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WHEN MULTIPLICATIVE NOISE STYMIES CONTROL
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University of Pennsylvania∗, Microsoft Research AI† and Stanford University‡

We consider the stabilization of an unstable discrete-time linear system
that is observed over a channel corrupted by continuous multiplicative noise.
Our main result shows that if the system growth is large enough, then the sys-
tem cannot be stabilized. This is done by showing that the probability that the
state magnitude remains bounded must go to zero with time. Our proof tech-
nique recursively bounds the conditional density of the system state to bound
the progress the controller can make. This sidesteps the difficulty encoun-
tered in using the standard data-rate theorem style approach; that approach
does not work because the mutual information per round between the system
state and the observation is potentially unbounded.

It was known that a system with multiplicative observation noise can be
stabilized using a simple memoryless linear strategy if the system growth
is suitably bounded. The second main result in this paper shows that while
memory cannot improve the performance of a linear scheme, a simple non-
linear scheme that uses one-step memory can do better than the best linear
scheme.

1. Introduction. We consider the control and stabilization of a system ob-
served over a multiplicative noise channel. Specifically, we analyze the following
system, Sa , with initial state X0 ∼ N (0,1):

Xn+1 = a · Xn − Un,

Yn = Zn · Xn.
(1.1)

In the preceding formulation, the system state is represented by Xn at time n, and
the control Un can be any function of the current and previous observations Y0
to Yn. The Zn’s are i.i.d. random variables with a known continuous distribution.
The realization of the noise Zn is unknown to the controller, much like the fading
coefficient (gain) of a channel might be unknown to the transmitter or receiver in
noncoherent communication. The constant a captures the growth of the system.
The controller’s objective is to stabilize the system in the second-moment sense,
that is, to ensure that supnE[|Xn|2] < ∞. We would like to understand the largest
growth factor a for which the system can be stabilized for a given distribution on
Zn. Figure 1 represents a block diagram for this system.

Our main theorem provides an impossibility result for stabilizing the system Sa .
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FIG. 1. The state Xn is observed over a multiplicative noise channel Yn = XnZn.

THEOREM 1.1. Let the Zn be i.i.d. random variables with finite mean and
variance and with bounded density fZ(z) = e−φ(z), where φ(·) is a polynomial of
even degree with positive leading coefficient. Then there exists a ∈ R, a < ∞ such
that |Xn| in (1.1) satisfies P(|Xn| < M) → 0 for all M < ∞.

Theorem 5.1 generalizes this result to a larger class of distributions for Zn. Note
that the conditions on φ(·) in Theorem 1.1 are satisfied by Zn ∼N (1, σ 2).

We also discuss a few sufficient conditions for second-moment stability of the
system in this paper. When Zn has mean 1 and variance σ 2, we observe that that

a system growth of a∗ =
√

1 + 1
σ 2 can be stabilized in the second-moment sense

using a memoryless linear strategy (Proposition 3.1). Further, we show that the
best linear strategy to control the system Sa in (1.1) is the memoryless linear strat-
egy (Theorem 3.2). Our second main result (Theorem 4.1) shows that a nonlinear
controller can improve on the performance of the best linear strategy. We state this
here for the case where Zn ∼ N (1,1).

THEOREM 1.2. Let Zn ∼ N (1,1). Then the system Sa in (1.1) with a ≤ √
2

can be stabilized in the second-moment sense by a linear control strategy. Further,
there exists a >

√
2 for which a nonlinear controller can stabilize the system in a

second-moment sense.

In particular, there exists a nonlinear strategy with memory that can stabilize Sa

in a second-moment sense with a = √
2 + 1.6 × 10−3.

We further believe that nonlinear schemes without memory cannot stabilize the
system for 1 < a < a∗, and some evidence in this direction is provided in Theo-
rem 4.5. Finally, in the case where the Zn have mean zero, a linear strategy cannot
stabilize the system in the second-moment sense for any growth factor a > 1 (The-
orem 3.3), but a nonlinear scheme with memory can stabilize it for some value of
the growth factor a > 1 (Theorem 4.3).

1.1. Model motivation. Multiplicative noise on the observation channel can
model the effects of a fast-fading communication channel (rapidly changing chan-
nel gain), as well as the impact of sampling and quantization errors [18, 28].
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We illustrate below how synchronization or sampling errors can lead to mul-
tiplicative noise, following a discussion from [28]. Consider the nearly trivial
continuous-time system,

Ẋ(t) = a · X(t),

which is sampled at regular intervals of t0. The difference equation corresponding
to the state at the nth time step is given by Xn+1 = eat0 · Xn. However, in the
presence of synchronization error the nth sample, Yn, might be collected at time
nt0 + � instead of precisely at nt0. Then

Yn = ea(nt0+�)X(0) = ZnXn,

where Zn is a continuous random variable, since the jitter � is a continuous ran-
dom variable.

1.2. Proof approach. We introduce a new converse approach in the proof of
Thorem 5.1; instead of focusing on the second moment, our proof bounds the
density of the state, and thus shows the instability of any moment of the state. We
believe these techniques are a primary contribution of the work.

A key element of the proof is that a “genie” observes the state of the system and
provides a quantized version of the logarithm of the state to the controller at each
time as extra side-information in addition to the multiplicative noise observation.
This side-information bounds the state in intervals of size 2−k (with k increasing
as time increases). We know from results on noncoherent communication [14]
and carry-free models [24] that only the order of magnitude of the message can
be recovered from a transmission with multiplicative noise. As a result, this side-
information does not effectively provide much extra information, but it allows us
to quantify the rate at which the controller may make progress.

1.3. Related work. Our paper builds on many previous ideas in information
theory and control that have been discussed in depth in books such as [8, 17, 42].
These works can roughly be divided into two categories, (1) control over data-rate
limits or additive noise and SNR limits, and (2) control over multiplicative noise
constraints.

1.3.1. Control with additive noise or data-rate constraints on the observation
channel. Our problem formulation is certainly motivated by the data-rate theo-
rems as studied in [12, 20–22, 36, 38]. These data-rate theorems ask the question:
how does limited communication affect our ability to control a system? The results
tell us that a noiseless observation data rate R > log |a| is necessary and sufficient
to stabilize a system in the second-moment sense under a few different consider-
ations on the additive noise in the system. Matveev and Savkin [17] have further
provided data-rate style theorems for continuous time systems and for different no-
tions of stability such as stability in probability. (Our impossibility result considers
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the notion of stability in probability.) Other work has also generalized the data-rate
theorems for systems with additive noise to the case when the channel-rate is given
by a Markov process, for example, You and Xie [41] and Minero et al. [19].

Building on the data-rate theorems for noiseless channels, there has been a
large body of work that considers control over additive noise channels. Sahai
and Mitter [31] introduced the notion of anytime capacity as the informational
threshold to stabilize a plant over a noisy channel. Nonlinear controllers and en-
coders/decoders was essential to achieving their results. On the other hand, works
such as Braslavsky et al. [3], Silva et al. [33] and Silva and Pulgar [34], also explore
control with additive noise and SNR constraints, and focus on understanding what
can be achieved using linear controllers, and under what conditions linear con-
trollers might be optimal or close to optimal. Our work focuses on multiplicative
noise channels, and shows that nonlinear control strictly outperforms the optimal
linear controller for control with multiplicative observation noise.

Other related work includes Freudenberg et al. [9] and Bao et al. [2], which both
focus on the finite-horizon setting for control over additive noise channels. These
setups are different from our problem in that they allow for explicit encoders and
decoders, focus on the impact of additive noise and use channel-state information.

We note that our observation channel model, Yn = ZnXn, does not provide an
explicit rate limit on the number of bits that can be transmitted across it. Since Xn

can be arbitrarily large and Zn has a fixed mean and variance, an arbitrarily large
number of bits could be communicated across the channel by increasing the magni-
tude of Xn (Lapidoth and Moser [14]). Since a rate-limit cannot be established on
our observation channel, the proof approach suggested by the data-rate theorems
does not work in our case. Furthermore, our model aims to capture the impact of
physical unreliabilities and does not include encoders and decoders, which are also
essential to using a data-rate theorem style approach.

1.3.2. Control with multiplicative noise. In addition to the data-rate theorems,
our problem formulation is inspired by the intermittent Kalman filtering (IKF)
problem [25, 35]. The IKF problem considers the estimation of a system over a
channel that drops packets, that is, a channel with Bernoulli multiplicative noise.
The system cannot use encoding strategies to code over the packet drops. Our
paper builds on this setup to consider a general continuous multiplicative noise on
the observation.

Chiuso et al. [4] and Dey et al. [5] both extend the work on packet dropping
observation channels to consider the further impact of quantization, partial chan-
nel feedback and delays. Schenato et al. [32] and Hespanha et al. [11] provide
detailed surveys of control over packet dropping networks—for packet drops on
both the observation channel as well as the control channel. A key result comes
from Elia [7], where the author studies the impact of multiplicative noise on the
control action using a robust control perspective. In contrast to Elia [7], our work
considers multiplicative noise on the observation instead of the control action and
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takes a stochastic control approach. Other related works by Garone et al. [10] and
Matveev et al. [16] both consider control actions that are subject to packet drops,
but allow the controller and system to use an encoder-decoder pair to treat this
limitation as a traditional communication constraint.

Recent work by Xu et al. [40] has considered control with observations transmit-
ted over channels with unknown fading coefficients (i.e., continuous multiplicative
observation noise). However, they assume that the unknown multiplicative noise
is instantaneously revealed to the decoder. With this assumption the separation of
estimation and control holds [42], and they are able to recover matching neces-
sary and sufficient conditions for stability. The lack of channel state information
makes the setup in our current paper considerably more challenging, and standard
information-theoretic and control-theoretic techniques do not allow for progress.
The work of Xu et al. [40] builds on the work of Xiao et al. [39] as well as that of
Elia [7], both of which restrict their attention to LTI control strategies. Our formu-
lation has no such restriction and considers general nonlinear strategies.

A related problem is that of estimating a linear system over multiplicative noise.
While early work on this problem had been limited to exploring linear estimation
strategies [26, 37], some recent work showed a general converse result for the es-
timation problem over multiplicative noise for both linear and nonlinear strategies
[28]. We note that our problem can also be interpreted as an “active” estimation
problem for X0. However, unlike the estimation problem, we cannot describe the
distribution of Xn in our problem since the control Un is arbitrary. Hence, the tech-
niques from [28] do not easily adapt to our current setting, and the current proof
uses a different side-information “genie” than used in the converse for [28]. We
also cannot bound the range of Xn since Un is arbitrary, which prevents bounding
the rate across the observation channel, and hence the use of a data-rate theorem
approach.

The uncertainty threshold principle [1] was one of the first works to consider
the control of systems with multiplicative noise. This work provided the second-
moment stability threshold when both the system growth factor (coefficient of Xn)
and the control gain (coefficient of Un) were drawn i.i.d. from a Gaussian distri-
bution. We believe our work complements this result by considering multiplicative
uncertainty on the observation gain.

Following the data-rate theorems and the uncertainty-threshold principle result,
Martins et al. [15], Okano et al. [23] and Kostina et al. [13] have provided stability-
limits for rate-limited control with multiplicative noise on the system gain.

The formulation in [30] is closely related to the formulation in the current paper,
with the multiplicative uncertainty on the control gain instead of the observation
gain. However, while linear control strategies are optimal in the setting in [30], our
current paper shows they are suboptimal when the multiplicative noise is on the
observation gain.

Some of our results and methods are summarized in [6].
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2. Problem statement. Consider the system Sa in (1.1). For simplicity, let the
initial state X0 be distributed as X0 ∼ N (0,1). Let Zn be i.i.d. random variables
with finite second moment and bounded density fZ(z) = e−φ(z). Without loss of
generality, we will use the scaling EZn = 1 and Var(Zn) = σ 2. The notation Zn,
fZ , φ, and σ defined here will be used throughout the paper.

We introduce two definitions for stability of the system. The first is the notion of
stability that is most commonly studied in control theory, that is, second-moment
stability.

DEFINITION 2.1. The system Sa in (1.1) is said to be second-moment stabi-
lizable if there exists an adapted control strategy U0, . . . ,Un (a control strategy
where Uk is a function of Y0, . . . , Yk for each 0 ≤ k ≤ n) such that

sup
n

E
[|Xn|2]

< ∞.

DEFINITION 2.2. We say the controller can keep the system Sa in (1.1) tight
if for every ε and for every n there exists an adapted control strategy U0, . . . ,Un,
and there exist Mε,Nε < ∞ such that

P
(|Xn| < Mε

) ≥ 1 − ε,

for n > Nε . This notion has also been called stability in probability in the literature
[42].

3. Linear schemes. This section first provides a simple memoryless linear
strategy that can stabilize the system in a second-moment sense in Proposition 3.1.
We show in Theorem 3.2 that this strategy is optimal among linear strategies. In
Theorem 3.3, we highlight the limitations of linear strategies by showing that when
EZn = 0, linear strategies cannot stabilize the system for any growth factor a > 1.
Finally, we consider stability in the sense of keeping the system tight and provide
a scheme that achieves this in Theorem 3.4.

PROPOSITION 3.1 (A linear memoryless strategy). The controller given by
Un = d∗Yn where d∗ = a

1+σ 2 , can stabilize the system Sa in (1.1) in a second-

moment sense (Definition 2.1) if a ≤ a∗, where a∗ =
√

1 + 1
σ 2 .

PROOF. The above strategy gives us Xn+1 = (a − d∗Zn)Xn. Since Zn is in-
dependent of Xn, we can write

E
[
X2

n+1
] = E

[(
a − d∗Zn

)2]
E

[
X2

n

] = (
a2 − 2ad∗ + (

d∗)2(
1 + σ 2))

E
[
X2

n

]
= a2σ 2

1 + σ 2 ·E[
X2

n

]
.
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Under this control strategy supnE[|Xn|2] is bounded if and only if a2 ≤ 1 + 1
σ 2 .
�

Note that the above controller is linear in that Un is a linear function of the Yi

and memoryless in that Un depends only on Yn and not Yi for i < n. We might
expect an improvement in the achievable performance of a linear strategy if we
also allow it to use memory, that is, the past Yn’s. However, it turns out that the
optimal linear strategy is in fact memoryless.

THEOREM 3.2. The control strategy given by Un = d∗Yn where d∗ = a
1+σ 2 is

the optimal linear strategy to stabilize Sa in a second-moment sense, in particular,

for all a >
√

1 + 1
σ 2 the system Sa in (1.1) cannot be second-moment stabilized

(Definition 2.1) using a linear strategy.

PROOF. Suppose the system Sa evolves following some linear strategy of the
form Un = ∑n

i=1 αn,iYi .
We define a system S̃ such that X̃n that evolves in parallel with Xn and tracks

the behavior of the strategy Un = d∗Yn. Formally, S̃ is defined as

X̃0 = X0,

Ỹn = ZnX̃n,

X̃n+1 = aX̃n − d∗Ỹn,

where the Zn’s are the same as those acting on Xn. Then, we can write

X̃n+1 = X̃n

(
a − d∗Zn

)
= X̃n−m

n∏
i=n−m

(
a − d∗Zi

)
.

(3.1)

We will show that E[|X̃n|2] is the minimum achievable second moment at any

time n. Since E[|X̃n|2] < ∞ only when a ≤
√

1 + 1
σ 2 , we are done once we show

this.
Our approach is to inductively show that E[(Xn − X̃n)X̃n] = 0 for all n and for

any linear control strategy applied to the system S , from which it follows that

E
[
X2

n

] = E
[
X̃2

n

] +E
[
(Xn − X̃n)

2] ≥ E
[
X̃2

n

]
.

Base case: n = 0 is trivially true, since X0 = X̃0. Assume that our hypothesis is
true for n = k. Now consider n = k + 1:

E
[
(Xk+1 − X̃k+1)X̃k+1

]
= aE

[
(Xk − X̃k)X̃k+1

] −E

[(
k∑

i=0

αk,iYi

)
X̃k+1

]
+E

[
d∗ỸkX̃k+1

]
.

(3.2)
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We will show that all three expectations in the final expression are zero. The first
term in (3.2) is

E
[
(Xk − X̃k)X̃k+1

] = E
[
(Xk − X̃k)

(
aX̃k − d∗Ỹk

)]
= −d∗

E
[
(Xk − X̃k)Ỹk

]
,

by the induction hypothesis. Because Zk is independent of Xk and X̃k , we may
compute the above expectation as

E
[
(Xk − X̃k)Ỹk

] = E
[
(Xk − X̃k)ZkX̃k

]
= E[Zk]E[

(Xk − X̃k)X̃k

]
= 0.

(3.3)

To handle the second term, for each 1 ≤ i ≤ k we can apply (3.1) to obtain

E[YiX̃k+1] = E

[
ZiXiX̃i

k+1∏
j=i

(
a − d∗Zj

)]

= E
[
Zi

(
a − d∗Zi

)]
E

[
XiX̃i

k+1∏
j=i+1

(
a − d∗Zj

)]

= 0,

(3.4)

where again we have used the independence of Zi from the other terms in the
product, and E[Zi(a − d∗Zi)] = 0 from the definition of d∗. Finally, the last term
may be computed in a similar manner as

E[ỸkX̃k+1] = E
[
ZkX̃k

(
aX̃k − d∗ZkX̃k

)]
= E

[
Zk

(
a − d∗Zk

)]
E

[
X̃2

k

]
= 0.

(3.5)

by the definition of d∗.
Equations (3.3), (3.4) and (3.5), establish that all three terms in (3.2) are zero.

Hence, E[(Xn − X̃n)X̃n] = 0 for all n, and we are done. �

A similar analysis illustrates the limitations of linear strategies when EZn = 0,
in contrast with nonlinear strategies to be described in the next section.

THEOREM 3.3. Suppose that instead of EZn = 1, we have EZn = 0. Then,
for all a > 1, the system Sa in (1.1) cannot be second-moment stabilized using a
linear strategy. In other words, linear strategies cannot tolerate any growth in the
system.
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PROOF. Suppose the system Sa evolves following some linear strategy of the
form Un = ∑n

i=1 αn,iYi .
We will show by induction that for each n, we may write Xn = WnX0, where

Wn is a function of Z0,Z1, . . . ,Zn−1, and EWn = an. Clearly, this holds for n = 0
with W0 = 1. For the inductive step, note that

Xn+1 = aXn − Un =
(
aWn −

n∑
i=1

αn,iZiWi

)
X0,

so we may take Wn+1 = aWn −∑n
i=1 αn,iZiWi . Since Zi is independent of Wi for

each i, we have

EWn+1 = aEWn −
n∑

i=1

αn,i(EZi)(EWi) = an+1,

completing the induction. It follows that

E
[
X2

n

] = E
[
W 2

n

] ·E[
X2

0
] ≥ (EWn)

2 ·E[
X2

0
] = a2n ·E[

X2
0
]
,

and so E[X2
n] grows without bound when a > 1. �

Finally, the next theorem considers the weaker sense of stability of keeping
the system tight, which is the sense of stability that the impossibility results in
Section 5 use.

THEOREM 3.4. Suppose that the density function fZ of Zn is bounded, and
consider linear memoryless strategies of the form Un = ad · Yn for a constant
d > 0. Let d� = argmind E[log |1 − d · Zn|] and a� = e−E[log |1−d�·Zn|]. If d = d�,
then the system Sa in (1.1) can be kept tight (Definition 2.2) provided that |a| < a�.
Further, no such strategy can keep the system tight if |a| ≥ a�.

PROOF. Applying the control law Un = adYn, we calculate that

Xn = a(1 − dZn−1)Xn−1

= an
n−1∏
i=0

(1 − dZi)X0.

Let Wi = log |1 − dZi |, and let Sn = ∑n
i=1(Wi + log |a|). Taking logarithms gives

us

log |Xn| = Sn + log |X0|.
Note that

lim
n→∞

1√
n

log |Xn| = lim
n→∞

1√
n
Sn

almost surely, so as will be seen shortly, it suffices to analyze Sn.
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Take C to be an upper bound on the density of Zi . Then we have

P(Wi < −t) = P
(|1 − dZi | < e−t ) ≤ C · e−t

d
,

so that Wi has an exponentially decaying left tail. Similarly,

P(Wi > t) = P
(|1 − dZi | > et ) ≤ E(1 − dZi)

2

e2t
,

so Wi also has an exponentially decaying right tail.
Thus, Wi has finite first and second moments. Let μd and σd denote the mean

and variance of Wi , respectively. Defining S̃n = ∑n
i=1(Wi − μd), the central limit

theorem gives us that

(3.6)
1√
n
S̃n

D−→ N
(
0, σ 2

d

)
as n → ∞.

If |a| < a� and we take d = d�, then we see that log |a| < loga� = −μd� =
−μd . Thus, there exists ε > 0 such that log |a| + μd < −2ε. Using the union
bound, we then have

P
(
log |Xn| ≥ −nε

) ≤ P
(
log |X0| > nε

) + P(Sn ≥ −2nε).

We have that P(log |X0| > nε) → 0 as n → ∞, and also by the law of large num-
bers P(Sn ≥ −2nε) → 0 almost surely. Hence, P(log |Xn| < −nε) → 1 and the
system is kept tight.

On the other hand, suppose that |a| ≥ a�. Then we have log |a| ≥ loga� =
−μd� ≥ −μd , so Sn ≥ S̃n. Consider δ > 0. For n large enough, we have that

P
(
log |Xn| ≤ n

1
4
) ≤ P

(
log |Xn| ≤ δ

√
n
)

≤ P
(
log |X0| ≤ −δ

√
n
) + P(Sn ≤ 2δ

√
n)

≤ P
(
log |X0| ≤ −δ

√
n
) + P(S̃n ≤ 2δ

√
n),

where we used the union bound and the fact that Sn ≥ S̃n to get the two inequalities.
Now P(log |X0| ≤ −δ

√
n) → 0 as n → ∞ and P(S̃n ≤ 2δ

√
n) → 	( 2δ

σd
), by (3.6).

Hence,

lim sup
n→∞

P
(
log |Xn| ≤ n

1
4
) ≤ 	

(
2δ

σd

)
,

which gives that

lim sup
n→∞

P
(
log |Xn| > n

1
4
) ≥ 1

2
.

Thus, in this case the system is not kept tight. �
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4. Nonlinear schemes. In the previous section, we focused on linear strate-
gies, where Un is taken to be a linear combination of Yi for 0 ≤ i ≤ n. We now
consider whether more general strategies can do better. Theorem 4.1 shows that
when Zn is Gaussian, a perturbation of the linear strategy indeed does better in the
second-moment sense. (The same result should hold for rather general Zn; see Re-
mark 4.1.) In the setting where EZn = 0, Theorem 4.3 exhibits a nonlinear strategy
that achieves a nontrivial growth factor a > 1. This contrasts with Theorem 3.3,
which showed that linear strategies cannot achieve any gain in this setting. In both
Theorem 4.1 and Theorem 4.3, improvement is achieved by taking into account
information from the previous round while choosing the control.

On the other hand, Theorem 4.5 shows that when a > a∗ =
√

1 + 1
σ 2 , for any

memoryless strategy (in the sense that Un is a function of only Yn), we cannot
guarantee for all distributions of Xn that E[X2

n+1] ≤ E[X2
n]. This suggests that

in the memoryless setting, the linear strategy from the previous section may be
optimal. However, it does not rule out the possibility for an increase in second
moment after one round to be compensated by a larger decrease later.

THEOREM 4.1. Let a∗ =
√

1 + 1
σ 2 be as in Proposition 3.1. Suppose that our

multiplicative noise Zn has a Gaussian law Zn ∼ N (1, σ 2). Then there exists a >

a∗ for which a (nonlinear) controller can stabilize the system in a second-moment
sense.

We first establish an elementary inequality for Gaussian variables. In what fol-
lows, we define the signum function sgn(x) to be 1 if x ≥ 0 and −1 otherwise.

LEMMA 4.2. Let Z ∼ N (1, σ 2), with σ > 0. We have

E

[
sgn(Z)

(
1 − Z

1 + σ 2

)]
> 0.

PROOF. It is convenient to write Z = 1 −σZ̃, where Z̃ ∼N (0,1). Let s = 1
σ

,
and let γ denote the standard Gaussian density. Note that

γ (x) ≥ 1√
2π

max
(

1 − x2

2
,0

)
for all x. Hence,

√
2π

∫ s

0
γ (x) dx ≥

∫ s

0
max

(
1 − x2

2
,0

)
dx

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
s − s3

6
if s ≤ √

2,

2
√

2

3
if s >

√
2.

(4.1)
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We also have

(4.2) s
√

2π

∫ ∞
s

xγ (x) dx = s

∫ ∞
s

xe− x2
2 dx = se− s2

2 .

It can be checked by elementary calculations that for any s > 0, (4.1) is always

strictly greater than (4.2). Indeed, for s <
√

2 use e− s2
2 < 1 − s2

2 + s4

8 < 1 − s2

6 ,

and for s >
√

2 note that se− s2
2 is decaying. Thus,

1

2
−E[1Z̃≥s] =

∫ s

0
γ (x) dx > s

∫ ∞
s

xγ (x) dx = s ·E[1Z̃≥s · Z̃].
Let us rewrite the above equation in terms of Z and σ , noting that 1Z̃≥s = 1

2(1 −
sgn(Z)). We obtain

E
[
sgn(Z)

]
>

1

σ
·E

[(
1 − sgn(Z)

) · 1 − Z

σ

]
.

Rearranging, we have

E

[
sgn(Z)

(
1 + 1 − Z

σ 2

)]
>

1

σ 2E[1 − Z] = 0.

Finally, multiplying both sides by 1+σ 2

σ 2 yields

E

[
sgn(Z)

(
1 − Z

1 + σ 2

)]
> 0. �

PROOF OF THEOREM 4.1. To show second-moment stability, it suffices to
exhibit controls Un and Un+1 which ensure that EX2

n+2 ≤ EX2
n for all possible

distributions of Xn. For a positive ε to be specified later, choose

a = (
1 + ε2)

a∗ = (
1 + ε2)√

1 + 1

σ 2 .

For our controls, we take

Un = a

1 + σ 2 Yn and Un+1 = a

1 + σ 2 Yn+1 + εYn+1 ·
∣∣∣∣ Yn

Yn+1

∣∣∣∣.
Note that the expression for Un and the first term in the expression for Un+1 are the
same as in the linear strategy from Proposition 3.1. However, here we have added a
small perturbation to Un+1. For convenience, define the function g(x) = 1− x

1+σ 2 .
Then

Xn+1 = a · g(Zn)Xn,

Xn+2 = a · g(Zn+1)Xn+1 − ε · aZn+1g(Zn) ·
∣∣∣∣ Zn

aZn+1g(Zn)

∣∣∣∣Xn

= a2 · g(Zn+1)g(Zn)Xn − ε · sgn(Zn+1) · g(Zn)

∣∣∣∣ Zn

g(Zn)

∣∣∣∣Xn.

(4.3)
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We will compute the second moment of (4.3). Let

A = g(Zn+1)g(Zn), B = sgn(Zn+1) · g(Zn)

∣∣∣∣ Zn

g(Zn)

∣∣∣∣.
Then we have

E
[
A2] = E

[
g(Zn+1)

] ·E[
g(Zn)

] = σ 4

(1 + σ 2)2 ,

E
[
B2] = EZ2

n = 1 + σ 2,

E[AB] = E

[
g(Zn)

2 ·
∣∣∣∣ Zn

g(Zn)

∣∣∣∣] ·E[
sgn(Zn+1)g(Zn+1)

]
> 0,

where the inequality in the last line follows from Lemma 4.2 and the fact that
g(Zn)

2 · | Zn

g(Zn)
| is almost surely positive.

Recall that the Zn and Zn+1 are both independent of Xn, so taking second mo-
ments in (4.3), we have

EX2
n+2 = (

a4 ·EA2 − 2εa2 ·EAB + ε2 ·EB2)
EX2

n

=
(

a4σ 4

(1 + σ 2)2 − 2εa2 ·EAB + O
(
ε2))

EX2
n

=
((

1 + ε2)4 − 2ε(1 + ε2)(1 + σ 2)

σ 2 ·EAB + O
(
ε2))

EX2
n

=
[
1 − ε · 2(1 + σ 2)

σ 2 EAB + O
(
ε2)]

EX2
n.

Since EAB > 0, when ε is a sufficiently small positive number, this gives
EX2

n+2 ≤ EX2
n, showing second-moment stability. �

REMARK 4.1. We actually suspect that Theorem 4.1 applies to all continuous
distributions of Zn. Indeed, the above analysis can be carried out for a more general
class of control strategies. Consider instead

Un = a

1 + σ 2 Yn and Un+1 = a

1 + σ 2 Yn+1 + εYn+1 · h
(

Yn

Yn+1

)
,

where h is any function [above, we used h(x) = |x|]. Then we would carry out the
same analysis except with

B = aZn+1g(Zn) · h
(

Zn

aZn+1g(Zn)

)
.

The crucial properties we needed were that EB2 < ∞ and EAB 
= 0. Thus, for
all distributions of Zn, as long as there exists some function h verifying those two
properties, the conclusion of Theorem 4.1 applies.
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The next theorem shows that a perturbation can also improve upon linear strate-
gies when EZn = 0.

THEOREM 4.3. Suppose that instead of EZn = 1, we have EZn = 0. Then, as
long as Zn has finite second moment, there exists a > 1 for which a (nonlinear)
controller can stabilize the system in a second-moment sense.

We first prove a technical lemma.

LEMMA 4.4. Let Z be a random variable with EZ = 0 and finite first moment.
Then, for all sufficiently small ε > 0, we have

E

[
Z

∣∣∣∣ ε

Z
− 1

∣∣∣∣] < 0.

PROOF. For 0 ≤ t ≤ 1
2 , define the function

f (x, t) = x

∣∣∣∣ t

x
− 1

∣∣∣∣.
Note that for each x 
= 0 and each t , we have∣∣∣∣f (x, t) − f (x,0)

t

∣∣∣∣ ≤ 1 and lim
t→0

f (x, t) − f (x,0)

t
= −1.

Thus, letting F(t) = Ef (Z, t), the dominated convergence theorem implies

lim
t→0

F(t) − F(0)

t
= −1.

Consequently, for all sufficiently small t , we have F(t) < 0, as desired. �

PROOF OF THEOREM 4.3. We take an approach similar to the proof of The-
orem 4.1. Again, it suffices to exhibit controls Un and Un+1 which ensure that
E[X2

n+2] ≤ E[X2
n] for all possible distributions of Xn. By Lemma 4.4, take a small

enough ε0 > 0 so that

(4.4) E

[
Zn

∣∣∣∣ ε0

Zn

− 1
∣∣∣∣] < 0.

Let ε > 0 be another small number to be specified later, and take a = 1 + ε2. For
our controls, we take

Un = aε−1
0 Yn,

Un+1 = −a2ε−1
0 Yn − εYn ·

∣∣∣∣Yn+1

Yn

∣∣∣∣.
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Then

Xn+1 = aXn − aε−1
0 ZnXn,

Xn+2 = aXn+1 + a2ε−1
0 Yn + εYn ·

∣∣∣∣Yn+1

Yn

∣∣∣∣
= a2Xn + εZn ·

∣∣∣∣aZn+1(1 − ε−1
0 Zn)

Zn

∣∣∣∣Xn

= a2Xn + aε−1
0 ε · |Zn+1| · Zn

∣∣∣∣ ε0

Zn

− 1
∣∣∣∣Xn.

For convenience, let A = ε−1
0 · |Zn+1| · Zn| ε0

Zn
− 1|, and note that EA2 < ∞ since

Zn and Zn+1 have finite second moments. Substituting this definition for A, we
calculate

E
[
X2

n+2
] = a2 ·E(a + εA)2 ·E[

X2
n

]
= (

1 + ε2)2 ·E(
1 + ε2 + εA

)2 ·E[
X2

n

]
= (

1 + 2ε ·EA + O
(
ε2))

E
[
X2

n

]
.

By (4.4), we have that EA is strictly negative. Thus, for small enough positive ε,
we obtain E[X2

n+2] ≤ E[X2
n], as desired. �

The next theorem pertains to schemes of the form Un = h(Yn), where h :R →R

is any fixed function.

THEOREM 4.5. Consider any a > a∗ =
√

1 + 1
σ 2 and any measurable func-

tion h : R → R. Then there exists a random variable X with finite second moment
for which

E
[
a2(

X − h(XZn)
)2]

> EX2.

In particular, we cannot guarantee EX2
n+1 ≤ EX2

n for the scheme Un = h(Yn).

PROOF. Let M be a large parameter to be specified later. Consider the proba-
bility density

ρ(x) =
⎧⎪⎨⎪⎩

(
1 − 1

M2

)−1
|x|−3 if 1 ≤ |x| ≤ M,

0 otherwise.

We will take X to have density ρ, and for appropriate M , we will find that

E
[
a2(

X − h(XZn)
)2]

> EX2.
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Recall our notation fZ(x) = e−φ(x) for the density of Zn. To aid in our calcula-
tions, for each integer k ≥ 0 and real number y 
= 0, we consider the quantity

αk(y) =
∫ ∞
−∞

xkρ(x)fZ(y/x)

|x| dx

=
∫ M

1

xkρ(x)fZ(y/x) + (−x)kρ(−x)fZ(−y/x)

|x| dx

=
(

1 − 1

M2

)−1 ∫ M

1

xkfZ(y/x) + (−x)kfZ(−y/x)

x4 dx

=
(

1 − 1

M2

)−1 ∫ y/M

y

yks−kfZ(s) + yk(−s)−kfZ(−s)

y4s−4

(
− y

s2

)
ds

=
(

1 − 1

M2

)−1 ∫ y

y/M

s2−kfZ(s) + (−s)2−kfZ(−s)

y3−k
ds,

where we have made the substitution x = y/s. Let ε > 0 be a small parameter.
Consider a fixed t with ε ≤ t ≤ 1 − ε, and set y = ±Mt . We find that

(4.5) lim
M→∞|y|y2−kαk(y) =

∫ ∞
0

(
s2−kfZ(s) + (−s)2−kfZ(−s)

)
ds = E

[
Z2−k

n

]
uniformly over ε ≤ t ≤ 1 − ε, where we have taken care to ensure that the above
holds for both possible signs of y. Let δ > 0 also be a small parameter. We now
choose M to be sufficiently large so that(

1 − 1

M2

)−1
≤ 1 + δ,

and also for all y with Mε ≤ |y| ≤ M1−ε [in light of (4.5)],

α2(y) − α1(y)2

α0(y)
≥ (1 − δ)

(
1

|y| − |y|−2y−2(EZn)
2

|y|−1y−2EZ2
n

)

= (1 − δ)
1

|y|
(

1 − 1

1 + σ 2

)
= (1 − δ)

σ 2

|y|(1 + σ 2)
.

(4.6)

We then have

EX2 =
∫ ∞
−∞

x2ρ(x) dx ≤ 2(1 + δ)

∫ M

1

1

x
dx = 2(1 + δ) logM

and

E
(
X − h(XZn)

)2 =
∫ ∞
−∞

∫ ∞
−∞

ρ(x)
(
x − h(xz)

)2
fZ(z) dz dx

=
∫ ∞
−∞

∫ ∞
−∞

ρ(x)(x − h(y))2fZ(y/x)

|x| dy dx

=
∫ ∞
−∞

(
α2(y) − 2h(y)α1(y) + h(y)2α0(y)

)
dy.
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Note that the integrand in the last expression is a quadratic function in h(y) whose

minimum possible value is α2(y) − α1(y)2

α0(y)
, and note also that this quantity is non-

negative since α2(y)α0(y) ≥ α1(y)2 by the Cauchy–Schwarz inequality. Thus,

E
(
X − h(XZn)

)2 ≥
∫ ∞
−∞

(
α2(y) − α1(y)2

α0(y)

)
dy

≥
∫ M1−ε

Mε

(
α2(y) − α1(y)2

α0(y)
+ α2(−y) − α1(−y)2

α0(−y)

)
dy

≥ 2(1 − δ)σ 2

1 + σ 2

∫ M1−ε

Mε

1

y
dy = 2(1 − δ)(1 − 2ε)σ 2

1 + σ 2 logM,

where we have plugged in the bound from (4.6). Consequently,

Ea2(X − h(XZn))
2

EX2 ≥ (1 − δ)(1 − 2ε)

1 + δ
· a2σ 2

1 + σ 2 .

Since a >
√

1 + 1
σ 2 , the right-hand side is strictly greater than 1 when ε and δ are

sufficiently small. This completes the proof. �

5. An impossibility result.

THEOREM 5.1. For the system Sa , suppose that φ is differentiable and satis-
fies |z ·φ′(z)| ≤ C1 +C2 ·φ(z) for all z, and also e−φ(z) ≤ |z|−1−δ for some δ > 0.
We additionally assume φ(·) satisfies a doubling condition on φ′(·) such that if
z1
2 ≤ z2 ≤ 2z1, then φ′(z2) ≤ C3 · φ′(z1).

Then there exists a ∈ R, a < ∞ such that P(|Xn| < M) → 0 for all M < ∞.

Note that the conditions on φ(·) above imply the conditions in Theorem 1.1.
We rewrite the system Sa from (1.1) here, with state denoted as Xa,n, to em-

phasize the dependence on a:

Xa,n+1 = a · Xa,n − Ua,n,

Ya,n = Zn · Xa,n.
(5.1)

Now define Un := a−nUa,n, and consider the system S , which is the system Sa

scaled by a:

Xn+1 = Xn − Un,

Yn = Zn · Xn.
(5.2)

The Zn’s and the initial state X0 = Xa,0 are identical in both systems. Then the
scaled system satisfies Xn = a−nXa,n. Thus we have that

P
(|Xa,n| < M

) = P
(|Xn| < a−nM

)
.
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FIG. 2. A caricature illustrating the intervals In and In − Sn.

As a result, it suffices to bound the probability that the state of the system S ,
that is, |Xn|, is contained in intervals that are shrinking by a factor of a at each
time step. The rest of this section uses the notation Xn to refer to the state of the
system S and Xa,n to refer the state of the system Sa .

5.1. Definitions. Let Sn := ∑n−1
i=0 Ui . Hence, Xn = X0 − Sn.

The goal of the controller is to have Sn be as close to X0 as possible. We will
track the progress of the controller through intervals In that contain X0 and are
decreasing in length. Figure 2 illustrates the intervals In and In − Sn.

Let d(In, S) := infx∈In |S − x| denote the distance of a point S from the inter-
val In.

DEFINITION 5.1. For all n ≥ 0 and for k ∈ Z, there exists a unique integer
h(k) such that X0 ∈ [h(k)

2k , h(k)+1
2k ). Let J (k) := [h(k)

2k , h(k)+1
2k ). We now inductively

define

K0 := min
{
k ≥ 0 | d(

J (k),0
) ≥ 2−k} and

Kn := min
{
k | k > Kn−1, d

(
J (k), Sn

) ≥ 2−k}.
Write Hn := h(Kn) and In := J (Kn) = [ Hn

2Kn
, Hn+1

2Kn
).

Let Yn
0 indicate the observations Y0 to Yn, and let Fn := {Yn

0 ,Kn
0 ,Hn

0 }, which
is the total information available to the controller at time n. Let fXn(x|Fn) be the
conditional density of Xn given Fn.

5.2. Relationships between In, Kn, Sn and Xn. We state and prove two lem-
mas that will be used in the main proof. The first lemma uses Kn to bound how
fast Sn approaches X0.

LEMMA 5.2.

2−Kn ≤ |X0 − Sn|,
and if Kn > Kn−1 + 1, then

|X0 − Sn| ≤ 22−Kn.
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PROOF. From the definition of In, we know that d(In, Sn) ≥ 2−Kn . This gives
2−Kn ≤ |X0 − Sn|, since X0 ∈ In.

To show the second half of the inequality, suppose that |X0 −Sn| > 22−Kn . Then

21−Kn < |X0 − Sn| − 21−Kn.

Hence, there exists a larger interval J (Kn − 1) that contains X0 such that

21−Kn < d
(
J (Kn − 1), Sn

)
,

where J (Kn − 1) is an interval of length 21−Kn > 2−Kn . Since we also assumed
that Kn > Kn−1 + 1, this contradicts the assumption that Kn was the minimal
k > Kn−1 such that d(J (k), Sn) ≥ 2−k . �

The second lemma bounds the ratio between two points in the interval of inter-
est.

LEMMA 5.3. For t ∈ In − Sn, we have that 1
2 ≤ Xn

t
≤ 2.

PROOF. We have from Lemma 5.2 that 2−Kn ≤ |Xn|. The lemma follows since
the length of the interval In − Sn is 2−Kn . �

5.3. Preliminary estimates of the Zi . We also require some basic estimates for
the Zi , which we record here. Recall that we assumed the existence of a number
δ > 0 such that e−φ(z) ≤ |z|−1−δ .

LEMMA 5.4. Let δ′ = δ/(1 + δ). For each i and any t ≥ 0, we have

P
(
φ(Zi) ≥ t

) ≤ 2

δ′ e
−δ′t .

PROOF. Let s = et/(1+δ), so that s−1−δ = e−t . We have

P
(
φ(Zi) ≥ t

) = P
(
e−φ(Zi) ≤ e−t ) ≤

∫ ∞
−∞

min
(
e−t , |z|−1−δ)dz

= 2
(∫ s

0
e−t dz +

∫ ∞
s

z−1−δ dz

)

= 2
(
s · e−t + s−δ

δ

)
= 2

(
1 + 1

δ

)
s−δ = 2

δ′ e
−δ′t . �

LEMMA 5.5. For each i, the random variable φ(Zi) has finite moments of all
orders.

PROOF. The condition |Ziφ
′(Zi)| ≤ C1 +C2φ(Zi) implies φ(Zi) ≥ −C1

C2
. Ac-

cording to Lemma 5.4, we also know that φ(Zi) has exponentially decaying upper
tails. Thus, φ(Zi) has finite moments of all orders. �
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5.4. Proof of the main result. The key element of the proof is to provide the
interval In to the controller at time n as side-information in addition to Yn. Our
strategy is to first bound the density fXn(x|Fn) by comparing the change in density
from time n to n + 1. This bound helps us generate bounds for the probabilities of
three events that cover the event of interest {|Xn| < a−nM}. We will show that for
large enough a the probabilities of all three of these events go to 0 as n → ∞.

PROOF OF THEOREM 5.1. Consider

fXn(x |Fn)

= fXn(x | Yn,Kn,Hn,Fn−1)

= fYn,Kn,Hn(Yn,Kn,Hn | Xn = x,Fn−1) · fXn(x | Fn−1)

fYn,Kn,Hn(Yn,Kn,Hn | Fn−1)
.

Since X0 ∈ In, the controller knows that Xn ∈ In − Sn, where In − Sn represents
the interval In shifted by Sn. We can calculate the ratio of the densities at x,w ∈
In − Sn as

fXn(x | Fn)

fXn(w |Fn)

= fXn(x | Fn−1)

fXn(w | Fn−1)
· fYn(Yn | Xn = x,Fn−1)

fYn(Yn | Xn = w,Fn−1)
.

(5.3)

Since Kn and Hn are defined by In, the conditional distributions of Kn and Hn

given Xn = x and Xn = w are equal for x,w ∈ In − Sn. So these terms cancel
when we consider a ratio, giving (5.3).

Taking logarithms and using the triangle inequality gives the following recursive
lemma.

LEMMA 5.6.∣∣∣∣log
fXn(x | Fn)

fXn(w | Fn)

∣∣∣∣
≤ 2Kn+1C3

∣∣Zn · φ′(Zn)
∣∣|x − w| +

∣∣∣∣log
fXn(x | Fn−1)

fXn(w | Fn−1)

∣∣∣∣.
(5.4)

The proof is deferred to Section 6 to improve readability. This lemma helps us
establish the recursive step, since the control law gives us that

fXn(x | Fn−1) = fXn−1(x + Un−1 | Fn−1),
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since Un−1 is Fn−1 measurable. Substituting this into (5.4) and unfolding recur-
sively gives∣∣∣∣log

fXn(x | Fn)

fXn(w | Fn)

∣∣∣∣
≤

n∑
i=1

2Ki+1C3
∣∣Zi · φ′(Zi)

∣∣|x − w| +
∣∣∣∣log

fX0(x + Sn)

fX0(w + Sn)

∣∣∣∣.
(5.5)

Inequality (5.5) separates the effect of the uncertainty due to X0 and the subsequent
uncertainty due to the observations and control.

Let ηn = maxx,w∈In−Sn | log
fX0 (x+Sn)

fX0 (w+Sn)
|. Since In is an interval of size at most

2−n which contains X0, we get that

(5.6) |ηn| ≤ 1

2

∣∣(X0 + 22−n)2 − (
X0 − 22−n)2∣∣ ≤ 23−n|X0|.

Now we define

(5.7) �n =
n∑

i=0

2Ki+1C3
∣∣Zi · φ′(Zi)

∣∣2−Kn,

and rewrite (5.5) as∣∣∣∣log
fXn(x | Fn)

fXn(w | Fn)

∣∣∣∣ ≤ �n · 2Kn · |x − w| + ηn.

We will need the following lemma to bound the crucial quantity �n.

LEMMA 5.7. For a sufficiently large constant T , the expectation E[e�n2−T ] is
uniformly bounded for all n.

The proof of this lemma is deferred to Section 6. Henceforth, let T denote a
constant that is sufficiently large for Lemma 5.7 to apply.

Finally, we are in a position to get a bound on fXn(x | Fn):

fXn(x | Fn) ≤ (
e�n2Kn |x−w|+ηn

)
fXn(w | Fn).(5.8)

Now we integrate (5.8) over an interval of length γ = 2(−Kn−T ) with x at one end
point. So |x − w| ≤ 2(−Kn−T ). Such an interval can be fit into In to the left or
right of any x depending on where x is in the interval. Assuming without loss of
generality that x is the left endpoint of the integration interval we compute that∫ x+γ

x
fXn(x|Fn) dw ≤

∫ x+γ

x

(
e�n2Kn |x−w|+ηn

)
fXn(w|Fn) dw.
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We bound |x − w| on the RHS by γ = 2(−Kn−T ) to get

γ · fXn(x|Fn) ≤
∫ x+γ

x

(
e�n2Kn2(−Kn−T )+ηn

)
fXn(w|Fn) dw

≤ (
e�n2−T +ηn

) · 1.

The last step follows since the density integrates out to 1. Hence,

fXn(x|Fn) ≤ e�n2−T +ηn2Kn+T .(5.9)

This gives us a bound on the density of Xn in terms of Kn.
It now remains to bound the rate at which the Kn are growing. The following

lemma shows that the Kn grow essentially at most linearly.

LEMMA 5.8. There exists a constant C such that

P(Kn − K0 > C · n) → 0 as n → ∞.

PROOF. By construction, Kn+1 ≥ Kn + 1. In the case where Kn+1 > Kn + 1,
we can apply Lemma 5.2 and get that for � ≥ 2,

P(Kn+1 − Kn ≥ �|Fn) ≤ P
(|Xn+1| ≤ 22−Kn−�|Fn

)
= P

(|Xn − Un| ≤ 22−Kn−�|Fn

)
.

This is because the control Un must have been very close to Xn for Kn+1 to be
much larger than Kn. Then we calculate this probability by integrating out the
density as

P
(|Xn − Un| ≤ 22−Kn−�|Fn

) =
∫ Un+22−Kn−�

Un−22−Kn−�
fXn(t |Fn) dt

≤ 2 · 22−Kn−�
(
max

t
fXn(t |Fn)

)
.

Combined with (5.9), this gives us that

P(Kn+1 − Kn ≥ �|Fn) ≤ 2 · 22−Kn−�eηn+�n2−T

2Kn+T

= 23−�+T · eηn+�n2−T

.

(5.10)

Write Dn = Kn+1 − Kn, and let

K̃n =
n−1∑
i=0

(
Di −E[Di | Fi]).

It is clear that (K̃n) is a martingale with respect to Fn. In addition, (5.10) yields
that the conditional distribution of Dn given Fn is stochastically dominated by the
distribution of

(5.11) Gn +
(

3 + T + |ηn + �n2−T |
log 2

)
,

where Gn is an independent geometric variable with mean 2.
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By (5.6) and Lemma 5.7, both ηn and �n2−T have bounded second moments,
and so for some constant C̃, we have

E
(
Di −E[Di | Fi])2 ≤ ED2

i ≤ C̃.

Summing over i, this implies that E[K̃2
n] ≤ C̃n, and so

(5.12) P(K̃n ≥ n) → 0 as n → ∞.

We now turn our attention to terms of the form E[Di | Fi]. Using (5.11) again,
we get that

(5.13) E[Di | Fi] ≤ 5 + T + 2
∣∣ηi + �i2

−T
∣∣.

Observe that from the definition of �i given in (5.7), we have

n∑
i=0

�i ≤ C3

n∑
i=0

i∑
j=0

2Kj−Ki+1∣∣Zj · φ′(Zj )
∣∣

= C3

n∑
j=0

n∑
i=j

2Kj−Ki+1∣∣Zj · φ′(Zj )
∣∣

≤ 4C3

n∑
j=0

∣∣Zj · φ′(Zj )
∣∣,

(5.14)

where in the last step we have used the fact that the Ki increase by at least 1 in
each step, so that Ki − Kj ≥ i − j . Then, applying the bound |Zj · φ′(Zj )| ≤
C1 + C2φ(Zj ) to (5.14) yields

n∑
i=0

�i ≤ 4C3C1n + 4C3C2

n∑
i=1

φ(Zi).

Summing (5.13) over i and applying the above bound gives

n∑
i=1

E[Di | Fi] ≤ (5 + T )n + 2
n∑

i=1

|ηi | + 21−T
n∑

i=1

�i

≤ CD,1

(
n +

n∑
i=1

|ηi | +
n∑

i=1

φ(Zi)

)

for a constant CD,1. Now, recalling (5.6), we see that the quantity

n∑
i=1

|ηi | ≤ 8|X0|

has mean and variance bounded by a constant, which we call Cη. In addition, by
Lemma 5.5, there exists another constant Cφ which upper bounds the mean and
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variance of φ(Zi). We conclude that

E

(
n∑

i=1

E[Di | Fi]
)

≤ CD,1(1 + Cη + Cφ · n),

Var

(
n∑

i=1

E[Di | Fi]
)

≤ 2C2
D,1(Cη + Cφ · n).

It follows that

(5.15) P

(
n∑

i=1

E[Di | Fi] ≥ CD,2 · n
)

→ 0 as n → ∞,

where CD,2 = CD,1Cφ + 1. Finally, setting C = CD,2 + 1, we have

P(Kn − K0 > C · n) = P

(
n∑

i=1

Di > C · n
)

= P

(
K̃n +

n∑
i=1

E[Di | Fi] > (CD,2 + 1) · n
)

≤ P(K̃n > n) + P

(
n∑

i=1

E[Di | Fi] ≥ CD,2 · n
)
,

where the last expression goes to 0 as n → ∞ by (5.12) and (5.15). �

This bound on the growth of the Kn variables allows us to complete the proof
of Theorem 5.1.

Let Gn denote the event that Kn − K0 > Cn, and Gc
n its complement. Then we

can cover the event of interest by three events, and get that

P
(|Xn| < a−nM

)
≤ P(Gn) + P(K0 > n) + P

(|Xn| ≤ a−nM,Gc
n,K0 ≤ n

)
.

(5.16)

We evaluate the three terms one by one. For the first term in (5.16), we have
P(Gn) = P(Kn − K0 > Cn) → 0 as n → ∞ from Lemma 5.8.

The second term, P(K0 > n), captures the case where the initial state X0 might
be very close to zero. However, eventually this advantage dies out for large enough
n, since P(X0 < 2−n) → 0 as n → ∞.

The last term in (5.16) remains. By the law of iterated expectation,

P
(|Xn| < a−nM,Gc

n,K0 ≤ n
) = E

[
P

(|Xn| < a−nM,Gc
n,K0 ≤ n | Fn

)]
.

We focus on the term conditioned on Fn:

P
(|Xn| < a−nM,Gc

n,K0 ≤ n | Fn

)
= E[1{|Xn|<a−nM}1{Gc

n}1{K0≤n} | Fn]
= P

(|Xn| < a−nM | Fn

) · 1{Gc
n}1{K0≤n}.

(5.17)
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Now we can apply (5.9) to get

P
(|Xn| < a−nM|Fn

) =
∫ a−nM

−a−nM
fXn(x|Fn) dx

≤
∫ a−nM

−a−nM
eη+�n2−T

2Kn+T dx

= 2Ma−n · eηn+�n2−T · 2Kn+T .

Then we can bound (5.17) as

P
(|Xn| < a−nM|Fn

) · 1{Gc
n}1{K0≤n} ≤ 2Ma−n · eηn+�n2−T · 2(C+1)n+T ,

since Kn ≤ Cn + K0 and K0 ≤ n implies Kn ≤ (C + 1)n. Taking expectations on
both sides, we get

(5.18) P
(|Xn| < a−nM,Gc

n,K0 ≤ n
) ≤ 2Ma−n · 2(C+1)n+T ·E[

eηne�n2−T ]
.

By Lemma 5.7 and (5.6), the above expression (5.18) tends to 0 for a > 2C+1.
Thus, all three probabilities in (5.16) converge to 0 as n → ∞. Hence, if a >

2C+1 then P(|Xn| < a−nM) → 0 for all M . �

6. Bounding the likelihood ratio. Here we provide the proofs of two lemmas
used to bound the term | log fXn(x|Fn)

fXn(w|Fn)
|.

6.1. Proof of Lemma 5.6. We take logarithms on both sides of (5.3) and apply
the triangle inequality to get∣∣∣∣log

fXn(x | Fn)

fXn(w | Fn)

∣∣∣∣
≤

∣∣∣∣log
fYn(Yn | Xn = x,Fn−1)

fYn(Yn | Xn = w,Fn−1)

∣∣∣∣ + ∣∣∣∣log
fXn(x | Fn−1)

fXn(w | Fn−1)

∣∣∣∣.
(6.1)

The form of the density of Z gives∣∣∣∣log
fYn(Yn|Xn = x,Fn−1)

fYn(Yn|Xn = w,Fn−1)

∣∣∣∣ =
∣∣∣∣φ(

Yn

x

)
− φ

(
Yn

w

)∣∣∣∣.(6.2)

We can use the derivatives of the functions to bound the two function differences
above. Since d

dx
φ(Yn

x
) = Yn

x2 φ′(Yn

x
), we bound (6.2) as below. Since Xn ∈ In − Sn,
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the maximizations are over t ∈ In − Sn,∣∣∣∣φ(
Yn

x

)
− φ

(
Yn

w

)∣∣∣∣ ≤ max
t∈In−Sn

∣∣∣∣Yn

t2 φ′
(

Yn

t

)∣∣∣∣|x − w|.(6.3)

For all t ∈ In − Sn, by Lemma 5.3, we have 1
2 ≤ Xn

t
≤ 2. Using this and Yn =

ZnXn, we get the following bound on (6.3):∣∣∣∣φ(
Yn

x

)
− φ

(
Yn

w

)∣∣∣∣ ≤ max
t∈In−Sn

∣∣∣∣2Zn

t
φ′

(
ZnXn

t

)∣∣∣∣|x − w|

≤ max
t∈In−Sn

2C3

∣∣∣∣Zn

t
φ′(Zn)

∣∣∣∣|x − w|.
(6.4)

(6.4) follows from the doubling property of φ′(·), since ZnXn

t
and Zn are within a

factor of two from each other by Lemma 5.3. Now note that

max
t∈In−Sn

1

|t | ≤ 2Kn.

Applying this to the bound from (6.4), we get∣∣∣∣φ(
Yn

x

)
− φ

(
Yn

w

)∣∣∣∣ ≤ 2Kn+1C3
∣∣Zn · φ′(Zn)

∣∣|x − w|.

This now gives a bound for (6.1) as below:

(6.5)
∣∣∣∣log

fXn(x | Fn)

fXn(w | Fn)

∣∣∣∣ ≤ 2Kn+1C3
∣∣Zn · φ′(Zn)

∣∣|x − w| +
∣∣∣∣log

fXn(x |Fn−1)

fXn(w | Fn−1)

∣∣∣∣.
6.2. Proof of Lemma 5.7. Recall that our goal is to estimate the quantity

�n =
n∑

i=0

2Ki+1C3
∣∣Zi · φ′(Zi)

∣∣2−Kn.

Since the Ki’s must increase by at least one in each step, we have Kn −Ki ≥ n− i,
and so

�n ≤
n∑

i=0

21+i−nC3
∣∣Zi · φ′(Zi)

∣∣ ≤
n∑

i=0

21+i−nC3
(
C1 + C2φ(Zi)

)

= 4C3C1 + C3C2

n∑
i=0

21+i−nφ(Zi),

(6.6)

where we have also used the assumption |z · φ′(z)| ≤ C1 + C2φ(z).
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Let δ′ = δ/(1 + δ) as in Lemma 5.4. Consider any θ < δ′/2. Applying
Lemma 5.4, we have for each i that

E
[
eθφ(Zi)

] =
∫ ∞
−∞

θeθt · P(
φ(Zi) ≥ t

)
dt

≤
∫ 0

−∞
θeθt dt + 2θ

δ′
∫ ∞

0
e(θ−δ′)t dt

= 1 + 2θ

δ′(δ′ − θ)
≤ 1 + 4θ

δ′2 .

(6.7)

Now choose T large enough so that 21−T C2C3 < δ′/2. We can then apply (6.7)
to each term in (6.6) by taking θ = 2−T C3C2 · 21+i−n. This yields

E
[
exp

(
2−T C3C2 · 21+i−nφ(Zi)

)] ≤ 1 + C · 2i−n

for a constant C not depending on n. We then have

E
[
e2−T �n

] ≤ E

[
exp

(
4C3C1 + C3C2

n∑
i=0

21+i−nφ(Zi)

)]

≤ e4C3C1

n∏
i=0

(
1 + C · 2i−n)

≤ e4C3C1

∞∏
i=0

(
1 + C · 2−i),

which is a (finite) constant not depending on n.

7. Conclusion. This paper provides a first proof-of-concept converse for a
control system observed over continuous multiplicative noise. However, there is
an exponential gap between the scaling behavior of the achievable strategy and the
converse.

We note that if the system Sa in (1.1) is restricted to using linear control strate-
gies, then its performance limit is the same as that of a system with the same
multiplicative actuation noise (i.e., the control Un is multiplied by a random scal-
ing factor) but perfect observations (as in [29]). Previous work has shown how to
compute the control capacity for systems with multiplicative noise on the actua-
tion channel [27, 29]. However, computing the control capacity of the system Sa ,
that is, computing tight upper and lower bounds on the system growth factor a,
remains open.
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