Abstract
Suppose $f:[0,1]^{2}\rightarrow \mathbb{R}$ is a $(c,\alpha )$-mixed Hölder function that we sample at $l$ points $X_{1},\ldots ,X_{l}$ chosen uniformly at random from the unit square. Let the location of these points and the function values $f(X_{1}),\ldots ,f(X_{l})$ be given. If $l\ge c_{1}n\log^{2}n$, then we can compute an approximation $\tilde{f}$ such that \begin{equation*}\|f-\tilde{f}\|_{L^{2}}=\mathcal{O}\big(n^{-\alpha}\log^{3/2}n\big),\end{equation*} with probability at least $1-n^{2-c_{1}}$, where the implicit constant only depends on the constants $c>0$ and $c_{1}>0$.
Citation
Nicholas F. Marshall. "Approximating mixed Hölder functions using random samples." Ann. Appl. Probab. 29 (5) 2988 - 3005, October 2019. https://doi.org/10.1214/19-AAP1471
Information