Let L(t) be the inverse of σ(t) and define
X(t) = M(L(t)). In recent years this class of processes have attracted the interests of many
mathematicians, because of their connection with fractional type equations and since they
are very popular in applications (see [33] for a review) in particular in the field of anomalous
diffusive phenomena (e.g., [37]) and many others (see [23] for some recent developments). In
this paper we consider the following problem. Let T be the exit time from an open set of X.
We study the behaviour as t → ∞ of P(T > t) and as t → 0 of P(T ≤ t). Beside its natural
interest as a theoretical question, this problem is inspired by neurophysiology investgations
and it turns out that our results are particularly useful in this field, as follows. The stochastic
Leaky Integrate-and-Fire models for the membrane potential of a neuron are one of the most
popular ways to model such dynamics (e.g., [22, 28]). However, the classical processes used
to describe the membrane potential [22, 27, 28, 42] are such that the first passage time through
the threshold, upon which the neuron fires, is a r.v. with finite expectation. This is in contrast
with the observed behaviour (see, for instance, [20]) since the distribution of the intervals
between spikes appears to be heavy tailed. Further, phenomenological evidences such as high
variability in the neuronal response to stimulations and the adaptation phenomenon, cannot
be explained by models based on Markovian processes, but the introduction of memory seems
to be a suitable and powerful tool for modeling such dynamics (see again, for instance, [28]
and references therein). Hence, we propose in Section 4 a model based on semi-Markov
processes, constructed as above, leading to distributions whose survival function has a α-
power law decay, α ∈ (0,1).

Therefore, we first accomplish the theoretical task of characterizing the distribution of
the first exit time from an open set for the considered class of semi-Markov processes. For
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example, it turns out that the behaviour of the tail is an α-power law, α ∈ (0,1), in case σ is
an α-stable subordinator and if the function s �→ E[1 − e−sT ], where T is the first exit time
of the original Markov process, is regularly varying. Then, we focus on the situation in which
the original Markov process is a Gauss–Markov process, since these kinds of processes are
usually adopted in LIF models, and we show when they satisfy the condition needed to use
our estimates. It turns out that this can be done by means of Doob transformation Theorem.

Another feature of our model is that it is a reparametrization of the original one (before
the time-change). For example: suppose that the model is obtained by the time-change of a
Markov process such that T is its exit time from the open set and ET = C < ∞. Suppose that
the time-changed process X is obtained with the inverse of an α-stable subordinator. Then the
tail behaviour of the exit time is Ct−α/�(1−α) and the parameters C and α can be observed
directly by observing the spikes. To highlight this and as a confirmation of our results, in the
last sections we provide a method to simulate our processes.

2. The exit time. In this section we study the asymptotic behaviour of the distribution
functions of the first passage times of semi-Markov processes obtained by means of a time
change from a Markov process.

2.1. Construction of the process and general assumptions. Let us consider a Markov
process M = {M(y), y ≥ 0} with state space (�,G), conditional probability laws (Px)x∈�

and infinitesimal generator GM . Let us consider also a subordinator σ = {σ(y), y ≥ 0} inde-
pendent on M , that is to say a nondecreasing Lévy process. In particular σ has state space
([0,+∞),B[0,+∞)) and

(2.1) E
x[

e−λσ(y)] = e−yf (λ),

where f (λ) is a Bernstein function

(2.2) f (λ) =
∫ +∞

0

(
1 − e−λs)ν(ds).

The measure ν(·) is the Lévy measure of σ and must fulfill the integrability condition

(2.3)
∫ +∞

0
(s ∧ 1)ν(ds) < ∞.

In what follows we will always assume that ν(0,+∞) = +∞ to assure that the subordinator
is a strictly increasing process, even if we will always assume that there is no drift. Let us
also define the time-changed process Xf = {Xf (t), t ≥ 0} as Xf (t) = (M ◦ L)(t) where

(2.4) L(t) = inf
{
y ≥ 0 : σ(y) > t

}
that is called inverse subordinator since it is the right-continuous inverse of σ . It is known in
[5] that the process Xf is governed by a time-fractional equation when f (λ) = λα . Hence, it
is such that the function q(x, t) := E

x[u(Xf (t))] satisfies

(2.5) ∂α
t q = GMq, q(x,0) = u(x) ∈ Dom(GM),

where GM is the generator of M and ∂α
t is the fractional derivative of order α ∈ (0,1),

(2.6) ∂α
t u := 1

�(1 − α)

d

dt

∫ t

0
u(s)(t − s)−α ds − u(0)

t−α

�(1 − α)
.

This relationship has then been generalized to a general subordinator with Laplace exponent
f (λ) in different ways [12, 24, 26, 31, 32, 35, 40, 41, 43, 49]. In particular in [12] the author
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proved that, when f is a general Bernstein function having representation (2.2), then the
function q(x, t) = E

x[u(Xf (t))] satisfies

∂t

∫ t

0

(
q(x, s) − q(x,0)

)
ν(t − s) ds = GMq(x, t),

q(x,0) = u(x) ∈ Dom(GM),

(2.7)

where ν(t) = ν(t,∞). Further he proved that the occupation measure of Xf is always infinite
when the subordinator has infinite expectation. We further observe that when M has the
strong Markov property then the process Xf is a semi-Markov process in the sense of [13],
Section 4b, or [34], that is, it is not Markovian but it enjoys the Markov property at any
random time T such that T (ω) ∈ {s : σ(y,ω) = s for some y}.

2.2. Asymptotic behaviour of the tail. In this section we provide an estimate of the tail
of the distribution of the first exit time from an open set of the time-changed process Xf .
Remark that if M(y) and σ(y) are self-similar, M(y) is defined in R and we consider as
particular open set the interval (0,+∞), explicit results on such distribution are given in
[29].

Let’s first introduce the following notation which will be used all throughout the paper. Set
S ∈G for an arbitrary open set and define

(2.8) T := inf
{
y ≥ 0 : M(y) /∈ S

}
and

(2.9) T := inf
{
t ≥ 0 : Xf (t) /∈ S

}
.

Further, in order to avoid trivialities, in what follows the results will be always stated for x

such that

P x(T > 0) > 0.(2.10)

In the forthcoming proofs we will make use of the following easy technical lemma.

LEMMA 2.1. Let T be a nonnegative random variable, λ > 0 and eλ an exponential
random variable of parameter λ which is independent from T . Then

(2.11) P
x(T > eλ) = E

x[
1 − e−λT ]

.

PROOF. We only need to observe that

E
x[

1 − e−λT ] =
∫ +∞

0

(
1 − e−λt )dPx(T < t)

= [(
1 − e−λt )

P
x(T < t)

]+∞
0 −

∫ +∞
0

λe−λt
P

x(T < t)dt

= 1 −
∫ +∞

0
λe−λt (1 − P

x(T > t)
)
dt

=
∫ +∞

0
λe−λt

P
x(T > t)dt = P

x(T > eλ). �

By using this lemma, we can show the following result.
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THEOREM 2.2. Let x ∈ S be such that the function g(s) := E
x[1 − e−sT ] is regularly

varying at zero with index β ∈ [0,1] and f is regularly varying at zero with index α ∈ [0,1),
then t �→ P

x(T> t) varies regularly at infinity with index αβ and

(2.12) P
x(T> t) ∼ 1

�(1 − αβ)
g

(
f

(
1

t

))
.

PROOF. Let us first note that Xf can be expressed equivalently as

(2.13) Xf (t) = M(y), σ (y−) ≤ t < σ(y).

Hence, we have that, on any path, T = σ(T −). But we know by [3], Lemma 2.3.2, that σ has
no fixed discontinuities, that is, for any fixed t > 0 it is true that σ(t−) = σ(t) a.s. and thus
we can write by a conditioning argument

P
x(T> y) = E

x
P

x(
σ(T −) > y|T ) = E

x
P

x(
σ(T ) > y|T )

= P
x(

σ(T ) > y
)
.

(2.14)

Furthermore by definition of L we have that L(σ(t)) = t a.s. and thus we can rewrite (2.14)
as

(2.15) P
x(T> y) = P

x(
T > L(y)

)
.

Now let

(2.16) U(t) :=
∫ t

0
P

x(T > y)dy

and

(2.17) Ũ (λ) :=
∫ +∞

0
e−λtU(dt).

Let L(t) be a slowly varying function at infinity. The Karamata’s Tauberian Theorem [18],
Theorem XIII.5.2, states that the relations

(2.18) U(t) ∼ tρ

�(1 + ρ)
L(t) as t → +∞

and

(2.19) Ũ (λ) ∼ λ−ρL(1/λ) as λ → 0

imply each other. Now we need to determine the relation (2.19) for (2.17). By using (2.15)
we find that

Ũ (λ) =
∫ ∞

0
e−λtU(dt)

=
∫ ∞

0
e−λt

∫ ∞
0

P
x(T > w)Px(

L(t) ∈ dw
)
dt.

(2.20)

By [32], equation (3.13), we further have that L(t) has a Lebesgue density s �→ l(s, t) such
that

(2.21)
∫ ∞

0
e−λt l(s, t) dt = f (λ)

λ
e−sf (λ).

Hence we can write

(2.22) Ũ (λ) = 1

λ

∫ ∞
0

f (λ)e−yf (λ)
P

x(T > y)dy.
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Consider now an exponential random variable ef (λ) of parameter f (λ) and independent of
T . Thus we have

(2.23) Ũ (λ) = 1

λ
P

x(T > ef (λ)).

Then, by using Lemma 2.1 we have

(2.24) Ũ (λ) = 1

λ
E

x[
1 − e−f (λ)T ] = 1

λ
g
(
f (λ)

)
.

Now let us observe that, by hypotheses, g is regularly varying at 0 with index β ∈ [0,1] and
f is regularly varying at 0 with index α ∈ [0,1), so g ◦ f is regularly varying at 0 with index
αβ ∈ [0,1) by an application of [8], Proposition 1.5.7. Thus there exists a function L which
is slowly varying at 0 such that

(2.25) g
(
f (λ)

) = λαβL(λ)

and thus equation (2.24) becomes

(2.26) Ũ (λ) = λαβ−1L(λ).

By Karamata’s Tauberian theorem we mentioned before we have as t → ∞

(2.27) U(t) ∼ t1−αβ

�(2 − αβ)
L(1/t).

Applying then the Monotone Density Theorem [8], Theorem 1.7.2, we have as t → ∞
(2.28) P

x(T> t) ∼ 1 − αβ

�(2 − αβ)
t−αβL(1/t) = 1

�(1 − αβ)
g
(
f (1/t)

)
,

where we used equation (2.25) and the fact that z�(z) = �(z + 1). �

Since checking that g(s) = E
x[1 − e−sT ] is regularly varying may be a difficult task, we

propose the following corollary.

COROLLARY 2.3. If, for some x ∈ S, Ex[T ] = C < +∞ and f is regularly varying at
zero with index α ∈ [0,1), then t �→ P

x(T> t) varies regularly at infinity and

(2.29) P
x(T> t) ∼ C

�(1 − α)
f

(
1

t

)
.

PROOF. First let us observe that

1 − e−sT ≤ sT

for any s > 0. Thus we have

1 − e−sT

s
≤ T

for any s > 0. Moreover since we assumed that T is an integrable random variable we have
by dominated convergence that

lim
s→0

g(s)

s
= lim

s→0
E

x

[
1 − e−sT

s

]
= E

x

[
lim
s→0

1 − e−sT

s

]
= E

x[T ] = C

from which we get

g(s) ∼ Cs.
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Thus g(s) is regularly varying at 0 with index 1 and then we can use Theorem 2.2 to say that

P(T> t) ∼ 1

�(1 − α)
g

(
f

(
1

t

))
.

Finally let us observe that g(f (1
t
)) ∼ Cf (1

t
) to obtain equation (2.29). �

Let us see some instructive examples.

EXAMPLE 2.1. Consider Wδ(t) = W(t) + δt a 1-dimensional Wiener process with pos-
itive drift δ > 0 (where W(t) is a standard Wiener process) and the open set S = (−∞, c)

for c > 0. Consider T := inf{t ≥ 0 : Wδ(t) /∈ S} and observe that T is absolutely continuous
with probability density function pT (t) dt = P

0(T ∈ dt) given by (e.g., [9], equation 2.0.2,
p. 295)

(2.30) pT (t) = c√
2π

e− (c−δt)2
2t

t
3
2

1(0,+∞)(t).

It is well known that E0[T ] = c
δ

< +∞. Consider then W
f
δ (t) := Wδ(L(t)) and T := inf{t ≥

0 : Wf
δ (t) /∈ S}. Thus, by Corollary 2.3, if f is regularly varying at zero with index α ∈ (0,1)

we know that

(2.31) P
0(T> t) ∼ c

δ�(1 − α)
f

(
1

t

)
.

EXAMPLE 2.2. Consider W(t) a 1-dimensional standard Wiener process and the open
set S = (−∞, c) for c > 0. Consider T := inf{t ≥ 0 : W(t) /∈ S} and observe that T is ab-
solutely continuous with probability density function pT (t) dt = P

0(T ∈ dt) given by (e.g.,
[9], equation 2.0.2, p. 198)

(2.32) pT (t) = c√
2π

e− c2
2t

t
3
2

.

In this case E0[T ] = +∞ so we cannot use Corollary 2.3. Thus we want to study the function
g(s) = E

0[1 − e−sT ]. To do this, let us introduce a Lévy subordinator τ(t), that is to say a
1/2-stable subordinator, with probability density function

(2.33) pτ(t)(λ) = t

2
√

π

e− t2
4λ

λ
3
2

.

For this process we know that

(2.34) e−t
√

s = E
[
e−sτ (t)] =

∫ ∞
0

e−sλ t

2
√

π

e− t2
4λ

λ
3
2

dλ.

Thus, let us observe that, by using the change of variable x = 2y

E
[
e−sT ] =

∫ ∞
0

e−sx c√
2π

e− c2
2x

x
3
2

dx

=
∫ ∞

0
e−2sy c

2
√

π

e
− c2

4y

y
3
2

dy = E
[
e−2sτ (c)] = e−c

√
2s .

(2.35)
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Then we have

(2.36) g(s) = E
[
1 − e−sT ] = 1 − e−c

√
2s,

which is a regularly varying function at 0+ with index 1/2. Consider now Wf (t) := W(L(t))

and T := inf{t ≥ 0 : Wf (t) /∈ S}. Thus, by Theorem 2.2, if f is regularly varying at zero with
index α ∈ (0,1) we know that

(2.37) P
0(T> t) ∼ 1

�(1 − α
2 )

[
1 − e−c

√
2f (1/t)].

The following proposition shows a particular case of Theorem 2.2 in which the distribution
of T can be computed explicitly.

PROPOSITION 2.4. Let f (λ) = λα . If Px(T > y) = e−hy for some h ≥ 0 then we have

(2.38) P(T> t) = Eα

(−htα
) :=

∞∑
k=0

(−htα)k

�(αk + 1)
.

Furthermore

(2.39) P
x(T> t) ∼ 1

h

t−α

�(1 − α)

as t → +∞.

PROOF. By using equation (2.15) we have

(2.40) P
x(T > t) =

∫ ∞
0

P
x(T > y)Px(

L(t) ∈ dy
) =

∫ ∞
0

e−hy
P

x(
L(t) ∈ dy

)
.

As proved in [7] we know that the Laplace transform of the inverse of an α-stable subordina-
tor is

(2.41)
∫ ∞

0
e−hy

P
x(

L(t) ∈ dy
) = Eα

(−htα
)

and this proves the first statement. The second statement is a consequence of Corollary 2.3
since E

x[T ] = 1
h

, but the fact that

(2.42) Eα

(−htα
) ∼ 1

h

t−α

�(1 − α)

as t → +∞ is a well-known fact (e.g., [48], equation (24)). �

REMARK 2.5. Assuming that f (λ) is regularly varying at zero with α ∈ [0,1) im-
plies that the corresponding subordinator has infinite expectation. Further, since we have
by equation (2.27) that U(t) defined in equation (2.16) varies regularly at infinity with index
1 − βα > 0, it follows that Ex[T] = +∞, hence our result agrees with [12], Theorem 3.1.

By using Theorem 2.2 we can show the following two results concerning family of open
sets.

PROPOSITION 2.6. Let {St , t ≥ 0} ⊆ G be a family of open sets such that
⋂

t≥0 St 
= ∅

and suppose there exists an open set S ⊇ ⋃
t≥0 St such that T is almost surely finite. Then, if
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for some x ∈ ⋂
t≥0 St the function g(s) = E

x[1 − e−sT ] is regularly varying at 0+ with index
β ∈ [0,1] and f (λ) is regularly varying at 0+ with index α ∈ [0,1),

(2.43) lim sup
t→+∞

P
x(T̂> t)�(1 − αβ)

g(f (1/t))
≤ 1,

where

(2.44) T̂ := inf
{
t > 0 : Xf (t) /∈ St

}
.

PROOF. Let us observe that Sσ(y) ⊆ S and Sσ(y−) ⊆ S. Then we have T≥ T̂ and

P
x(T̂> t) ≤ P

x(T> t).

Hence we have

P
x(T̂ > t)�(1 − αβ)

g(f (1/t))
≤ P

x(T> t)�(1 − αβ)

g(f (1/t))

and then, taking the lim supt→+∞ and using Theorem 2.2, we obtain equation (2.43). �

PROPOSITION 2.7. Let {St , t ≥ 0} ⊆G be a family of open sets and suppose there exists
an open set ∅ 
= S ⊆ ⋂

t≥0 St such that T is almost surely finite. Then, if for some x ∈ S the
function g(s) = E

x[1 − e−sT ] is regularly varying at 0+ with index β ∈ [0,1] and f (λ) is
regularly varying at 0+ with index α ∈ [0,1),

(2.45) lim inf
t→+∞

P(T̂> t)�(1 − αβ)

g(f (1/t))
≥ 1,

where T̂ has been defined before in equation (2.44).

PROOF. Let us observe that Sσ(y) ⊇ S and Sσ(y−) ⊇ S. Then we have T≤ T̂ and

P(T̂> t) ≥ P(T> t).

Hence we have

P(T̂ > t)�(1 − αβ)

g(f (1/t))
≥ P(T> t)�(1 − αβ)

g(f (1/t))

and then, taking the lim inft→+∞ and using Theorem 2.2, we obtain equation (2.43). �

2.3. Smoothness. In the previous section we have used the Monotone Density Theorem
to deduce the asymptotic behaviour at infinity of the function t �→ P

x(T > t). Moreover we
could use such theorem if T is absolutely continuous to deduce the asymptotic behaviour of
the probability density function of T. For this reason, it could be interesting to investigate
what are some assumptions under which T is absolutely continuous.

THEOREM 2.8. If the function s �→ ν(s) is absolutely continuous, then T is an absolutely
continuous random variable.

PROOF. Note that absolute continuity of s �→ ν̄(s) together with the condition ν(0,∞) =
∞ imply, by [47], Theorem 27.10, that σ(t) has a Lebesgue density μ(x, t). Indeed let us
recall, from [47], Def. 27.9, that a measure ν on R

d \ {0} is radially absolutely continuous if
there is a finite measure λ on the unit sphere S of Rd and a nonnegative measurable function
(ξ, r) ∈ S × (0,∞) �→ g(ξ, r) ∈ R such that for any Borel set B of Rd \ {0}
(2.46) ν(B) =

∫
S
λ(dξ)

∫ ∞
0

g(ξ, r)1B(rξ) dr.
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If d = 1, then let us observe that S = {−1,1}. Since s �→ ν(s) is absolutely continuous, there
exists a function g(1, s) such that ν(s) = ∫ +∞

s g(1, r) dr . Let g(−1, r) = 0 for any r ∈ (0,∞)

and λ = δ1 where δ1 is the Dirac delta centered in 1. Then it is easy to see that

(2.47) ν(B) =
∫
S
λ(dξ)

∫ ∞
0

g(ξ, r)1B(rξ) dr =
∫
B∩(0,+∞)

g(1, r) dr.

Moreover, since ν(0,∞) = +∞, then
∫ +∞

0 g(1, r) dr = +∞ and ν satisfies also the diver-
gence condition.

Using (2.14) we can write

P
x(T ∈ ds) =

∫ ∞
0

P
x(

σ(w) ∈ ds
)
P

x(T ∈ dw)

=
∫ ∞

0
μ(s,w)Px(T ∈ dw)

(2.48)

and thus T is absolutely continuous with probability density function

(2.49) px
T(s) =

∫ ∞
0

μ(s,w)Px(T ∈ dw). �

We can further investigate conditions under which the probability density function pT is
infinitely differentiable.

PROPOSITION 2.9. If s �→ ν(s) is absolutely continuous and there exist γ ∈ (0,2), C >

0 and r0 > 0 such that

(2.50)
∫ r

0
s2ν(ds) > Crγ for all 0 < r < r0,

then T is an absolutely continuous random variable and its probability density function pT

is infinitely differentiable.

PROOF. The fact that T is absolutely continuous is consequence of Theorem 2.8. More-
over pT is given by equation (2.49). Under hypothesis (2.50), by using the results in [39], we
know that for some c > 0 and ξ sufficiently large

(2.51)
∣∣E[

eiξσ (1)]∣∣ ≤ e− c
4 |ξ |2−γ

and thus one can differentiate under integration in

μ(x, t) = 1

2π

∫
R

e−iξxe−tϕ(ξ) dξ,(2.52)

where we denote by ϕ the Lévy symbol of σ . Recall now that, from equation (2.49),

px
T(s) =

∫ ∞
0

μ(s,w)Px(T ∈ dw).(2.53)

Use (2.52) to say that

px
T(s) = 1

2π

∫
R

e−iξs
∫ ∞

0
e−wϕ(ξ)

P
x(T ∈ dw)dξ(2.54)

and note that ∣∣∣∣e−iξs − e−iξs′

s − s′
∫ ∞

0
e−wϕ(ξ)

P
x(T ∈ dw)

∣∣∣∣
≤

∫ ∞
0

∣∣ξe−wϕ(ξ)
∣∣P x(T ∈ dw).

(2.55)
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Hence by using (2.51) we can apply dominated convergence to differentiate repeatedly under
integration and thus pT(s) is infinitely differentiable. �

If we know that pT admits derivatives of all order, then we could be interested in when
such derivatives admit Laplace transform. A particular case could be the one in which we
can prove that all the derivatives of pT are bounded. In particular we can show the following
Proposition

PROPOSITION 2.10. Under the assumptions of Proposition 2.9 the density pT and all
its derivatives are bounded.

PROOF. Use (2.54) to say that for s ∈ R∣∣∣∣ ∂n

∂sn
pT(s)

∣∣∣∣ ≤
∫
R

∫ ∞
0

|ξ |n∣∣e−wϕ(ξ)
∣∣Px(T ∈ dw)dξ(2.56)

and use (2.51) to say that the right-hand side of (2.56) is finite. Since this bound does not
depend on s the result is proved. �

2.4. Rapid behaviour at zero. In order to determine some properties related to the asymp-
totic behaviour at 0 of the distribution function of T, one has also to work with functions
whose decay at 0 is more rapid than any power function.

Let us say that a function f : [0,+∞[→ [0,+∞[ is rapidly decreasing at 0+ if

(2.57) ∀α > 0, lim
t→0+

f (t)

tα
= 0.

It follows from the definition that in such case limt→0+ f (t) = 0. About regularity in 0 of
such functions, we have the following Lemma.

LEMMA 2.11. Suppose f ∈ C∞(0, δ) for some δ > 0. Then the following are equiva-
lent:

1. f is rapidly decreasing at 0+.
2. f ∈ C∞([0, δ)) and f (n)(0) = 0 for all n ∈ N.

Moreover, if f is rapidly decreasing at 0+ then all its derivatives are rapidly decreasing at
0+.

PROOF. First let us suppose that f is rapidly decreasing at 0+ and let us show that
f ∈ C∞([0, δ)) and f (n)(0) = 0 for all n ∈ N. We will show it by induction. Let us first
notice that f (0) = limt→0+ f (t) = 0. Then let us notice that by definition

(2.58) f ′(0) := lim
t→0+

f (t)

t
= 0.

Now suppose f ∈ Cn([0, δ)) and for any m ≤ n we have f (m)(0) = 0. Thus we can use

L’Hopital rule on limt→0
f (m)(t)

tα
for any m ≤ n and α > 0. In particular we have

0 = lim
t→0+

f (t)

tn+1 = lim
t→0+

f ′(t)
(n + 1)tn

= · · · = lim
t→0+

f (n+1)(t)

(n + 1)!
and then we have f (n+1)(0) = 0.
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Now suppose f ∈ C∞([0, δ)) with f (n)(0) = 0 for any n ∈ N and let us show that f is
rapidly decreasing at 0+. First fix n ∈ N and observe that, by l’Hopital’s rule,

lim
t→0+

f (t)

tn
= · · · = lim

t→0+
f (n)(t)

n! = f (n)(0)

n! = 0.

Now consider a generic α > 0 and fix n = �α�+1. Since n ∈ N, we know that limt→0+ f (t)
tn

=
0 and n − α > 0. Thus we have

lim
t→0+

f (t)

tα
= lim

t→0+
f (t)

tn
tn−α = 0.

Finally, let us observe that if f ∈ C∞(0, δ) is rapidly decreasing at 0+, then we have that
f ∈ C∞([0, δ)) and f (n)(0) = 0 for all n ∈N. Fix m ∈ N and observe that f (m) ∈ C∞([0, δ))

and for all n ∈N we also have f (m+n)(0) = 0, so f (m) is rapidly decreasing at 0+. �

To study the asymptotic behaviour of the distribution function of T near infinity we used
the Tauberian theorem for regularly varying functions. Thus we will need a sort of Tauberian
theorem also for rapidly decreasing functions.

LEMMA 2.12. Let f ∈ C∞(0,∞) and suppose f and all its derivatives admit Laplace
transform. Denote with f̃ the Laplace transform of f . Then f is rapidly decreasing at 0+ if
and only if limλ→∞ λαf̃ (λ) = 0 for any α > 0.

PROOF. Let us first show that if f is rapidly decreasing at 0+ then we have λαf̃ (λ) → 0,
as λ → +∞, for all α > 0. Note that, by the Initial-Value Theorem (e.g., [11], Section 17.8),
we have

(2.59) lim
λ→∞λf̃ (λ) = lim

t→0+ f (t) = 0.

Now fix n ∈N with n > 1 and denote by L the Laplace transform operator. Since f is rapidly
decreasing at 0+, by Lemma 2.11 we know that f (n−1)(0) = 0. Moreover by hypothesis we
know that f (n−1) admits Laplace transform and then, since, for any k ≤ n − 1, f (k)(0) = 0,

(2.60) L
[
f (n−1)](λ) = λn−1f̃ (λ).

Thus, by the Initial-Value Theorem, we have

(2.61) lim
λ→∞λnf̃ (λ) = lim

λ→∞λλn−1f̃ (λ) = f (n−1)(0) = 0.

Finally let us consider a generic α > 0. Let n = �α� + 1 so that n ∈ N and α − n < 0. Thus
we have

(2.62) lim
λ→∞λαf̃ (λ) = lim

λ→∞λα−nλnf̃ (λ) = 0.

Now let us show that if for any α > 0 we have limλ→∞ λαf̃ (λ) = 0 then f is rapidly de-
creasing at 0+. To do this, let us proceed by induction. First observe that

(2.63) f (0) = lim
λ→∞λf̃ (λ) = 0.

Now observe that, since f (0) = 0, we have

(2.64) L
[
f ′](λ) = λf̃ (λ)

thus, by the Initial-Value Theorem

(2.65) f ′(0) = lim
λ→∞λL

[
f ′](λ) = lim

λ→∞λ2f̃ (λ) = 0.
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Now fix n > 1 and suppose that f (k)(0) = 0 for any k < n. Then we have that

(2.66) L
[
f (n)](λ) = λnf̃ (λ).

Thus, by the Initial-Value Theorem we have

(2.67) f (n)(0) = lim
λ→∞λL

[
f (n)](λ) = lim

λ→+∞λn+1f̃ (λ) = 0.

Since we have shown that f (n)(0) = 0 for any n ∈ N we have, by Lemma 2.11, that f is
rapidly decreasing at 0+. �

2.5. Asymptotic behaviour of the distributions at zero. Here we want to provide an es-
timate near 0 of the distribution of the first exit time from an open set of the time-changed
process Xf . This time we need the distribution function P

x(T ≤ t) to be regular varying at
zero. We will always use the notation

Fx(t) := P
x(T ≤ t),(2.68)

Fx(t) := P
x(T ≤ t).(2.69)

THEOREM 2.13. If, for some x ∈ S, the function Fx(t) varies regularly at zero with index
ρ > 0 and f (λ) varies regularly at infinity with index α > 0, then Fx(t) varies regularly at
zero with index αρ and as t → 0+

(2.70) Fx(t) ∼ �(1 + ρ)

�(1 + αρ)
F x

(
1

f (1
t
)

)
.

PROOF. Let us define

(2.71) F̃ (λ) :=
∫ ∞

0
e−λt dF x(t)

and

(2.72) F̃(λ) :=
∫ ∞

0
e−λt dFx(t).

Since Fx(t) varies regularly at zero with index ρ > 0, by Tauberian theorems [18], Theorem
XIII.5.2 and XIII.5.3, we have that F̃ (λ) varies regularly at infinity with index ρ and as
λ → ∞
(2.73) F̃ (λ) ∼ Fx

(
1

λ

)
�(1 + ρ).

Recalling equations (2.14) and (2.72) we obtain

F̃(λ) =
∫ ∞

0

∫ ∞
0

e−λt
P

x(
σ(s) ∈ dt

)
P

x(T ∈ ds)

=
∫ ∞

0
e−sf (λ)

P
x(T ∈ ds)(2.74)

= F̃
(
f (λ)

)
.

Since F̃ (λ) varies regularly at infinity with index ρ and f (λ) varies regularly at infinity with
index α, then F̃(λ) = F̃ (f (λ)) varies regularly at infinity with index αρ by [8], Proposi-
tion 1.5.7. Moreover, by equation (2.73), we obtain as λ → ∞
(2.75) F̃(λ) ∼ �(1 + ρ)F x

(
1

f (λ)

)
.
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Hence, by using again Tauberian theorems we know that Fx(t) varies regularly at zero with
index αρ and as t → 0

(2.76) Fx(t) ∼ �(1 + ρ)

�(1 + αρ)
F x

(
1

f (1
t
)

)
.

�

PROPOSITION 2.14. Let {St , t ≥ 0} ⊆ G be a family of open sets such that
⋂

t≥0 St 
= ∅

and suppose there exists an open set S ⊇ ⋃
t≥0 St such that T is almost surely finite. Then,

if for some x ∈ ⋂
t≥0 St the function Fx(t) is regularly varying at 0+ with index ρ > 0 and

f (λ) is regularly varying at infinity with index α > 0,

(2.77) lim inf
t→0

P
x(T̂ < t)�(1 + αρ)

�(1 + ρ)F x(1/f (1/t))
≥ 1,

where T̂ is defined in (2.44).

PROOF. Let us observe that Sσ(y) ⊆ S and Sσ(y−) ⊆ S. Then we have T≥ T̂ and

P
x(T̂< t) ≥ P

x(T< t).

Hence we have

P
x(T̂< t)�(1 + αρ)

�(1 + ρ)F x(1/f (1/t))
≥ P

x(T< t)�(1 + αρ)

�(1 + ρ)F x(1/f (1/t))

and then, taking the lim inft→0 and using Theorem 2.13, we obtain equation (2.77). �

PROPOSITION 2.15. Let {St , t ≥ 0} ⊆ G be a family of open sets and suppose there
exists an open set ∅ 
= S ⊆ ⋂

t≥0 St such that T is almost surely finite. Then, if for some
x ∈ S the function Fx(t) is regularly varying at 0+ with index ρ > 0 and f (λ) is regularly
varying at infinity with index α > 0,

(2.78) lim sup
t→0

P
x(T̂< t)�(1 + αρ)

�(1 + ρ)F x(1/f (1/t))
≤ 1,

where T̂ is defined in (2.44).

PROOF. Let us observe that Sσ(y) ⊇ S and Sσ(y−) ⊇ S. Then we have T≤ T̂ and

P
x(T̂< t) ≤ P

x(T< t).

Hence we have

P
x(T̂< t)�(1 + αρ)

�(1 + ρ)F x(1/f (1/t))
≤ P

x(T< t)�(1 + αρ)

�(1 + ρ)F x(1/f (1/t))

and then, taking the lim supt→0 and using Theorem 2.13, we obtain equation (2.78). �

The previous result covers the situation in which Fx is regularly varying at 0. It will be
usefull in the sequel to deal with a rapid decay of Fx at 0 and thus in the forthcoming results
we take into account this possibility.

THEOREM 2.16. Suppose that T and T are absolutely continuous with probability den-
sity function px

T (t) = P
x(T ∈ dt)/dt and px

T
(t) = P

x(T ∈ dt)/dt in C∞ such that all their
derivatives are of exponential order. If, for some x ∈ S, the function px

T (t) is rapidly decreas-
ing at 0+ and f (λ) varies regularly at infinity with index α > 0, then px

T
is rapidly decreasing

at 0+.
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PROOF. Let us define F̃ (λ) = L[px
T ](λ) and F̃(λ) = L[px

T
](λ). Observe that they co-

incide with the Laplace–Stieltjes transforms of Px(T ≤ t) and P
x(T ≤ t), so they are also

defined by equations (2.71) and (2.72). Moreover, by Lemma 2.12, we know that F̃ is such
that for any α > 0 we have limλ→+∞ λαF̃ (λ) = 0.

From equation (2.74) we know that F̃(λ) = F̃ (f (λ)). Since f is regularly varying at infin-
ity with index α > 0, then there exists a slowly varying function l(λ) such that

(2.79) f (λ) = λαl(λ).

By definition of slowly varying function at ∞, it is easy to see that, for any β > 0, lβ(λ) is
still a slowly varying function at ∞. Thus we know that f β(λ) is a regularly varying function
with index αβ > 0 by an application of [8], Proposition 1.5.7.

Fix now k > 0 and observe that

(2.80) λkF̃(λ) = λkF̃
(
f (λ)

)
.

Fix now β > 0 such that αβ > k. Then

(2.81) λkF̃
(
f (λ)

) = λk

f β(λ)
f β(λ)F̃

(
f (λ)

) = 1

λβα−klβ(λ)
f β(λ)F̃

(
f (λ)

)
.

But we know that

(2.82) lim
λ→∞f β(λ)F̃

(
f (λ)

) = 0

and

(2.83) lim
λ→∞λβα−klβ(λ) = ∞

so we have

(2.84) lim
λ→∞λkF̃(λ) = lim

λ→∞
1

λβα−klβ(λ)
f β(λ)F̃

(
f (λ)

) = 0.

We have shown that for any k > 0 we have limλ→∞ λkF̃(λ) = 0, thus, by Lemma 2.12, we
obtain that px

T
is rapidly decreasing at 0+. �

3. Finite mean conditions for exit times of Gauss–Markov processes. Starting from
[42] (and later, e.g., [30, 46]) Gauss–Markov processes have been frequently proposed to
represent the membrane potential of a neuron in LIF models and systematic theoretical and
computational studies on the first passage time through a threshold have been conducted (e.g.,
[6, 25, 45]). Hence we derive in this section some conditions on Gauss–Markov processes in
order to apply the results in the previous sections. Since some of the proofs of this section are
cumbersome, the latter will be shown in the Appendix.

3.1. Gauss–Markov processes. Following the lines of [36] let us introduce the class of
Gauss–Markov processes. Let us consider a Gaussian process {G(t), t ∈ [a, b]} for [a, b] ⊂R

such that:

• The sample paths of G(t) are continuous almost surely;
• mG(t) := E[G(t)] is a continuous function in [a, b];
• cG(τ, t) := Cov(G(τ),G(t)) is a continuous function in [a, b]2;
• G(t) is nondegenerate except at most in the end-points a, b.

Moreover we say that the covariance cG(τ, t) is triangular if there exist two continuous func-
tions uG and vG on [a, b] such that, whenever τ ≤ t , cG(τ, t) = uG(τ)vG(t). One can show
the following Proposition (see [36], Theorem 1).
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PROPOSITION 3.1. G is a Markov process if and only if cG is triangular.

We call such processes Gauss–Markov processes. Moreover, we call ratio function of G

the function rG(t) = uG(t)/vG(t). For such function one can show the following Proposition
(see [36], Remark 2).

PROPOSITION 3.2. The function rG(t) is continuous and strictly increasing.

Since rG is monotone, it is almost everywhere differentiable. However, in the following,
it will be useful to suppose that rG ∈ C1([a, b]). We recall that Gauss–Markov processes
are completely defined by their first moment and autocovariance function. Hence, equality
between GM processes will be interpreted as equality of the corresponding mean and auto-
covariance.

3.2. Transformations of Gauss–Markov processes. Transformations have been very use-
ful for Gauss–Markov processes to determine some properties of first passage times of such
processes through some fixed thresholds, letting them derive from known properties of first
passage times of other processes such as Wiener process or Ornstein–Uhlenbeck process. The
first big result in such context is Doob’s Transformation Theorem [17] which states:

THEOREM 3.3 (Doob’s transformation theorem). Let {G(t), t ≥ t0} be a Gauss–Markov
process with mean mG(t), covariance cG(τ, t) = uG(τ)vG(t) with τ ≤ t and ratio rG(t) =
uG(t)
vG(t)

. Suppose G(t0) = mG(t0) almost surely and consider a standard Wiener process W(t).
Define

ρG,W (t) = κrG(t), ϕG,W (t) = vG(t)√
κ

(3.1)

for an arbitrary constant κ > 0. Then

(3.2) G(t) = mG(t) + ϕG,W (t)W
(
ρG,W (t)

)
.

The constant κ > 0 plays the role of a dimensional constant which can be useful for mod-
elling purposes. In [10] we find another transformation theorem, this time with respect to an
Ornstein–Uhlenbeck process:

THEOREM 3.4. Let {G(t), t ≥ t0} be a Gauss–Markov process with mean mG(t), co-
variance cG(τ, t) = uG(τ)vG(t) with τ ≤ t and ratio rG(t) = uG(t)

vG(t)
. Suppose G(t0) = mG(t0)

almost surely and consider an Ornstein–Uhlenbeck process U(t) solution of

dU(t) = −1

θ
U(t) dt + σ dW(t), U(0) = 0.

Define

ρG,U (t) = θ

2
ln

(
1 + 2κ

θ
rG(t)

)
, ϕG,U (t) = vG(t)

σ
√

κ

√
1 + 2κ

θ
rG(t)(3.3)

for an arbitrary constant κ > 0. Then

(3.4) G(t) = mG(t) + ϕG,U (t)U
(
ρG,U (t)

)
.

Here we propose a more general transformation theorem which involves just two Gauss–
Markov processes:
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THEOREM 3.5. Let {Gi(t), t ≥ 0} be Gauss–Markov processes for i = 1,2 respectively

with mean mGi
(t), covariance cGi

(τ, t) = uGi
(τ )vGi

(t) with τ ≤ t and ratio rGi
(t) = uGi

(t)

vGi
(t)

whose derivative ṙGi
(t) 
= 0 for all t ≥ 0. Suppose Gi(0) = mGi

(0) almost surely and define

ρG1,G2(t) = r−1
G2

(
rG1(t)

)
, ϕG1,G2(t) = vG1(t)

vG2(ρG1,G2(t))
.(3.5)

Then

(3.6) G1(t) = mG1(t) − ϕG1,G2(t)mG2

(
ρG1,G2(t)

) + ϕG1,G2(t)G2
(
ρG1,G2(t)

)
.

REMARK 3.6. One can derive Theorem 3.4 from Theorem 3.5. Indeed one can consider
G1(t) as the GM process G(t) and G2(t) as the Ornstein–Uhlenbeck process U(t) and t0 = 0.
In such case we have mU(t) = 0 and

uU(t) = σθ

2

(
e

t
θ − e− t

θ
)
, vU (t) = σe− t

θ ,

obtaining the ratio

rU (t) = θ

2

(
e

2t
θ − 1

)
with inverse

r−1
U (t) = θ

2
ln

(
1 + 2

θ
t

)
.

Thus, by using the definition in Theorem 3.5, we obtain

(3.7) ρG,U (t) = r−1
U

(
rG(t)

) = θ

2
ln

(
1 + 2

θ
rG(t)

)
,

which is the same function as in Theorem 3.4 for κ = 1. Moreover we have

vU

(
ρG,U (t)

) = σ√
1 + 2

θ
rG(t)

and then, by still using the definition in Theorem 3.5, we obtain

(3.8) ϕG,U (t) = vG(t)

vU (ρG,U (t))
= vG(t)

σ

√
1 + 2

θ
rG(t),

which is the same function as in Theorem 3.4 for κ = 1. Finally, substituting equation (3.7),
(3.8) and mU(t) = 0 in equation (3.6) we obtain equation (3.4).

3.3. First passage time densities and transformation formulas. As one wants to study
the first passage time density of a GM process G(t) through a C2 threshold SG(t), one can
use transformation formulas to connect such density with other first passage time densities.
A well known result in such direction is given in [16].

PROPOSITION 3.7. Let {G(t), t ≥ 0} be a GM process with mean mG(t) and covariance
cG(τ, t) = uG(τ)vG(t) for τ ≤ t and ratio rG(t). Let SG(t) be C2([0,+∞[) and

TG = inf
{
t ≥ 0 : G(t) > SG(t)

}
with density fG(t). Consider W(t) a standard Wiener process and let

SW(t) = SG(r−1
G (t)) − mG(r−1

G (t))

vG(r−1
G (t))
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and

TW = inf
{
t ≥ 0 : W(t) > SW(t)

}
with density fW(t). Then

(3.9) fG(t) = ṙG(t)fW

(
rG(t)

)
.

In [10] an analogue result, deriving from Theorem 3.4, is shown.

PROPOSITION 3.8. Let {G(t), t ≥ 0} be a GM process with mean mG(t) and covariance
cG(τ, t) = uG(τ)vG(t) for τ ≤ t and ratio rG(t). Let also SG(t) be any C2([0,+∞[) function
and

TG = inf
{
t ≥ 0 : G(t) > SG(t)

}
with density fG(t). Consider U(t) an Ornstein–Uhlenbeck process as in Theorem 3.4 and let

SU(t) = SG(ρ−1
G,U (t)) − mG(ρ−1

G,U (t))

ϕG,U (ρ−1
G,U (t))

,

where ρG,U and ϕG,U are defined in Theorem 3.4 and

TU = inf
{
t ≥ 0 : U(t) > SU(t)

}
with density fU(t). Then

(3.10) fG(t) = ρ̇G,U (t)fU

(
ρG,U (t)

)
.

Let us show a more general result.

PROPOSITION 3.9. Let {Gi(t), t ≥ 0} for i = 1,2 be GM processes with mean mGi
(t),

covariance cGi
(τ, t) = uGi

(τ )vGi
(t) for τ ≤ t and ratio rGi

(t). Let also SG1(t) be any
C2([0,+∞[) function and

TG1 = inf
{
t ≥ 0 : G1(t) > SG1(t)

}
with density fG1(t). Set

SG2(t) = SG1(ρ
−1
G1,G2

(t)) − mG1(ρ
−1
G1,G2

(t))

ϕG1,G2(ρ
−1
G1,G2

(t))
+ mG2(t),

where ρG1,G2 and ϕG1,G2 are defined in Theorem 3.5 and

TG2 = inf
{
t ≥ 0 : G2(t) > SG2(t)

}
with density fG2(t). Then

(3.11) fG1(t) = ρ̇G1,G2(t)fG2

(
ρG1,G2(t)

)
.

PROOF. By Theorem 3.5 we know that

(3.12) G1(t) = mG1(t) − ϕG1,G2(t)mG2

(
ρG1,G2(t)

) + ϕG1,G2(t)G2
(
ρG1,G2(t)

)
.

Consider the distribution functions FGi
(t) of TGi

for i = 1,2. Thus we have that:

FG1(t) = P(TG1 ≤ t) = P
({∃τ ≤ t : G1(τ ) > SG1(τ )

})
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and then, by using equation (3.12),

FG1(t) = P

(
∃τ ≤ t : G2

(
ρG1,G2(τ )

)
>

SG1(τ ) − mG1(τ )

ϕG1,G2(τ )
+ mG2

(
ρG1,G2(τ )

))
that is, by definition of SG2(t)

FG1(t) = P
({∃τ ≤ t : G2

(
ρG1,G2(τ )

)
> SG2

(
ρG1,G2(τ )

)})
.

Let us remark that as rGi
is continuous and increasing for i = 1,2, also r−1

G2
is continuous and

increasing and then ρG1,G2 is a continuous increasing function. By the intermediate value
theorem we can write

(3.13) FG1(t) = P
({∃θ ≤ ρG1,G2(t) : G2(θ) > SG2(θ)

}) = FG2

(
ρG1,G2(t)

)
.

Finally, by differentiating equation (3.13) we obtain (3.11). �

3.4. Deducing finite mean conditions. Our final aim in this section is to deduce some
finite mean conditions on first passage times for GM processes by using other GM processes
for which such conditions are known. Let us give a criterion in such direction.

PROPOSITION 3.10. Consider {Gi(t), t ≥ 0} for i = 1,2 as in Proposition 3.9. Suppose
that there exists a constant k ≥ 0 such that

(3.14) inf[k,+∞[ ρ̇G1,G2(t) = α > 0.

Then, if E[TG2] < +∞, we have E[TG1] < +∞.

PROOF. Let us first study some implications of the condition in equation (3.14). For t ≥ k

we have ρ̇G1,G2(t) ≥ α so we have

ρG1,G2(t) − ρG1,G2(k) ≥ α(t − k).

Posing c = ρG1,G2(k) − αk we have

ρG1,G2(t) ≥ αt + c.

Since ρG1,G2 is an increasing function, also ρ−1
G1,G2

is an increasing function and then

t ≥ ρ−1
G1,G2

(αt + c).

Set s = αt + c to obtain t = s−c
α

and then

(3.15) ρ−1
G1,G2

(s) ≤ s − c

α
.

Finally observe that t > k if and only if s > ρG1,G2(k), so we have that equation (3.15) is true
for any s > ρG1,G2(k).

Consider

(3.16) E[TG1] =
∫ +∞

0
tfG1(t) dt =

∫ k

0
tfG1(t) dt +

∫ +∞
k

tfG1(t) dt.

It is easy to see that ∫ k

0
tfG1(t) dt ≤ k

∫ k

0
fG1(t) dt ≤ k < +∞
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so we only have to bound the second integral on the right-hand-side of equation (3.16). To do
that, let us use equation (3.11) to obtain∫ +∞

k
tfG1(t) dt =

∫ +∞
k

t ρ̇G1,G2(t)fG2

(
ρG1,G2(t)

)
dt.

Since ρG1,G2 is a C1-diffeomorphism, we can use a change of variable formula posing s =
ρG1,G2(t) to obtain ∫ +∞

k
tfG1(t) dt =

∫ +∞
ρG1,G2 (k)

ρ−1
G1,G2

(s)fG2(s) ds

and, by equation (3.15) we have

(3.17)
∫ +∞
k

tfG1(t) dt ≤ 1

α

[∫ +∞
ρG1,G2 (k)

sfG2(s) ds − c

∫ +∞
ρG1,G2 (k)

fG2(s)

]
.

But we also have that

0 ≤
∫ +∞
ρG1,G2 (k)

fG2(s) ds ≤ 1

and ∫ +∞
ρG1,G2 (k)

sfG2(s) ds ≤
∫ +∞

0
sfG2(s) ds = E[TG2] < +∞

so, by equation (3.17), we finally obtain∫ +∞
k

tfG1(t) dt < +∞. �

Thanks to this result, one has only to choose a suitable G2 for which finiteness of the mean
of the first passage time is already known. Let us recall a result given in [21] using the form
of [10], Claim 8.

PROPOSITION 3.11. Let U(t) be an Ornstein–Uhlenbeck process defined as solution of

dU(t) = −1

θ
U(t) dt + σ dW(t), U(0) = 0,

where Wt is a Wiener process and θ, σ > 0 are constants. Let SU(t) be a C2 function such
that limt→+∞ SU(t) = SU > 2σ

√
θ . Define

hU = SU

σ
√

πθ
e
− S2

U

σ2θ

and

T = inf
{
t ≥ 0 : U(t) > SU(t)

}
with density fT . Then, as t → +∞

fT (t) ∼ hU

θ
e− hU

θ
t .

By using such proposition one can show the following Corollary.
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COROLLARY 3.12. Let U(t) be an Ornstein–Uhlenbeck process defined as solution of

dU(t) = −1

θ
U(t) dt + σ dW(t), U0 = 0,

where Wt is a standard Wiener process and θ, σ > 0 are constants. Let SU(t) be an upper
bounded function and

T = inf
{
t ≥ 0 : U(t) > SU(t)

}
with density fT . Then E[T ] < +∞.

PROOF. By hypothesis there is a constant M > 2σ
√

θ such that for any t ≥ 0 it is true
that SU(t) ≤ M . Define

T̃ = inf
{
t ≥ 0 : U(t) > M

}
with density f

T̃
. Let us show that T ≤ T̃ almost surely. Fix ω ∈ � and observe that if

U(t,ω) > M then U(t,ω) > SU(t). Then we have that{
t ≥ 0 : U(t,ω) > M

} ⊆ {
t ≥ 0 : U(t,ω) > SU(t)

}
and then, taking the infimum on the sets for any fixed ω ∈ � such that such sets are nonempty,
we obtain

T (ω) ≤ T̃ (ω).

Since this inequality is valid for almost all ω ∈ �, we also have

E[T ] ≤ E[T̃ ].
Now we only need to show that E[T̃ ] < +∞. Since f

T̃
is a density function, it is in

L1([0,+∞[), while the function id(t) = t is in L∞([0, k]) for all k > 0. Thus we have only
to show that t �→ tf

T̃
(t) is integrable in a neighbourhood of +∞. But it is trivial since, by

using Proposition 3.11, we have that for t → +∞, tf
T̃
(t) ∼ hU

θ
te− hU

θ
t which is integrable.

�

Combining such results with Proposition 3.10 we easily obtain the following Corollary.

COROLLARY 3.13. Let G(t) be a GM process and U(t) an Ornstein–Uhlenbeck process
as in Theorem 3.4. Let also SG(t) be a C2([0,+∞[) function and

TG = inf
{
t ≥ 0 : G(t) > SG(t)

}
.

Let

SU(t) = SG(ρ−1
G,U (t)) − mG(ρ−1

G,U (t))

ϕG,U (ρ−1
G,U (t))

.

Then, under the hypotheses:

1. It exists a constant k > 0 such that inf[k,+∞[ ρ̇G,U (t) = α > 0,
2. SU(t) is upper bounded,

we have E[TG] < +∞.
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PROOF. Define

TU = inf
{
t ≥ 0 : U(t) > SU(t)

}
and observe that, by hypothesis 2 and Corollary 3.12, E[TU ] < +∞. Finally, by hypothesis
1, we can use Proposition 3.10 to assure that E[TG] < +∞. �

Another suitable GM process to use for our purposes is the Wiener process with nonzero
drift. Indeed we have

PROPOSITION 3.14. Let Wd(t) = W(t) + dt be a Wiener process whose positive drift is
d > 0, Sd(t) an upper-bounded continuous function with Sd(0) > 0 and define

Td = inf
{
t ≥ 0 : Wd(t) > Sd(t)

}
.

Then E[Td ] < +∞.

PROOF. Let M = supt≥0 Sd(t) > 0 and define

T̃d = inf
{
t ≥ 0 : Wd(t) > M

}
with density f

T̃d
. Let us first show that Td ≤ T̃d almost surely. To do this, fix ω ∈ � and

observe that

Wd(t,ω) > M ⇒ Wd(t,ω) > Sd(t)

so {
t ≥ 0 : Wd(t,ω) > M

} ⊆ {
t ≥ 0 : Wd(t,ω) > Sd(t)

}
thus, taking the infimum on the sets when for ω ∈ � such sets are nonempty, we have

Td(ω) ≤ T̃d(ω).

Since such relation is true for almost all ω ∈ � we also have

E[Td ] ≤ E[T̃d ]
and then we only need to show that E[T̃d ] < +∞. But this is trivial since

f
T̃d

(t) = M√
2πt3

e− (M−dt)2
2t

and then tf
T̃d

(t) is integrable. �

By using Proposition 3.14, Corollary 3.13 holds true even if we use a Wiener process with
positive drift in place of the Ornstein–Uhlenbeck process.

3.5. The asymptotic behaviour at zero. From the Doob’s Transformation Theorem one
can also obtain some results on the asymptotic behaviour of the distribution function of the
first passage time of a Gauss–Markov process through a fixed C2 threshold. The following
result represents a first step in such direction:

PROPOSITION 3.15. Let {G(t), t ≥ 0} be a Gauss–Markov process with mean mG(t),
covariance cG(t, τ ) = uG(τ)vG(t) with τ ≤ t and ratio rG(t) = uG(t)

vG(t)
. Suppose G(0) =

mG(0) almost surely. Let also SG(t) be a C2([0,+∞[) function such that SG(0) > mG(0)

and:

TG = inf
{
t ≥ 0 : G(t) > SG(t)

}
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with distribution function FG(t) = P(TG ≤ t). Thus there are five positive constants
δ,C1,C2,D1,D2 such that for any t ∈ [0, δ] we have

(3.18) C1

∫ rG(t)

0

e−D1
s

s
3
2

ds ≤ FG(t) ≤ C2

∫ rG(t)

0

e−D2
s

s
3
2

ds.

This result can be used to show that under some hypothesis on rG(t) the distribution func-
tion FG(t) does not vary regularly in 0.

To do this, we need the following technical lemma:

LEMMA 3.16. Let C > 0 and ρ : [0,+∞[→ [0,+∞[ be a strictly increasing and dif-
ferentiable (in ]0,+∞[) function such that:

R1 ρ(0) = 0;
R2 There exists a constant l1 > 0 such that

lim
t→0+

ρ(t)

t
= l1;

R3 There exists a constant l2 such that

lim
t→0+

ρ(t) − l1t

t2 = l2.

Consider the function

(3.19) F(t) =
∫ ρ(t)

0
s− 3

2 e−C
s ds.

Then, for some positive constants K1,K2, as t → 0+ we have

(3.20) F(t) ∼ K1t
1
2 e−K2

t .

REMARK 3.17. Hypotheses R1–R3 can be achieved if ρ is a strictly increasing
C2([0,+∞[) function with ρ(0) = 0 and l1 = ρ̇(0) > 0. Hypotheses R1 and R2 are obvi-
ously achieved by such conditions. Moreover, if we consider the Taylor polynomial

p2(t) = t ρ̇(0) + ρ̈(0)

2
t2 = t l1 + ρ̈(0)

2
t2

we know that

lim
t→0+

ρ(t) − p2(t)

t2 = 0

that is to say

lim
t→0+

ρ(t) − l1t

t2 − ρ̈(0)

2
= 0.

Thus, if we set l2 = ρ̈(0)
2 , we obtain hypothesis R3.

The technical lemma we showed before allows us to prove the following:

PROPOSITION 3.18. With the same notation and under the same hypotheses of Proposi-
tion 3.15, if rG(t) satisfies hypotheses R1–R3 of Lemma 3.16, then FG does not vary regularly
in 0.
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PROOF. From Proposition 3.15 we know that there exists five constants δ,C1,D1,C2,D2
such that for any t ∈ [0, δ] we have

C1

∫ rG(t)

0

e−D1
s

s
3
2

ds ≤ FG(t) ≤ C2

∫ rG(t)

0

e−D2
s

s
3
2

ds.

Let

Fi(t) =
∫ rG(t)

0

e−Di
s

s
3
2

ds, i = 1,2

and observe that we can write for t ∈ [0, δ]:
(3.21) C1F1(t) ≤ FG(t) ≤ C2F2(t).

Fix now a > 1 and observe that δ
a

< δ, so that equation (3.21) holds for any t ∈ [0, δ
a
]. Then

for any t ∈ [0, δ
a
] we also have

C1F1(at) ≤ FG(at) ≤ C2F2(at)

and then
FG(at)

FG(t)
≥ C1

C2

F1(at)

F2(t)
.

Since rG(t) satisfies hypotheses R1–R3, then by Lemma 3.16 we can find four constants
K1

1 ,K2
1 ,K1

2 ,K2
2 such that setting:

Hi(t) = Ki
1t

1
2 e−K2

t , i = 1,2

we have

lim
t→0+

Fi(t)

Hi(t)
= 1.

We want to evaluate

(3.22) lim
t→0+

H1(at)

H2(t)
= lim

t→0+
K1

1

K2
1

a
1
2 e

K2
2
t

−K1
2

at .

Remarking that

K2
2

t
− K1

2

at
= 1

at

(
aK2

2 − K1
2
)

one can choose a > max{1,
K1

2
K2

2
} to obtain

lim
t→0+

1

at

(
aK2

2 − K1
2
) = +∞.

Using this result in equation (3.22) we obtain that

lim
t→0+

H1(at)

H2(t)
= +∞.

Thus we can evaluate

lim
t→0+

C1

C2

F1(at)

F2(t)
= lim

t→0+
C1

C2

F1(at)

H1(at)

H2(t)

F2(t)

H1(at)

H2(t)
= +∞

and then by comparison

lim
t→0+

FG(at)

FG(t)
= +∞. �

Actually, we can show that FG(t) rapidly decays at 0+.
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PROPOSITION 3.19. Under the same hypotheses of Proposition 3.18 FG(t) is rapidly
decreasing at 0.

PROOF. With the same notation as in Proposition 3.18 let us consider the functions F1
and F2 such that for t ∈ [0, δ]

C1F1(t) ≤ FG(t) ≤ C2F2(t)

and fix α > 0. Observe that

(3.23) C1
F1(t)

tα
≤ FG(t)

tα
≤ C2

F2(t)

tα

and define Hi for i = 1,2 as in Proposition 3.19. Let us first observe that

lim
t→0+

Hi(t)

tα
= lim

t→0+ Ki
1t

1
2 −αe−Ki

2
t = 0

and then we have

lim
t→0+

Fi(t)

tα
= lim

t→0+
Fi(t)

Hi(t)

Hi(t)

tα
= 0.

Finally, by using the comparison theorem in equation (3.23) we easily have that
limt→0+ FG(t)

tα
= 0. �

4. A neuronal model. In this section we focus on an application of the results in Sec-
tions 2 and 3 to obtain a model for the membrane potential of a neuron such that its firing
times have some particular properties. Let us recall the Leaky Integrate-and-Fire (LIF for
short) model introduced by Lapique in 1907 (see [2]) in its stochastic version (see, for in-
stance, [22]). Denote with V (t) the membrane potential of a neuron at time t , θ > 0 the char-
acteristic time of the membrane, V̂ ∈ R the resting potential, I (t) a function representing the
external stimulus and σ > 0 a positive constant. Then V (t) solves the following stochastic
differential equation (SDE):

(4.1) dV (t) =
(
−1

θ

(
V (t) − V̂

) + I (t)

)
dt + σ dW(t), t > 0 =: T0.

First let us observe that if I (t) ≡ 0, then E
x[V (t)] → V̂ , hence the name resting potential.

Moreover, let us consider a reset condition. Suppose we restarted the process from a reset
position Vreset at time Tn−1 for the n − 1th time and fix a threshold Vth > Vreset. Define

(4.2) Tn := inf
{
t ≥ Tn−1 : V (t) ≥ Vth

}
, n ≥ 1,

where T0 = 0. Then let V (Tn−) = Vth and V (Tn) = Vreset and thus we reset the SDE. This
random time Tn is called nth spike time and the random time Tn − Tn−1 is called inter-
spike interval (ISI for short). By definition, ISIs are supposed to be independent and identical
distributed, which is a common assumption (see, for instance, [50]). From now on, let us fix
the initial datum V (0) = V0 ∈ R with V0 < Vth. An example of sample path of such process
can be seen in Figure 1 on the left.

Since V0 is fixed and I (t) is a deterministic function, the process V (t) without the reset
mechanism is a Gaussian process with mean

(4.3) mV (t) = (
1 − e− t

θ
)
V̂ + e− t

θ V0 + e− t
θ

∫ t

0
e

s
θ I (s) ds

and covariance

(4.4) cV (τ, t) = uV (τ)vV (t),
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FIG. 1. Simulation of the neuronal model. On the left, a sample path of V (t). On the right, the respective sample
of Vα(t) := V (L(t)). In particular, we setted I (t) ≡ I0 = 6, σ = 1, V0 = V̂ = Vreset = 0, θ = 20, Vth = 20,
α = 0.75. Time steps for the simulation are �t = 0.01 and �y = 0.01.

where

uV (t) = σθ

2

(
e

t
θ − e− t

θ
)
, vV (t) = σe− t

θ ,(4.5)

which is the same covariance of an Ornstein–Uhlenbeck process. In particular the ratio is
given by

(4.6) rV (t) = θ

2

(
e

2t
θ − 1

)
.

If we consider an Ornstein–Uhlenbeck process as a solution of

(4.7) dU(t) = −1

θ
U(t) dt + σ dW(t), U(0) = 0

then we have from equation (3.3)

ρV,U (t) = t, ϕV,U (t) = 1.(4.8)

Moreover, if we define

(4.9) SU(t) = Vth − (
1 − e− t

θ
)
V̂ − e− t

θ V0 − e− t
θ

∫ t

0
e

s
θ I (s) ds

and

T1 := inf
{
t ≥ 0 : V (t) ≥ Vth

}
,(4.10)

TU := inf
{
t ≥ 0 : U(t) ≥ SU(t)

}
(4.11)

respectively with probability density functions fT1(t) and fU(t) we have by Proposition 3.8

(4.12) fT1(t) = fU(t).

Moreover, if we denote with fISI(t) the probability density function of an ISI, if V0 = V̂ =
Vreset, then fT1(t) = fISI(t).

Finally, by Corollary 3.13, we obtain that if there exists a constant K ∈ R such that

(4.13) e− t
θ

∫ t

0
e

s
θ I (s) ds > K

and I (t) is a C1 function then E[T1] < +∞. Let us observe that such hypothesis is not
unrealistic: indeed it is satisfied, for instance, by any constant or excitatory stimulus.

However, in [20] it has been shown that the exponential-like behaviour of the tails of T1
is not sufficient to describe the ISI distribution. In particular, the authors refer to the fact
that stable distributions for the ISI could be much more realistic then exponential ones. Two
of the main features that lead the authors to consider stable distributions, together with the
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invariance under affine transformation, are the fact that the ISIs seemed to have an heavy-
tail behaviour and that such behaviour is confirmed by the fact that their sample mean does
not converge. Thus, we will now propose a modification of the LIF model that produces
heavy-tailed ISIs. The idea is to consider a time-changed LIF model, in order to produce
semi-Markov dynamics for the membrane potential. Semi-Markov models for theoretical
neuroscience are not unrealistic and have already been considered (see, for instance, [[50],
Section 10.10]).

Let us consider an α-stable subordinator σα(t) and its inverse Lα(t). Thus, let us define
the process Vα(t) := V (Lα(t)) (an example of its sample path is given in Figure 1 on the
right) and denote with Tα the random variable that represents the duration of an ISI. In
particular, let us suppose that V0 = V̂ = Vreset, so that the first passage time of the nonrestarted
process Vα(t) represents such random variable. Thus, if condition 4.13 is satisfied, since
C := E[T1] < +∞, we have, by Corollary 2.3, that

(4.14) P(Tα > t) ∼ C

tα�(1 − α)
as t → +∞

so that the ISIs show an heavy-tailed behaviour. Moreover, recalling that rV (t) is given in
equation (4.6) and it is a C2 function such that rV (0) = 0 and mV (0) = V̂ < Vth, then we
have, from Proposition 3.19, that the probability density function fT1 of T1 is rapidly de-
creasing at 0+. Now, it is easy to see that since the Lévy measure of a stable subordinator
of exponent α is given by να(dy) = y−α−1 dy, if P(T1 ≤ t) is infinitely differentiable, then,
by Proposition 2.9, we know that P(Tα ≤ t) is infinitely differentiable. Moreover, if all the
derivatives of P(T1 ≤ t) and P(Tα ≤ t) are of exponential order, then, by Theorem 2.16, also
the probability density function fT of T is rapidly decreasing at 0+. This is a physiological
acceptable property, since we do not expect the neuron to fire almost instantaneously. This
behaviour is evident in Figure 2. In particular on the left one can see the different tails of Tα

for different values of α, while on the right one can see a comparison with the tails of T1. One
could also take into account the process N(t), which is the number of spikes of the neuron
up to the time t before the time change. It is a renewal process whose inter-jump times are
i.i.d. random variables distributed as the first passage time T of V (t) through the threshold
Vth. It is well known (see for instance [10]) that if the stimulus is constant, P(T < t) asymp-
totically behaves as an exponential, hence, for big jumps, N(t) is similar to a Poisson process
P(t). If we consider the time changed process Vα(t) with its counting process Nα(t), then we
can observe that Nα(t) = N(Lα(t)). Moreover, by using Proposition 2.4, we know that the
inter-jump times T are such that P(T < t) asymptotically behaves as a Mittag–Leffler. Hence
we could ask if we can approximate the process Nα(t) with a fractional Poisson process
Pα(t) = P(Lα(t)). However, if we consider the asymptotic behaviour at 0+ of P(T < t), we
have that, since P(T < t) is rapidly decreasing at 0+ (by Prop. 3.19), also P(T < t) is rapidly

FIG. 2. Simulation of the neuronal model. On the left the function P(Tα > t) for different values of α. On the
right, the same plot zoomed in [0,4], where the dashed line is the plot of the simulated function P(T1 > t). We fixed
I (t) ≡ I0 = 6, σ = 1, V0 = V̂ = Vreset = 0, θ = 20 and Vth = 20. Time steps for the simulation are �t = 0.01
and �y = 0.01 and P(Tα > t) is estimated by simulating 10,000 trajectories.
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decreasing at 0+ (by Thm. 2.16) while the inter-jump times J of a fractional Poisson process
are such that P(J < t) are regularly varying at 0+. Hence the approximation of the counting
process Nα(t) with a fractional Poisson process works well for big values of the inter-jump
times, while fails for small values of such times.

5. Simulation results. We provide in this section some techinques of stochastic simula-
tion which may be used to verify the model. For this we refer to Example 2.1. Hence we first
simulate the process Wδ(t) = W(t) + δt . It is well known (see, for instance, [4]) that such
process (with initial datum Wδ(0) = 0) can be simulated by using a recursive scheme. Indeed,
denoting with W̃δ the simulated process, if we consider a time step �t , setting tn = n�t for
n ∈N, we have

(5.1)

{
W̃δ(0) = 0,

W̃δ(tn) = Wδ(tn−1) + δ�t + √
�tZn, n ∈ N,

where Zn ∼ N (0,1) are independent and we set

(5.2) W̃δ(t) = W̃δ(tn−1) ∀t ∈ [tn−1, tn).

To produce a time-changed Brownian motion with drift, we need then to simulate an inverse
subordinator. Even in this case, if we can simulate a subordinator σ , then we can proceed with
a recursive formula. Indeed, let us denote with σ̃ and L̃ respectively the simulated subordina-
tor and the simulated inverse subordinator. Suppose σ̃ has (discrete) state space �̃ ⊂ [0,+∞)

and the time step of such process is �y. Fix the time step for L̃ as �t := min(x,y)∈�̃2 |x − y|
and denote ym = m�y for m ∈ N and tn = n�t for n ∈ N. Suppose we have simulated
L̃(tn−1) and consider M ∈N such that yM = L̃(tn−1). Then we can simulate

(5.3) L̃(tn) = min
{
ym ≥ yM : σ̃ (ym) ≥ tn

}
.

Now we need to establish how to simulate σ . First let us observe that for any �y we have

σ(y + �y) − σ(y)
d= σ(�y). Thus we have the recursive formula

(5.4)

{
σ̃ (0) = 0,

σ̃ (ym) = σ̃ (ym−1) + σ(�y).

Finally, we need simulate σ(�y). For this first fix a Laplace exponent f . Thus we also know
the Laplace transform of the variable σ(�y) given by g(λ) = e−�yf (λ). Thus we have to
simulate a random variable only knowing its Laplace transform. In such case, some simula-
tion algorithms are given in [14, 15] and compared in [44]. Some of these methods require a
numerical inversion of the Laplace transform, whose algorithms are discussed, for instance,
in [1].

However, if σ(t) is an α-stable subordinator, one can use an ad-hoc simulation algorithm.

In particular one has σ(t)
d= t

1
α σ (1), thus one has only to simulate a skew-symmetric α-

stable random variable σ(1). For stable random variables S ∼ S(α,β, γ, δ;1) (here we use
the notation in [38]), one has a particular algorithm. First (see, for instance, [4]) for a variable
S ∼ S(α,0,1,0;1) we have that if Y1 ∼ Exp(1) and Y2 ∼ U(−π

2 , π
2 ), then

(5.5) S
d= sin(αY2)

(cos(Y2))
1
α

(
cos((1 − α)Y2)

Y1

) 1−α
α

while for a general S ∼ S(α,β, γ, δ;1), if S1, S2 ∼ S(α,0,1,0;1), then

(5.6) S
d= δ + γ

(
1 + β

2

) 1
α

S1 − γ

(
1 − β

2

) 1
α

S2.
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To obtain a positive stable random variable (see, for instance, [33]), we have to set S ∼
S(α,1, γ (α),0;1) where

(5.7) γ (α) =
(

cos
(

πα

2

)) 1
α

.

However, to simulate stable random variables, we used the R package stabledist (see [51]).
Thus, since we can simulate Wδ(t) and L(t), we know how to simulate Xf (t) = Wδ(L(t))

just by composing the simulation formulas (see, for instance, [[33], Example 5.21]). The
same can be done for the standard Brownian motion W(t) by setting δ = 0.

For the first numerical experiment, we choose an α-stable subordinator for α = 0.75, setted
the drift coefficient δ = 1 and considered as open set S = (−∞,1). We can see in Figure 3
on the left how the curves overlap. Denoting with T1 the first exit time of X

f
1 (t) := W1(L(t))

from S , since for the Brownian motion with drift we have that P(T1 > t) should have a power
law decay, it could be interesting to study the convergence of

RL1(t) := log(P(T1 > t)) + log(�(1 − α))

log(t)

as t → +∞. Moreover, let us study also the convergence of

R1(t) := P(T1 > t)

A1(t)
,

where

A1(t) := t−α

�(1 − α)
.

In Table 1 these values are shown for t = 25,50,75: we can see that RL1(t) tends to −0.75
and R1(t) tends to 1. For t = 75, we have that only 110 trajectories of our 10,000 simulated
ones are such that T1 > t , so, since it is almost 1% of the trajectories, we can consider bigger
values unreliable. The same numerical experiment has been repeated with δ = 0, obtaining
the plot in Figure 3 on the right. Denoting with T2 the first exit time of X

f
2 (t) := W(L(t)),

let us consider the function

R2(t) := P(T2 > t)

A2(t)
,

FIG. 3. Numerical experiments. On the left: the curve in black is the plot of the simulated tail function P(T1 > t)

for the first exit time T1 of a time-changed Brownian motion with drift Xf (t) := Wδ(L(t)) (where L(t) is the
inverse of an α-stable subordinator) from an open set S = (−∞, c), while the red line is the asymptotic estimate

c
δtα�(1−α)

. On the right: the curve in black is the plot of the simulated tail function P(T2 > t) for the first exit

time T2 of a time-changed Brownian motion Xf (t) := W(L(t)) from the same open set S , while the red line is

the asymptotic estimate 1
�(1− α

2 )
[1 − e−c

√
2t−α ]. In particular c = 1, δ = 1 and α = 0.75. The simulation steps

are �t = �y = 0.01 and the estimate of P(Ti > t), i = 1,2 has been done with 10,000 trajectories.
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TABLE 1
Values of the function RL1(t), R1(t) and R2(t)

t 25 50 75

RL1(t) −0.7084494 −0.7326317 −0.7462296
R1(t) 1.14276 1.070146 1.01631
R2(t) 1.233939 1.220551 1.20361

where

A2(t) = 1

�(1 − α
2 )

[
1 − e−√

2t−α ]
,

whose values for t = 25,50,75 are shown in Table 1. Here, convergence is slower, since for
t = 75 we have 2050 trajectories such that T2 > t , which is still a big number. We have also
R2(100) = 1.168963 which is nearer to 1, and for t = 100 we have still 1812 trajectories such
that T2 > t .

APPENDIX: PROOFS OF SOME AUXILIARY RESULTS

A.1. Proof of Theorem 3.5. By using Doob’s Transformation Theorem there is a Wiener
process W(t) such that

(A.1) Gi(t) = mGi
(t) + vGi

(t)W
(
rGi

(t)
)
, i = 1,2.

Then, considering the previous equation for i = 2 we have

(A.2) W
(
rG2(t)

) = G2(t) − mG2(t)

vG2(t)
.

Since rG2(t) is continuous and strictly increasing, it is invertible; moreover, since ṙG2(t) 
= 0
for all t ≥ 0, r−1

G2
is a C1 function. From equation (A.2) we have

W(t) = G2(r
−1
G2

(t)) − mG2(r
−1
G2

(t))

vG2(r
−1
G2

(t))

and then, by definition of ρG1,G2(t)

(A.3) W
(
rG1(t)

) = G2(ρG1,G2(t)) − mG2(ρG1,G2(t))

vG2(ρG1,G2(t))
.

Finally, by substituting equation (A.3) in (A.1) for i = 1 we obtain

G1(t) = mG1(t) − vG1(t)mG2(ρG1,G2(t))

vG2(ρG1,G2(t))

+ vG1(t)

vG2(ρG1,G2(t))
G2

(
ρG1,G2(t)

)(A.4)

that is equation (3.6) by definition of ϕG1,G2(t).

A.2. Proof of Proposition 3.15. Let us suppose for the sake of simplicity that vG(0) > 0.
Consider a Wiener process W(t) and define

SW(t) = SG(t) − mG(t)

vG(t)
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remarking that SW(0) > 0 and SW(t) is a continuous function in [0,+∞). Let us fix α such
that 0 < α < SW(0). Since SW is a continuous function there exists a δ > 0 such that SW(t) >

α > 0 for any t ∈ [0, δ]. Now define

S̃W (t) = SW

(
r−1
G (t)

)
and

TW = inf
{
t > 0 W(t) > SW(t)

}
with probability density function fW(t) and distribution function FW(t). Consider fG(t) the
probability density function of TG. Thus by Proposition 3.7 we have

fG(t) = ṙG(t)fW

(
rG(t)

)
and then by integrating

FG(t) =
∫ t

0
fG(s) ds =

∫ t

0
ṙG(s)fW

(
rG(s)

)
ds.

By using the change of variable z = rG(s) we obtain

(A.5) FG(t) =
∫ t

0
fG(s) ds =

∫ rG(t)

0
fW(z) dz = FW

(
rG(t)

)
.

Since rG is continuous and strictly increasing in [0, δ] then r−1
G is continuous (see for instance

[19]) and strictly increasing in [0, rG(δ)]. Thus we have that S̃W (t) is a continuous function
in [0, rG(δ)]. Moreover, since r−1

G (0) = 0, then S̃W (0) = SW(0) > 0 and, by definition of δ,
S̃W (t) > α > 0 for any t ∈ [0, rG(δ)]. Let us define

Smin = min[0,rG(δ)] S̃W (t), Smax = max[0,rG(δ)] S̃W (t)

and

T min
W = inf

{
t > 0 : W(t) > Smin

}
, T max

W = inf
{
t > 0 : W(t) > Smax

}
,

respectively with distribution functions Fmin(t) and Fmax(t). By definition of Smin and Smax
we have

T min
W ∧ rG(δ) ≤ TW ∧ rG(δ) ≤ T max

W ∧ rG(δ)

and thus, defining F̃min(t), F̃W (t), F̃max(t) the distribution functions respectively of T min
W ∧

rG(δ), TW ∧ rG(δ) and T max
W ∧ rG(δ) we have

F̃max(t) ≤ F̃W (t) ≤ F̃min(t).

For t ≤ rG(δ) we have

F̃W (t) = P
(
TW ∧ rG(δ) ≤ t

) = P(TW ≤ t) = FW(t)

and in a similar way we have F̃max(t) = Fmax(t) and F̃min(t) = Fmin(t). Thus we obtain for
any t ∈ [0, rG(δ)]

Fmax(t) ≤ FW(t) ≤ Fmin(t).

For this reason we have for any t ∈ [0, δ]
Fmax

(
rG(t)

) ≤ FW

(
rG(t)

) ≤ Fmin
(
rG(t)

)
and then, by using equation (A.5),

Fmax
(
rG(t)

) ≤ FG(t) ≤ Fmin
(
rG(t)

)
.



1160 G. ASCIONE, E. PIROZZI AND B. TOALDO

But since S̃W (t) > α > 0 for any t ∈ [0, rG(δ)], Smax ≥ Smin > α > 0 and then we have

Fmax
(
rG(t)

) = Smax√
2π

∫ rG(t)

0

e− S2
max
2s

s
3
2

ds,

Fmin
(
rG(t)

) = Smin√
2π

∫ rG(t)

0

e− S2
min
2s

s
3
2

ds.

Finally, setting

C1 = Smax√
2π

, D1 = S2
max

2
,

C2 = Smin√
2π

, D2 = S2
min

2

we obtain equation (3.18).

A.3. Proof of Lemma 3.16. Let us remark that by definition F is a differentiable func-
tion with derivative

f (t) = ρ̇(t)
(
ρ(t)

)− 3
2 e

− C
ρ(t) .

Let us define for some constant C̃

g(t) = C̃t−
3
2 e

− C
l1t .

We want to find a constant C̃ such that

lim
t→0+

f (t)

g(t)
= 1

that is to say

(A.6) lim
t→0+

1

C̃
ρ̇(t)

(
ρ(t)

t

)− 3
2
e
C( 1

l1t
− 1

ρ(t)
) = 1.

To do this, let us first observe that by hypotheses R1 and R2

(A.7) l1 = lim
t→0+

ρ(t)

t
= lim

t→0+ ρ̇(t).

Moreover, we have

1

l1t
− 1

ρ(t)
= ρ(t) − l1t

l1tρ(t)
= ρ(t) − l1t

t2

t

ρ(t)

1

l1

and then by hypotheses R2 and R3 we have

(A.8) lim
t→0+

1

l1t
− 1

ρ(t)
= l2

l2
1

.

Using equations (A.7) and (A.8) in equation (A.6) we obtain

lim
t→0+

f (t)

g(t)
= l

− 1
2

1 e

Cl2
l21

C̃

and thus we have the condition

C̃ = l
− 1

2
1 e

Cl2
l21 > 0.
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Now let us define for some constants K1,K2

H(t) = K1t
1
2 e−K2

t

with derivative

h(t) = K1e
−K2

t

(
t− 1

2

2
+ K2t

− 3
2

)
.

Firstly let K2 = C
l1

> 0 and observe that with such position we can write

g(t) = C̃t−
3
2 e−K2

t .

We want to find K1 such that

lim
t→0+

g(t)

h(t)
= 1.

In this case we have

1 = lim
t→0+

g(t)

h(t)
= lim

t→0+
C̃

K1(
t
2 + K2)

= C̃

K1K2

and then we obtain the condition

K1 = C̃

K2
> 0.

Finally let us observe that

lim
t→0+ F(t) = 0 = lim

t→0+ H(t)

and then by using l’Hopital’s rule we have

lim
t→0+

F(t)

H(t)
= lim

t→0+
f (t)

h(t)
= lim

t→0+
f (t)

g(t)

g(t)

h(t)
= 1.
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