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We study a system of random walks, known as the frog model, starting
from a profile of independent Poisson(λ) particles per site, with one addi-
tional active particle planted at some vertex o of a finite connected simple
graph G= (V,E). Initially, only the particles occupying o are active. Active
particles perform t ∈ N ∪ {∞} steps of the walk they picked before vanish-
ing and activate all inactive particles they hit. This system is often taken as a
model for the spread of an epidemic over a population. Let Rt be the set of
vertices which are visited by the process, when active particles vanish after t

steps. We study the susceptibility of the process on the underlying graph, de-
fined as the random quantity S(G) := inf{t :Rt = V } (essentially, the short-
est particles’ lifespan required for the entire population to get infected). We
consider the cases that the underlying graph is either a regular expander or
a d-dimensional torus of side length n (for all d ≥ 1) Td (n) and determine
the asymptotic behavior of S up to a constant factor. In fact, throughout we
allow the particle density λ to depend on n and for d ≥ 2 we determine the
asymptotic behavior of S(Td (n)) up to smaller order terms for a wide range
of λ= λn.
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1. Introduction. We study a system of branching random walks known as the frog
model. The model is often interpreted as a model for a spread of an epidemic or a rumor.
The frog model on infinite graphs received much attention, for example, [4, 5, 25–27, 33, 38,
43]. As we soon explain in more detail, the focus of this work is to study a natural quantity
associated with the frog model on finite graphs, called the susceptibility, which in the afore-
mentioned interpretation of the model is meant to capture “how interesting should a rumor
be, so that eventually everybody will hear it.”

Most of the existing literature on the model is focused on the case that the underlying
graph on which the particles perform their random walks is Zd for some d ≥ 1, for example,
[4, 5, 38, 40] (in [16, 17, 20, 21, 41] the case that the particles preform walks with a drift is
considered). Beyond the Euclidean setup, there has been much interest in understanding the
behavior of the model in the case that the underlying graph is an infinite d-ary tree, [25–27].
To the best of the authors’ knowledge, the only existing papers concerning the model on finite
graphs are [23, 26, 39], whose main concerns are the frog model on cycle graphs, complete
graphs and regular trees.

This paper is closely related to [23] (see Section 3.2) and also to a paper by the first
and third authors about the intimately related random walks social network model (see Sec-
tion 3.3). In this paper, we study the model in the case that the underlying graph G= (V ,E)

is some finite connected simple undirected graph. More specifically, we focus mainly on the
cases that G is a d-dimensional torus (d ≥ 1) of side length n or a regular expander.

The frog model on G with density λ can be described as follows. Initially, there are Pois(λ)
particles at each vertex of G, independently (where Pois(λ) is the Poisson distribution of
mean λ). A site of G is singled out and called its origin, denoted by o. An additional particle,
denoted by wplant, is planted at o. This is done in order to ensure that the process does not
instantly die out. Initially, each particle independently “picks” an infinite trajectory, which
is distributed as a discrete-time simple random walk (SRW) on G started at the particle’s
initial position. All particles are inactive (sleeping) at time zero, except for those occupying
the origin. Each active particle performs the first τ steps of the walk it picked (for some τ ∈
N∪ {∞}) on the vertices of G (i.e., for τ steps, at each step it moves to a random neighbor of
its current position, chosen from the uniform distribution over the neighbor set) after which it
cannot become reactivated (one may consider that they vanish). We refer to τ as the particles’
lifetime. Up to the time a particle dies (i.e., during the τ steps of its walk), it activates all
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sleeping particles it hits along its way. From the moment an inactive particle is activated, it
performs the same dynamics over its lifespan τ , independently of everything else (i.e., there
is no interaction between active particles). We denote the corresponding probability measure
by Pλ.

Note that (in contrast to the setup in which G is infinite) a.s. there exists a finite minimal
lifespan τ (which is a function of the initial configuration of the particles and the walks they
pick) for which every vertex is visited by an active particle before the process “dies out.”
We define this lifespan as S(G), the susceptibility of G. A more explicit definition of the
susceptibility is given in (3.8).

The name frog model was coined in 1996 by Rick Durrett. It is a particular case of the
A+B → 2B family of models (see Section 3.3). Like other models in this family (e.g., [30,
32, 34]), it is often motivated as a model for the spread of a rumor or infection. Keeping
this interpretation in mind, the susceptibility is indeed a natural quantity. It is essentially the
minimal lifespan τ of a virus (more precisely, of an individual infected by a virus), sufficient
for wiping out the entire population. In this interpretation, the more likely S(G) is to be large,
the less susceptible the population is.

1.1. Organization of the paper. The paper is organized as follows. In Section 2, we
present our main results and some conjectures that we believe may drive future research
in this subject. In Section 3, we introduce some notation necessary for a formal construction
of the model, present a concise introduction to the topic of the frog model on finite graphs,
introduce some related models and examples and state some additional conjectures. In Sec-
tion 4, we prove Theorem 1. In Section 6, we prove results concerning the cover time by
multiple walks and explain how they imply lower bounds on the susceptibility. In Section 5,
we present some auxiliary results concerning percolation and simple random walks which
are handy for the proofs of the Theorems 2 and 3, which are delivered in Sections 7–8.

2. Main results and conjectures. Below we list our main results. In Theorems 1 and 3,
we present bounds on S with explicit estimates for the probability the bounds fail, which are
valid for fixed graph size n and particle density λ. In particular, we allow both λ= λn and λ−1

to diverge as n→∞. It is natural to allow the particle density to vary for multiple reasons.
One reason is that a priori it is plausible that the susceptibility exhibits a phase transition
when λ is scaled in some appropriate manner. Another, is that in the our Theorem 2 we relate
the susceptibility of the frog model with density λn to the cover-time of the graph by 	λnn

d

independent particles, each starting at a vertex chosen uniformly at random, independently.
In the setup of the cover-time by multiple independent random walks, there is no particular
regime (of number of walks) that appears more interesting than others, and there is no reason
to restrict to the case the number of walks is comparable to the number of vertices.

It is interesting to note that for each family of graphs considered in this paper, the suscep-
tibility exhibits some fixed scaling as a function of the graph size and particle density (with a
polynomial dependence on logn and λ−1) throughout the considered regimes (i.e., the sparse,
dense and “hyperdense” regimes: λn = o(1), λ := �(1) and λn � 1, resp.; see Section 3.4
for our (standard) usage of asymptotic notation). In particular, the susceptibility does not ex-
hibit a phase transition. This is in sharp contrast with the notion of the cover time for the
frog model, for which recently Hoffman, Johnson and Junge established a phase transition
for finite d-ary trees [26].

2.1. Tori. We denote the n-cycle graph by Cn. This is a graph on n vertices containing a
single cycle through all vertices. The next theorem asserts that as long as λnn� 1 the suscep-
tibility of Cn corresponding to particle density λn is w.h.p. (i.e., with probability tending to 1
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as n→∞, see Section 3.4 for a precise definition) �(λ−2
n log2(λnn)) (equation (2.2) covers

only some of this range, but when valid offers a better bound than (2.3) on the probability
that S(Cn) is unusually small).

THEOREM 1. Let tλ,n := ( 1
λ

log(λn))2. There exist some positive absolute constants c,
c0, c1, c2, C1, C2 such that the following hold:

∀λ≥ 2/n, Pλ

[
S(Cn) > C1tλ,n

]≤ C2 exp
[−c0 log2/3(λn)

]
,(2.1)

∀ε ∈ (0,1], λ≥ n−
1−ε

2 ,

Pλ

[
S(Cn) < c1ε

2λ−2 log2 n
]≤ exp

[−c2ε
−2nε/3],(2.2)

∀λ > 0, Pλ

[
S(Cn) < ctλ,n

]≤ 4 exp
[
− n2

32tλ,n

]
+ (λn)−1/4.(2.3)

We denote the d-dimensional torus of side length n by Td(n). This is the Cayley graph of
(Z/nZ)d obtained by connecting each x, y ∈ (Z/nZ)d which disagree only in one coordinate,
by ±1 mod n. Let (Sn)

∞
n=0 be SRW on Zd . Let

(2.4) ρ(d) := Px

[
T +x =∞

]
, where T +x := inf{n > 0 : Sn = x}.

The following theorem essentially asserts that for particle density λ which does not
vanish nor diverge too rapidly as a function of n, w.h.p. we have that S(T2(n)) =
(1 ± o(1))f (n,λ) and that S(Td(n)) = (1 ± o(1)) d

λρ(d)
logn for d ≥ 3, where f (n,λ) :=

2
π
λ−1 logn log(λ−1 logn).

THEOREM 2.

(i) Let λ= λn. Assume that n−δn � λ� logn for some δn = o(1) such that δn � 1
logn

. Let

f (n,λ) := 2
π
λ−1 logn log(λ−1 logn). Then for every ε > 0

lim
n→∞Pλ

[∣∣∣∣ S(T2(n))

Eλ[S(T2(n))] − 1
∣∣∣∣> ε

]
= 0.(2.5)

Eλ

[
S
(
T2(n)

)]= (
1± o(1)

)
f (n,λ).(2.6)

Moreover, if logn� λn2 � n2 logn then for every fixed ε > 0

(2.7) lim
n→∞Pλ

[
1

16
≤ S(T2(n))

f (n,λ)
< 1+ ε

]
= 0.

(ii) Let d ≥ 3. Let λ= λn. Assume that logn� λnd � nd logn. Then for every ε > 0,

lim
n→∞Pλ

[∣∣∣∣ S(Td(n))

Eλ[S(Td(n))] − 1
∣∣∣∣> ε

]
= 0.(2.8)

Eλ

[
S
(
Td(n)

)]= (
1± o(1)

) d

λρ(d)
logn.(2.9)

Let G= (V ,E) be a finite connected graph. Consider the cover time of G by m particles
performing simultaneously independent SRWs, each starting at a random initial position cho-
sen uniformly at random independently, where the cover time is defined as the first time by
which every vertex is visited by at least one of the particles (see (6.1) for a formal definition).
Denote it by D(G,m). The bounds from Theorem 2 have a natural interpretation. Namely,
in Section 6.2 we show that for d ≥ 2 if logn� m = mn � nd logn, then D(Td(n),m) is
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concentrated around f (n,m/n2) = 2n2

πm
logn log(n2

m
logn) for d = 2 and around dnd

mρ(d)
logn

for d ≥ 3.
It is not hard to show that this implies the corresponding lower bounds on the susceptibility

by substituting m= λnd (this is done in Section 6.1). It is interesting to note that for d ≥ 3
the cover time of a single particle is up to smaller order terms dnd

ρ(d)
logn. Hence for d ≥ 3

the “speed-up” to the cover time by having mn particles (each starting from stationarity)
compared to the cover time by a single particle is (1± o(1))m.

It is substantially harder to show that the susceptibility can be bounded from above in
terms of the cover time (by a corresponding number of particles). This is done in Section 7.
We conjecture that an analog of the above relation between the susceptibility and the cover
time by multiple random walks holds for all vertex-transitive graphs, and that both can be
understood in terms of the decay of the return probability SRW. See Conjecture 2.6 for a
precise statement, which also provide some insights about the dependence in our results of
the susceptibility on the particle density and the number of sites.

REMARK 2.1. Let G = (V ,E) be a connected d-regular graph. It is not hard to verify
that P(1+δ)d log |V |[S(G) > 1] ≤ |V |−δ and also that for all δ > 0 and d ≥ 2 we have that
P(2d+δ) logn[S(Td(n)) > 1] ≤ Cn−δ/2. For details, see Section A.1. Thus there is little harm
in our assumption that λ� logn in Theorem 2 and that λ≤ 1

2 logn in Theorem 3 below.

2.2. Expanders. We denote by γ (G) the spectral-gap of SRW on G, defined as the sec-
ond smallest eigenvalue of I − P , where P is the transition matrix of SRW on G and I is
the identity matrix. We say that a sequence of graphs Gn = (Vn,En) is an expander family if
infn γ (Gn) > 0 and |Vn| →∞. We say that a graph G is a γ -expander if γ (G)≥ γ .

Our next theorem essentially states that the susceptibility of an n-vertex regular γ -
expander in the Pois(λ) frog model is w.h.p. O(

logn
λγ

).

THEOREM 3. There exist absolute constants c, c′,C,C′ > 0 and some δn = o(1) such
that for every n≥ C′ and γ ∈ (0,2], for every regular n-vertex γ -expander G= (V ,E), we
have

(2.10) Pλ

[
S(G) > Cλ−1γ−1 logn

]≤
⎧⎪⎨⎪⎩e−c

√
logn if λ ∈

[
Cn−1 logn,

1

2
logn

]
,

δn if 1/n� λ≤ Cn−1 logn],
where this holds uniformly for all possible choices of the origin o.

REMARK 2.2. Note that neither γ nor λ are assumed to be bounded away from 0. We
note that when γ is bounded away from 0, Theorem A offers a lower bound on S(G), match-
ing up to constants.

REMARK 2.3. The term γ−1 in (2.10) can easily be replaced by γ−1/2. The origin of
this term follows from the estimate

∑∞
t=0(P

t
L(x, x)− 1

|V |)�
∑	1/γ 


t=0 (P t
L(x, x)− 1

|V |)≤ 2/γ ,

where PL := 1
2(I + P) is the transition matrix of lazy SRW. However, using the fact

that for regular graphs P t
L(x, x) − 1

|V | �
1√
t+1

(e.g., [12]) one has the stronger inequality∑	1/γ 

t=0 (P t

L(x, x)− 1
|V |)�

1√
γ

.

Note that in the statement of Theorem 3, the (common) degree of the vertices plays no
role. The argument which allows us to avoid degree dependence in (2.10) involves a use of
a maximal inequality. We believe the usage of maximal inequalities in the context of particle
systems to be novel.
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REMARK 2.4. Let Rt (wplant) be the range of the length t walk performed by the planted
particle wplant. Given |Rt (wplant)| = i, the probability that Rt (wplant) is not occupied at time
0 by any other particle apart from wplant is e−λi . Hence when bounding Pλ[S(G) > t] from
above, it is necessary to argue that |Rt (wplant)| is w.h.p. large. The error terms in our up-
per bounds on S are dominated by the contribution coming from the case |Rt (wplant)| is
unusually small.

2.3. Giant components. Let Rt be the set of vertices which are visited by the process,
when active particles vanish after t steps. Consider a sequence of graphs Gn := (Vn,En)

with |Vn| → ∞. Another natural question is whether for some fixed t = tλ we have that
Pλ[|Rt (Gn)| ≥ δ|Vn|] ≥ δ > 0. While this problem is interesting by itself, a related problem
will be central in proving an upper bound on S in all the examples considered in this note,
apart from the case of the n-cycle. Consider the case that wplant, the planted walker at o,
walks for t = t|V | steps (for some t|V | tending to infinity as |V | →∞), while the rest of the
particles have lifespan M for some constant M =M(λ) (which diverges as λ→ 0). Denote
the set of vertices which are visited by this modified process before it dies out by Rt,M . In all
of the examples analyzed in this paper, other than the n-cycle, we show that |Rt,M |> δ|V |
w.h.p. for some δ > 0, provided that M =M(λ) is sufficiently large and that t = t|V | →∞
as |V | →∞. To be precise, when λ→ 0 then we need (1) t � 1/λ for Td(n) for d ≥ 3, (2)
t � | logλ|/λ for T2(n) and (3) t � 1/(γ λ) for regular γ -expanders. For precise statements,
see Theorems 7.7 and 8.1.

2.4. Conjectures. Recall that D(G,m) is the cover time by m independent particles, each
starting at a vertex chosen uniformly at random, independently.

DEFINITION 2.5. We say that a bijection ϕ : V → V is an automorphism of a graph
G = (V ,E) if {u, v} ∈ E iff {ϕ(u),ϕ(v)} ∈ E. A graph G = (V ,E) is said to be vertex-
transitive if for all u, v ∈ V there exists an automorphism ϕ of G such that ϕ(v)= u.

Denote the transition matrix of simple random walk (Xt)
∞
t=0 on G by P and its stationary

distribution by π . For v ∈ V , let Tv := inf{t :Xt = v} be the hitting time of v. Denote the law
of (Xt)

∞
t=0 given X0 ∼ π by Pπ . Let

�(ε) := inf
{
t :min

v∈V
Pπ [Tv ≤ t] ≥ ε

}
, �̂(ε) := inf

{
t :max

v∈V
Pπ [Tv ≤ t] ≥ ε

}
,

ν̂t :=max
v

t∑
i=0

P i(v, v), νt :=min
v

t∑
i=0

P i(v, v).

When G is vertex-transitive, the two quantities written in each row are equal to one another.
Let

tλ(G) :=min
{
s : 2s/νs ≥ λ−1 log |V |},

CONJECTURE 2.6 (Reiterated from [23]). Let G= (V ,E) be a finite connected vertex-
transitive graph. If λ|V | ≥ 2 log |V |, then

(2.11) Eλ

[
S(G)

]� E
[
D
(
G,

⌈
λ|V |⌉)]� tλ(G)� �

(
log |V |
λ|V |

)
.

Moreover, if 1�m� |V | log |V | then

E
[
D(G,m)

]= (
1± o(1)

)
�

(
1− exp

(
− log |V |

m

))
.
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For a derivation of a lower bound on S(G) in terms of D(G, ·), see Section 6.1. We note
that when m ≥ 2 log |V | we have that log |V |

m
� 1 − exp(− log |V |

m
). We also note that (in the

vertex-transitive setup) the expected number of vertices which are not visited by any of the m

walks by time t is given by |V |(1− Pπ [Tv ≤ t])m. Hence t = �(1− exp(− log |V |
m

)) roughly
corresponds to the time at which this expectation is of order 1.

CONJECTURE 2.7 (Re-iterated from [23]). Let Gn = (Vn,En) be a sequence of finite
connected vertex-transitive graphs of diverging sizes, λn � 1

|Vn| and mn →∞. Then for all
ε > 0, we have that

lim
n→∞Pλn

[∣∣∣∣ S(Gn)

Eλn[S(Gn)] − 1
∣∣∣∣≥ ε

]
= 0= lim

n→∞P
[∣∣∣∣ D(Gn,mn)

E[D(Gn,mn)] − 1
∣∣∣∣≥ ε

]
.

The following proposition and remark summarize our knowledge about Conjecture 2.6.

PROPOSITION 2.8. Let G= (V ,E) be a finite connected regular graph. Define

šλ(G) := inf
{
s ∈N : 12sλ≥ νs log |V |},

ŝλ(G) := inf
{
s ∈N : sλ≥ 2ν̂s log |V |}.

Let λ be such that log |V |
6λ|V | � 1. Then

šλ(G)≤ �̂

(
log |V |
6λ|V |

)
=: t̂ ≤ t̄ := �

(
2 log |V |

λ|V |
)

≤ ŝλ(G) �
(
λ−1 log |V |)2.(2.12)

Moreover,

P
[
D
(
G,

⌈
λ|V |⌉)> t̄

] ≤ 1/|V |,(2.13)

P
[
D
(
G,

⌈
λ|V |⌉)< t̂

]
� exp

(
−|V |

2/3−o(1)

16λt̂

)
.(2.14)

Finally,

Pλ

[
S(G) < t̂

]
� exp

(
−|V |

2/3−o(1)

64λt̂

)
(2.15)

+max
v

Pv

[∣∣{Xi : 0≤ i < t̂}∣∣> |V |/2
]
.

REMARK 2.9. For vertex-transitive graphs, one should typically expect that (in the no-
tation from (2.12)) t̂ � t̄ and that šλ(G)� tλ(G)� ŝλ(G).

The term maxv Pv[|{Xi : 0 ≤ i < t̂}|> |V |/2] from the right-hand side of (2.15) is meant
to treat the planted particle. In the vertex-transitive case one can treat, the planted particle
using symmetry, in the spirit of what is done in Section 6.1, in order to get rid of this term. In
any case, this probability is 0, unless λ is very small.

The following conjecture is motivated by the results in [10] (see Section 3.3 for more
details).

CONJECTURE 2.10. There exist some Cd,λ, 
 > 0, such that for every sequence of finite
connected graphs Gn = (Vn,En) with |Vn| →∞ of maximal degree at most d , we have that
limn→∞ Pλ[S(Gn)≤ Cd,λ log
 |Vn|] = 1.
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We suspect that one can take above 
= 2 and Cλ,d = Cλ−2d2 for some absolute constant
C > 0. Moreover, we suspect that for regular or vertex-transitive G, one can even take above,
respectively, Cλ,d = Cλ−2d and Cλ,d = Cλ−2 for some absolute constant C > 0 (cf. [10],
Conjectures 1.9 and 8.3). If true, this suggests that up to a constant the n-cycle is extremal.
See Examples 3.2–3.3 for more about the dependence of the susceptibility on d .

The following conjecture concerns a strengthening of Conjecture 2.10 for the class of
“uniformly transient graphs.”

CONJECTURE 2.11. There exists some nondecreasing, diverging f : R+ → R+ such
that for every connected d-regular n-vertex graph G= (V ,E),

P1
[
S(G)≥ Cdf

(
R∗eff

)
log |V |]≤ 1/|V |,

where R∗eff := 1/minu�=v∈V Pv[Tu < T +v ] (i.e., the inverse of the minimum over all pairs of
distinct vertices (u, v) that a SRW started from v will reach u before returning to v).

The function f (x) = max{logx,1} works in all examples that were studied in the litera-
ture.

CONJECTURE 2.12. All of our results for λ= 1 hold also when initially we have exactly
one particle per site.

It is likely that one can give an affirmative answer to Conjecture 2.12 using ideas from
[29]. Alternatively, it is plausible that with some care all our arguments translate mutatis
mutandis to the case where there is one particle per site, where the main technical obstacle
appears to be that Poisson thinning no longer applies. Poisson thinning is used repeatedly in
our analysis; however, we strongly believe our arguments can be modified as to not rely on it.

3. Propaedeutics. The cover time CT(G) of a graph G w.r.t. the frog model is the first
time by which every vertex has been visited by an active particle. See Section 3.5 for a more
precise definition.

3.1. Review of general susceptibility lower bounds. Theorem A below seems to be espe-
cially useful when G is vertex-transitive (see Conjecture 2.6). The bound offered by (3.2) is
sharp up to a constant factor in all of the cases considered in this paper (at least when λ does
not vanish too rapidly).

THEOREM A ([23] Theorem 3). For every finite regular simple graph G = (V ,E) and
all λ|V | > 0 such that λ−1

|V |(log |V |)5 ≤ |V |,
Pλ|V |

[
λ|V |S(G)≥ L

(|V |, λ|V |)]→ 1, as |V | →∞,

where L(n,λ) := logn− 4 log logn− log
(
max{1/λ,1}).(3.1)

Moreover, for all δ ∈ (0,1) and all λ|V | � |V |−δ/7 we have that

(3.2) Pλ|V |
[
S(G)≥ tλ|V |,δ(G)

]→ 1, as |V | →∞,

where tλ,δ(G) :=min{s : 2sλ≥ (1− δ)νs log |V |} and νk :=minv

∑k
i=0 P i(v, v).

REMARK 3.1. We note that tλ,0(G)≤Cλ−2 log2 |V | for every regular graph G= (V ,E)

(e.g., [12], Lemma 2.4). This is tight up to a constant factor as for the n-cycle Cn we have
that tλ,1/2(Cn)≥ cλ−2 log2 |V |.
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THEOREM B ([23] Proposition 1.1). Let Kn be the complete graph on n vertices. Let
(λn)n∈N be such that limn→∞ λnn=∞. Then

∀ε ∈ (0,1),

lim
n→∞Pλn

[
(1− ε)λ−1

n logn≤ S(Kn)≤ ⌈
(1+ ε)λ−1

n logn
⌉]= 1.

(3.3)

Moreover, there exists some C > 1 such that for every (λn)n∈N
(3.4) lim

n→∞Pλn

[
CT(Kn)≤ C

(
1{λn ≤ 2}λ−1

n logn+ 1{λn > 2}	logλn
n
)]= 1.

In light of Theorem B and (3.1), Kn is the regular graph with asymptotically the smallest
susceptibility (at least when λ≥ |V |−o(1)).

3.2. Frogs on trees. Beyond the Euclidean setup, there has been much interest in un-
derstanding the behavior of the model in the case that the underlying graph is a d-ary tree,
either finite of depth n or infinite, denoted by Td,n and Td , respectively. In a sequence of
dramatic papers, Hoffman, Johnson and Junge [25–28] showed that the frog model on Td in-
deed exhibits a phase transition w.r.t. λ. Namely, below a critical density of particles it is a.s.
transient, and above that density it is a.s. recurrent. Johnson and Junge [28] showed that the
critical density grows linearly in d . In an ingenious recent work together with Hoffman [26],
they showed that for λ ≥ Cd2 the frog model on Td is strongly recurrent (namely, that the
occupation measure of the origin at even times stochastically dominates some homogeneous
Poisson process). As an application, they showed that w.h.p. CT(Td,n) ≤ Cdλ−1n logn for
λ ≥ C0d

2, while CT(Td,n) ≥ exp(cd,λ

√
n) for λ ≤ d/100. The main results in [23] are the

following.

THEOREM C ([23] Theorems 1–2). There exist some absolute constants C,c > 0 such
that for all d ≥ 2, if d−nn2 logd ≤ λn ≤ c logn then

lim
n→∞Pλn

[
c

(
n

λn

log
n

λn

)
≤ S(Td,n)≤ C

(
n

λn

log
n

λn

)]
= 1.

lim
n→∞Pλn

[
CT(Td,n)≤ Cnmax

{
1,

1

λn

log
n

λn

}
33
√

log |Vd,n|
]
= 1.

Note that the bounds from [26] complement these bounds and match them up to a constant
factor for λ≥ C0d

2 (as CT(G)≥ S(G)) and up to the value of the constant in the exponent
for λ ≤ d/100. Also, observe that combining the results from [26] with those from [23]
one can readily see that CT(Td,n) exhibits a phase transition w.r.t. λ. We do not expect the
susceptibility to exhibit a phase transition in any natural family of graphs. We also see that
the cover time, which is always as large as the diameter, may be very large, in contrast to our
Conjecture 2.10 for the susceptibility.

We strongly believe that for λ= 1 one has for all d ≥ 2 that w.h.p. CT(Td)≤ Cdn (note
that the diameter of Td is proportional to nd and so also CT(Td)≥ cdn). The intuition comes
from the fact that the frog model on Zd satisfies a shape theorem [5, 6, 40].

3.3. Related models. The A+ B → 2B family of models are defined by the following
rule: there are type A and B particles occupying a graph G, say with densities λA,λB > 0.
They perform independent either discrete-time SRWs with holding probabilities pA,pB ∈
[0,1] or continuous-time SRWs with rates rA, rB ≥ 0 (possibly depending on the type). When
a type B particle collides with a type A particle, the latter transforms into a type B particle.
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The frog model can be considered as a particular case of the above dynamics in which the
type A particles are immobile (pA = 1 or rA = 0).

In a series of papers, Kesten and Sidoravicius [30–32] studied in the continuous-time setup
the set of sites visited by time t by a type B particle in the A+ B → 2B model when the
underlying graph is the d-dimensional Euclidean lattice Zd , rA, rB > 0 and initially there are
B particles only at the origin. In particular, they proved a shape theorem for this set when
rA = rB and λA = λB [32] (and derived bounds on its growth in the general case [30]). An
analogous shape theorem for the frog model on Zd was proven by Alves, Machado, and
Popov in discrete-time [5, 6] and by Ramírez and Sidoravicius in continuous-time [40].

Even when pA < 1 (or in continuous-time rA > 0), one may consider the case in which the
B particles have lifespan t and initially only the particles at some vertex o are of type B (and
we may plant a B particle at o). One can then define the susceptibility in an analogous manner,
as the minimal lifespan of a B particle required so that all particles are transformed into B

particles before the process dies out. Similarly, one can define it as the minimal lifespan of a
B particle required so that all sites are visited by a B particle before the process dies out.

We strongly believe that all of the results presented in this paper can be transferred into
parallel results about the case of pA < 1. Moreover, we also believe that the corresponding
versions of Conjectures 2.6–2.10 are true also in the case of pA < 1.

In [10], the first and third authors study the following model for a social network, called the
random walks social network model, or for short, the SN model. Given a graph G= (V ,E),
consider Poisson(|V |) walkers performing independent lazy simple random walks on G si-
multaneously, where the initial position of each walker is chosen independently w.p. pro-
portional to the degrees. When two walkers visit the same vertex at the same time they are
declared to be acquainted. The social connectivity time, SC(G), is defined as the first time in
which there is a path of acquaintances between every pair of walkers. The main result in [10]
is that when the maximal degree of G is d , then w.h.p.

(3.5) c log |V | ≤ SC(G)≤ Cd log3 |V |.
Moreover, SC(G) is determined up to a constant factor in the case that G is a regular expander
and in the case it is the n-cycle.

Note that Conjecture 2.10 is the analog of (3.5) for the frog model (obtained by replacing
SC(G) above with S(G)). In many examples, E[SC(G)] and E[S(G)] are of the same order
(when λ is fixed), and several techniques from [10] can be applied successfully to the frog
model. Namely, the same technique used in [10] to prove general lower bounds on SC(G) is
used in the proof of Theorem A. Moreover, the analysis of the two models on expanders and
on d-dimensional tori (d ≥ 1) are similar (in all of these cases S(G) and SC(G) are w.h.p.

of the same order).

3.4. Notation. Let G= (V ,E) be some finite graph. For SRW on a graph G, the hitting
time of a set A⊂ V is TA := inf{t ≥ 0 :Xt ∈A}. Similarly, T +A := inf{t ≥ 1 :Xt ∈A}. When
A= {x} is a singleton, we instead write Tx and T +x . Let P be the transition kernel of SRW
on G. We denote by P t(u, v) the t-steps transition probability from u to v. We denote by Pu

the law of the entire walk, started from vertex u. We denote the uniform distribution on V

(resp., U ⊂ V ) by π (resp., πU ). When we want to emphasize the identity of the graph, we
write P t

G, PG
x and EG

x rather than P t , Px and Ex . When certain expressions are independent
of the initial point of the walk we sometimes omit it from the notation. Similarly, when we
want to emphasize the identity of the base graph for the frog model, we write PG

λ and EG
λ .

When certain events involve only the planted particle wplant, we often omit the parameter λ

from the subscript.
Consider the frog model on G with particle density λ and lifespan τ . Recall that Rτ is the

collection of vertices which are visited by an active particle before the process corresponding
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to lifespan τ dies out. Denote the collection of particles whose initial position belongs to a set
U ⊆ V (resp., is v ∈ V ) by WU (resp., Wv). Then (|Wv| − 1{v = o})v∈V are i.i.d. Pois(λ).
Denote the collection of all particles by W =W(V ). Denote the range of the length 
 walk
picked (in the sense of Section 3.5) by a particle w by R
(w). Denote the union of the ranges
of the length 
 walks picked by the particles whose initial positions lie in U ⊂ V (resp., is
v) by R
(U) :=R
(WU) (resp., R
(v) :=R
(Wv)). Denote the union of the ranges of the
length 
 walks picked by the particles belonging to some set of particles U ⊆W by R
(U).

For every event A, we denote its complement by Ac. For U ⊆ V , we denote Uc := V \U .
For U ⊆W , we denote the collection of particles which do not belong to U by Uc :=W \U .

The distance dist(x, y) between vertices x and y is the minimal number of edges along
a path from x to y. Vertices are said to be neighbors if they belong to a common edge. We
write [k] := {1,2, . . . , k} and ]k[ := {0,1, . . . , k}. We denote the cardinality of a set A by |A|.
We write w.p. as a shorthand for “with probability.”

We use C,C′,C0,C1, . . . (resp., δ, ε, c, c′, c0, c1, . . .) to denote positive absolute constants
which are sufficiently large (resp., small) to ensure that a certain inequality holds. Similarly,
we use Cd , Cλ,d (resp., cd , cλ,d ) to refer to sufficiently large (resp., small) positive constants,
whose value depends on the parameters appearing in subscript. Different appearances of the
same constant at different places may refer to different numeric values.

We write o(1) for terms which vanish as n→∞ (or as some other parameter, which is
clear from context, diverges). We write fn = o(gn) or fn � gn if fn/gn = o(1). We write
fn =O(gn) and fn � gn (and also gn =�(fn) and gn � fn) if there exists a constant C > 0
such that |fn| ≤ C|gn| for all n. We write fn =�(gn) or fn � gn if fn = O(gn) and gn =
O(fn). If a(•) and b(•) are two functions from a certain class of finite graphs G to R+, we
write a � b if for all G ∈ G we have that 1/C ≤ a(G)/b(G)≤ C for some C ≥ 1.

We say that a sequence of events An defined with respect to some probabilistic model on
a sequence of graphs Gn := (Vn,En) with |Vn| →∞ holds w.h.p. (“with high probability”)
if the probability of An tends to 1 as n→∞.

3.5. A formal construction of the model. In this section, we present a formal construc-
tion of the frog model. In particular, the susceptibility is defined explicitly in (3.8). In what
comes, we shall frequently refer to “the walk picked by a certain particle.” This notion is
explained in the below construction. We also recall the notion of Poisson thinning, which is
used repeatedly throughout the paper.

Clearly, in order for the susceptibility to be a random variable, the probability space should
support the model simultaneously for all particle lifetimes. In order to establish the fact that
the laws of susceptibility is stochastically decreasing in λ, below we show that the probability
space can be taken to support the model simultaneously also for all particle densities. As this
is a fairly standard construction, most readers may wish to skim this subsection.

We denote the set of Pois(λ) (or 1+Pois(λ) for the origin) particles occupying vertex v at
time 0 by Wv = {wv

1, . . . ,wv|Wv |}, where W := (|Wv| − 1{v = o})v∈V are i.i.d. Pois(λ). We
can assume that at time 0 there are infinitely many particles Jv := {wv

i : i ∈ N} occupying
each site v (where wv

i is referred to as the ith particle at v), but only the first |Wv| of them
are actually involved in the dynamics of the model. We may think of each particle wv

i ∈ Jv

as first picking an infinite SRW Sv,i := (S
v,i
t )t∈Z+ according to Pv , where S := (Sv,i)v∈V,i∈N

and W are jointly independent. However, only in the case that i ≤ |Wv| and v is visited by
some active particle, say the first such visit occurs at time s, does wv

i actually perform the
first τ steps of the SRW it picked (i.e., its position at time s + t is S

v,i
t for all t ∈ [τ ]).

Consider a collection of rate 1 Poisson processes M := (Mv(•))v∈V on R+ (i.e., for
(Mv(t))t≥0 is a rate 1 Poisson process on R+ for each v ∈ V ), such that S and M are jointly
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independent. We can define above W = Wλ := (Mv(λ))v∈V . From this construction, it is
clear that the law of S(G) is stochastically decreasing in λ.

Let G = (V ,E) be a graph. A walk of length k in G is a sequence of k + 1 vertices
(v0, v1, . . . , vk) such that {vi, vi+1} ∈ E for all 0 ≤ i < k. Let �k be the collection of all
walks of length k in G. We say that wv

i ∈Wv picked the path γ = (γ0, . . . , γk) ∈ �k if S
v,i
t =

γt for all t ∈]k[. For each γ ∈ �k , let Wγ be the collection of particles in Wγ0 \ {wplant}
which picked the walk γ . For a walk γ = (γ0, . . . , γk) ∈ �k for some k ≥ 1, we let p(γ ) :=∏k−1

i=0 P(γi, γi+1). By Poisson thinning, we have that for every fixed k, the joint distribution
of (|Wγ |)γ∈�k

(under Pλ) is that of independent Poisson random variables with Eλ[|Wγ |] =
λp(γ ) for all γ ∈ �k .

For distinct x, y ∈ V and τ ∈N∪ {∞}, let

(3.6) 
τ (x, y) := inf
{
j ≤ τ : Sx,i

j = y for some i ≤ |Wx |}
(employing the convention that inf∅ := ∞). The activation time of x (and also of Wx)
w.r.t. lifespan τ is

(3.7) ATτ (x) := inf
{

τ (x0, x1)+ · · · + 
τ (xm−1, xm)

}
,

where the infimum is taken over all finite sequences o = x0, x1, . . . , xm−1, xm = x where
xi ∈ V . Then (for lifespan τ ) when finite, ATτ (x) is precisely the first time at which x is
visited by an active particle, while ATτ (x)=∞ iff site x is never visited by an active particle.
The susceptibility of G can now be rigorously defined as

(3.8) S(G) := inf
{
τ :max

v∈V
ATτ (v) <∞

}
.

The cover time of G is the first time by which every vertex has been visited by an active
particle. It can be defined as

(3.9) CT(G) :=max
v∈V AT∞(v).

3.6. Examples. We now present a couple of examples with a large S , demonstrating that
S(G) may grow at least linearly as a function of the maximal degree of G, even if G is
regular.

EXAMPLE 3.2. Let Gn be the graph obtained by attaching a distinct vertex to each site
of the complete graph on n vertices. It is not hard to see that w.h.p. c ≤ λS(Gn)

n logn
≤ C for all

fixed λ > 0.

The following example is borrowed from [10].

EXAMPLE 3.3. Fix some 2≤ d and n such that 2d ≤ n. Let Jk be a graph obtained from
the complete graph on k vertices by deleting a single edge. Consider 	n/d
 disjoint copies
of Jd : I0, . . . , I	n/d
−1, where for all 0 ≤ j < 	n/d
, Ij is connected to Ij+1 (where j + 1
is defined mod	n/d
) by a single edge that connects two degree d − 1 vertices. This can be
done so that the obtained graph, denoted by Hd,n, is d-regular. We argue that

Eλ

[
S(Hd,n)

]≥ c min
{
max

{
ds, s2}, n2}

where s = sλ,d,n := 1

λ
log

(
λn

d

)
.

(3.10)

We provide a sketch of proof of (3.10) in Section A.2.
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CONJECTURE 3.4. Let d ≥ 2 and λ > 0. Let G(n, d) be the collection of all n-vertex
d-regular connected graphs. Then

max
G∈G(d	n/d
,d)

Eλ

[
S(G)

]= (
1+ o(1)

)
Eλ

[
S(Hd,n)

]
.

Moreover, if (dn)n∈N diverges and dn ≤ n for all n, then for all (λn)n∈N we have that

max
G∈G(dn	n/dn
,dn)

Eλn

[
S(G)

]= (
1+ o(1)

)
Eλn

[
S(Hdn,n)

]
.

4. The cycle—Proof of Theorem 1. In this section, we consider the case that G is the
n-cycle, Cn = (V (Cn),En), and prove Theorem 1.

4.1. The lower bounds. To prove the lower bounds (2.2) and (2.3), we bound the suscep-
tibility from below by the cover time when initially all particles are activated. For (2.2), we
look at a collection J of �(n/t) vertices of distance at least 2t + 1 from one another, where
t � λ−2 log2 n and exploit the fact that the number of particles to visit site j ∈ J by time t

are independent for different vertices in J . The proof of (2.3) requires a more subtle variance
estimate.

Proofs of (2.2) and (2.3): Let ε ∈ (0,1) and λ ≥ n−( 1−ε
2 ). Let t = tn = c1ε

2λ−2 log2 n for
some constant c1 to be determined later. For a vertex v ∈ V (Cn), let

Ut (v) := ∣∣{w ∈W \Wv : v ∈Rt (w)
}∣∣

be the number of particles with initial positions other than v that picked a walk (in the sense of
Section 3.5) that visits v in its first t steps. Note that if J ⊂ V (Cn) satisfies that dist(a, a′) >

2t for all a, a′ ∈ J then (Ut (a))a∈J are jointly independent. Let V ′ := V (Cn) \ {v : 1 ≤
dist(v,o)≤ t}. By symmetry, (Ut (v))v∈V ′ are identically distributed.

Consider a collection J ⊂ V ′ \ {o} of vertices, which are all of distance at least 2t+1 from
one another, of size at least n

3t
− 1. We argue that in order to prove (2.2) it suffices to show

that c1 can be chosen so that

(4.1) p = p(n, t, λ) := Pλ

[
Ut (o)= 0

]≥ n−ε/2.

Indeed, {S < t} ⊆ ⋂
a∈J {Ut (a) �= 0}. Hence if p ≥ n−ε/2 (which implies that |J |p ≥

c2ε
−2nε/3) then (2.2) holds, as by independence and symmetry we have

Pλ[S < t] ≤ (1− p)|J | ≤ exp
(−|J |p)≤ exp

(−c2ε
−2nε/3).

We now prove (4.1). Let νt :=∑t
i=0 P i(v, v) � √t + 1 and νt (u, v) :=∑t

i=0 P i(u, v).
Observe that ν2t (u, v)=∑2t

j=1 Pu[Tv = j ]ν2t−j for all u �= v and so

(4.2) νtPu[Tv ≤ t] =
t∑

j=1

Pu[Tv = j ]νt ≤
t∑

j=1

ν2t−jPu[Tv = j ] ≤ ν2t (u, v).

By reversibility,
∑

u∈V (Cn) P
i(u, v)= 1 for all i and v ∈ V (Cn). This (used in the penultimate

inequality below to argue that
∑

u:u�=v

∑2t
i=1 P i(u, v) ≤ 2t) together with Poisson thinning

and (4.2) (used in the first inequality below) imply that for all v ∈ V ′, Ut (v) has a Poisson
distribution with mean

μt := λ
∑

u:u�=v

Pu[Tv ≤ t] ≤ λ

νt

∑
u:u�=v

2t∑
i=1

P i(u, v)≤ Cλ√
t + 1

· (2t)≤ C′λ
√

t .

Thus if c1 is chosen so that t ≤ (
ε logn
2C′λ )2 we get that μt ≤ ε

2 logn and so the probability that
Ut (v)= 0 is at least e−μt ≥ n−ε/2, as desired. This concludes the proof of (2.2).
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We now prove (2.3). We employ the same notation as above. Let r := cλ−2 log2(λn)

for some c > 0 to be determined later. We now show that Pλ[|Rr (wplant)| > n/2] ≤
4 exp(−n2/(32r)). Indeed, if Sk :=∑k

i=1 ξi , where ξ1, ξ2, . . . are i.i.d. which each equal to
±1 with probability 1/2 and Mk :=maxi≤k Sk , then by the reflection principle and symmetry

Pλ

[∣∣Rr (wplant)
∣∣> n/2

]≤ 2P[Mr > n/4] ≤ 4P[Sr ≥ n/4] ≤ 4e−n2/(32r),

where the last inequality follows by (5.14). Fix some A ⊂ V (Cn) of size at least n/2. For
the remainder of the proof of (2.3), we condition on the event that V (Cn) \Rr (wplant)= A

(however, we shall not write this conditioning explicitly). Let Ya := 1{Ur (a)= 0} and Y :=∑
a∈A Ya . By Chebyshev’s inequality,

(4.3) Pλ[Y = 0] ≤ VarλY

(Eλ[Y ])2 ≤
1

Eλ[Y ] +
∑

a,b∈A:a �=b Cov(Ya, Yb)

(Eλ[Y ])2 .

We will show that Eλ[Y ] � 1 and that
∑

a,b∈A:a �=b Cov(Ya, Yb)� (Eλ[Ya])2.
Let Da,b be the event that there exists some particle w /∈Wa ∪Wb such that {a, b} ⊂

Rr (w) (note that a and b need not be adjacent). It is not hard to see that by Poisson thinning,
conditioning on Dc

a,b can only increase the probability that Ur (a)= 0. Moreover, this remains
true even if we condition further also on Ur (b) > 0. That is,

Pλ

[
Ur (a)= 0 |Ur (b) > 0,Dc

a,b

]= Pλ

[
Ur (a)= 0 |Dc

a,b

]
≥ Pλ

[
Ur (a)= 0

]= Eλ[Ya].
Since Eλ[Ya | (1− Yb)1{Dc

a,b} �= 0] = Pλ[Ur (a)= 0 |Ur (b) > 0,Dc
a,b], we get that

Eλ

[
Ya(1− Yb)

]= Eλ

[
Ya(1− Yb)1

{
Dc

a,b

}]≥ Eλ[Ya]Pλ

[
Ur (b) > 0,Dc

a,b

]
.

Thus

Cov(Ya, Yb)=−Cov(Ya,1− Yb)

≤ Eλ[Ya]Pλ

[
Ur (b) > 0

]−Eλ[Ya]Pλ

[
Ur (b) > 0,Dc

a,b

]
≤ Eλ[Ya]Pλ[Da,b] = pPλ[Da,b].

By the proof of (2.2), the expected number of particles w /∈Wa such that a ∈Rr (w) is at
most μr ≤ C′λ

√
r . By Poisson thinning, the number of particles which reached b by time r

after reaching a has a Poisson distribution with mean μa→b ≤ μrPa[Tb ≤ r]. By symmetry,
μa→b = μb→a and so

Pλ[Da,b] ≤min
{
1,2(1− exp

(−μrPa[Tb ≤ r])}
≤min

{
2μrPa[Tb ≤ r],1

}
.

(4.4)

Recall that Pa[Tb ≤ r] ≤ exp[−c2(dist(a, b))2/r] for all a, b ∈ V (Cn) (this follows from the
reflection principle). Hence

M :=max
a∈A

∑
b∈A\{a}

Pλ[Da,b] ≤ C0

√
r log

(
max{μr, e})= Ĉ0

√
r log

(
max{λ√r, e}),

which yields that

VarλY ≤ Eλ[Y ] +
∑

a,b∈A:a �=b

Cov(Ya, Yb)

≤ Eλ[Y ] + 2|A|pM ≤ 3MEλ[Y ].

VarλY

(Eλ[Y ])2 ≤
3M

Eλ[Y ] ≤
C′0

√
r log(max{λ√r, e})
n exp(−Cλ

√
r)

.

(4.5)
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Substituting r = cλ−2 log2(λn) and simplifying, we obtain (2.3), provided that c is taken to
be sufficiently small.

4.2. The upper bound. Let s = sn := C1λ
−2 log2(λn), where C1 shall be determined

shortly. We now prove (2.1) that Pλ[S(Cn) ≤ sn] ≤ e−c log2/3(λn) provided that λ ≥ M/n,
for some large constant M (by picking C2 to be sufficiently large, (2.1) trivially holds for
λ ∈ [ 2

n
, M

n
)). Let kn := 	10λ−1 log(λn)
. For a vertex v, let vr be the vertex which is of

distance kn from v from its right. Denote the line segment of length kn to the right of vr by
Rv (this is the segment consisting of all vertices of distance between kn and 2kn − 1 from
v from its right). Let Av = Av(λ,n) be the event that v ∈Rs(Rv) (i.e., there is at least one
particle whose starting position is in the interval Rv which picked a walk that reaches v by
its sth step).

Let 
 := �n/kn� + 1. Fix a collection of vertices u1, u2, . . . , u
 such that for all i we have
that ui+1 is of distance kn to the right of ui . Let A :=⋂


i=1 Aui
. It is not hard to verify that if

C1 is taken to be sufficiently large, then for every u ∈ Rv the probability that a SRW starting
from u would reach v by time sn is at least 0.4 (in fact, we could have replaced 0.4 by any
fixed number smaller than 1). Fix such C1. By Poisson thinning, we have for all v,

Pλ

[
Ac

v

]≤ ∏
u∈Rv

e−λPu[Tv≤s] ≤ e−0.4λkn = e−0.4λ	 10
λ

log(λn)
 ≤ 1

(λn)4 .

Thus by a union bound Pλ[Ac] ≤ 
(λn)−4 ≤ (λn)−2. Crucially, note that the union bound is
over 
� λn/ log(λn) vertices and not over n vertices.

Note that the set Rsn =Rs must be an interval containing o (possibly the entire cycle).
Let B be the event that |Rs | ≥ 2kn. Observe that on the event B there must be some i such
that Rui

⊆ Rs . By the definition of the event Aui
, if Rui

⊆ Rs and Aui
occurs, then also

Rui+1 ⊂ Rs (where i + 1 is defined modulus 
). Since
⋃


i=1 Rui
= V (Cn) we get that on

the event A ∩ B , deterministically, Rs = V (Cn) (i.e., every site is visited before the process
corresponding to lifespan s dies out).

Since Pλ[Ac] ≤ (λn)−2, in order to conclude the proof it suffices to verify that Pλ[Bc] ≤
e−c log2/3(λn). Let D ⊂ B be the event that∣∣Rs

(
Rs(wplant)

)∣∣≥ 2kn

(where Rs(wplant) is the range of wplant by time s, and for a collection of vertices F , the
set Rs(F ) is the union of the ranges of the length s walks picked by WF , the collection of
particles which initially occupy J ). Denote Z := |Rs(wplant)|. Observe that for all F ⊆ V we
have that

1
{
Dc} · 1{Rs(wplant)= F

}≤ 1
{

max
w∈WF

∣∣Rs(w)
∣∣< 2kn

}
· 1{Rs(wplant)= F

}
.

Thus by conditioning on Rs(wplant) and applying Poisson thinning, symmetry (namely, that
(|Rs(w)|)w∈W are i.i.d. with the same law as Z) and Lemma 5.20 (third inequality) we get
that

Pλ

[
Bc]≤ Pλ

[
Dc]≤ Pλ

[∣∣Rs(wplant)
∣∣

< λ−1 log2/3(λn)
]+ exp

[−λ
(
λ−1 log2/3(λn)

)
Pλ(Z < 2kn)

]
≤ 2 exp

(−c′ log2/3(λn)
)
.
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5. Auxiliary results.

5.1. Percolation.

DEFINITION 5.1. Let G = (V ,E) be some graph. Let α ∈ [0,1]. Let (Xv)v∈V be
i.i.d. Bernoulli(α) random variables. The random graph (V , {{u, v} ∈ E : Xu = 1 = Xv}) is
called Bernoulli site percolation on G with parameter α.

The following proposition is standard (e.g., [37]). Below, for each d the constants can be
chosen so that C(d,p),R(p, d)↘ 0, c(p)↗ 1 and β(d,p)→∞ as p↗ 1.

PROPOSITION 5.2. Let d ≥ 2. Then there exist some pc(d) ∈ (0,1) and some positive
constants C(d,p), R(d,p), β(d,p) and c(p) (for p ∈ (pc(d),1]) such that for all p ∈
(pc(d),1], the largest connected component of the random graph obtained from Bernoulli
site percolation with parameter p on Td(n), denoted by GC (“giant component”), satisfies
the following:

(1) It is the unique connected component of size at least R(d,p)(logn)
d

d−1 w.p. at least
1− n−1.

(2) With probability at least 1 − n−1, in every box of side-length L = L(d,p) :=
	C(d,p)(logn)

1
d−1 
 there are at least c(p)Ld vertices belonging to GC.

(3) For every n and U ⊆ Td(n), the probability that U ∩ GC is empty is at most

exp(−β(d,p)|U | d−1
d ).

5.2. Markov chains. Generically, we shall denote the state space of a Markov chain
(Xt)

∞
t=0 by � and its stationary distribution by π . We denote such a chain by (�,P,π). We

say that the chain is finite, whenever � is finite. We say that P is reversible if π(x)P (x, y)=
π(y)P (y, x) for all x, y ∈�. Throughout, we consider only finite reversible Markov chains,
even if this is not written explicitly. We say that P is lazy if P(x, x) ≥ 1/2 for all x ∈ �.
We denote by Pt

x (resp., Px) the distribution of Xt (resp., (Xt)t≥0), given that the initial state
is x. Similarly, for a distribution μ on � we denote by Pt

μ (resp., Pμ) the distribution of Xt

(resp., (Xt)
∞
t=0), given that X0 ∼ μ.

The Lp norm and variance of a function f ∈ R� are ‖f ‖p := (Eπ [|f |p])1/p for 1 ≤
p <∞ (where Eπ [h] :=∑

x π(x)h(x) for h ∈ R�), ‖f ‖∞ := maxx |f (x)| and Varπf :=
‖f −Eπf ‖2

2. The Lp norm of a signed measure σ (on �) is

‖σ‖p,π := ‖σ/π‖p, where (σ/π)(x)= σ(x)/π(x).

We denote the worst case Lp distance at time t by dp(t) :=maxx dp,x(t), where dp,x(t) :=
‖Pt

x − π‖p,π . Under reversibility for all x ∈� and k ∈N (e.g., (2.2) in [22]), we have that

d2
2,x(k)= h2k(x, x)− 1, where hs(x, y) := P s(x, y)/π(y), and

d∞(2k) :=max
x,y

∣∣h2k(x, y)− 1
∣∣=max

y
h2k(y, y)− 1.

(5.1)

When P is also lazy, a standard argument (cf. [35], p. 135) shows that (5.1) holds also for
odd times. That is, for all x ∈� and k ∈N,

(5.2) d∞(k) :=max
x,y

∣∣hk(x, y)− 1
∣∣=max

y
hk(y, y)− 1.

The ε-Lp-mixing-time of the chain (resp., for a fixed starting state x) is defined as

(5.3) τp(ε) :=max
x

τp,x(ε), where τp,x(ε) :=min
{
t : dp,x(t)≤ ε

}
.

When ε = 1/2, we omit it from the above notation.
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We identify P k with the operator on 
2(�,π) := {f ∈ R� : ‖f ‖2 < ∞} given by
P kf (x) := ∑

y P k(x, y)f (y) = Ex[f (Xk)]. If P is reversible, then it is self-adjoint, and
hence has |�| real eigenvalues. Throughout, we shall denote them by 1 = γ1 > γ2 ≥ · · · ≥
γ|�| ≥ −1 (where γ2 < 1 since the chain is irreducible). The spectral gap and the absolute
spectral gap of P are given by γ := 1− γ2 and γ̃ := 1−max{γ2, |γ|�||}, respectively. The
following fact (often referred to as the Poincaré inequality) is standard. It can be proved by
elementary linear-algebra using the spectral decomposition (e.g., [1], Lemma 3.26).

FACT 5.3. Let (�,P,π) be a finite irreducible reversible Markov chain. Let μ be some
distribution on �. Let f ∈R�. Then for all t ∈N, we have that

(5.4)
∥∥Pt

μ − π
∥∥

2,π ≤ (1− γ̃ )t‖μ− π‖2,π and VarπP tf ≤ (1− γ̃ )2tVarπf.

If P is reversible and lazy, we have that γ|�| ≥ 0 and so γ = γ̃ . If in addition π is the
uniform distribution, it follows from (5.2) in conjunction with (5.4) that for all k ∈N,

(5.5) max
x,y

∣∣∣∣P k(x, y)− 1

|�|
∣∣∣∣=max

x
P k(x, x)− 1

|�| ≤ (1− γ )k.

We now state a particular case of Starr’s maximal inequality [42], Theorem 1 (cf. [7],
Theorem 2.3).

THEOREM D (Maximal inequality). Let (�,P,π) be a reversible irreducible Markov
chain. Let 1 < p <∞ and p∗ := p/(p − 1) be its conjugate exponent. Then for all f ∈
Lp(R�,π),

(5.6)
∥∥f ∗∥∥p

p ≤ 2
(
p∗
)p‖f ‖pp,

where f ∗ ∈R� is the corresponding maximal function, defined as

f ∗(x) := sup
0≤k<∞

∣∣P kf (x)
∣∣= sup

0≤k<∞
∣∣Ex

[
f (Xk)

]∣∣.
5.3. Lazy simple random walk on expanders. A lazy SRW (LSRW) on G evolves accord-

ing to the following rule. At each step, it stays put in its current position w.p. 1/2. Otherwise,
it moves to a random neighbor as SRW. We denote its transition matrix by PL := 1

2(I + P).
Note that the spectral gap of PL is precisely half the spectral gap of P . It follows from (5.5)
that LSRW on a regular γ -expander G= (V ,E) mixes rapidly in the following sense:

(5.7)
∣∣∣ max
x,y∈V

P t
L(x, y)− |V |−1

∣∣∣≤ (1− γ /2)t , for all t.

Let (XL
t )∞t=0 be a LSRW on a regular γ -expander G= (V ,E). Denote the hitting time of a

state y w.r.t. the LSRW by T L
y := inf{t > 0 : XL

t = y}. It follows from (5.7) (by averaging
over T L

y ) that for all x, y ∈ V and t ≥ 0,

(5.8)
t∑

i=0

P i
L(x, y)≤ Px

[
T L

y ≤ t
] t∑
i=0

P i
L(y, y)≤ Px

[
T L

y ≤ t
]( 2

γ
+ t

|V |
)
.

Similarly, if the eigenvalues of P are −1 < γ|V | ≤ · · · ≤ γ2 = 1 − γ < γ1 = 1 then by
the spectral decomposition (e.g., [35], Lemma 12.2), for every x ∈ V there exist some
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a1, . . . , a|V | ∈ [0,1) such that
∑

i ai = 1, a1 = 1/|V | and for all i ∈N we have that P i(x, x)=
1/|V | +∑|V |

j=2 ajγ
i
j . Thus

P 2i−1(x, x)+ P 2i (x, x)− 2/|V |
=∑

j>1

ajγ
2i−1
j (1+ γj )

≤ ∑
j>1:γj>0

aj

(
γ 2i−1
j + γ 2i

j

)≤ γ 2i−1
2 + γ 2i

2 .

2t∑
i=0

P i(x, x)= 1+
t∑

i=0

P 2i−1(x, x)+ P 2i (x, x)

≤ 1+
t∑

i=1

2

|V | + γ 2i−1
2 + γ 2i

2 ≤ 2t

|V | +
1

γ
.

(5.9)

2t∑
i=0

P i(x, y)≤ Px[Ty ≤ 2t]
2t∑

i=0

P i(y, y)≤ Px[Ty ≤ 2t]
(

1

γ
+ 2t

|V |
)
.(5.10)

LEMMA 5.4. Let G= (V ,E) be a connected regular n-vertex γ -expander. Then

∀x, y ∈ V, Px

[
T L

y > t
]≤

⎧⎨⎩1− γ t

4n
if
⌈
8γ−1 logn

⌉≤ t ≤ γ−1n,

(3/4)�γ t/n� if t > γ−1n.

PROOF. Let x, y ∈ V . Let 	8γ−1 logn
 ≤ t ≤ γ−1n. By (5.7), P i
L(x, y) ≥ 1

2n
for all

i ≥ 4γ−1 logn. Consequently,
∑t

i=1 P i
L(x, y) ≥ t

2n
. Hence by (5.8) Px[T L

y ≤ t] ≥ γ t
4n

. The
case t > γ−1n follows from the previous case by the Markov property. �

The following corollary is an immediate consequence of Lemma 5.4, obtained by a union
bound over V , using Poisson thinning and independence.

COROLLARY 5.5. Let G= (V ,E) be a connected regular n-vertex γ -expander. Let 
 :=
	n/4
. Let (vi)



i=0 be an arbitrary collection of distinct vertices. Assume that at each of these

vertices there are initially Pois(λ) particles, independently, and that the particles perform
simultaneously independent LSRW on G. Assume that 48 logn

n
≤ λ ≤ 1. Let t := 	 27

λγ
logn
.

Then

P
[
(The union of the first t steps performed by the particles) �= V

]≤ n−2.

Similarly, if 4n−1 ≤ λ≤ 48n−1 logn and 
 := 	n/32
 then there exists some constant M such
that

P
[(

The union of the first
⌈

M

λγ
logn

⌉
steps performed by the particles

)
�= V

]
≤ P

[
Pois(λn/32)≥ λn/64

]+ n−2.

(5.11)

The following lemma is inspired by the techniques from [7].
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LEMMA 5.6. Let G= (V ,E) be a connected d-regular n-vertex γ -expander. Let A⊂ V

and R > 0. Let s = sR := 	γ−1 log(27R)
. Consider the set

HA =HA,R :=
{
v ∈ V : sup

t : t≥s

∣∣P t
L(v,A)− π(A)

∣∣≥ 1/4
}
,

where π is the uniform distribution on V . Then

(5.12) π(HA,R)≤ 1

R
π(A)π

(
Ac).

PROOF. Consider f : V →R defined by

f (x) := P s
L

(
1A − π(A)

)
(x)= P s

L(x,A)− π(A).

By the Poincaré inequality (5.4) and the choice of s,

‖f ‖2
2 =VarπP s

L1A ≤ (1− γ /2)2sVarπ1A ≤ e−γ sVarπ1A ≤ (
27R

)−1
π(A)π

(
Ac).

Consider f∗(x) := supt≥0 |P t
Lf (x)| = supt :t≥s |P t

L(x,A)− π(A)|. By Starr’s maximal in-
equality (Theorem D),

‖f∗‖2
2 ≤ 8‖f ‖2

2 ≤ (16R)−1π(A)π
(
Ac).

Finally, note that

HA := {
x : f 2∗ (x)≥ 1/16

}⊆ {
x : f 2∗ (x)≥R‖f∗‖2

2/Varπ1A

}
,

and so by Markov’s inequality π(HA)≤R−1Varπ1A =R−1π(A)π(Ac). �

COROLLARY 5.7. Let G= (V ,E) be a connected regular n-vertex γ -expander. Let λ ∈
(0,1]. Let A ⊂ V . Let r := 	217λ−1γ−1 log 29
. Assume that |A| ≤ n

4 . Let (Xt)
∞
t=0 be SRW

on G. Let κ :=min(	16λ−1 log 29
, n
211 ). Consider

GA := {
a ∈A : Pa

[∣∣{Xt : t ∈ [r]} \A
∣∣≥ κ

]≥ 1/16
}
.

Then

|GA|> 3

4
|A|.

PROOF. Let HA,4 be as in Lemma 5.6. Consider B :=A \HA,4. By Lemma 5.6, in order
to conclude the proof it suffices to show that B ⊆GA. It is easy to see that we may replace
(Xt)

∞
t=0 in the definition of GA by (XL

t )∞t=0, a LSRW on G, as this cannot increase GA.
(Observe that SRW can be coupled with LSRW starting from the same initial position so that
they follow the same trajectory, with the LSRW spending at each site a random number of
steps, with a Geometric(1/2) distribution, before moving to the next site.) Hence it suffices to
show that for all b ∈ B ,

Pb

[∣∣{XL
t : t ∈ [r]

} \A
∣∣≥ κ

]≥ 1/16.

Let b ∈ B . By the definition of HA,4 we have for all t ≥ k := 	γ−1 log(29)
 that P t
L(b,Ac)≥

1− (
|A|
n
+ 1

4)≥ 1/2. Hence

Eb

[∣∣{k ≤ t ≤ r :XL
t ∈Ac}∣∣]≥ 1

2
(r − k).

Since for any sum of indicators D :=∑s
i=1 1Di

we have that

E
[
D2]≤ sE[D] ≤ (E[D])2

mini∈[s]P[Di] ,



ON AN EPIDEMIC MODEL ON FINITE GRAPHS 227

by the Paley–Zygmund’s inequality we get that

Pb

[∣∣{k ≤ t ≤ r :XL
t ∈Ac}∣∣≥ 1

4
(r − k)

]
≥ 1

22 ·
1

2
= 1/8.

Call time j ∈ [k, r] good if the LSRW visits XL
j at most 27(2γ−1+ r−k

n
) times during the time

interval [k, r]. Otherwise, call time j bad. By (5.8), maxv∈V

∑r−k
i=0 P i

L(v, v)≤ (2γ−1+ r−k
n

).
Hence by Markov’s inequality each time j is bad w.p. at most 2−7. Let J be the event that
there are at least 1

8(r − k) bad times between time k and r . Again by Markov’s inequality,
Pb[J ] ≥ 8 · 2−7 = 1/16. Hence

Pb

[∣∣{t is good : k ≤ t ≤ r,XL
t ∈Ac}∣∣≥ 1

8
(r − k)

]
≥ Pb

[∣∣{k ≤ t ≤ r :XL
t ∈Ac}∣∣≥ 1

4
(r − k)

]
− Pb[J ]

≥ 1/8− 1/16= 1/16.

On this event, we have that |{XL
t : t ∈ [r]} \A| ≥ 1

8 (r−k)

27(2γ−1+ r−k
n

)
≥ κ , as

∣∣{XL
t : t ∈ [r]

} \A
∣∣≥ r∑

i=k

1
{
Xi /∈A, time i is good,

XL
i �=XL

j for all j ∈ [k, i − 1]}
≥
(

27
(

2γ−1 + r − k

n

))−1 r∑
i=k

1{Xi /∈A, time i is good}.
�

The third author learned the argument involving “good times” from Yuval Peres (private
communication). We thank him for allowing us to present this argument.

LEMMA 5.8. Let (Xi)
∞
i=0 be a SRW on some regular n-vertex γ -expander G= (V ,E).

Let R(t)= {Xi : i ∈ [t]} be the range of its first t steps. If t ≤ γ−1n, then for all x ∈ V ,

Px

[∣∣R(t)
∣∣≥ t

32γ

]
≥ 3

4
.

PROOF. Call time j ≤ t bad if the walk visits Xj at least 8(γ−1 + t
n
) times between

time j and time t . By (5.9), the expected number of visits to Xj between time j and time t

is at most γ−1 + t/n. By Markov’s inequality, each time is bad w.p. at most 1/8. Again, by
Markov’s inequality w.p. at least 3/4 there are at most t+1

2 bad times. On this event, we have

that |R(t)| ≥ (t+1)/2
8(γ−1+ t

n
)
≥ t

32γ
. �

5.4. Range, hitting time and Green function estimates. Let us first recall the local CLT
and a standard large deviation estimate. We note that the log t term from the definition of
A(t) below can be replaced by any diverging function of t .

FACT 5.9. For every t ∈N, let A(t) := {s ∈ Z : t − s is even and |s| ≤ t3/4

log t
}. Then

(5.13) lim
t→∞ sup

s∈A(t)

P t
Z(0, s)

2
√

1
2πt

exp(− s2

2t
)
= 1= lim

t→∞ inf
s∈A(t)

P t
Z(0, s)

2
√

1
2πt

exp(− s2

2t
)
.



228 BENJAMINI, FONTES, HERMON AND MACHADO

Moreover, if (Si)
∞
i=0 is a SRW on Z then for every n,m≥ 1 we have

P0[Sn ≥m
√

n] ≤ e−m2/2.(5.14)

PROOF. For (5.13), apply Stirling’s approximation. For (5.14), we use the fact that
E0[ea(Si+1−Si)] = 1

2(ea + e−a) ≤ ea2/2 (as can be seen by comparing Taylor series co-

efficients) and independence to get that E0[eaSn] ≤ ea2n/2. For a = m√
n

, we have that

na2/2− am
√

n=−m2/2 and so by the above

P0[Sn ≥m
√

n] = P0
[
eaSn ≥ eam

√
n]

≤ E0
[
eaSn

]
e−am

√
n ≤ e−m2/2. �

Let us now recall some heat kernel estimates for SRW on Zd . Denote the origin by
0 := (0, . . . ,0). For a, b ∈ Zd and i ∈N∪ {∞}, let ν

(d)
i :=∑i

j=0 P
j

Zd (0,0) and ν
(d)
i (a, b) :=∑i

j=0 P
j

Zd (a, b). Let ‖a‖p := (
∑d

i=1 |ai |p)1/p (resp., ‖a‖∞ :=maxi∈[d] |ai |) be the 
p (resp.,


∞) norm of a = (a1, . . . , ad) ∈ Zd .
Recall that the Gamma function is �(k) := ∫∞

0 rk−1e−r dr . Recall that �(k) = (k − 1)!
and �(k+ 1

2)= 21−2k
√

π (2k−1)!
(k−1)! � (k

e
)k for all k ∈N and that �(1

2)=√π .

FACT 5.10. For all d ≥ 3,

lim‖a‖2→∞
ν(d)∞ (0, a)/‖a‖2−d

2 =
(

1

2π

)d/2
�

(
d

2
− 1

)
,(5.15)

lim‖a‖2→∞

ν
(d)

‖a‖2
2
(0, a)

‖a‖2−d
2

(2π)d/2 =
∫ ∞

1
r−

d
2−2e−r dr � �

(
d

2
− 1

)
.(5.16)

PROOF. The calculation is somewhat neater for the continuous-time SRW with jump rate
1, as for it the evolution of the walk in different coordinates is independent. The expectations
(Green’s functions) of both walks are the same via a standard coupling in which both walks
follow the same trajectory, where the continuous-time walk waits a random number of time
units between each jump, which is Exp(1) distributed (the Exponential distribution of param-
eter 1). Let Ht (0, a) be the transition probability from 0 to a for time t for the continuous-time
walk. Then the local CLT takes the form lim‖a‖2→∞Ht‖a‖2

2
(0, a)/‖a‖−d

2 = ( 1
2πt

)d/2e−1/t .
Thus

ν(d)∞ (0, a)= ‖a‖2
2

∫ ∞
0

Ht‖a‖2
2
(0, a) dt

= (
1± o(1)

)‖a‖2−d
2

∫ ∞
0

(
1

2πt

)d/2
e−1/t dt

= (
1± o(1)

)‖a‖2−d
2

(
1

2π

)d/2 ∫ ∞
0

r(d−4)/2e−r dr

= (
1± o(1)

)( 1

2π

)d/2
�

(
d

2
− 1

)
‖a‖2−d

2 .
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Similarly,

ν
(d)

‖a‖2
2
(0, a)= (

1± o(1)
)‖a‖2−d

2

(
1

2π

)d/2 ∫ ∞
1

r(d−4)/2e−r dr

�
(

1

2π

)d/2
�

(
d

2
− 1

)
‖a‖2−d

2 . �

FACT 5.11. For all d ≥ 2. Let an, bn ∈ Zd be such that limn→∞‖an‖2 = ∞ and

limn→∞ ‖an‖2‖bn‖2
= 1. If tn � ‖an‖2

2, then limn→∞
ν

(d)
tn

(0,an)

ν
(d)
tn

(0,bn)
= 1. Consequently, if tn, 
n, Ln

diverge and satisfy 
n�√
tn� Ln and An ⊆ Zd are such that |An ∩B(r)| ≥ δ|B(r)| for all

r ∈ [
n,Ln], where B(r) := {v ∈ Zd : ‖v‖2 ≤ r}, then lim infn→∞ 1
tn

∑tn
i=0 P i

Zd (0,An)≥ δ.

LEMMA 5.12. There exist some C,M(d) > 0 such that for all d ≥ 2 and n≥M(d), and
all a = (a1, . . . , ad) ∈ Zd such that ‖a‖∞ ≤ n/2, if we identify 0 and a with a pair of vertices
of Td(n), then for all t ,

0≤ P t
Td (n)(0, a)− P t

Zd (0, a)≤ Cn−d .

PROOF. Let A(a) := {(b1, . . . , bd) ∈ Zd : bi ≡ ai mod n for all i ∈ [d]}. Then P t
Td (n)(0,

a)= P t
Zd (0,A(a)). The claim now follows from Fact 5.9. We leave the details as an exercise.

�

LEMMA 5.13. Let Ni(a) be the number of visits to a by time i for some Markov chain.
Then for all a, b and t, s ∈N, we have that

Ea[Nt(b)]
Eb[Nt(b)] ≤ Pa[Tb ≤ t] ≤ Ea[Nt+s(b)]

Eb[Ns(b)] .

PROOF. Note that Tb ≤ t iff Nt(b) > 0. Hence Pa[Tb ≤ t] = Pa[Nt(b) > 0] and
Ea[Nt (b)]

Ea[Nt (b)|Nt (b)>0] = Pa[Nt(b) > 0] ≤ Ea[Nt+s (b)]
Ea[Nt+s (b)|Nt (b)>0] , from which we get

Ea[Nt(b)]
Eb[Nt(b)] ≤ Pa

[
Nt(b) > 0

]≤ Ea[Nt+s(b)]
Eb[Ns(b)] . �

LEMMA 5.14. Let R(t) := {Xi : i ∈ [t]} be the range of the first t steps of SRW. Then

lim
k→∞kP 2k

Z2 (0,0)= 1

π
and so lim

t→∞
ν

(2)
t

log t
= 1

π
.(5.17)

lim
t→∞EZ2

[
1

t

∣∣R(t)
∣∣ log t

]
= π.(5.18)

Moreover, if 1� tn = o(n2 logn) then ET2(n)[|R(tn)|] = (1±o(1))πtn
log tn

and
∑tn

i=0 P i
T2(n)(x, x)=

(1± o(1))
log tn

π
for all x ∈ T2(n).

PROOF. By the local CLT and (5.14),

lim
k→∞kP 2k

Z2 (0,0)= lim
k→∞k

∑
j : |2j−k|≤k2/3

P
2j
Z (0,0)P

2k−2j
Z (0,0)

= lim
k→∞

k

2

(
P

2� k
2 �

Z (0,0)
)2 = 1

π
.
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Thus ν
(2)
t =∑�t/2�

k=0 P 2k
Z2 (0,0) = (1 ± o(1))

∑�t/2�
k=0

1
πk
= (1 ± o(1))

log t
π

. Hence also ν
(2)
s =

(1± o(1))
log t
π

, where s = st := 	t/ log2 t
. Observe that for every x, y we have that

PZ2

x [Ty ≤ t − s]ν(2)
s ≤

t∑
i=0

P i
Z2(x, y)≤ PZ2

x [Ty ≤ t]ν(2)
t .

Summing over all y, we get that E[|R(t)|] ≤ E[|R(t − s)|] + s ≤ (t + 1)/ν
(2)
s + s = (1 ±

o(1)) πt
log t

and that E[|R(t)|] ≥ (t + 1)/ν
(2)
t = (1± o(1)) πt

log t
.

We now prove that for SRW on T2(n), if tn = o(n2 logn) then ET2(n)[|R(tn)|] = (1 ±
o(1)) πtn

log tn
. By a straightforward coupling argument (in which we let both walks evolve ac-

cording to the same sequence of increments), for all t > 0 we have that

ET2(n)[∣∣R(t)
∣∣]≤ EZ2[∣∣R(t)

∣∣]= (
1± o(1)

) πt

log t
.

Conversely, for tn = o(n2 logn) by Lemma 5.12 (as tnn
−2 = o(log tn)) we have that

νtn :=
tn∑

i=0

P i
T2(n)(x, x)= (

1± o(1)
) log tn

π
,

and so, as above, ET2(n)[|R(tn)|] ≥ (t + 1)/νtn = (1± o(1)) πtn
log tn

. �

LEMMA 5.15. Consider SRW on Z2. Let an ∈ Z2. If ‖an‖2 � 1, then

∀Cn ≥ 1, P0
[
Tan ≤ Cn‖an‖2

2
]� (1+ logCn)/ log

(
Cn‖an‖2

2
)
.(5.19)

∀‖an‖−2/3
2 � cn ≤ 1, P0

[
Tan ≤ cn‖an‖2

2
]� cn exp(−1/cn)

log(cn‖an‖2
2)

.(5.20)

For all fixed C,α > 0, P0
[
Tan ≤C‖an‖2+2α

2

]= (
1± o(1)

)
α/(1+ α).(5.21)

PROOF. For (5.19), use Lemma 5.13 with t = 	Cn‖an‖2
2
 and s = 	t/ log t
. Indeed for

this choice of parameters, in the notation of Lemma 5.13, by (5.17) we have that Ea[Ns(a)] =
ν

(2)
s = (1+ o(1)) log t/π = Ea[Nt(a)] � log(Cn‖an‖2

2) and by the local CLT,

E0
[
Nt(a)

]� ∫ Cn

1/2

dr

r
� (1+ logCn)� E0

[
Nt+s(a)

]
.

For (5.20), use Lemma 5.13 with t := 	cn‖an‖2
2
 and s = 	t/ log t
. Indeed, as before by

(5.17) Ea[Ns(a)] = log(cn‖an‖2
2)= Ea[Nt(a)] and by the local CLT (which is applicable by

the assumption that cn�‖an‖−2/3
2 and so ‖an‖2 � (cn‖an‖2

2)
3/4) we have that

E0
[
Nt(a)

]� ∫ cn

0

dr

r
e−1/r =

∫ ∞
1/cn

1

r
e−r dr � cne

−1/cn � E0
[
Nt+s(a)

]
.

For (5.21), use Lemma 5.13 with t = 	C‖an‖2+2α
2 
 and s = 	t/ log t
. Indeed for this

choice of parameters, as before by (5.17) Ea[Ns(a)] = ν
(2)
s = (1± o(1)) log t/π = (1+ α ±

o(1)) log‖an‖2
2/π = Ea[Nt(a)] and

E0
[
Nt(a)

]= (
1± o(1)

) 1

π

t/2∑
i=	‖an‖2

2

1/i = (

1± o(1)
)α log‖an‖2

2

π

= E0
[
Nt+s(a)

]
.

Substituting these estimates in Lemma 5.13 yields (5.21). �
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LEMMA 5.16. Let d ≥ 2. Let an ∈ Zd be such that ‖an‖∞ ≤ n/2. Identify 0 and an with
a pair of vertices of Td(n). Let tn be such that ‖an‖1 ≤ tn ≤ dn2 logd (the sole purpose of
the assumption tn ≥ ‖an‖1 is to ensure that PZd

0 [Tan ≤ tn]> 0). Then

(5.22) 0≤ PTd (n)
0 [Tan ≤ tn] − PZd

0 [Tan ≤ tn] =O
(
PTd (n)

0 [Tan ≤ tn]).
In fact, if ‖an‖2 � n then

(5.23) 0≤ PTd (n)
0 [Tan ≤ tn] − PZd

0 [Tan ≤ tn] = o
(
PTd (n)

0 [Tan ≤ tn]),
while if d = 2 and sn� n2 logn then

(5.24) 0≤ PT2(n)
0 [Tan ≤ sn] − PZ2

0 [Tan ≤ sn] = o(1).

PROOF. Let an = (an,1, . . . , an,d) ∈ Zd satisfy 1� ‖an‖2 � n. Let A(an) := {(b1, . . . ,

b2) ∈ Zd : bi ≡ an,i mod n for all i ∈ [d]}. Then (by the aforementioned coupling of SRW
on Td(n) with SRW on Zd in which both walks follow the same sequence of increments)
PTd (n)

0 [Tan ≤ t] = PZd

0 [TA(an) ≤ t]. Thus for all t

0≤ PTd (n)
0 [Tan ≤ t] − PZd

0 [Tan ≤ t] ≤ ∑
b∈A(an)\{an}

PZd

0 [Tb ≤ t] =: L(t, n).

Using ‖an‖1 ≤ tn ≤ dn2 logd , we argue that

d ≥ 3: PZd

0 [Tan ≤ tn]� L(tn, n). To see this, use the fact that

PZd

0 [Tan ≤ tn] � ν
(d)
tn (0, an) and L(tn, n)� ∑

b∈A(an)\{a}
ν

(d)
tn (0, b)=: J

together with a similar calculation to (5.16) in order to deduce that ν
(d)
tn (0, an)� J . Moreover,

if ‖an‖2 � n then ν
(d)
tn (0, an)� J and so PZd

0 [Tan ≤ tn] � L(tn, n).

d = 2: Using (5.19)–(5.21) if ‖an‖1 ≤ tn ≤ 2n2 log 2, then PZ2

0 [Tan ≤ tn] � L(tn, n).

Moreover, if ‖an‖2 � n then by (5.19)–(5.21) PZ2

0 [Tan ≤ tn] � L(tn, n). This concludes the
proofs of (5.22)–(5.23) for d = 2.

We now prove (5.24). By (5.23), we may assume that sn ≥ n2. Let M(k) := |{i ∈ [n2, k] :
Xi = an}|. We will show that PT2(n)

0 [M(sn) > 0] = o(1). This concludes the proof, as

PTd (n)
0

[
Tan ≤ n2]− PZd

0
[
Tan ≤ n2]≤ L

(
n2, n

)= o(1),

where the last equality holds by (5.20).
At time n2, the L∞ distance of SRW on T2(n) from the uniform distribution is bounded

from above (this follows from Lemmas 5.12 and 5.14). Thus ET2(n)
0 [M(sn +√sn)]� (sn +√

sn)/n2 � logn. However,

ET2(n)
0

[
M(sn +√sn) |M(sn) > 0

]≥ �sn�∑
i=0

PT2(n)(an, an)� logn.

It follows that PT2(n)
0 [M(sn) > 0] ≤ E

T2(n)

0 [M(sn+√sn)]
E
T2(n)

0 [M(sn+√sn)|M(sn)>0] = o(1). �

LEMMA 5.17. Let d ≥ 3. Let R(t) := {Xi : i ∈]t[ } be the range of the first t steps of
SRW on a graph G. If G= Zd , for then

t−1∣∣R(t)
∣∣→ ρ(d) := Px

[
T +x =∞

]
> 0 a.s. and in L1.

Moreover, if 1� tn = o(nd) then t−1
n ETd (n)[|R(tn)|] = (1± o(1))ρ(d).
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PROOF. The fact that for Zd we have that t−1|R(t)| → ρ(d) a.s. and in L1 is classical
(this can be proved using Birkohff’s ergodic theorem, applied to the sequence whose ith
element is the number of visits to Xi). Now consider a SRW on Td(n) for d ≥ 3. As in the
proof of Lemma 5.14, we have that

lim sup
n→∞

t−1
n ETd (n)[∣∣R(tn)

∣∣]≤ lim sup
n→∞

t−1
n EZd [∣∣R(tn)

∣∣]= ρ(d).

Conversely, let s = sn = 	√tn
. Let νi :=∑i
j=0 P

j
Td (n)(0,0) and νi(a, b) :=∑i

j=0 P
j
Td (n)(a,

b). By Lemma 5.12, νsρ(d)= 1± o(1)= νtρ(d). Thus

ETd (n)[∣∣R(tn)
∣∣]=∑

v

tn∑
i=0

PTd (n)
0 [Tv = i]

≥ (
1− o(1)

)
ρ(d)

∑
v

tn−s∑
i=0

PTd (n)
0 [Tv = i]νtn−i

≥ (
1− o(1)

)
ρ(d)

∑
v

νtn−s(0, v)

= (
1− o(1)

)
ρ(d)(tn − s)= (

1− o(1)
)
ρ(d)tn. �

LEMMA 5.18. Let d ≥ 2. Let n ∈ N. Let r ≤ n. Let s = 2dr2. Let (Xi)
∞
i=0 be a SRW on

Td(n). Let R(t) := {Xi : i ∈]t[ } be the range of its first t steps. Let B be a box in Td(n) whose
side lengths are between r and 2r . Let D ⊆ B be such that |D| ≤ 3

4 |B|. Let R̂ :=R(s)∩B \D.
There exist some absolute constants c0(d), c1(d), c2, c3 > 0 such that for all x ∈ Bv ,

∀d ≥ 3, Px

[|R̂| ≥ c1(d)r2]≥ c0(d).(5.25)

For d = 2, Px

[|R̂| ≥ c2r
2/ log r

]≥ c3.(5.26)

REMARK 5.19. The assertion of the previous lemma is suboptimal.

PROOF. We first consider the case that d ≥ 3. Observe that maxx,y∈Bv ‖x − y‖2
2 ≤ dr2.

Let x ∈ Bv . Using the local CLT and the definition of s it is not hard to verify that Ex[|R̂|] ≥
c′(d)r2. Clearly Ex[|R̂|2] ≤ s2. Hence by the Paley–Zygmund inequality, we have

Px

[
|R̂|> 1

2
c′(d)r2

]
≥ 1

4
· (Ex[|R̂|])2

s2 ≥ c0(d).

We now consider the case d = 2. Using similar reasoning as in Lemma 5.14, we have that
Ex[|R̂|] ≥ c3r

2/ log s ≥ c4r
2/ log r . Similar reasoning also yields that b :=maxx Ex[|R(s)∩

Bv|] ≤ Cr2/ log r . Let a(
) :=maxx Px[|R(s)∩Bv| ≥ 
]. By general considerations,

∀
1, 
2 ∈N, a(
1 + 
2)≤ a(
1)a(
2)

(this is left as an exercise). Thus a(k	2b
) ≤ 2−k for all k ∈ N. Hence maxx Ex[|R(s) ∩
Bv|2] ≤ C′b2. The proof is now concluded using the Paley–Zygmund inequality. �

LEMMA 5.20. Let (Xi)
∞
i=0 be a SRW on some graph G. Let R(t)= {Xi : i ∈]t[} be the

range of its first t steps. Then for all s, t, r ∈N and x ∈ V we have

(5.27) Px

[∣∣R(st)
∣∣≤ r

]≤ (
max
v∈V

Pv

[∣∣R(t)
∣∣≤ r

])s
.

Consequently, for G= Z there exists c > 0 such that for all t > 0 and a ∈ (0,1],
(5.28) Px

[∣∣R(t)
∣∣≤ a

√
t
]≤ e−ca−2

.
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PROOF. For (5.27), apply the Markov property s− 1 times at times it for i ∈ [s− 1]. For
(i), apply (5.27) with s = �a−2�. �

6. Tori—Proof of the lower bounds.

6.1. Reducing the lower bounds from Theorem 2 to a cover time problem. Fix some
λ > 0, d ≥ 2 and n ∈ N. Let Ut (v) := |{w ∈W : v ∈ Rt (w)}| be the number of particles
that picked a walk that visits v in its first t steps. Let Yv(t) := 1{Ut (v) = 0} and Y(t) :=∑

v∈V Yv(t). Clearly, if Y(t) > 0 then S(Td(n)) > t .
As Td(n) is vertex-transitive, we may assume that o is random, chosen from π , the uni-

form distribution on Td(n). When o∼ π , by Poisson thinning the distribution on the initial
configuration of particles can be described as follows. Conditioned on |W| =m, there are m

particles, whose initial positions are chosen independently, uniformly at random. Since the
probability that |W| > 	λnd + (λnd)2/3
 decays exponentially in (λnd)1/3, for the purpose
of bounding the probability that Y(t) = 0 from above, we may assume that initially there
are precisely m=m(λ,n, d) := 	λnd + (λnd)2/3
 particles (all of whom are active), each of
which starts from a vertex chosen independently uniformly at random.

By the following paragraph, in order to bound S(Td(n)) from below for a certain range
of λ, all we have to do is to bound from below the cover time by m independent particles,
each starting from the uniform distribution, for a corresponding range of m. This is achieved
in Propositions 6.2–6.4.

6.2. Cover time by multiple random walks. Let G = (V ,E) be some finite connected
graph. Let (Xi)

∞
i=0 be a SRW on G. Let R(t)= {Xi : i ∈]t[} be the range of its first t steps.

Denote the stationary distribution of the SRW by π . The cover time is defined as τcov(G) :=
inf{t : R(t) = V }. Let tcov(G) := maxv∈V Ev[τcov(G)], Hmax(G) := maxx,y∈V Ex[Ty] and
HA

min(G) :=minx,y∈A:x �=y Ex[Ty]. Aldous [2] showed that for a sequence Gn := (Vn,En) of
finite connected graphs of diverging sizes if tcov(Gn)�Hmax(Gn) then for any sequence of
initial states xn ∈ Vn we have that tcov(Gn) − Exn[τcov(Gn)] ≤ Hmax(Gn)� tcov(Gn) and
that τcov(Gn)/tcov(Gn) converges in distribution to 1.

We now recall the elegant Matthews’ bound [36] and a variant of it due to Zuckerman
[44], which provides the lower bound on tcov(G) below (see [35], Chapter 11, for a neat
presentation of both bounds). Let h(n) :=∑n

i=1
1
i

be the harmonic sum.

THEOREM E. For every graph G= (V ,E) and every A⊆ V , we have that

HA
min(G)h

(|A|)≤ tcov(G)≤Hmax(G)h
(|V |).

Let ρ(d) be as in (2.4). One can show that for d ≥ 3 we have that Hmax(Td(n)) = (1+
o(1))Eπ [Tx] = (1 + o(1)) nd

ρ(d)
and that for any set A of vertices whose distance from one

another is at least logn (there exists such a set of cardinality |A|� (n/ logn)d ) we have that
HA

min(Td(n)) = (1 − o(1))Hmax(Td(n)). The term logn can be replaced by any diverging
r(n) satisfying r(n)≤ no(1).

For d = 2, one can show that

Hmax
(
T2(n)

)= (
1+ o(1)

)
Eπ [Tx] = (

1+ o(1)
) 2

π
n2 logn

and that for any set A consisting of vertices of distance at least
√

n from one another (there ex-
ists such a set of cardinality |A|� n) we have that HA

min(Td(n))= (1− o(1))1
2Hmax(Td(n)).
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By Theorem E, it follows that for d ≥ 3 we have tcov(Td(n))= (1± o(1))( nd

ρ(d)
d logn) and

that (
1

4
− o(1)

)
4

π
(n logn)2 ≤ tcov

(
T2(n)

)≤ (
1+ o(1)

) 4

π
(n logn)2.

It follows that tcov(Td(n))�Hmax(Td(n)) for all d ≥ 2. Hence by the aforementioned re-
sult of Aldous [2], we have that τcov(Td(n)) is concentrated around tcov(Td(n)) for all d ≥ 2.
As described above, for d ≥ 3 one can determine the asymptotic of tcov(Td(n)) (up to smaller
order terms) via Matthews’ bound. In this case, τcov(Td(n)) exhibits Gumbel fluctuations of
order nd around its mean [8]. The case d = 2 is much more involved. Dembo et al. [14]
showed that tcov(T2(n))= (1± o(1)) 4

π
(n logn)2. More refined results can be found at [9, 13,

15].
The cover time of a graph using many independent random walks was first studied in [3]

and later also in [18] and [19]. We now consider the cover time of Td(n) (for d ≥ 2) by mul-
tiple independent random walks starting from the uniform distribution. The analysis below is
used to derive the lower bound on S(Td(n)) from Theorem 2, as explained in Section 6.1.

Let G = (V ,E) be a finite connected vertex-transitive graph. Let S1 = (S1
m)∞m=0, S2 =

(S2
m)∞m=0, . . . be independent SRWs on G such that Si

0 ∼ π for all i (i.e., the initial position
of each walk is chosen from the uniform distribution). We think of Si as the walk performed
by the ith particle from some collection of particles. For t ∈ N, let Ri(t) := {Si

0, . . . , S
i
t } be

the range of the first t steps of the ith particle. We may consider the cover time when the
length of the walks of the particles is fixed and the number of walks varies or vice versa: For
s, t ∈N, let

C(G, t) := inf
{
s : V = ⋃

i∈[s]
Ri(t)

}
and

D(G, s) := inf
{
t : V = ⋃

i∈[s]
Ri(t)

}
.

(6.1)

While for our applications we are mostly interested in D(G, s) as a function of s, it is easier
to first analyze C(G, t) as a function of t , and then relate the two via the relation

(6.2) P
[
D(G, s) > t

]= P
[ ⋃
i∈[s]

Ri(t) �= V

]
= P

[
C(G, t) > s

]
.

Fix some v ∈ V . By symmetry, we have that P[v ∈ R1(t) | |R1(t)| = k] = k/|V |. Let R(t)

be the range of a length t walk. By averaging over |R1(t)|, we get that

(6.3) pt := Pπ [Tv ≤ t]= P
[
v ∈R1(t)

]= 1

|V |E
[∣∣R1(t)

∣∣]= 1

|V |E
[∣∣R(t)

∣∣].
Observe that by a union bound on V , for all δ > 0 we have that

P
[
C(G, t) >

1

pt

(1+ δ) log |V |
]
≤ |V |(1− pt)

� 1
pt

(1+δ) log |V |�

≤ 1

(1− pt)|V |δ .

(6.4)

Consequently,

ptE[C(G, t)]
log |V | − 1≤

∫ ∞
1

P
[
ptC(G, t)

log |V | > s

]
ds

≤
∫ ∞

1

ds

(1− pt)|V |s−1 =
1

(1− pt) log |V | .
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Thus

(6.5) E
[
C(G, t)

]≤ 1

pt

(
log |V | + 1

1− pt

)
= |V |[log |V | + (1− pt)

−1]
E[|R(t)|] .

The following is a variant of Matthews’ argument (or more precisely, of Zuckerman’s refine-
ment of it) for multiple random walks. Similar variants appear in [3] and [18].

THEOREM 6.1. Let G = (V ,E) be a vertex-transitive graph. Let A⊆ V . Let αt(A) :=
maxx,y∈A:x �=y Px[Ty ≤ t]. Then

E
[
C(G, t)

]≥ (
1− αt(A)

) 1

pt

h
(|A|).

PROOF. Let σ : [|A|] → A be a bijection chosen uniformly at random. Recall that
Ri(t) := {Si

0, . . . , S
i
t } is the length t walk performed by the ith particle. Let L0 = 0 and

for 
 ∈ [|A|] let L
 be the first j such that {σ(k) : k ∈ [
]} ⊆⋃j
r=1 Rr(t). We argue that

∀
 ∈ [|A|], E[L
 −L
−1] ≥ (
1− αt(A)

) 1


pt

,

where the expectation is taken jointly over the walks and the random labeling. This implies
the assertion of the theorem by summing over 
 ∈ [|A|].

We argue that P[L
 −L
−1 �= 0] ≥ 1


(1− αt(A)), which concludes the proof, as clearly

E[L
 −L
−1 | L
 −L
−1 �= 0] = E[L1] = 1

pt

.

Denote the hitting time of x by the ith particle by T i
x := inf{s : Si

s = x}. Let τx := inf{j :
x ∈ Rj(t)} be the index of the first particle to hit x if each particle walks for t steps. Let
τ̂x := (τx − 1)t + T

τx
x be the total number of steps until x is hit (remember that each one of

the initial τx particles involved, walks for t steps; Imagine the first particle first performing
t steps, followed by the t steps of the second particle, etc.). As we labeled the set A using
a labeling chosen uniformly at random, P[τ̂σ (
) = maxi∈[
] τ̂σ (i)] = 1



. Let us condition on

τ̂σ (
) = maxi∈[
] τ̂σ (i) and on that σ(
) = y (for some y ∈ A). Let us condition further on
maxi∈[
−1] τ̂σ (i) = τ̂σ (r), τσ(r) = m, that σ(r) = x (for some x ∈ A) and that T m

σ(r) = s. The
conditional probability that τσ(
) = τσ(r) (i.e., that L
−L
−1 = 0) is by the Markov property
the same as the probability that a SRW of length t − s starting from x hits y, which is at most
αt(A). �

PROPOSITION 6.2. Let d ≥ 3. Let ρ(d) be as in (2.4). Then the following holds:

(1) If 1� tn � nd , then E[C(Td(n), tn)] = (1± o(1))
dnd logn
tnρ(d)

and for every fixed ε > 0

we have that P[| C(Td (n),tn)
E[C(Td (n),tn)] − 1|> ε] = o(1).

(2) If logn� sn� nd logn, then for every fixed ε > 0 we have that

P
[
D
(
Td(n), sn

)≤ (1− ε)
dnd logn

snρ(d)

]
= o(1).

(3) If logn� λnn
d � nd logn, then for every fixed ε > 0 we have that

Pλn

[
S
(
Td(n)

)≤ (1− ε)
d logn

λnρ(d)

]
= o(1).
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PROOF. We first prove part (1). Let 1 � tn � nd . By (6.3) in conjunction with
Lemma 5.17, ptn = (1 ± o(1))

ρ(d)tn
nd . By (6.4)–(6.5), we have that E[C(Td(n), tn)] ≤ (1 +

o(1))
dnd logn
tnρ(d)

and that for every fixed ε > 0 for all sufficiently large n we have that

(6.6) P
[
C
(
Td(n), tn

)
> (1+ ε)

dnd logn

tnρ(d)

]
≤ n−εd/2.

Now pick some collection A of vertices at distance at least logn from one another such
that |A| � (n/ logn)d (we could have replaced logn by any other diverging function which
is ≤ no(1)). By Fact 5.10 and Lemma 5.12, αtn(A)= o(1).

Using Theorem 6.1, we have that E[C(Td(n), tn)] ≥ (1− o(1))
dnd logn
tnρ(d)

. Let

Y :=max
{
E
[
C
(
Td(n), tn

)]− C
(
Td(n), tn

)
,0
}

and

Z :=max
{
C
(
Td(n), tn

)−E
[
C
(
Td(n), tn

)]
,0
}
.

Then E[Y ] = E[Z] = o(E[C(Td(n), tn)]) (by (6.6)). Finally,

P
[
C
(
Td(n), tn

)≤ (1− ε)E
[
C
(
Td(n), tn

)]]= P
[
Y ≥ εE

[
C
(
Td(n), tn

)]]
≤ E[Y ]

εE[C(Td(n), tn)] = o(1).

Part (2) follows from part (1) via (6.2). Part (3) follows in turn from part (2) via Section 6.1.
�

PROPOSITION 6.3.
Let ε > 0. Let 1

logn
� δn = o(1). Let

fn(m) := 2n2 logn

πm
log

(
n2 logn

m

)
.

(1) If 1� tn ≤ nδn , then E[C(T2(n), tn)] = (1± o(1))
2n2 logn log tn

πtn
and

P
[∣∣∣∣ C(T2(n), tn)

E[C(T2(n), tn)] − 1
∣∣∣∣> ε

]
= o(1).

(2) If n2−δn ≤ sn� n2 logn, then

P
[
D
(
T2(n), sn

)≤ (1− ε)fn(sn)
]= o(1).

(3) If n2−δn ≤ λnn
2 � n2 logn, then

Pλn

[
S
(
T2(n)

)≤ (1− ε)fn

(
λnn

2)]= o(1).

PROOF. The proof is analogous to that of Theorem 6.2. Let tn � 1. We first prove part
(1). By (6.3) in conjunction with Lemma 5.14, ptn = (1± o(1)) πtn

n2 log tn
. By (6.4)–(6.5), we

have that E[C(T2(n), tn)] ≤ (1+ o(1))
2n2 logn log tn

πtn
and that for every fixed ε > 0 for all suf-

ficiently large n we have that

(6.7) P
[
C
(
T2(n), tn

)
> (1+ ε)

2n2 logn log tn

πtn

]
≤ n−ε.

Let 1
logn

� δn = o(1). Assume that tn ≤ nδn . Pick some collection A of vertices at dis-

tance at least nδn from one another such that |A| � n2−2δn . By Theorem 6.1, we have that
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E[C(T2(n), tn)] ≥ (1− δn − o(1))
2n2 logn log tn

πtn
. The proof of part (1) is concluded in an anal-

ogous manner to that of Theorem 6.2. Part (2) follows from part (1) via (6.2) together with

some algebra (namely, sn = (1±o(1))
2n2 logn log tn

πtn
iff tn = (1±o(1))fn(sn)). Part (3) follows

from part (2) via Section 6.1. �

We now consider C(T2(n), tn) for 1� tn � n2 logn and D(T2(n), sn) for logn� sn �
n2 logn. Observe that (6.7) is still valid. Besides that, by taking A to be a set of vertices at
distance at least

√
n from one another such that |A| � n, from the proof of Proposition 6.3

we get that

(6.8) 1/4− o(1)≤ πtnE[C(T2(n), tn)]
2n2 logn log tn

≤ 1+ o(1),

where we have used the estimate αn2kn
(A) ≤ 1

2 + o(1) for kn � logn, which follows from
(5.21) in conjunction with Lemma 5.16. We strongly believe that C(T2(n), tn) is concen-

trated around 2n2 logn log tn
πtn

for 1� tn� n2 logn and that D(T2(n), sn) is concentrated around

fn(sn) := 2n2 logn
πsn

log(
n2 logn

sn
) for logn� sn� n2 logn. We note that it is not hard to deduce

from (6.7)–(6.8) that E[D(T2(n), sn)]� fn(sn). However, one has to work harder in order to
show that for some c ∈ (0,1) we have that P[D(T2(n), sn) ≤ cfn(sn)] = o(1). For instance,
using Theorem 1 in [2] with some additional work one can show that C(T2(n), tn) is concen-
trated around its mean. Below we take a different approach.

PROPOSITION 6.4. Let fn(m) := 2n2 logn
πm

log(
n2 logn

m
).

(1) If logn� sn� n2 logn, then

P
[
D
(
T2(n), sn

)≤ fn(sn)

16

]
= o(1).

(2) If logn� λnn
2 � n2 logn, then

Pλn

[
S
(
T2(n)

)≤ fn(λnn
2)

16

]
= o(1).

PROOF. Part (2) follows from part (1). To be precise, this follows formally from the fact
that in the proof below we actually get that for some ε > 0,

P
[
D
(
T2(n), sn

)≤ fn(sn)
1+ ε

16

]
= o(1).

We now prove part (1). Let tn := 	fn(sn)/16
, where logn� sn � n2 logn. Then 1 �
tn � n2 logn. Consider a walk on T2(n) which follows the following rule. At each step
w.p. 1

2tn
, it moves to a vertex chosen from the uniform distribution on the vertex set. Oth-

erwise, it makes a SRW step. An equivalent description is that this walk makes a random
number of steps of SRW, according a Geometric(1/2tn) random variable (here and below,
Z ∼Geometric(p) means that P(Z = k)= p(1−p)k−1 for all k ∈N and thus its mean is 1

p
),

before moving to a vertex chosen from the uniform distribution on the vertex set. After doing
so, it repeats this rule. We call each such duration between two consecutive jumps to a vertex
chosen from the uniform distribution on the vertex set a mini-walk.

We argue that the cover time for this walk is w.h.p. at least rn := (1− o(1))n2 log tn logn
2π

.
This implies the assertion of part (1) as w.h.p. by time rn the walk makes at least(

1− o(1)
) rn

2tn
e−1/2 = (

1− o(1)
)
n2 log tn logn

4πtn
e−1/2 ≥ n2 log tn logn

4πtn
· 1

2
≥ sn
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mini-walks of length at least tn (where the last inequality follows from the definition
of tn after some algebra). To see this, observe that by time rn the walk makes w.h.p.

(1± o(1)) rn
2tn
= (1± o(1))n2 log tn logn

4πtn
mini-walks and w.h.p. roughly a P[Geometric( 1

2tn
)≥

tn] = (1− o(1))e−1/2 > 1
2 fraction of them are of length at least tn. Consequently, w.h.p. sn

walks of length tn do not cover T2(n), which is the assertion of part (1).
Denote the new walk by X̂ := (X̂i)

∞
i=0. Denote its law by P̂ and its transition matrix by P̂ .

Denote the corresponding expectation by Ê. Let A be a set of vertices at distance at least
√

n

from one another such that |A| ≥ n/4. We argue that for the new walk

(6.9)

(
1− o(1)

)
n2 log tn

2π
≤ min

a,b∈A,a �=b
Êa[Tb] ≤ max

a,b∈T2(n)
Êa[Tb]

≤ (
1+ o(1)

)
n2 log tn.

By Theorem E, this implies that the expectation of the cover time for X̂ is indeed at least rn =
(1− o(1))n2 log tn logn

2π
. As rn�maxa,b∈T2(n) Êa[Tb], by the aforementioned general result of

Aldous [2] the cover time of X̂ is concentrated around its mean, which is larger than rn as
desired. It remains only to prove (6.9).

Let Za,b :=∑
i≥0(P̂

i(a, b)− n−2). It is classical ([1], Lemma 2.12) that

(6.10) Êx[Ty] = n2(Zy,y −Zx,y)= n2
∑
i≥0

(
P̂ i(y, y)− P̂ i(x, y)

)
(cf. [23], Section 6.2, for a proof that

∑
i≥0 |P̂ i(u, v)− n−2|<∞ for all u, v ∈ T2(n)).

Let ρ ∼Geometric(1/2tn) be the first time at which X̂ moves to a random position chosen
uniformly at random (i.e., ρ is the duration of the first mini-walk). Consider a coupling of
X̂ with SRW on T2(n) X := (Xi)

∞
i=0, in which both walks agree up to time ρ − 1 and X is

independent of ρ. Now consider a coupling of X̂ started from y with X̂ started from x in
which both walks have the same duration ρ for their first mini-walk and at time ρ both walks
move to the same location, and from that moment on both walks are equal to each other.
Until time ρ, both walks are coupled with SRW on T2(n) as described above (for instance,
one can couple them with two independent SRWs started from y and x, resp.). Let N(y) be
the number of visits to y during a single mini-walk. It is easy to see from this coupling that

∑
i≥0

(
P̂ i(y, y)− P̂ i(x, y)

)= E

[
ρ−1∑
i=0

(
P i(y, y)− P i(x, y)

)]

= Êy

[
N(y)

]− Êx

[
N(y)

]
.

By the memoryless property of the Geometric distribution and the Markov property (used in
the second equality below to argue that Êx[N(y)] = Px[Ty < ρ]Êy[N(y)]), we get that

(6.11)

∑
i≥0

(
P̂ i(y, y)− P̂ i(x, y)

)= Êy

[
N(y)

]− Êx

[
N(y)

]
= P̂x[Ty ≥ ρ]Êy

[
N(y)

]
.

Finally, as 1� tn� n2 logn by (5.21) in conjunction with Lemma 5.16 we have that P̂x[Ty ≥
ρ] ≥ 1/2− o(1) for all x �= y ∈A and by Lemma 5.14 Êy[N(y)] = (1± o(1))

log tn
π

. Thus by
(6.10)–(6.11)

Êx[Ty] ≥ n2[1/2− o(1)
]( log tn

π

)
= (

1− o(1)
)
n2 log tn

2π
, for all x �= y ∈A,

and Êx[Ty] ≤ (1+ o(1))n2 log tn
π

for all x, y ∈ T2(n), as desired. �
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6.3. Proof of Proposition 2.8. The proof of Proposition 2.8 uses McDiarmid’s inequality,
which we now state. Let f : X n → R. Let ci := sup |f (x)− f (y)|, where the supremum is
taken over all x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ X n such that xj = yj for all j �= i. Let
X1, . . . ,Xn be i.i.d. X valued random variables. Then for all ε > 0, we have that

(6.12) P
[
f (X1, . . . ,Xn) < E

[
f (X1, . . . ,Xn)

]− ε
]≤ exp

(
− 2ε2∑

i∈[n] c2
i

)
.

PROOF OF PROPOSITION 2.8. We first prove (2.12). The rightmost inequality follows
from the fact that for regular graphs P t(v, v)− 1

|V | �
1√
t+1

for all v ∈ V and all t (e.g., [12]).
Let Nk(x) be the number of visits to x by time k by the first walk. By Lemma 5.13,

k/|V |
ν̂k

≤ Pπ [Tv ≤ k] ≤ 2k/|V |
νk

,

from which the rest of the inequalities in (2.12) follow.
Consider m := 	λ|V |
 i.i.d. walks (X1, . . . ,Xm) started from stationarity (where Xi =

(Xi(t))
∞
t=0 for all i). Let ft ((X1, . . . ,Xm)) be the number of vertices not visited by any of

the walks in their first t steps. By the McDiarmid’s inequality with maxi ci ≤ t + 1, writing
μt := E[ft ((X1, . . . ,Xm)) we have that

(6.13) P
[
ft

(
(X1, . . . ,Xm)

)
< μt/2

]] ≤ exp
(
− μ2

t

8mt2

)
.

Using the independence of the walks together with the definitions of t̂ , t̄ and m, we see
that μt̂−1 ≥ |V |(1− log |V |

6λ|V | )
m ≥ |V |5/6−o(1) while

μt̄ ≤ |V |
(

1− 2 log |V |
λ|V |

)m

≤ 1

|V | .

Thus (2.13) follows by Markov’s inequality and the bound on P[D(G, 	λ|V |
) < t̄] is ob-
tained by substituting the bound on μt̄ in (6.13). The corresponding bound on Pλ[S(G) < t̂]
follows by considering the event that the set A of vertices visited by the planted particle (by
time t̂ ) is of size at most |V |/2, conditioning on this set, and then arguing that even if the rest
of the particles are all activated at time 0, some vertex in V \ A will not be visited by time
t̂ − 1. The probability of this failing can be controlled by conditioning on the total number of
particles, using the concentration of the Poisson distribution around its mean, and then using
the above argument (cf. the proof of (2.4) in [10] for a completely analogous calculation).

�

7. Tori—Proof of upper bounds of Theorem 2. We start by introducing some notation.
We think of the vertices of Td(n) as being labeled by the set [0, n− 1]d ∩ Zd . By abuse of
notation, we denote the vertex set of Td(n) again by Td(n). A box of side length r is a set of
the form{

(x1, . . . , xd) ∈ Td(n) : ∀i,∃ji ∈ {0, . . . , r − 1} such that xi ≡ vi + ji mod n
}
,

for some (v1, . . . , vd) ∈ [0, n− 1]d ∩ Zd . We define the 
p distance (p ≥ 1) between x, y ∈
Td(n), ‖x − y‖p , as min‖x′ − y′‖p , where the minimum is taken over all pairs x′, y′ in Zd

such that x′ ≡ x and y′ ≡ y mod n (coordinatewise) and ‖·‖p is the usual 
p norm on Rd . The
same convention is utilized when we consider a renormalized torus of the form Td(�n/r�)
(when we replace mod n by mod �n/r�). We write x ∼ y whenever ‖x − y‖1 = 1 (note that
for x, y ∈ Td(n), ‖x − y‖1 = 1 iff x and y are neighbors in Td(n)).
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Let r ∈ [n] and m := �n/r�. Below we often take a partition of Td(n) into boxes of
side length r . What we actually mean by this is that we partition Td(n) into md boxes
of side length r , apart from O(md−1) boxes which may be of uneven side lengths, which
are between r and 2r . The boxes naturally inherit the structure of Td(m). Namely, for ev-
ery v = (v1, . . . , vd) ∈ Td(m) we denote by Br

v the unique box in the partition containing
rv := (rv1, . . . , rvd) (more precisely, one can partition Td(n) into mr boxes as above, such
that for each v ∈ Td(m) we have that rv belongs to precisely one of these boxes, which we
denote by Bv). When r is clear from context, we omit it and write Bv .

7.1. Reducing the upper bound on S(Td(n)) to a spatial homogeneity condition.

DEFINITION 7.1. Let α ∈ (0,1). We say that A ⊆ Td(n) is (α, r)-dense if for every
v ∈ Td(m) we have that |A ∩ Br

v | ≥ α|Br
v | (where m := �n/r� and Br

v is as above). That is,
the density of A at each of the md boxes of side length r of the partition is at least α.

DEFINITION 7.2. We denote the event that Rt is (α, r)-dense by Hom(t, α, r).

PROOF OF THEOREM 2. The lower bounds have been established in Section 6.2 via the
discussion in Section 6.1. Namely, part 3 of Proposition 6.2 for d ≥ 3 and for d = 2, parts
3 and 2, respectively, of Propositions 6.3 and 6.4. We now turn the the upper bounds. Let
ε,α ∈ (0,1) where ε is arbitrary, and α will be determined later. We take the lifespan to be t

which we now define. The lifespan will depend on λ, d and n (it has a different expressions
in the cases d ≥ 3 and d = 2).

For d ≥ 3, let ρ(d) be as in (2.4). For d ≥ 3, we consider λn > 0 such that logn� λnn
d �

nd logn. Let t = t (n, λn, d, ε) := (1+ 3ε)
d logn
λnρ(d)

. For d = 2 we set t = t (n, λn, d, ε) := (1+
3ε)f (n,λn), where f (n,λ) := 2

π
λ−1 logn log(λ−1 × logn). For d = 2, we consider λn > 0

such that logn� λnn
2 � n2 logn.

We shall consider below boxes of size Ln where 1� Ln � n and for d = 2 we have that
L2

n � λ−1
n logn, while for d ≥ 3 we have that L2

n� λ−1
n logn.

The cases d ≥ 3 and d = 2 are analogous, with each ingredient from the proof of one
having a counterpart in the proof of the other. In both cases, we employ a three steps strategy.
We partition the particles into three independent sets of densities ελn, ελn and (1− 2ε)λn,
respectively. We include the planted particle wplant in the first set.

First, consider the dynamics only w.r.t. the first set (as if the other two sets of particles do
not exist) in the case that the particle lifespan is t . Observe that these dynamics are exactly
the frog model with particle density ελn and lifespan t .

Let A1 be the collection of vertices visited by the dynamics of the particles belonging
to the first set of particles. Let A1 be the event that A1 is (α,Ln)-dense. Let W2 be the
collection of particles from the second set which initially occupy A1. Let A2 be the collection
of vertices visited by the particles from W2 during their length t walks. Let A2 be the event
that A2 is (1 − δn,Ln)-dense for some δn = o(1) to be determined later. Let W3 be the
collection of particles from the third set which initially occupy A2. Let A3 be the collection
of vertices visited by the particles from W3 during their length t walks. Let A3 be the event
that A3 = Td . Denoting the complement of the event Ai by Ac

i , we clearly have that

Pλn

[
S
(
Td(n)

)
> t

]≤ Pλn

[
Ac

1
]+ Pλn

[
Ac

2 |A1
]+ Pλn

[
Ac

3 |A1,A2
]
.

Note that Pλn[Ac
1] = 1 − Pελn[Hom(t, α,Ln)]. Theorems 7.13 and 7.18 below ensure that

for d ≥ 3 and d = 2, respectively, we have that Pελn[Hom(t, α,Ln)] = 1 − o(1) for some
α ∈ (0,1). This is done via a renormalization argument in which Td is partitioned into boxes
of size Ln. A variant of this argument is later used to prove that it is sufficient that the lifespan
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is taken to be of order max{λ−1,1} for d ≥ 3 and of order max{λ−1| logλ|,1} for d = 2 in
order for a fraction of the vertices to be visited by the process before it terminates. We include
this variant despite the fact that it is not be used in the proof of Theorem 2, since we believe
it is of interest in its own right and as its proof involves an elegant comparison with Bernoulli
site percolation.

Finally, we show that for some δn = o(1) we have that Pλn[Ac
2 |A1] = o(1) and Pλn[Ac

3 |
A1,A2] = o(1) in Lemmas 7.4 and 7.3, respectively, for d ≥ 3 (resp., in Lemmas 7.6 and
7.5, resp., for d = 2). �

LEMMA 7.3. Let d ≥ 3. Let ρ(d) be as in (2.4). Let ε > 0. Let λn > 0 be such that
logn� λnn

d � nd logn. Let 1� Ln � n be such that L2
n � λ−1

n logn. Let δn = o(1). Let
A⊆ Td(n) be (1− δn,Ln)-dense. Assume that at each vertex a ∈ A there are Pois(λn) par-
ticles performing t = t (n, λn, d) := 	 (1+ε)d logn

λnρ(d)

 steps of SRW, independently. Let D be the

collection of vertices which are not visited by a single particle. Then for all sufficiently large
n we have that E[|D|] ≤ n−εd/2.

PROOF. Let v ∈ Td(n). For i ∈ N and a, b ∈ Td(n), let νi := ∑i
j=0 P j (a, a) and

νi(a, b) :=∑i
j=0 P j (a, b). Recall that by Lemma 5.12 if 1 � i � nd we have that νi =

(1± o(1)) 1
ρ(d)

. Let s := 	√t
. Note that for all a we have that

1

(1− o(1))ρ(d)

t∑
i=0

Pv[Ta = i] ≥
t−s∑
i=0

Pv[Ta = i]νt−i

≥
t−s∑
i=0

Pv[Ta = i]νt−s−i = νt−s(v, a).

Summing over all a ∈ A gives
∑

a∈A Pv[Ta ≤ t] ≥ (1− o(1))ρ(d)
∑t−s

i=0 P i(v,A). By sym-
metry,

∑
a∈A Pa[Tv ≤ t] =∑

a∈A Pv[Ta ≤ t]. By Poisson thinning, the number of particles
which visited v from A in time t has a Poisson distribution with mean μv , where

μv/λn =
∑
a∈A

Pa[Tv ≤ t] =∑
a∈A

Pv[Ta ≤ t]

≥ (
1− o(1)

)
ρ(d)

t−s∑
i=0

P i(v,A)= (
1− o(1)

)
ρ(d)(t − s)

≥ λ−1
n (1+ ε/2) lognd,

where
∑t−s

i=0 P i(v,A)≥ (1− o(1))(t − s)= t (1− o(1)) follows from the fact that A is (1−
δn,Ln)-dense and that L2

n � λ−1
n logn using the local CLT (cf. Fact 5.11). Thus E[|D|] ≤

nde−minv μv ≤ n− εd
2 , as desired. �

LEMMA 7.4. Let d ≥ 3. Let ε,α, c ∈ (0,1) be arbitrary. Let λn > 0 be such that
logn � λnn

d � nd logn. Let 1 � Ln � n be such that L2
n � λ−1

n logn. Let A ⊆ Td(n)

be (α,Ln)-dense. Assume that at each vertex a ∈ A there are Pois(λn) particles performing
t = t (n, λn, d) := 	 cd logn

αλnρ(d)

 steps of SRW, independently. Let D be the collection of vertices

which are visited by at least one of the particles. Then there exists some δn = o(1), depending
only on c, such that w.h.p. D is (1− δn,Ln)-dense.

PROOF. Fix some box BLn
v of side length Ln. Fix some (1/Ln)

1/2d � βn � 1 to be
determined later. Consider an arbitrary collection F ⊆ BLn

v of vertices of distance at least
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βnLn from one another, such that |F |� 1/βd
n . We will show that for some δn = o(1) we have

that

P
[|D ∩ F |< (1− δn)|F |]≤ n−2d .

This clearly implies the assertion of the lemma via a union bound (as we may partition Td(n)

into O(nd) such sets as F ).
Let s := 	√t
. Fix some u ∈ F . As in the proof of Lemma 7.3, we have that

∑t−s
i=0 P i(u,

A)≥ (1− o(1))tα (here A is only assumed to be (α,Ln)-dense, not (1− δn,Ln)-dense as in
Lemma 7.3). Again, as in the proof of Lemma 7.3 the number of particles which visit u has
a Poisson distribution with mean

μu ≥ (
1− o(1)

)
λnρ(d)

t−s∑
i=0

P i(v,A)

≥ (
1− o(1)

)
λnρ(d)tα ≥ (

1− o(1)
)
cd logn.

(7.1)

Given that a certain particle is at u at some time j ∈]t[ the probability that it visited an-
other vertex from F during its length t walk is by reversibility (used to explain the factor 2)
Fact 5.10 and Lemma 5.12 at most

2
t∑

i=1

P i
Td (n)

(
u,F \ {u})≤ C(d)|F |(βnLn)

2−d +Cn−d t |F | = o(1),

where the last equality holds provided that βn is taken to tend to 0 sufficiently slowly
(as t � nd , |F |(βnLn)

2−d � β2−2d
n L2−d

n and Ln � 1, the last equality holds if β−2d
n �

min{nd/t,Ld−2
n }). Thus (by summing over all j ∈]t[) the expected number of particles which

visit both u and at least one other vertex from F , denoted by μ̃n is at most μu · o(1). Thus
the number of particles which visit u and no other vertex in F , denoted by Qu, has a Poisson
distribution with mean μ̂u, where (by (7.1))

μ̂u = μu − μ̃u = (
1− o(1)

)
μu ≥ (

1− o(1)
)
cd logn.

By Poisson thinning, we have that (Qx)x∈F are independent and for all sufficiently large n

we have that

max
x∈F

P[Qx = 0] ≤ e−minx∈F μ̂x ≤ e−
1
2 cd logn = n−cd/2.

Hence if δn = o(1) is such that J := 	δn|F |
 ≥ 16/c, the probability that at least J vertices
x ∈ F satisfy that Qx = 0 is at most(|F |

J

)
n−|J |cd/2 ≤

( |F |e
Jncd/2

)J

≤
(

e

δnncd/2

)J

≤
(

1

ncd/4

)J

≤ n−2d

for all sufficiently large n (where we have used
(a
b

)≤ (ae
b

)b for all b ≤ a ∈ N, and J ≥ 16/c

is used only in the last inequality). �

We now state versions of the previous two lemmas for the case d = 2.

LEMMA 7.5. Let ε > 0. Let f (n,λ) := 2
π
λ−1 logn log(λ−1 logn). Let λn > 0 be such

that logn� λnn
2 � n2 logn. Let 1� Ln � n be such that L2

n � λ−1
n logn. Let δn = o(1).

Let A ⊆ T2(n) be (1− δn,Ln)-dense. Assume that at each vertex a ∈ A there are Pois(λn)

particles performing t = t (n, λn, d, ε) := 	(1 + ε)f (n,λn)
 steps of SRW, independently.
Let D be the collection of vertices which are not visited by a single particle. Then for all
sufficiently large n we have that E[|D|] ≤ n−ε .
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PROOF. Let v ∈ T2(n). For i ∈ N and a, b ∈ T2(n), let νi := ∑i
j=0 P j (a, a) and

νi(a, b) := ∑i
j=0 P j (a, b). Recall that by Lemma 5.14 if 1 � i � n2 logn we have that

νi = (1± o(1))
log i
π

. Let s := 	t/ log t
. By Poisson thinning and symmetry, the number of
particles which visited v has a Poisson distribution with mean μv where

μv/λn =
∑
a∈A

Pa[Tv ≤ t] =∑
a∈A

Pv[Ta ≤ t]

≥ (1± o(1))π

log t

∑
a∈A

t−s∑
i=0

Pv[Ta = i]νt−i

≥ (1± o(1))π

log t

t−s∑
i=0

P i(v,A)= (1± o(1))π

log t
(t − s)

≥ λ−1
n (1+ ε/2) logn2,

where the penultimate equality holds using the local CLT, the fact that A is (1−δn,Ln)-dense
and that L2

n� t (cf. Fact 5.11). Thus

E
[|D|]≤ n2e−minv μv ≤ n−ε. �

LEMMA 7.6. Let ε,α, c ∈ (0,1) be arbitrary. Let

f (n,λ) := 2

π
λ−1 logn log

(
λ−1 logn

)
.

Let λn > 0 be such that logn� λnn
2 � n2 logn. Let L2

n � λ−1
n logn. Let A ⊆ Td(n) be

(α,Ln)-dense. Assume that at each vertex a ∈A there are Pois(λn) particles performing t =
t (n, λn, d) := 	 c

α
f (n,λn)
 steps of SRW, independently. Let D be the collection of vertices

which are visited by at least one of the particles. Then there exists some δn = o(1), depending
only on c, such that w.h.p. D is (1− δn,Ln)-dense.

PROOF. Fix some box BLn
v of side length Ln. Fix some

√
1/ logLn � βn � 1 to be

determined later. Consider an arbitrary collection F ⊆ BLn
v of vertices of distance at least

βnLn from one another, such that |F |� 1/β2
n . We will show that for some δn = o(1) we have

that P[|D ∩ F |< (1− δn)|F |] ≤ n−4. This clearly implies the assertion of the lemma via a
union bound (as we may partition T2(n) via O(n2) such sets).

Let s := 	√t/ log t
. Fix some u ∈ F . As in the proof of Lemma 7.5,
∑t−s

i=0 P i(u,A) ≥
(1 − o(1))tα (here A is only assumed to be (α,Ln)-dense, not (1 − δn,Ln)-dense as in
Lemma 7.5). Again, as in the proof of Lemma 7.5, the number of particles which visit u has
a Poisson distribution with mean μu ≥ (1−o(1))π

log t
λn

∑t−s
i=0 P i(v,A)≥ (1− o(1))c logn2.

Given that a certain particle is at u at some time i ∈ t , the probability that it visited another
vertex from F during its length t walk is o(1), by reversibility, (5.19), and Lemma 5.16,
provided that βn tends to 0 sufficiently slowly. Thus the expected number of particles which
visit both u and at least one other vertex from F , denoted by μ̃u, is at must μu · o(1). Thus
the number of particles which visit u and no other vertex in F , denoted by Qu, has a Poisson
distribution with mean μ̂u, where μ̂u = (1−o(1))μu. From this point, the proof is concluded
in an analogous manner to the proof of Lemma 7.4. �

7.2. Giant component in constant lifespan for tori. The only missing ingredient in
the proof of Theorem 2 is verifying that, in the notation from that proof, we have that
Pελn[Hom(t, α,Ln)] = 1 − o(1) for some α ∈ (0,1). This will be done in Theorems 7.13
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and 7.18. Before tending to that, we take a detour and establish the emergence of a “giant
component” in constant lifespan (when λ � 1), in a sense that will be made precise below.
Some of the ideas below will be useful for the proofs of Theorems 7.13 and 7.18.

Let d ≥ 2. Let K(d) ≥ 1 be some constants to be determined later. Throughout we take
λ= λn such that logn� λnd � nd logn. Let λ̃ :=min{1, λ}, β := 1/̃λ,

r = r(d, λ) :=
⎧⎨⎩
⌈
K(d)

√
β
⌉

d ≥ 3,⌈
K(2)

√
β(1+ logβ)

⌉
d = 2,

(7.2)

m=m(n,d,λ) := �n/r� and s = s(d, λ) := 8dr2(d, λ).(7.3)

Consider the variant of the frog model in which the planted particle wplant walks for 


steps while the rest of the particles walk for k steps. Denote the set of vertices visited by
the process before it dies out by Rk,
. The following theorem asserts that if t � s = s(d, λ),
then Rs,t is (α,Cr(logn)1/(d−1))-dense w.h.p. for some α ∈ (0,1) and C > 0, where s is as
in (7.3). Note that when λn � 1 we have that s � 1 and so it follows that |Rs,t | � nd w.h.p.

provided that s is a sufficiently large constant (in terms of λ and d) and that t � 1. Below we
write �d to indicate that the implicit constant may depend on d .

THEOREM 7.7. Let d ≥ 2. Let λ = λn be such that logn� λnd � nd logn. Let r =
r(d, λ) and s = s(d, λ) be as above. Let t = t (d, λn)� s(d, λn). Provided that the constant
K(d) is sufficiently large, there exist some α ∈ (0,1) and some Ln,d �d (logn)1/(d−1) such
that

PTd (n)
λn

[
Rs(d,λn),t is

(
α, r(d, λn)Ln,d

)
-dense

]= 1− o(1).

Observe that for d ≥ 4 we have that r(d, λn)(logn)1/(d−1) �
√

λ−1
n logn, provided λn �

(logn)1−2/(d−1). While this suffices to conclude the proof of Theorem 2 only for d ≥ 4 when
λn� (logn)1−2/(d−1), we think this result is interesting in its own right. Moreover, its proof
contains some of the ideas that will be used to prove Theorems 7.13 and 7.18 (which are used
in order to conclude the proof of Theorem 2) in the following two subsections.

Let ei ∈ Zd be the vector whose j th coordinate is 1{j = i}. We partition the parti-
cles into 2d + 2 independent sets, Wa,Wb,W±e1, . . . ,W±ed , where Wa , Wb both have
density λ/4 and each of the other sets has density λ/(4d). We denote the collection
of all particles in W i whose initial position is u ∈ Td(n) (resp., B ⊆ Td(n)) by W i

u

(resp., W i
B ), where i ∈ {a, b,±e1, . . . ,±ed}. Then (|Wi

u|)u∈Td (n),i∈{a,b} are i.i.d. Pois(λ
4 ) and

(|Wi
u|)u∈Td (n),i∈{±e1,...,±ed } are i.i.d. Pois( λ

4d
). We still denote the corresponding probability

by Pλ. We note that the set Wb will play no role in the analysis in this subsection. The reason
we introduce it now is that it will be used in the following subsections.

DEFINITION 7.8. Consider a partition of Td(n) into md boxes (Br
v)v∈Td (m) of side length

r , where m := �n/r�. Let v ∈ Td(m). We define the (r, s) a-dynamics on Br
v started from

B ⊆ Br
v to be the variation of the frog model with lifespan s in which:

(1) Initially only Wa
B is activated.

(2) Initially at each u ∈ Br
v there are Wa

u ∼ Pois(λ
4 ) particles, and no planted particles.

(3) Initially there are no particles outside Br
v .

We denote the collection of vertices in Br
v that are visited by the (r, s) a-dynamics on Br

v

started from B before it dies out by AB = AB(r, s). We say that B ⊆ Br
v is (r, s)-good if

|AB | ≥ 1
4 |Br

v |. We say that x ∈ Br
v is (r, s)-good if |Ax | ≥ 1

4 |Br
v |, where Ax :=A{x}. Finally,

we define goodr,s(v) := {x ∈ Br
v : x is (r, s)-good}. When r and s are clear from context, we

omit them from the aforementioned notation and terminology.
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Throughout this subsection r and s shall be as in (7.2)–(7.3). However, in the following
two subsections we shall use Definition 7.8 with different choices of r and s.

Recall that Rs(U) is the union of the ranges of the length s walks performed by the parti-
cles in U .

PROPOSITION 7.9. Let d ≥ 2. Let r , m and s be as in (7.2)–(7.3). Let v ∈ Td(m) and
B ⊆ Br

v . Assume that |B| ≤ |Br
v |

2 . Then there exist some constants c(d),C > 0 such that

Pλ

[
|AB |< 3

4

∣∣Br
v

∣∣]≤ C exp
[−c(d)λ|B|],(7.4)

Pλ

[
good(v)∩B =∅

]≤ C exp
[−c(d)λ|B|].(7.5)

REMARK 7.10. When λ≥ C′d it is not hard to use Poisson thinning along with a com-
parison with Bernoulli site percolation with parameter 1− e−λ − e−λ/d , along with Proposi-
tion 5.2, in order to argue that a slightly weaker assertion than that of Proposition 7.9 holds
with s = r = 1. This observation can also be used to simplify the proof of Theorem 7.7 for
λ≥ C ′d . Below we take a different approach.

PROOF. Fix some B ⊆ Bv (recall that Bv is an abbreviation of Br
v ). We first prove (7.4).

The proof of (7.5) is essentially identical, but requires slightly more care (the relevant details
will be provided later). Denote B0 := B . We may expose AB by first exposing D0 :=Rs(Wa

x )

for some x = x0 ∈ B0. Continue in this fashion, by exposing in the ith stage Di :=Rs(Wa
xi

)

for some vertex

xi ∈ Bi−1 \Xi−1,

where X
 := {xj : 0≤ j ≤ 
}, B
 := B ∪H
 ∩Bv, H
 :=

⋃

j=0

Dj

and xi is chosen according to some predetermined rule. Observe that as long as |Bi |> i + 1
we can pick some xi+1 ∈ Bi \ Xi and continue the above exploration process by exposing
Di+1 :=Rs(Wa

xi+1
). The exploration process is terminate at the first stage L at which |BL| =

L + 1. At that stage L we have that BL = AB . Observe that for i < |B| − 1 we have that
|Bi | ≥ |B0| = |B|> i + 1, so the exploration process cannot be terminated by step |B| − 1.
Let Ui be the event that i + 1 < |Bi |< 3

4 |Bv|.
We first deal with the case d ≥ 3. By (5.25) there exist c0(d), c1(d) > 0 so that on Ui we

have that Eλ[|Bi+1 \Bi | |D0,D1, . . . ,Di] stochastically dominates a random variable which
equals J := 	c1(d)r2
with probability at least p := (1−exp[−λc0(d)]) and otherwise equals
0. We choose K(d) in the definition of r such that Jp ≥ 6.

Let Zi be the indicator of the event that either Uc
i occurs, or that |Bi+1 \ Bi | ≥ J . We get

that the joint law of Z1, . . . ,Zrd stochastically dominates that of i.i.d. Bernoulli r.v.’s with
mean p (while they are not independent, by considering the two cases Uc

i and Ui , we see
that the probability that Zi = 1 is at least p, regardless of the values of Z1, . . . ,Zi−1). Let
ηi := 1−Zi . Let Sj :=∑j

i=1 ηi and Ŝj :=∑j
i=1 Zi .

We first deal with the case that λc0(d)≤ 1. Recall that |AB | ≥ 3
4 |Bv| if for all i ≥ |B| − 1

we have that |Bi | ≥ i + 2. This holds in particular if for all i ≥ |B| − 1 we have that J Ŝi ≥
i + 2. Thus

Pλ

[
|AB |< 3

4
|Bv|

]
≤ Pλ

[∃ j ∈ [|B| − 1, rd] such that J Ŝj ≤ j + 1
]
.
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As 1/J ≤ p/6, by the previous paragraph we have this probability decays exponentially in
p|B| � c(d)λ|B| by (B.4).

We now consider the case λc0(d) ≥ 1. Similar to Z1,Z2, . . . , while η1, η2, . . . are not
independent, by considering the two cases Uc

i and Ui we see that the probability that ηi = 1
is at most 1−p = exp[−λc0(d)], regardless of the values of η1, . . . , ηi−1. Thus η1, η2, . . . ηrd

are stochastically dominated by i.i.d. Bernoulli random variables of mean 1−p. By the above
discussion, and the fact that J Ŝj ≤ j + 1 iff Sj ≥ j − j+1

J
,

Pλ

[
|AB |< 3

4
|Bv|

]
≤ Pλ

[
∃j ∈ [|B| − 1, rd] such that Sj ≥ j − j + 1

J

]
.

As 1− j+1
jJ
≥ 1−3/J ≥ (1−p)(1+c2e

c(d)λ), by (B.3) the probability on the right-hand side

decays exponentially in |B|(1−p)c2e
c(d)λ log(1+ c2e

c(d)λ)� c(d)λ|B|. This concludes the
proof of (7.4) when d ≥ 3. We now prove (7.5) for d ≥ 3. The only change is in the choice of
xi .

• If Xi ⊇Hi and Xi ⊇ B , then the exploration process is terminated.
• If Xi ⊇Hi and Xi � B , then we let xi+1 be an arbitrary vertex in B \Xi .
• If Hi \Xi �=∅ let k ∈]i[ be the maximal index such that Dk \Xi �=∅. In this case, we let

xi+1 be some arbitrary vertex in Dk \Xi .

As |B| ≤ |Bv|/2 and 3/4− 1
2 = 1/4, if for all j ∈ [|B| − 1, rd ], we have that J Ŝj ≥ j + 1

(equiv. Sj < j − j+1
J

) then there must be some x ∈ B which is good.
The proof for the case d = 2 is analogous with (5.26) replacing (5.25) above. �

LEMMA 7.11. Let d ≥ 3. Let λ= λn, r = r(d, λ), m=m(n,d,λ) and s = s(d, λ) be as
above. Let t = t (n, d, λn)� s(d, λn). We say that v ∈ Td(m) is nice if |Rt (wplant) ∩ Bv| ≥
r2(d, λn)/16. Let Nice := {v ∈ Td(m) : v is nice}. Then w.h.p. |Nice| � 1.

LEMMA 7.12. Let λ= λn, r = r(2, λn), m=m(n,2, λn) and s = s(2, λn) be as above.
Let t = t (n, λn)� s. We say that v ∈ T2(m) is nice if |Rt (wplant) ∩ Bv| ≥ r2/(16 log r). Let
Nice := {v ∈ T2(m) : v is nice}. Then w.h.p. |Nice| � 1.

For our purposes, the constant 1/16 in the last two lemmas could have been replaced by
any positive constant c(d) (this would only result in a larger choice of the constants K(d) in
(7.2)). Let τ0 := 0 and v0 = o. Let τ1 := inf{t > Cs :Xt ∈ Bv for some v �= o}. Let Bvi

be the
block at which the walk is at time Xτi

and define inductively

τi+1 := inf
{
t > τi +Cs :Xt ∈ Bv for some v /∈ {v0, v1, . . . , vi}}.

One way of proving the lemmas is by showing that w.h.p. for some k� 1 we have that τk ≤ t

and that on this event w.h.p. we have that |Nice| � 1. We omit the details.

PROOF OF THEOREM 7.7. Let r , m and s be as in (7.2)–(7.3). We take an arbitrary
ordering of Td(m). Let ε ∈ (0,1/4) be such that 1 − ε is greater than pc(d), the critical
density for Bernoulli site percolation for Zd (as pc(d) is nonincreasing in d , we may take
ε < 1 − pc(2)). While the particles walk on Td(n), we define an auxiliary site percolation
process on the renormalized torus Td(m). Let t � s and Nice⊆ Td(m) be as in Lemmas 7.11
and 7.12 (depending on whether d = 2 or d ≥ 3). For every v ∈Nice, we say that v is fantastic
if Rt (wplant)∩Bv is good, where as in Definition 7.8 B ⊆ Bv is good if |AB | ≥ |Bv|/4.

By construction and Proposition 7.9, given that Rt (wplant) = U and that Nice = F ⊆
Td(m) we have that (1{v is fantastic})v∈F are independent, and each indicator equals 0 with
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probability at most Ce−c(d)λr2(d,λn) for d ≥ 3 and at most Ce−cλr2(d,λn)/ log r for d = 2. By
the choice of r , if K(d) are sufficiently large, we have that these probabilities are at most
ε. Let F0 := {v ∈ F : v is fantastic} and NF0 := {v ∈ F : v is not fantastic} (note that the
elements of F0 and NF0 lie in Td(m)). For each v ∈F0, we set GC(v) :=ARt (wplant)∩Bv . By
construction, |GC(v)| ≥ |Bv|/4 for every v ∈F0.

We now describe an exploration process on Td(m). Its initial input is (F0,NF0). At the
beginning of stage i of the exploration process, we will have two sets Fi and NF i of vertices
in Td(m) and the vertices explored thus far will be Fi ∪NF i . For each v ∈ Fi , there will
already be a set GC(v)⊆ Bv of size at least αrd that are guaranteed to be activated from the
information exposed in the previous stages.

For A⊆ Td(m), let ∂A := {b ∈Ac : ∃a ∈A such that ‖a−b‖1 = 1} be the external vertex
boundary of A. The process is terminated at the first stage i at which ∂Fi ⊆ NF i . At the
ith, if ∂Fi �NF i we pick u ∈ ∂Fi \NF i to be the smallest element of ∂Fi \NF i in the
ordering. If good(u)=∅, we set NF i+1 =NF i ∪{u} and Fi+1 =Fi . If good(u) �=∅, pick
some ou ∈ good(u). We attempt to “recruit” u to Fi+1 by finding some neighbor v of u in
Fi such that at least of the walkers whose initial location is in GC(v) reached ou. This will
allow us to define GC(u) :=Aou and set Fi+1 =Fi ∪ {u}.

We now describe this in more detail. Let v ∈ Fi be such that v + ξ = u for some ξ ∈
{±e1, . . . ,±ed}, where as above ek is the vector in Zd whose j th coordinate is 1{j = k}. We
pick this v to be minimal w.r.t. the ordering. If ou ∈Rs(Wξ

GC(v)) (i.e., if there is a particle

from the set Wξ whose initial position is in GC(v) which reached ou in its length s walk),
we set NF i+1 = NF i , Fi+1 = Fi ∪ {u} and GC(u) := Aou . Otherwise, we set NF i+1 =
NF i ∪ {u} and Fi+1 =Fi .

By Proposition 7.9, at each stage the probability that good(u)=∅ is at most Ce−c(d)|Bv | ≤
ε/2 (apply Proposition 7.9 taking B to be an arbitrary set of size |Bv|/2). Given that
good(u) �= ∅, that GC(v) = A and that ou = y the number of particles from Wξ

A which
visit y in their length s walk has a Poisson distribution. Using Poisson thinning and the fact
that Wξ has density λ

4d
, we argue that the mean of this random variable is at least log(2/ε),

provided that K(d) is sufficiently large. Indeed, by the choice of s, the fact that |A| ≥ |Bv|/4
and the local CLT, for d ≥ 3 this mean is

λ

4d

∑
a∈A

Pa[Ty ≤ s] = λ

4d

∑
a∈A

Py[Ta ≤ s] ≥ cλ

4d

∑
a∈A

∑
i∈[s]

P i(y, a)

= cλ

4d

∑
i∈[s]

P i(y,A)≥ λc′(d)s ≥ log(2/ε),

while for d = 2 it is

λ

8

∑
a∈A

Py[Ta ≤ s] ≥ λ

8

∑
a∈A

Py[Ta ≤ s/2]

≥ cλ

log s

∑
a∈A

Py[Ta ≤ s/2] ∑
i∈[s/2]

P i(a, a)

≥ cλ

log s

∑
a∈A

∑
i∈[s]

P i(y, a)= cλ

log s

∑
i∈[s]

P i(y,A)

≥ λc′s/ log s ≥ log(2/ε).

Finally, we get that u ∈ NF i+1 w.p. at most ε/2 + ε/2 = ε. Let i∗ be the stage at which
the process is terminated. By the above analysis, we can couple Fi∗ with Bernoulli site
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percolation on Td(m) with parameter 1 − ε > pc(d), such that Fi∗ contains the union
of the connected components of the vertices in Nice. Since by Lemmas 7.11 and 7.12
we have that |Nice| � 1 w.h.p., the assertion of the theorem now follows from Propo-
sition 5.2. Indeed, parts (2)–(3) of Proposition 5.2 (with the set Nice here playing the
role of U in part (3) of Proposition 5.2) assert that conditioned on |Nice| � 1 we will
have that w.h.p. Fi∗ is (α1, 	C(d)(logm)1/(d−1)
)-dense, for some α1,C(d) > 0. On this
event, the set

⋃
v∈Fi∗ GC(v), which by construction is contained in Rs(d,λn),t , must be

(α, r	C(d)(logm)1/(d−1)
)-dense, for some fixed α > 0, as desired. �

7.3. d = 2. Throughout this subsection, we let λ = λn be such that logn � n2λ �
n2 logn (even when this is not explicitly specified). Let ŝ2 = ŝ2(n,λ, δn) := 16r̂2

2 , where

(7.6) r̂2 = r̂2(n,λ, δn) :=
⌈
δn

√
1

λ
logn log

(
1

λ
logn

)⌉
,

for some δn = o(1) such that r̂2 � 1, to be determined later. Let m̂2 = m̂2(n,λ) := �n/r̂2�.

THEOREM 7.13. Let λ = λn be such that logn� λn2 � n2 logn. There exists some
α ∈ (0,1) and δn = o(1) such that for all t � ŝ2 = ŝ2(n,λ, δn) we have that

PT2(n)
λn

[
Rŝ2,t is (α, r̂2)-dense

]= 1− o(1).

Consider a partition of T2(n) into m̂2
2 boxes (Br̂2

v )v∈T2(m̂2) of side length r̂2.

PROPOSITION 7.14. Let B ⊆ Br̂2
v for some v ∈ T2(m̂2). Assume that |B| ≤ |Br̂2

v |/2.
Then there exist some constants c,C > 0 such that

Pλ

[∣∣AB(r̂2, ŝ2)
∣∣< 3

4

∣∣Br̂2
v

∣∣]≤C exp
[−cλ|B|],(7.7)

Pλ

[
goodr̂2,ŝ2

(v)∩B =∅
]≤C exp

[−cλ|B|].(7.8)

PROOF. The proof is identical to that of Proposition 7.9. �

DEFINITION 7.15. Let v ∈ T2(m̂2). As in Definition 7.8, consider the (r̂2, ŝ2) a-
dynamics on Br̂2

v . We say that x ∈ Bv is neat if Rŝ2(Wb
x ) ∩ goodr̂2,ŝ2

(v) �= ∅. Let neat(v)

be the collection of all neat vertices in Br̂2
v . Let NEAT :=⋃

v∈T2(m̂2)
neat(v).

PROPOSITION 7.16. Let 
̂ := 	C1δ
−1
n

√
1
λ

logn
. Provided that C1 is sufficiently large
and that δn from the definition of r̂2 tends to 0 sufficiently slowly the following hold:

• For λ≥ C2δ
−2
n , we have that NEAT is w.h.p. (c, 
̂)-dense for some c > 0.

• For λ≤ C2δ
−2
n , we have that NEAT is w.h.p. (cλδ2

n, 
̂)-dense for some c > 0.

PROOF. We partition Br̂2
v into subboxes of side length 
 := 	

√
C′ 1

λ
logn
. We pick δn so

that 
� r̂2. By (7.8) we may pick C′ such that for each such subbox B (of side length 
) we
have that Pλ[goodr̂2,ŝ2

(v) ∩ B =∅] ≤ n−4. By a union bound, the event that goodr̂2,ŝ2
(v) ∩

B �= ∅ for all subboxes B ⊂ Br̂2
v of side length 
, for all v ∈ T2(m̂2) holds w.h.p. Let us

condition on this event. We now argue that each particle in Wb
Bv

has probability p � δ2
n of

visiting goodr̂2,ŝ2
(v) (during its length ŝ2 walk).



ON AN EPIDEMIC MODEL ON FINITE GRAPHS 249

Consider an arbitrary set A which contains precisely one vertex from each subbox B of
side length 
 of Br̂2

v from the aforementioned partition. In order to show (under the above con-
ditioning) each particle in Wb

Bv
has probability p � δ2

n of visiting goodr̂2,ŝ2
(v). it is enough to

show that for such a set A, each particle in Wb
Bv

has probability q � δ2
n of visiting A (during

its length ŝ2 walk). Using results from Section 5.4 it is not hard to verify that provided that
δn tends to 0 sufficiently slowly we have that

(1) The expected number of visits to A by a SRW of length ŝ2 started from a vertex in
x ∈ Bv , denoted by e(x), satisfies minx∈Bv e(x) � ŝ2


−2 � δ2
n log( 1

λ
logn), and

(2) conditioned on hitting A by time ŝ2, the expected number of visits to A by time ŝ2,
denoted by e(A), satisfies that e(A) � log ŝ2 � log( 1

λ
logn).

We omit the proofs of the last two calculations. It follows that the probability that TA ≤ ŝ2,

denoted by q , satisfies q � ŝ2

−2

log ŝ2
� δ2

n, as desired.

Let 
̂ := 	C1δ
−1
n

√
1
λ

logn
. We pick δn so that it tends to 0 sufficiently slowly so

that 
̂ � r̂2. We now partition Br̂2
v into subboxes of side length 
̂. By the previous two

paragraphs together with Poisson thinning, it follows that the probability that for a sub-
box B in the last partition there are at most c0
̂

2(1 − exp[−c1λδ2
n]) vertices x such that

Rŝ2(Wb
x )∩goodr̂2,ŝ2

(v) �=∅ is at most n−4 (the case that c1λδn ≤ 1 follows straightforwardly
from (B.2), while the case that c1λδn > 1 follows from (B.1); We omit the details). Hence by a
union bound w.h.p. this does not occur for any such B ⊂ Br̂2

v for all v ∈ T2(m̂2). The proof is
concluded by noting that 1−exp[−c1λδ2

n] � λδ2
n when λδ2

n ≤ 1 and that 1−exp[−c1λδ2
n] � 1

when λδ2
n > 1. �

LEMMA 7.17. Let λ= λn, r̂2, m̂2 and ŝ2 be as above. Let t = t (n, λn)� s. We say that
v ∈ T2(m̂2) is (r̂2, ŝ2)-nice if |Rt (wplant) ∩ Br̂2

v | ≥ r̂2
2/(16 log r̂2). Let N̂ice := {v ∈ T2(m̂2) :

v is (r̂2, ŝ2)-nice}. Then w.h.p. |N̂ice| ≥ 1.

PROOF OF THEOREM 7.13. Let t � ŝ2 and N̂ice ⊆ T2(m̂2) be as in Lemma 7.17. For
every v ∈ N̂ice, we say that v is fantastic if Rt (wplant) ∩ Br̂2

v is (r̂2, ŝ2)-good, where as in

Definition 7.8 B ⊆ Br̂2
v is good if |AB(r̂2, ŝ2)| ≥ |Br̂2

v |
4 . By Lemma 7.17, we may condition

on N̂ice �=∅. We pick an arbitrary x = x0 ∈ N̂ice. By construction and Proposition 7.14, the
probability that x is not fantastic is at most Ce−cλr̂2

2 / log r̂2 = o(1). Hence we may condition
on x being fantastic. Let GC(x0) := A

Rt (wplant)∩B
r̂2
x0

(r̂2, ŝ2). By construction, we have that

|GC(x0)| ≥ |Br̂2
x0 |/4 (conditioned on x0 being fantastic).

Let 
̂ := 	C1δ
−1
n

√
1
λ

logn
 be as in Proposition 7.16. By Proposition 7.16, we may condi-

tion on the event that NEAT=D, where D is some (cλδ2
n1{λ≤ C2δ

−2
n }+c1{λ > C2δ

−2
n }, 
̂)-

dense set for some c,C2 > 0.
Let x1 be an arbitrary neighbor of x0. Then x0 + ξ = x1 ∈ T2(m̂2) for some ξ ∈

{±e1, . . . ,±ed}. Observe that if Rŝ2(W
ξ
GC(x0)

) ∩ neat(x1) �=∅ then the particles in Wξ
GC(x0)

will activate some z ∈ neat(x1). By the definition of neat(x1), the particles in Wb
z will acti-

vate some z′ ∈ goodr̂2,ŝ2
(x1). We may then define GC(x1) :=Az′(r̂2, ŝ2). By construction, we

have that |GC(x1)| ≥ |Br̂2
x1 |/4 (assuming Rŝ2(W

ξ
GC(x0)

)∩ neat(x1) �=∅).
It suffices to show that if x + ξ = y ∈ T2(m̂2) for some ξ ∈ {±e1, . . . ,±ed} and A ⊆

B
r̂2
x is of size at least |Br̂2

x |/4, then the probability that Rŝ2(W
ξ
A) ∩ neat(y) = ∅ (under the

aforementioned conditionings) is � (n/r̂2)
−2.
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Pick some set B ⊂ neat(y) of cardinality 	δ−3
n 
 such that each pair of vertices in B lie

within distance at least 1
4δ

3/2
n r̂2 from one another. Since we conditioned on NEAT=D, the

set B is nonrandom. For b ∈ B , let Jb be the number of particles from Wξ
A which reached

b in their length ŝ2 walks. Let Qb be the number of particles from Wξ
A which reached b in

their length ŝ2 walk, which did not reach any other vertex in B in their length ŝ2 walk. As in
the proof of Lemma 7.6, we have that for b ∈ B both Jb and Qb have Poisson distributions
and that Eλ[Qb] = (1 − o(1))Eλ[Jb] � λŝ2/ log ŝ2 � δ2

n logn, provided that δn tends to 0
sufficiently slowly. By independence, it follows that − logPλ[∑b∈B Qb = 0] � δ−1

n logn.
�

7.4. d ≥ 3. Throughout this subsection, we let d ≥ 3 and λ = λn be such that logn�
λnd � nd logn (even when this is not explicitly specified). Let s = s(n,λ, δn) := 8dk2,
where

(7.9) k = k(n,λ, δn) :=
⌈
δn

√
1

λ
logn

⌉
,

for some δn = o(1) such that k� 1, to be determined later. Let m=m(n,λ, δn) := �n/k�.

THEOREM 7.18. Let d ≥ 3. Let λ = λn be such that logn � λnd � nd logn. There
exists some α ∈ (0,1) and δn = o(1) such that for all t � s = s(n,λ, δn) we have that

PTd (n)
λn

[
Rs,t is

(
α, k(n,λ, δn)

)
-dense

]= 1− o(1).

Consider a partition of Td(n) into m boxes (Bk
v )v∈Td (m) of side length k.

PROPOSITION 7.19. Let B ⊆ Bk
v for some v ∈ Td(m). Assume that |B| ≤ |Bk

v |/2. Then
there exist some constants c,C > 0 such that

Pλ

[∣∣AB(k, s)
∣∣< 3

4

∣∣Bk
v

∣∣]≤ C exp
[−c(d)λ|B|],(7.10)

Pλ

[
goodk,s(v)∩B =∅

]≤ C exp
[−c(d)λ|B|].(7.11)

PROOF. The proof is identical to that of Proposition 7.9. �

DEFINITION 7.20. Let d ≥ 3. Let v ∈ Td(m). As in Definition 7.8, consider the (k, s)

a-dynamics on Bk
v . We say that x ∈ Bk

v is neat if Rs(Wb
x ) ∩ goodk,s(v) �=∅. Let neat(v) be

the collection of all neat vertices in Bk
v . Let NEAT :=⋃

v∈Td (m) neat(v).

PROPOSITION 7.21. Let 
̂ := 	C1(
1

λδ2
n

logn)1/d
. Provided that C1 is sufficiently large

and that δn from the definition of k tends to 0 sufficiently slowly the following hold:

• For λ≥ C2δ
−2
n , we have that NEAT is w.h.p. (c, 
̂)-dense for some c > 0.

• For λ≤ C2δ
−2
n , we have that NEAT is w.h.p. (cλδ2

n, 
̂)-dense for some c > 0.

PROOF. We partition Bk
v into subboxes of side length 
 := 	(C′ 1

λ
logn)1/d
. We pick δn

so that 
� k. By (7.11) we may pick C ′ such that for each such subbox B of side length 
 we
have that Pλ[goodk,s(v)∩B =∅] ≤ n−4. By a union bound, the event that goodk,s(v)∩B �=
∅, for all such B ⊂ Bk

v , for all v ∈ Td(m), holds w.h.p.. We condition on this event. We now
argue that each particle in Wb

Bk
v

has probability at least p � δ2
n of visiting goodk,s(v).
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By the last conditioning, it suffices to consider an arbitrary set A which contains precisely
one vertex from each subbox B of side length 
 of Bk

v from the aforementioned partition, and
show that each particle in Wb

Bk
v

has probability at least q � δ2
n of visiting goodk,s(v). Using

results from Section 5.4, it is not hard to verify that provided that δn tends to 0 sufficiently
slowly we have that:

(1) the expected number of visits to A by a SRW of length s started from a vertex x ∈ Bk
v ,

denoted by e(x), satisfies minx∈Bk
v
e(x) � s
−d � δ2

n, and
(2) conditioned on hitting A by time s, the expected number of visits to A by time s,

denoted by e(A), satisfies e(A)=O(1).

We omit the details of the last two calculations. It follows that the probability that TA ≤ s,
denoted by q , satisfies q � δ2

n, as desired.
Let 
̂ := 	C1(

1
λδ2

n
logn)1/d
. Assume that δn tends to 0 sufficiently slowly so that 
̂� k.

We now partition Bk
v into subboxes of side length 
̂. By the previous two paragraphs together

with Poisson thinning, it follows that the probability that for a subbox B in the last partition
there are less than c0
̂

d(1− exp[−c1λδ2
n]) vertices x such that Rs(Wb

x )∩ goodk,s(v) �=∅ is
at most n−4 (the case that c1λδn ≤ 1 follows straightforwardly from (B.2), while the case that
c1λδn > 1 follows from (B.1); this is left as an exercise). Hence by a union bound we may
condition that this does not occur for any such B ⊂ Bk

v for all v ∈ Td(m). �

LEMMA 7.22. Let λ = λn, k,m and s be as above. Let t = t (n, λn, δn) � s. We say
that v ∈ Td(m) is (k, s)-nice if |Rt (wplant) ∩ Bk

v | ≥ k2/16. Let N̂ice := {v ∈ Td(m) :
v is (k, s)-nice}. Then w.h.p. |N̂ice| ≥ 1.

PROOF OF THEOREM 7.18. Let t � s and N̂ice ⊆ Td(m) be as in Lemma 7.22. For
every v ∈ N̂ice, we say that v is fantastic if Rt (wplant) ∩ Bk

v is (k, s)-good, where as in
Definition 7.8 B ⊆ Bk

v is good if |AB(k, s)| ≥ |Bk
v |/4. By Lemma 7.22, we may condition

on N̂ice �= ∅. We pick an arbitrary x = x0 ∈ N̂ice. By construction and Proposition 7.19,
the probability that x is not fantastic is at most Ce−cλk2 = o(1). Hence we may condi-
tion on x being fantastic. Let GC(x0) := ARt (wplant)∩Bk

x0
(k, s). By construction, we have that

|GC(x0)| ≥ |Bk
x0
|/4.

Let 
̂ := 	C1(
1

λδ2
n

logn)1/d
 be as in Proposition 7.21. By Proposition 7.21, we may condi-

tion on the event that NEAT=D, where D is some (cλδ2
n1{λ≤ C2δ

−2
n }+c1{λ > C2δ

−2
n }, 
̂)-

dense for some c,C2 > 0.
Imitating the proof of Theorem 7.13, it suffices to show that if x + ξ = y ∈ Td(m) for

some ξ ∈ {±e1, . . . ,±ed} and A ⊆ Bk
x is of size at least |Bk

x |/4, then the probability p that
Rs(Wξ

A)∩ neat(y)=∅ (under the aforementioned conditionings) satisfies p� (n/k)−d .
Pick some set B ⊂ neat(y) of cardinality 	δ−3

n 
 such that each pair of vertices in B lie

within distance at least 1
4δ

3/d
n k from one another. Since we conditioned on NEAT =D, the

set B is nonrandom. For b ∈ B , let Jb be the number of particles from Wξ
A which reached b

in their length s walks. Let Qb be the number of particles from Wξ
A which reached b in their

length s walk, which did not reach any other vertex in B in their length s walk. As in the
proof of Lemma 7.4, we have that for b ∈ B both Jb and Qb have Poisson distributions and
that Eλ[Qb] = (1− o(1))Eλ[Jb] � λs � δ2

n logn, provided that δn is tends to 0 sufficiently
slowly. By independence, it follows that − logPλ[∑b∈B Qb = 0]� δ−1

n logn. �
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8. Expanders—Proof of Theorem 3. In this section, we study the case that G is a d-
regular expander. It is not difficult to extend the results to the case G is an expander of
maximal degree d . We note that the arguments presented in this section are inspired by tech-
niques from [10], Theorem 5, and [24], Theorem 3. However, the analysis below includes
some new ideas. In particular, the usage of a maximal inequality in the proof of Theorem 8.1
(through the application of Lemma 5.6) is novel. Moreover, the analysis of the case λ� 1
requires some new ideas.

Consider the case that wplant, the planted walker at o, walks for t = t|V | steps, while the rest
of the particles have lifespan M for some constant M . Recall that the set of vertices which
are visited by this modified process before it dies out is denoted by Rt,M . Similarly, consider
the variation of the model in which there is no planted particle and initially the collection of
particles occupying some set A⊂ V are activated. In this variant, let the lifespan of all of the
particles be s. Denote the set of vertices which are visited in this variant of the model before
the process dies out by RA

s .

THEOREM 8.1. There exist absolute constants c,C,C′,M > 0 such that for every n ≥
C′, λ ≥ Cn−1 logn and γ ∈ (0,2], for every regular n-vertex γ -expander G = (V ,E), we
have

(8.1) ∀A⊂ V, Pλ

[∣∣RA
	M max{λ−1,1}γ−1
(G)

∣∣< n/4
]≤ Ce−cλ|A|.

We now argue that Theorem 3 when λ≤ 1 follows from Theorem 8.1 in conjunction with
Lemma 5.8 and Corollary 5.5.

8.1. Proof of Theorem 3 when 1/n� λ≤ 1 given Theorem 8.1.

PROOF. Let λ ∈ [Cn−1 logn,1], where C > 0 is as in Theorem 8.1. We first note that by
(5.27) with t = Cλ−1γ−1√logn, s = �√logn�, and r = λ−1√logn and by Lemma 5.8 with
the same choice for t we have that

(8.2) Pλ

[∣∣R	Cλ−1γ−1 logn
(wplant)
∣∣< λ−1

√
logn

]≤ 4−s ≤ e−c′
√

logn.

For the remainder of the proof, we fix some A⊆ V of size at least λ−1√logn and condition
on the event R :=R	Cλ−1γ−1 logn
(wplant)=A. We can partition the particles in W \ {wplant}
into two independent sets, each with density λ/2. We refer to the particles belonging to the
first (resp., second) set as type 1 (resp., 2) particles. We can apply Theorem 8.1 to the dy-
namics associated with the type 1 particles (as if there are no type 2 particles) with lifespan
	Mλ−1γ−1
. This dynamics is precisely the frog model with parameter λ/2 and the afore-
mentioned lifetime, where initially WA is activated. Denote by B the collection of vertices
visited by the type 1 dynamics before it dies out. By Theorem 8.1 (and our conditioning on
R=A for |A| ≥ λ−1√logn), we have that |B| ≥ n/4 with probability at least 1− e−c0

√
logn.

By Corollary 5.5, given that |B| ≥ n/4, with probability at least 1 − 1/n we have that V

equals the union of the ranges of the walks of length 	Cλ−1γ−1 logn
 performed by the type
2 particles initially occupying B .

Finally, when 1/n ≪ λ≤ Cn−1 logn we first argue that w.h.p. the planted particle visits
by time k = 	Cλ−1γ−1 logn
 at least n/32 distinct vertices where now we use (5.27) with
t = 	Cnγ−1
, s = �k/t�, and r = n/32 and Lemma 5.8 with the same choice for t . The proof
is concluded using (5.11). �
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8.2. Proof of Theorem 8.1.

PROOF OF THEOREM 8.1. We use an exploration process due to Benjamini, Nachmias
and Peres [11]. Let γ be the spectral gap of SRW on G= (V ,E). Initially, the collection of
active particles is WA for some A⊂ V . Let λ0 :=min{λ,16} and

t = tλ := ⌈
L/(λ0γ )

⌉
,

where L > 0 is some absolute constant to be determined shortly. Recall that for a collection
of particles W ′ ⊆W we denote the union of the ranges of the length 
 walks performed by
the particles in W ′ by R
(W ′) (with the convention that R
(∅)=∅). Recall that Wv is the
collection of particles whose initial position is v.

Denote κ := 	16λ−1
0 log(29)
. Note that for all λ we have that

(8.3) P
[
Pois(λ/16) �= 0

]
κ ≥ 2.

As in Corollary 5.7, for a set B ⊂ V let

GB := {
a ∈ B : Pa

[∣∣{Xs : s ∈ [t]} \B
∣∣≥ κ

]≥ 1/16
}
.

By Corollary 5.7 for every B of size at most n/4, we have that |GB |> 3
4 |B|, provided that L

is taken to be sufficiently large. For every B ⊆ V and b ∈ B let

WB
b :=

{
w ∈Wb :

∣∣Rt (w) \B
∣∣≥ κ

}
.

Observe that if b ∈GB , then |WB
b | has a Poisson distribution with parameter at least λ/16,

and hence by (8.3) Pλ[|WB
b | �= 0]κ ≥ 2.

Initially, set A0 := A and U0 =∅. We now define inductively a collection of random sets
of vertices A1,A2, . . . and U1,U2, . . . . For every i ≥ 0, let Bi := Ai ∪ Ui . Assume that we
have already defined A0,A1, . . . ,Aj and U0,U1, . . . ,Uj in the following manner:

(1) |Bj |< n/4 and for all 1 ≤ i < j we have |Bi | ≥ 4
3 i and |Ui | = i. Thus (using GBi

⊆
Bi =Ai ∪ Ui and |GBi

|> 3
4 |Bi | ≥ i) it must be the case that GBi

∩Ai �=∅.

(2) For each 1 ≤ i ≤ j at stage i of the exploration process, we expose Rt (WBi−1
vi ) for

some vertex vi ∈Ai−1 ∩GBi−1 . We then set

Ui := Ui−1 ∪ {vi} and Ai :=Ai−1 ∪Rt

(
WBi−1

vi

) \ Ui .

The exploration process is terminated at the first stage j at which either |Bj | ≥ n/4 or |Bj | ≤
4
3j . Let J be the stage at which the exploration process is terminated. It is not hard to see
that conditioned on i < J we have that |Bi+1 \Bi | stochastically dominates a binary random
variable which equals κ w.p. 1− e−λ/16 and otherwise equals 0.

Consider a sequence ξ1, ξ2, . . . of i.i.d. Bernoulli(1 − e−λ/16) random variables. Let us
first consider the case that λ ≤ 16. In this case, we have that κ = 	16λ−1 log(29)
 and 1−
e−λ/16 ≥ λ/32. By the previous paragraph, the probability that Pλ[|BJ |< n/4] is at most the
probability that for some i ≥ 3

4 |A| we have that κ
∑i

j=1 ξi ≤ 4
3 i ≤ κi(1− e−λ/16)(1− 1

3). By

(B.4) (with p = 1− e−λ/16, k = 	3
4 |A|
 and δ = 1

3 ), this probability decays exponentially in
λ|A|.

We now consider the case that λ≥ 16. In this case, κ = 	16 log(29)
. Consider a sequence
η1, η2, . . . of i.i.d. Bernoulli(e−λ/16) random variables. The probability that Pλ[|BJ |< n/4]
is at most the probability that for some i ≥ 3

4 |A| we have that

i∑
j=1

ηi ≥ i − 4

3κ
i ≥ ie−λ/16(4eλ/16/5

)
.

By (B.3) (with p = e−λ/16, k = 	3
4 |A|
 and δ = 4eλ/16/5− 1), this probability decays expo-

nentially in λ|A|. �
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8.3. Proof of Theorem 3 when λ≥ 1.

PROOF. Let 1 ≤ λ ≤ 1
2 logn. Denote t := 	Cγ−1λ−1 logn
. Let H be the event that

|Rt (wplant)|< λ−1√logn. By (8.2) we have that P[H ] ≤ e−c′
√

logn. Thus by Theorem 8.1,

P λ
2

[
|Rt |< n

4

]
≤ P[H ] + P λ

2

[
|Rt |< n

4

∣∣∣Hc

]
≤ 2e−ĉ

√
logn.

As in the proof of the case λ ≤ 1, it suffices to consider the case that the particle density is
λ/2 and initially there is some set A⊂ V of size 	n/4
, which is activated (with no planted
particles). We partition the particles into β = �λ� independent sets, W1, . . . ,Wβ each of
density at least 1

2 . For all v ∈ V and i ∈ [β], we denote the particles from W i which initially
occupy v by W i

v . Then (W i
v)v∈V,i∈[β] stochastically dominate i.i.d. Pois(1/2). For a set B ⊆

V and i ∈ [β], let W i
B :=

⋃
b∈B W i

b be the collection of particles from the ith set initially
occupying B . Let A0 =A. We define inductively for all i ∈ [β − 1]

Ai+1 :=Ai ∪R2t

(
W i+1

Ai

)
.

That is, at stage i we use the particles from the (i + 1)th set which initially occupy the cur-
rently exposed set in order to reveal additional vertices. Our goal is to estimate the probability
that Aβ �= V . Our strategy is to show that

(8.4) E
[∣∣Ac

i+1

∣∣ | |Ai |]≤ n−4λ−1 ∣∣Ac
i

∣∣, for all i ∈ [β − 1].
We first explain how the proof is concluded using (8.4). By (8.4), we have

E
[∣∣Ac

β

∣∣]≤ ∣∣Ac
∣∣(n−4λ−1)β ≤ n · n−2 = n−1.

Before we begin to prove (8.4), we need some preliminaries.
Let μ be a distribution on V . Recall that the 
2 distance of μ from uniform distribution π

is defined as

‖μ− π‖2,π :=
(∑

v∈V

π(v)

(
μ(v)

π(v)
− 1

)2)1/2
=
(
n
∑
v∈V

(
μ(v)− n−1)2)1/2

.

Denote the distribution of the lazy SRW at time s (resp., of the entire lazy SRW) started from
initial distribution μ by Ps

μ (resp., Pμ). By the Poincaré inequality, we have that∥∥Ps
μ − π

∥∥2
2,π ≤ (1− γ /2)2s‖μ− π‖2

2,π , for all s ≥ 0.

Recall that πB is the uniform distribution on B . An easy calculation shows that for every
B ⊂ V we have that ‖πB − π‖2

2,π = π(Bc)
π(B)

. Hence if s ≥ t ,

∥∥Ps
πB
− π

∥∥2
2,π ≤ (1− γ /2)2s‖πB − π‖2

2,π ≤ e−γ s π(Bc)

π(B)
≤ n−C/λ π(Bc)

π(B)
.

Denote μB := 1
t

∑2t
s=t+1 Ps

πB
. By convexity, also ‖μB − π‖2

2,π ≤ n−C/λ π(Bc)
π(B)

. Consider the
set

JB := {
v ∈ V : μB(b)≤ 1/2

}
.

Note that π(JB)/4≤ ‖μB − π‖2
2,π . Thus π(JB)≤ 4n−C/λ π(Bc)

π(B)
.

We are now in the position to prove (8.4). First, recall that we may assume the parti-
cles are performing lazy SRW. Let 0 ≤ i < β . Since π(A0) ≥ 1/4, we have that π(JAi

) ≤
16n−C/λπ(Ac

i ). Fix some x /∈ JAi
. Since μAi

(x) > 1/2, the expected number of visits to
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x (with multiplicities) by a particle from W i+1
Ai

(from time t + 1 to time 2t) is at least
t
2π(Ai)≥ t/8.

By (5.8)
∑2t

i=0 P i
L(x, x) ≤ 2γ−1 + 2t/n ≤ 3γ−1, provided that n is sufficiently large.

Again by (5.8) for each x /∈ JAi
, the number of particles from W i+1

Ai
which visit x in the first

2t steps of their walks has a Poisson distribution with parameter at least t/8
3γ−1 ≥ 8λ−1 logn

(provided that C is taken to be sufficiently large). It follows that the expected number of
x ∈ Ac

i \ JAi
that do not belong to Ai+1 is at most |Ac

i |e−8λ−1 logn = |Ac
i |n−8λ−1

. Finally,

using π(JAi
)≤ 16n−Cλ−1

π(Ac
i ), we get that

E
[∣∣Ac

i+1

∣∣ | |Ai |]≤ n−8λ−1 ∣∣Ac
i

∣∣+ nπ(JAi
)

≤ n−8λ−1 ∣∣Ac
i

∣∣+ 16n−Cλ−1 ∣∣Ac
i

∣∣≤ n−4λ−1 ∣∣Ac
i

∣∣,
provided that C is sufficiently large. �

APPENDIX A: PROOFS OF SOME REMARKS

A.1. Sketch of proof of the assertion of Remark 2.1. Let G= (V ,E) be a connected
d-regular graph. Let λ≥ (1+ δ)d log |V | for some constant δ > 0. We argue that Pλ[S(G) >

1] ≤ |V |−δ . To see this, consider an arbitrary spanning tree of G, rooted at o, whose edges
are oriented away from o. Let v ∈ V \ {o}. Denote its parent by u. If u is activated before the
process dies out, then the probability that v is not activated (by some particle from u) is at
most |V |−(1+δ) (by Poisson thinning).

Now consider the case G = Td(n). We argue that if λ ≥ (2d + δ) logn for some δ > 0,
then Pλ[S(Td(n)) > 1] ≤ Cn−δ/2. To see this, observe that (by Poisson thinning) for every
v of distance at least 2 from o, the number of particles that move to v in their first step,
which initially occupy some neighbor of v which is closer to o, has a Poisson distribution
with parameter d · ( λ

2d
)= λ/2.

A.2. Sketch of proof of (3.10). The term n2 corresponds to the (expected) cover time
of S(Hd,n) by wplant (up to a constant factor). This is also roughly the time required for
wplant to visit at least half of the copies of Jd . We leave the details as an exercise (hint: the
walk typically spends � d2 time units at each copy of Jd , and the time it takes SRW on the
	n/d
-cycle to visit half of the vertices is typically � n2/d2).

We now briefly explain the remaining terms on the right-hand side of (3.10). Note that if
there are at least two edges, connecting distinct copies of Jd , which were not crossed by a
single particle, then deterministically some vertices were not visited.

The term ds is obtained from the estimate that the number of particles which crossed
each edge connecting two copies of Jd for lifespan t and particle density λ is stochastically
dominated by the Poisson distribution with parameter λt/d (so one needs to take t � ds to
ensure the expected number of such uncrossed edges is not large).

The term s2 comes from the fact that for lifespan t and particle density λ, for each copy of
Jd , the number of particles initially not occupying it which visit it is stochastically dominated
by the Poisson distribution with parameter c0λ

√
t (cf. the proof of Theorem 1). Again, to

ensure that the expected number of such unvisited copies of Jd is not large one needs to take
t � s2. The argument can be made precise via a second moment calculation similar to the one
from the proof of Theorem 1.
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APPENDIX B: LARGE DEVIATION ESTIMATES FOR SUMS OF BERNOULLI
RANDOM VARIABLES

FACT B.1. Let ξ1, ξ2, . . . be i.i.d. Bernoulli random variables of mean p ∈ (0,1). Let
Sn :=∑n

j=1 ξi . Then

∀δ ≥ 0, P
[
Sn ≥ np(1+ δ)

]≤ (1+ pδ)n

(1+ δ)(1+δ)np
≤ exp

(
−npδ log(1+ δ)

4

)
,(B.1)

∀δ ∈ (0,1), P
[
Sn ≤ np(1− δ)

]≤ (1− pδ)n

(1− δ)(1−δ)np
≤ exp

(
−npδ2

4

)
,(B.2)

∀δ ≥ 1, k ∈N P
[

sup
n:n≥k

Sn/n≥ p(1+ δ)
]
≤ exp(− kpδ log(1+δ)

4 )

1− exp(−pδ log(1+δ)
4 )

,(B.3)

∀δ ∈ (0,1), k ∈N P
[

sup
n:n≥k

Sn/n≤ p(1− δ)
]
≤ 8δ−2 exp

(
−kpδ2

4

)
.(B.4)

PROOF. We first prove (B.1). Let t = log(1 + δ). Then E[etSn] = (pet + (1 − p))n =
(1+ pδ)n. Thus

P
[
Sn ≥ np(1+ δ)

]= P
[
etSn ≥ etnp(1+δ)]≤ e−tnp(1+δ)E

[
etSn

]
= (1+ pδ)n

(1+ δ)(1+δ)np
.

It is not hard to verify that (1+pδ)n

(1+δ)(1+δ)np ≤ exp(−npδ log(1+δ)
4 ).

We now prove (B.2). Let r = log(1− δ). Then E[erSn] = (per + (1− p))n = (1− pδ)n.
Thus P[Sn ≤ np(1+ δ)] = P[erSn ≥ ernp(1+δ)] ≤ e−rnp(1+δ)E[etSn] = (1−pδ)n

(1−δ)(1−δ)np . With some

additional algebra, it is not hard to verify that (1−pδ)n

(1−δ)(1−δ)np ≤ exp(−npδ2

4 ).
We now prove (B.3). Let ε ∈ (0, δ/2). Then by (B.1),

P
[

sup
n:n≥k

Sn/n≥ p(1+ δ)
]
≤

∞∑
n=k

P
[
Sn ≥ np(1+ δ − ε)

]

≤ exp(− kpδ log(1+δ−ε)
4 )

1− exp(−pδ log(1+δ−ε)
4 )

.

Sending ε to 0 concludes the proof of (B.3). We now prove (B.4). Let ε ∈ (0, δ/2). Let
J := {i ≥ k : Sn ≤ p(1− δ+ ε)}. It is easy to see that E[J | J ≥ 1] ≥ 1/p. Thus by (B.2),

P[J ≥ 1] = E[J ]
E[J | J ≥ 1] ≤ p

∞∑
n=k

P
[
Sn ≤ np(1− δ + ε)

]

≤ p exp[− kp(δ−ε)2

4 ]
1− exp[−p(δ−ε)2

4 ]
.

Sending ε to 0 and noting that 1− e−pδ2/4 ≥ pδ2/8 concludes the proof. �
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