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SERVE THE SHORTEST QUEUE AND WALSH
BROWNIAN MOTION

BY RAMI ATAR1 AND ASAF COHEN

Technion—Israel Institute of Technology and University of Haifa

We study a single-server Markovian queueing model with N customer
classes in which priority is given to the shortest queue. Under a critical load
condition, we establish the diffusion limit of the nominal workload and queue
length processes in the form of a Walsh Brownian motion (WBM) living in
the union of the N nonnegative coordinate axes in R

N and a linear trans-
formation thereof. This reveals the following asymptotic behavior. Each time
that queues begin to build starting from an empty system, one of them be-
comes dominant in the sense that it contains nearly all the workload in the
system, and it remains so until the system becomes (nearly) empty again.
The radial part of the WBM, given as a reflected Brownian motion (RBM)
on the half-line, captures the total workload asymptotics, whereas its angular
distribution expresses how likely it is for each class to become dominant on
excursions.

As a heavy traffic result, it is nonstandard in three ways: (i) In the ter-
minology of Harrison (In Stochastic Networks (1995) 1–20 Springer), it is
unconventional, in that the limit is not a RBM. (ii) It does not constitute an
invariance principle, in that the limit law (specifically, the angular distribu-
tion) is not determined solely by the first two moments of the data, and is
sensitive even to tie breaking rules. (iii) The proof method does not fully
characterize the limit law (specifically, it gives no information on the angular
distribution).

1. Introduction. We consider a multiclass single-server queueing system op-
erating under serve the shortest queue (SSQ) (also referred to in the literature as
shortest queue first) regime, where service is offered to the customer class in which
the queue is shortest. The practical significance of this policy has been recognized
[3, 5, 6, 8–10, 19, 20], and analytic results have been obtained [6, 8–10]. Briefly,
our probabilistic assumptions are that both arrival and potential service processes
are Poisson, which makes the model Markovian, and that arrival and service rates
are class-dependent. The diffusion scale behavior of the model in heavy traffic has
not been studied before. The main result of this paper addresses the N -dimensional
nominal workload (a term adopted from [21], expressing conditional expectation
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of workload given the state) and queue length processes, where N denotes the
number of classes. It asserts that, under a critical load condition, the diffusion scale
versions of both these processes converge to processes living in the set S0, which
consists of the union of the N coordinate axes in R

N+ . Specifically, the rescaled
nominal workload converges to a Walsh Brownian motion (WBM) on S0, and the
rescaled queue length converges to a certain diagonal transformation of the same
process.

WBM was introduced by Walsh in [27] as a planar diffusion that has a singu-
lar behavior at the origin. Away from the origin, it evolves as a one-dimensional
Brownian motion (BM) along a ray connecting its position to the origin, and its
excursions into rays emanating from the origin follow a fixed angular distribution.
Some early results on this process, including its special case referred to as skew
BM, where the state space consists of exactly two rays, are [1, 2, 13, 23, 24, 26].
Intriguing aspects related to the natural filtration of this process were addressed in
[25]. Recently, vast extensions of this model have been proposed and thoroughly
studied. The reader is referred to [16] and the references therein for this develop-
ment.

In the terminology of Harrison [12], an unconventional limit theorem for a
queueing system in heavy traffic is one for which the limit process is not given
as a reflected Brownian motion (RBM). Our result thus belongs to a family of un-
conventional heavy traffic limits, starting from [14] and including the more recent
[17] as well as several other results surveyed in [29] and [17]. Moreover, our heavy
traffic result is nonstandard in that it does not constitute an invariance principle.
That is, it is observed in simulations that the limit law (specifically, the angular dis-
tribution of the limit WBM) is not determined solely by the first two moments of
the data. The simulations also indicate that it is sensitive even to tie breaking rules.
A third nonstandard aspect of the result is that the proof method does not provide
an explicit expression or a characterization of the limit law. Whereas the modulus
is given as a RBM with specified drift and diffusion coefficients, no information
on the angular distribution is available from the proof. In fact, it appears unlikely
to the authors that an explicit expression can be attained except under some special
symmetry.

Some further details on the policy are as follows. In the literature, there are two
variants, distinguished by the interpretation given to the selection of jobs from the
shortest queue: that may refer to the one having least nominal workload or the one
having least number of jobs. We adopt here the convention of [8–10] and work
with the former. However, for all other purposes, the term queue length refers in
this paper to job count. Next, the service rule is assumed to follow a preemptive
priority. Finally, the tie breaking rule is a part of the model description. We allow
for a rather general choice, by assuming that when the collection, K, of classes
having shortest queue consists of more than one class, the server’s effort is split
according to a specified probability measure pK supported on the set K.
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Under static priority it is well known since Whitt’s result [28] that in heavy traf-
fic, the queue which has least priority is always dominant, where this term means
that nearly all the workload in the system is contained in this queue. Under SSQ,
heuristically, one may imagine that very soon after each time the system (nearly)
empties, a competition takes place among the queues, where the one that loses ends
up with most workload, and consequently least priority. Thus it is reasonable, in
view of the aforementioned result on static priority, to expect that the losing class
actually becomes dominant and remains so until again the system becomes empty
(or nearly empty). This heuristic suggests, moreover, that the choice of the class to
become dominant during an excursion (the outcome of the competition, one may
say) is random, and is highly sensitive to the dynamics of the Markov process as
the queues just start to build. The result of this paper reveals an asymptotic be-
havior with exactly these elements. One of the most significant and least obvious
aspects of it is that the probabilities of each class becoming dominant starting from
an empty system do converge in the scaling limit. Indeed, their limit is given by
the WBM’s angular distribution.

An important feature of SSQ is that when two streams of arrivals have similar
first-order characteristics but one is more variable than the other, or has greater
tendency to exhibit bursts, the policy tends to prioritize the former over the latter.
This is due to the fact that a burst of traffic is likely to cause a long queue, resulting
in lower priority. For this reason, SSQ has been referred to in the literature as “im-
plicit service differentiation” [5, 6, 20] and “self prioritization” [5]. Quoting from
[9], “. . . priority is thus implicitly given to smooth flows over data traffic. . . sending
packets in bursts”. The policy has gained interest in technological uses, specifi-
cally in the context of packet scheduling [3, 5, 6, 8–10, 20]. For example, in [3, 5,
20] SSQ (referred to there as shortest queue first) is compared with first-in first-
out and stochastic fairness queueing, via experimental tests, and is argued to be
the best candidate solution for quality of service on ADSL internet access in var-
ious tests (web browsing, file download, peer-to-peer file sharing, VoIP and video
calls, audio streaming and video streaming). It is also found experimentally that
the policy prioritizes TCP acknowledgment and delay- and loss-sensitive appli-
cations (voice, audio and video streaming), which leads to lower loss counts and
delays. For further advantages and additional uses of this policy, see [6] and the
references therein, as well as [19].

The policy has been theoretically analyzed in several papers. Guillemin and Si-
monian [9] study the case of two buffers with Poisson arrivals and general service
time distributions, establishing functional equations for the Laplace transform of
the workload processes at stationarity. They also specialize to the symmetric, expo-
nential service time case, where they are able to derive empty queue probabilities
and tail behavior for the distribution of the workload. In [10], the authors study the
same features in the asymmetric case, again for N = 2 at stationarity, where ser-
vice times are exponentially distributed. The paper by Carofiglio and Muscariello
[6] studies instantaneous throughput and buffer occupancy of N ≥ 2 long-lived
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TCP sources, using a deterministic fluid model, under three per-flow scheduling
disciplines: fair queuing, longest queue first and shortest queue first, assuming
longest queue drop buffer management. They obtain closed form expressions for
the stationary throughput and the buffer occupancy.

We now make some comments about the proof. To this end, we introduce X̂r (t),
t ∈ [0,∞), that are [0,∞)N -valued processes indexed by the scaling parameter
r ∈ [1,∞). The component X̂r

i (t) represents the nominal workload in buffer i at
time t , rescaled diffusively; the precise definition appears in Section 2. We start
by treating the rescaled total nominal workload,

∑
i X̂

r
i (t), and recall the well-

known fact that it converges to an RBM under any work conserving policy, to
which SSQ is no exception. This result is required in a slightly extended form,
stated in Lemma 3.1, which asserts that convergence holds uniformly with respect
to initial conditions. The remainder of the proof has three main ingredients. The
first is concerned with showing that X̂r resides close to S0 as r gets large. The
aforementioned term “dominant queue” is treated mathematically by considering
tubes of width ε > 0 about each of the N positive coordinate axes. In terms of
these tubes, queue i is dominant at time t if X̂r

i (t) resides in an ε-tube about axis
i, for arbitrarily small ε and large r . Thus the first main ingredient of the proof is
to show that the probability of exiting the collection of N tubes tends to zero as
r → ∞. This is the content of Lemma 3.2(i). Note that this element, along with the
weak convergence of the total nominal workload to a RBM, immediately provides
the convergence of the modulus process to the same RBM.

The second main ingredient is concerned with the angular behavior. It is to
show that the entrance law into tubes converges in the scaling limit. We consider
first a special case of the model, that we call the homogeneous case, in which the
transition intensities of the underlying Markov process corresponding to r > 1 are
rescaled version of those for r = 1. This trick buys us the ability to transform the
double limit problem of entrance law into ε-tubes (involving ε → 0 and r → ∞)
to a single limit (involving r → ∞ only). The existence of a limit of the entrance
law is shown by arguing that, starting at the origin, the probabilities of entering
r−κ0 -tubes form a Cauchy sequence, where κ0 > 0 is a suitable constant. The tools
used to establish this argument are the martingale property of the total nominal
workload (that also owes to homogeneity), and a strengthening of Lemma 3.2(i)
which improves the o(1) exit probability estimates to polynomial estimates. Re-
lying on the homogeneous case, the general case is then treated by means of a
change of measure. The homogeneous case is stated in Lemma 3.5. The double
limit assertion is stated as Proposition 3.3, and the reduced version in the form
of a single limit is given in (3.43). The polynomial exit probability measure is
proved by means of construction of a Lyapunov function for the distance of the
state from S0, that may be interpreted as the nominal workload included in all
but the dominant class. This tool is stated in Lemma 3.4. Finally, the change of
measure argument is provided within the proof of Proposition 3.3 in Section 3.5.
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The third main ingredient is the asymptotic independence of modulus and angle.
This relies, first and foremost, on the second ingredient alluded to above, as well as
on strong Markovity of the prelimit process and some estimates on the heat kernel
associated with RBM on the half-line. This asymptotic independence property is
stated in (3.14). These ingredients are finally combined in the proof of the main
result, building on the characterization of WBM via its semigroup [1], and using
crucially strong Markovity of the prelimit.

Some earlier results on the convergence of discrete processes to WBM appear
in [13] and [11]. The paper [13] studies the case of a skew BM. The convergence
result included within this paper addresses a suitably defined random walk on the
integers observed at the diffusion scale, and establishes its weak convergence to a
skew BM. The focus of [11] is the stochastic flow associated to WBM, and for this
model, discrete approximations to the flow are obtained. In both these references,
the pre-limit processes already live in a collection of N rays (N = 2 in the former,
N ≥ 2, finite, in the latter), forming a symmetric random walk everywhere on
the state space except at the origin. Consequently, the three main issues alluded
to above in the description of our proof (estimates on exiting tubes, existence of
a limit for the entrance probability into tubes, asymptotic independence) are all
trivial in the cases studied in [13] and [11].

A general method was introduced in [18] for obtaining convergence of regen-
erative processes from a certain notion of convergence of their excursions. The
regenerative processes we treat do fall into the category of those addressed in [18].
However, in the setting considered here, proving the convergence of excursions
amounts, roughly speaking, to establishing the three ingredients alluded to above,
and so it seems that as far as our result is concerned, this method does not provide
a significant shortcut.

The paper is organized as follows. Section 2 presents the model and the main
result. Section 3 is devoted to the proof. First, in Section 3.1, the result is proved
based on Lemma 3.1, Lemma 3.2 and Proposition 3.3, stated in the beginning of
the section. The convergence of the total nominal workload to a RBM is proved
in Section 3.2. Section 3.3 provides estimates on probabilities to exit the tubes.
Section 3.4 and Section 3.5 establish the limit result regarding the angular dis-
tribution, dealing with the homogeneous case and the general case, respectively.
Finally, some concluding remarks are included in Section 4.

Notation. For x, y ∈ R
N (N a positive integer), let x · y and ‖x‖ denote

the usual scalar product and �2 norm, respectively. Denote [N ] = {1,2, . . . ,N}
and let {ei : i ∈ [N ]} denote the standard basis in R

N . Let 1 denote the N -
dimensional vector whose all entries equal 1. For x ∈ R

N and A ⊂ R
N , let

dist(x,A) = inf{‖x − y‖ : y ∈ A}. Let B(x, r) = {y ∈ R
N : ‖y − x‖ ≤ r} denote

the closed ball. Denote R+ = [0,∞). For f : R+ → R
N and T ∈ R+, let ‖f ‖T =

supt∈[0,T ] ‖f (t)‖, and, for θ > 0, wT (f, θ) = sup0≤s<u≤s+θ≤T ‖f (u)−f (s)‖. For
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a Polish space E, let CE[0, T ] and DE[0, T ] denote the set of continuous and, re-
spectively, càdlàg functions [0, T ] → E. Let CE[0,∞) and DE[0,∞) denote the
respective sets of functions [0,∞) → E. Endow DE[0,∞) with the Skorohod J1
topology. A sequence of processes {Xn}n with sample paths in DE[0,∞) is said to
be C-tight if it is tight and every subsequential limit has, with probability 1, sample
paths in CE[0,∞). Write Xn ⇒ X for convergence in law. Let C0(E) denote the set
of continuous, compactly supported functions on E. For b ∈ R and σ ∈ (0,∞), a
(b, σ )-BM starting from x ∈ R is a 1-dimensional BM having drift b, infinitesimal
covariance σ 2 and initial condition x. A (b, σ )-RBM starting from x ∈ R+ is an
RBM in R+ with reflection at zero, with the corresponding parameters and initial
condition x. Denote by M1 the collection of N -dimensional probability vectors,
namely M1 = {x ∈ R

N+ : ∑
i xi = 1}. Throughout, we use the letter c to denote a

positive deterministic constant whose value may change from one appearance to
another.

2. Setting and result.

2.1. Serve-the-shortest-queue in heavy traffic. Consider a sequence of queue-
ing models indexed by r ∈ [1,∞), defined on a probability space (Ω,F,P).
A server operates to serve customers of N ≥ 2 classes. Each customer class has
a dedicated buffer with infinite room. Upon arrival, a class-i customer is queued
in buffer i ∈ [N ]. The process representing the number of customers in buffer i is
called the ith queue length and is denoted by Qr = (Qr

1, . . . ,Q
r
N). The ZN+ -valued

random variable (RV) Qr(0) = (Qr
1(0), . . . ,Qr

N(0)) is referred to as the initial
queue length. The arrivals are Poissonian and the service times are exponential. To
model these, let {Ar

i }i∈[N], {Sr
i }i∈[N] be a collection of 2N mutually independent

Poisson processes, with right-continuous sample paths, independent of the initial
queue length, where Ar

i (resp., Sr
i ) has rate λr

i (resp., μr
i ). The processes Ar

i and Sr
i

represent the arrival and potential service processes for class i, respectively. More
precisely, Ar

i (t) is the number of class-i customers to arrive (to buffer i) until time
t , and Sr

i (t) gives the number of class-i service completions by the time the server
has dedicated t units of time to class-i customers.

The process Xr = (Xr
1, . . . ,X

r
N) defined by

(2.1) Xr
i = (

μr
i

)−1
Qr

i

is referred to as the nominal workload process. This term, borrowed from [21],
expresses the fact that Xr

i (t) represents the conditional expectation of the time it
takes to serve the Qr

i (t) customers present in buffer i at time t , conditioned on
Qr

i (t) (assuming that the server works exclusively on this class).
Within each class, only one customer may be served at a time (and for concrete-

ness, we may assume it is the oldest one present in the system), although service ef-
fort is sometimes split among classes (see below). The priority rule among classes
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is to always serve the shortest queue as measured in terms of nominal workload.
To make this statement precise, some additional notation is required. We say that
buffer i contains the shortest queue at time t , if

0 < Xr
i (t) = min

{
Xr

j (t) : Xr
j (t) > 0, j ∈ [N]}.

When there is exactly one buffer containing the shortest queue, the server serves
it at full capacity (thus, service is preemptive). When there is more than one such
buffer, the server’s effort is split among the buffers containing the shortest queue
according to predetermined fractions in a head-of-the-line form. To model these
fractions, it is assumed that for any ∅ 
= K ⊆ [N] we are given a vector pK ∈ R

K+,
such that

∑
i∈K pK

i = 1. When the collection of shortest queues is K, the fraction
of effort dedicated to class i is given by pK

i . If we denote by T r
i (t) the total effort

dedicated to class i by time t (measured in units of time), then it is given by

(2.2) T r
i (t) =

∫ t

0
p
K(Xr(s))
i ds,

where, for x ∈ R
N+ , we denote

(2.3) K(x) = {
i ∈ [N] : 0 < xi ≤ xj for all j ∈ [N]}.

The departure process Dr = (Dr
1, . . . ,D

r
N) consists of N counting processes,

where for each i, Dr
i gives the number of class-i job completions. It thus satis-

fies

(2.4) Dr
i (t) = Sr

i

(
T r

i (t)
)
.

Clearly, Qr satisfies the balance equation

(2.5) Qr
i (t) = Qr

i (0) + Ar
i (t) − Dr

i (t).

This completes the description of the model. Note that according to this de-
scription, the queue length process Qr is a Markov process on Z

N+ , whereas Xr is
a Markov process on

(2.6) Sr
u = 1

μr
1
Z+ × · · · × 1

μr
N

Z+

(where “u” is mnemonic for unscaled). Thus an alternative, concise description of
the model is via the generator of the process Xr , denoted by Lr

u. It is given by

(2.7)

Lr
uf (x) = ∑

i∈[N]
λr

i

(
f

(
x + ei

μr
i

)
− f (x)

)

+ ∑
i∈K(x)

p
K(x)
i μr

i

(
f

(
x − ei

μr
i

)
− f (x)

)
,

for any bounded f : Sr
u → R. Note that K(0) = ∅ and that, by the assumptions on

pK, pK
i = 1 whenever K consists of the singleton {i}, i ∈ [N].
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The parameters λr
i and μr

i are assumed to scale like r2. The precise assumption
is that there exist constants λi,μi ∈ (0,∞) and λ̂i , μ̂i ∈ R, such that for i ∈ [N ],
as r → ∞,

r−1(
λr

i − r2λi

) → λ̂i ,

r−1(
μr

i − r2μi

) → μ̂i .
(2.8)

The system is assumed to be critically loaded in the sense that the overall traffic
intensity equals 1. This is expressed as a condition on the first-order parameters as
follows:

(2.9)
∑

i∈[N]

λi

μi

= 1.

Our main result regards rescaled versions of the nominal workload and queue
length processes, defined as

(2.10) X̂r (t) = rXr(t), Q̂r(t) = r−1Qr(t), t ∈ R+.

Both these processes are obtained from Qr via invertible transformations, and are
therefore Markov processes on discrete spaces. The one to which most of the anal-
ysis is devoted in this paper is X̂r . Recalling (2.1), it follows that X̂r is a Markov
process with state space

(2.11) Sr = r

μr
1
Z+ × · · · × r

μr
N

Z+.

Specifically, the jump rates of both Xr and Q̂r are of order r2 and their jump sizes
are of order r−1, confirming that (2.10) gives the usual heavy traffic scaling.

2.2. Walsh Brownian motion. In [27], Walsh introduced a diffusion process
in the plane that can informally be described as follows. Let ξ(t) = (ρ(t), θ(t)),
t ∈ R+, be the representation of the process in polar coordinates. Then the radial
part ρ(t) is an RBM, and on each excursion of ξ(t) away from the origin, the an-
gular part θ(t) remains fixed. Moreover, the constant value which θ(t) takes on
each such excursion has a fixed distribution, independent for the different excur-
sions. The precise definition that we shall work with is the one given by Barlow,
Pitman and Yor [1], via its semigroup. However, rather than working with a planar
diffusion we work with what is more natural for our purposes, namely a process
in S := R

N+ . Also, it is not necessary for our purposes to consider general an-
gular measures, and so the presentation below is restricted to angular measures
supported on the N vectors {ei : i ∈ [N ]}.

Let b ∈ R, σ ∈ (0,∞), and q ∈ M1 be given. Let Π+
t , t ∈ R+ and Π0

t , t ∈ R+
denote the semigroups of a (b, σ )-RBM and a (b, σ )-BM killed at 0, respectively.
That is, for f ∈ C0(R+),

Π+
t f (x) = Ex

[
f

(
ρ(t)

)]
, Π0

t f (x) = Ex

[
f

(
ρ(t)

)
1{t<ζ }

]
, x ∈ R+,
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where ρ(t) is a (b, σ )-RBM and ζ denotes its hitting time at zero, and, through-
out the paper, Px (resp., Ex ) denotes the law of ρ with ρ(0) = x (resp., the
corresponding expectation). Let Sk denote the k-sphere. Use polar coordinates
(ρ, θ) ∈ R+ × SN−1 to denote members x ∈ S by setting ρ = ‖x‖ and θ = x/‖x‖
when x 
= 0, θ = e1 when x = 0. The semigroup Πt of a (b, σ, q)-WBM is defined
as follows. For f ∈ C0(S), Πt acts on f as

Πtf (0, θ) = Π+
t f̄ (0),

Πtf (ρ, θ) = Π+
t f̄ (ρ) + Π0

t (fθ − f̄ )(ρ),
(2.12)

where we denote

f̄ (ρ) = ∑
i∈[N]

qif (ρ, ei), ρ ≥ 0,

fθ (ρ) = f (ρ, θ), ρ ≥ 0, θ ∈ SN−1.

(2.13)

It is shown in [1] that Πt is a Feller semigroup on C0(S) and that there exists
a strong Markov process {ξ(t)} with state space S and semigroup Πt , that has
a.s.-continuous sample paths. Moreover, this process has the properties alluded to
above. More precisely, when written in polar coordinates as ξ(t) = (ρ(t), θ(t)),
the radial part ρ(t) is a (b, σ )-RBM and the values that the angular part θ(t) takes
are constant on the interval [0, ζ ] (where the constant is determined by the ini-
tial condition θ0) as well as on each excursion away from zero. These constant
values on the excursions away from zero are mutually independent with com-
mon distribution

∑
i∈[N] qiδei

(dx), where δei
is the Dirac measure at ei . In this

paper, we are interested in the case where the initial condition is supported on
S0 := ⋃

i∈[N]{xei : x ∈ R+}. Note that in this case, ξ(t) takes values in S0 for all t .
Throughout, let Pwbm

x and E
wbm
x denote the law of ξ for ξ(0) = x, and respective

expectation. Then relations (2.12) can be expressed, for x = (ρ0, θ0), as

(2.14) E
wbm
x

[
f

(
ξ(t)

)] = Eρ0

[
f

(
ρ(t)θ0

)
1{t<ζ }

] + ∑
i∈[N]

qiE0
[
f

(
ρ(t)ei

)
1{t≥ζ }

]
.

2.3. Main result. The linear relation between Xr and Qr , the convergence
r−2μr

i → μi that follows from (2.8), and the rescaling defined in (2.10) imply an
asymptotic relation between X̂r and Q̂r which one can express in terms of the
N × N matrix M̂ = diag(μi)i∈[N]. For example, the statement X̂r (0) ⇒ ξ(0) is
equivalent to the statement Q̂r(0) ⇒ M̂ξ(0), as r → ∞, where, throughout, the
symbol ⇒ denotes convergence in law under P. Denote

b = ∑
i∈[N]

1

μi

(
λ̂i − λi

μi

μ̂i

)
, σ 2 = 2

∑
i∈[N]

λi

μ2
i

.
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THEOREM 2.1. There exists q ∈ M1 such that, if {ξ(t)} is a (b, σ, q)-WBM
with initial distribution supported on S0 and X̂r(0) ⇒ ξ(0) then X̂r ⇒ ξ and
Q̂r ⇒ M̂ξ , as r → ∞.

REMARK 2.2. (a) Whereas the coefficients b and σ of the process ξ are given
explicitly, our approach does not provide a construction or any explicit information
of the angular distribution q . However, this much can be said: q does not depend on
the second order parameters (λ̂i, μ̂i) (where we use standard terminology by which
(λi,μi) and (λ̂i, μ̂i) are called first- and second-order parameters, respectively,
due to the fact that in most conventional queueing models, LLN limits depend only
on the former, whereas CLT limits are also affected by the latter). This statement
is a direct consequence of our results of Section 3.5.

(b) Initial conditions which are not asymptotically concentrated on S0 are ex-
cluded from our treatment. For such initial conditions the asymptotic behavior is
expected to follow a jump to S0 at time zero, and then proceed as a WBM. How-
ever, the position to which the process jumps is dictated by properties finer than
the limiting initial distribution, to the extent that the limit does not exist in general.
For example, for N = 2, a sequence of initial conditions may converge to a point
on the diagonal in such a way that Q̂r

1(0) > Q̂r
2(0) + εr . It is not hard to see that,

due to even a small advantage εr > 0 to Q̂r
2(0), the limiting process will initially

jump to a point on the e1 axis, provided that εr tends to zero sufficiently slowly.
Interchanging the roles of Q̂r

1(0) and Q̂r
2(0) will result in a jump to the e2 axis.

3. Proof of the main result. Below we present two central lemmas and one
central proposition required to prove our main result. The proof of the main result
is presented next, in Section 3.1. The proofs of the lemmas and the proposition are
then provided in Sections 3.2–3.5.

Some notation used throughout this section is as follows. We use
∑

i as short-
hand notation for

∑
i∈[N]. For ϕ ∈ DR[0,∞), let Γ [ϕ] = (Γ1[ϕ],Γ2[ϕ]) be defined

by

(3.1)

(
Γ1[ϕ](t),Γ2[ϕ](t))

=
(
ϕ(t) − inf

s≤t

(
ϕ(s) ∧ 0

)
,− inf

s≤t

(
ϕ(s) ∧ 0

))
, t ∈ [0,∞).

The Skorohod map Γ just introduced transforms a (b, σ )-BM starting from x ≥ 0,
say, W , into a (b, σ )-RBM starting from the same point, via R = Γ1[W ]. The
process given by Γ2[W ] gives the corresponding boundary term.

Let R̂r (t) = 1 · X̂r (t), t ∈ R+, and let ρ be a (b, σ )-RBM. In addition to the
notation P

wbm
x and Px introduced above, for each r and x ∈ Sr , we use P

r
x and E

r
x

for the law of the Markov process X̂r with X̂r(0) = x, and the respective expecta-
tion. Moreover, for each r and x ∈ Sr , we use Pr

x and Er
x for the law of the tuple

(Ar, Sr,Xr) with X̂r (0) = x, and the respective expectation.
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Let Sε = {x ∈ S : dist(x,S0) < ε}. Finally, denote ζ r = inf{t ≥ 0 : R̂r (t) = 0},
and for ε > 0,

(3.2) τ r(ε) = inf
{
t ≥ 0 : R̂r (t) ≥ ε

}
.

Both ζ r and τ r(ε) are easily seen to be a.s. finite.

LEMMA 3.1. (i) The process R̂r is given as R̂r = Γ1[R̂r (0) + Br ], where
Br decomposes as Br = B̃r + Er . For each r , B̃r (resp., Er ) is measurable
w.r.t. σ {Ar(t), Sr(t), t ∈ R+} (resp., σ {Ar(t), Sr(t),Xr(t), t ∈R+}) and B̃r ⇒ B ,
where B is a (b, σ )-BM starting from zero, whereas

(3.3) lim
v↓0

lim sup
r→∞

sup
x∈Sr

Pr
x

(∥∥Er
∥∥
T > v

) = 0.

As a consequence, if R̂r (0) ⇒ ρ(0), then R̂r ⇒ ρ.
(ii) For any t0 > 0,

lim
v↓0

lim inf
r→∞ inf

x∈Sr :1·x<v
P

r
x

(
ζ r ≤ t0

) = 1.

Throughout, let U0 denote the class of functions u : [1,∞) → (0,∞) for which
u(r) → 0 as r → ∞.

LEMMA 3.2. The processes X̂r are C-tight under P. Moreover, let νr denote
the distribution of X̂r (0). Then there exists u ∈ U0 such that for every T > 0 one
has the following:

(i) P
r
νr (X̂r (t) ∈ Su(r) for all t ∈ [0, T ]) → 1 as r → ∞.

(ii) infPr
x(X̂

r (t) ∈ Su(r) for all t ∈ [ζ r ∧ T ,T )) → 1 as r → ∞, where the
infimum extends over x ∈ Sr ∩ K , and K ⊂ S is a given compact set.

(iii) For f ∈ C0(S), t ∈ R+, i ∈ [N], and k ∈ (0,∞),

lim
δ↓0

lim sup
r→∞

sup
y∈Sr ,x∈[0,k]:‖y−xei‖<δ

∣∣Er
y

[
f

(
X̂r(t)

)
1{t<ζ r }

] −Ex

[
f

(
ρ(t)ei

)
1{t<ζ }

]∣∣

= 0,

where we recall that ζ = inf{t ≥ 0 : ρ(t) = 0}.

PROPOSITION 3.3. There exist q ∈ M1 and u ∈ U0 such that

(3.4) lim
ε↓0

lim sup
r→∞

∣∣Pr
0
(
X̂r(τ r(ε)

) ∈ B
(
εei, u(r)

)) − qi

∣∣ = 0, i ∈ [N].
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3.1. Proof of Theorem 2.1. Given ε > 0, define a sequence of hitting times as

ζ r
0 = inf

{
t ≥ 0 : R̂r (t) = 0

}
,

τ r
m = inf

{
t ≥ ζ r

m : R̂r (t) ≥ ε
}
, m = 0,1, . . . ,(3.5)

ζ r
m+1 = inf

{
t ≥ τ r

m : R̂r (t) = 0
}
, m = 0,1, . . . .

Let Nr
t = sup{m : τ r

m ≤ t}. When we need to emphasize the dependence on ε we
write these RVs as ζ r

m(ε) and τ r
m(ε).

Let (ξ(t))t∈R+ be a (b, σ, q)-WBM and assume, without loss of generality, that
ρ = 1 · ξ . For this process, we define an analogous sequence of hitting times by

ζ0 = inf
{
t ≥ 0 : ρ(t) = 0

}
,

τm = inf
{
t ≥ ζm : ρ(t) ≥ ε

}
, m = 0,1, . . . ,

ζm+1 = inf
{
t ≥ τm : ρ(t) = 0

}
, m = 0,1, . . . ,

and set Nt = sup{m : τm ≤ t}.
The weak convergence stated in Lemma 3.1(i) does not directly imply that of

the hitting times τ r(ε) of (3.2) to τ(ε) := inf{t ≥ 0 : ρ(t) ≥ ε} when both R̂r and
ρ start at zero. However, this convergence is clearly valid, as can be seen by using
in addition the property of RBM that τ(ε + δ) → τ(ε) in probability as δ ↓ 0.
Moreover, under P, it is assumed in Theorem 2.1 that X̂r(0) converges to ξ(0) in
distribution. An inductive use of this fact yields a similar statement for the stopping
times {τ r

m}m. More precisely, for any fixed m, as r → ∞, we have the following
uniform convergence: for any compact set K ⊂ S and a function h ∈ C0(R+),

(3.6) lim sup
δ↓0

lim sup
r→∞

sup
x∈K∩S0

sup
y∈Sr

‖x−y‖<δ

∣∣Er
y

[
h
(
τ r
m

)] −E‖x‖
[
h(τm)

]∣∣ = 0.

The proof of the main result is based on finite-dimensional convergence and C-
tightness. The key ingredient is showing that for any compact set K ⊂ S , t ∈ R+,
and a function f ∈ C0(S),

lim sup
δ↓0

lim sup
r→∞

sup
x∈K∩S0

sup
y∈Sr

‖x−y‖<δ

∣∣Er
y

[
f

(
X̂r(t)

)] −E
wbm
x

[
f

(
ξ(t)

)]∣∣ = 0.(3.7)

Before proving this statement, we show, adapting the proof of Theorem 4.2.5 of
[7], that it implies the convergence of X̂r to ξ for finite-dimensional marginals.
That is, for every x ∈ S0, {xr}r , xr ∈ Sr that converges to x, m ≥ 1, 0 ≤ t1 < · · · <
tm, and functions h1, . . . , hm ∈ C0(S), one has

(3.8) lim
r→∞E

r
xr

[
h1

(
X̂r(t1)

) · · ·hm

(
X̂r(tm)

)] = E
wbm
x

[
h1

(
ξ(t1)

) · · ·hm

(
ξ(tm)

)]
.

We argue by induction over m. The base case follows from (3.7). Next, assume that
(3.8) holds for m. Denote by Πr

t the semigroup corresponding to {X̂r (t)}. Then by
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Lemma 3.2(i), there exists u ∈ U0, such that

E
r
xr

[
h1

(
X̂r (t1)

) · · ·hm

(
X̂r (tm)

) · hm+1
(
X̂r(tm+1)

)]
= E

r
xr

[
h1

(
X̂r(t1)

) · · ·hm

(
X̂r(tm)

) · Πr
tm+1−tm

hm+1
(
X̂r (tm)

)]

= E
r
xr

[
h1

(
X̂r(t1)

) · · ·hm

(
X̂r(tm)

) · Πr
tm+1−tm

hm+1
(
X̂r (tm)

)
1{X̂r (tm)∈Su(r)}

]

+ or(1),

where here or(1) denotes a generic function of r that vanishes as r → ∞. From
(3.7) and the Feller property of Πt proved in [1], it follows that for h ∈ C0(S),
supx∈Sr∩Su(r)

|Πr
t h(x) − Πth(x)| → 0 as r → ∞. It follows that the expression in

the above display equals

E
r
xr

[
h1

(
X̂r(t1)

) · · ·hm

(
X̂r(tm)

) · Πtm+1−tmhm+1
(
X̂r (tm)

)
1{X̂r (tm)∈Su(r)}

]

+ or(1)

= E
r
xr

[
h1

(
X̂r (t1)

) · · ·hm

(
X̂r(tm)

) · Πtm+1−tmhm+1
(
X̂r(tm)

)]
+ or(1).

(3.9)

By the induction hypothesis, the above expression converges to

E
wbm
x

[
h1

(
ξ(t1)

) · · ·hm

(
ξ(tm)

)
Πtm+1−tmhm+1

(
ξ(tm)

)]
= E

wbm
x

[
h1

(
ξ(t1)

) · · ·hm+1
(
ξ(tm+1)

)]
.

This establishes (3.8). In view of the C-tightness of X̂r stated in Lemma 3.2, this
gives the main result X̂r ⇒ ξ .

The rest of the proof is devoted to showing that (3.7) holds. Fix f ∈ C0(S). It
suffices to prove the result for f (0) = 0. Moreover, arguing by approximation, we
may, and will assume that f is constant on a ball about the origin. Thus, there
exists ε > 0 for which f (x) vanishes for all x with 1 · x ≤ ε. We fix such ε, and let
τ r
m = τ r

m(ε), and similarly let ζ r
m, τm and ζm be defined in terms of the same value

of ε.
Fix t > 0 and a compact set K ⊂ S0. For u ∈ U0, we will be concerned with

x ∈ K and yr ∈ Sr ∩Su(r) such that ‖x −yr‖ < u(r). We call such a pair (x, (yr)r )

a u-admissible pair. In what follows, we denote y = (yr). Since t and K are ar-
bitrary, to prove (3.7), it suffices to show that Er

yr [f (X̂r(t))] → E
wbm
x [f (ξ(t))]

uniformly over u-admissible pairs (x, y), for an arbitrary u ∈ U0. Fix such a func-
tion u. Notice that the assertions in Lemma 3.2(i), (ii), and Proposition 3.3 are all
monotone in u in the sense that if they hold for some u ∈ U0 then they also hold
for a function that dominates u and vanishes at infinity. Hence, without loss of
generality, we may and will assume that Lemma 3.2(i), (ii), and Proposition 3.3
hold for the function u that we have fixed.
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On the intervals [ζ r
m, τ r

m), one has R̂r (t) ≤ ε. As a consequence,

E
r
yr

[
f

(
X̂r (t)

)] = F 0,r
y + F r

y ,

where

F 0,r
y := E

r
yr

[
f

(
X̂r(t)

)
1{0≤t<ζ r

0 }
]
, F r

y :=
∞∑

m=0

E
r
yr

[
f

(
X̂r (t)

)
1{τ r

m≤t<ζ r
m+1}

]
.

The above goal will be achieved once we show that, uniformly over u-admissible
pairs,

(3.10) F 0,r
y → Ex

[
f

(
ρ(t)θ

)
1{t<ζ0}

]
and F r

y → Ex

[
f̄

(
ρ(t)

)
1{t≥ζ0}

]
,

where we recall the definition of f̄ from (2.13), that θ = x/‖x‖ for x 
= 0 and
θ = e1 for x = 0. Note that the first convergence is stated in Lemma 3.2(iii). Thus
in what follows we focus on the term Fr

y . Denote

χr
m = X̂r(τ r

m

)
.

Recall that the jumps of the (unscaled) queue length process Qr are of size 1. By
the way, the scaled nominal workload process X̂r is defined, it follows that all the
jumps of this process are bounded by cr−1, for some positive constant c. As a
consequence, one always has ε ≤ ‖χr

m‖ ≤ ε + cr−1. Denote Br
i = B(εei, u(r)). It

follows from Lemma 3.2(ii) that

P
r
yr

(
for all m ≤ Nr

t ,χr
m ∈ ⋃

i

Br
i

)
→ 1,

uniformly over u-admissible pairs. As a result,

F r
y = ∑

i

∞∑
m=0

E
r
yr

[
f

(
X̂r(t)

)
1{τ r

m≤t<ζ r
m+1}1{χr

m∈Br
i }

] + or(1),

where here and in what follows, or(1) is a generic function of r, x and y, that
converges to zero as r → ∞, uniformly over u-admissible pairs (x, y).

Next, we truncate the sum over m. The tail
∑

m>M can be estimated by
‖f ‖∞P

r
yr (Nr

t > M). For a fixed initial condition x, the C-tightness of R̂r gives the
tightness of the RVs Nr

t . For arbitrary initial conditions yr , the strong Markovity
reduces the same question to that of tightness of Nr

t when starting at 0. Thus

(3.11) F r
y = ∑

i

M∑
m=0

E
r
yr

[
f

(
X̂r(t)

)
1{τ r

m≤t<ζ r
m+1}1{χr

m∈Br
i }

] + oM,r(1),

where here and in what follows, oM,r(1) refers to any function g of (x, y, r,M)

satisfying limM→∞ lim supr→∞ sup(x,y) u-admissible |g(x, y, r,M)| = 0.
Our next step is to use the condition χr

m ∈ Br
i included in the (i,m)th term

in (3.11), to approximate the expression f (X̂r(t)) therein by f (R̂r(t)ei). Note
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carefully that it is possible for the process to move from Br
i to Br

j , j 
= i, without
exiting Su(r) or hitting the origin. Thus we must argue that, given any distinct
i, j ∈ [N ] and t > 0,

P
r
yr

(
there exists m ∈ {0, . . . ,M} such that

τ r
m ≤ t < ζ r

m+1, χ
r
m ∈ Br

i , R̂
r (t) > ε,

∥∥X̂r(t) − R̂r (t)ej

∥∥ ≤ u(r)
) = or(1).

(3.12)

The proof of this statement, which we now give, is based on the fact that in order
for the process to behave as indicated in (3.12) while remaining within Su(r), it
must reach close to the origin. Since we consider only finitely many m’s, it is
sufficient to show that for every fixed t , m, and j 
= i,

(3.13)
P

r
yr

(
τ r
m ≤ t < ζ r

m+1, χ
r
m ∈ Br

i , R̂
r (t) > ε,

∥∥X̂r (t) − R̂r (t)ej

∥∥ ≤ u(r)
)

= or(1).

For every r ∈ [1,∞), m ∈ N, and j ∈ [N ] define

πr
m = πr

m[j ] = inf
{
s ≥ τ r

m : R̂r (s) > ε,
∥∥X̂r (s) − R̂r (s)ej

∥∥ ≤ u(r)
}
.

The probability from (3.13) is bounded above by P
r
yr (τ r

m ≤ t ≤ πr
m < ζ r

m+1, χ
r
m ∈

Br
i ). Under this event, if the process does not leave Su(r) between times τ r

m and
ζ r
m, then after time τ r

m, it must reach close to the origin and not hit the origin prior
to reaching a small neighborhood of εej . Therefore, the LHS of (3.13) is bounded
by

P
r
yr

(∃s ∈ [0, t], X̂r(s) /∈ Su(r)

) + P
r
yr

(
φr

m < πr
m < ζ r

m+1
)
,

where φr
m = inf{s ≥ τ r

m : R̂r (s) ≤ u(r)
√

N}. From Lemma 3.2(ii), the first term is
or(1). For every r , let {F r

s } denote the filtration induced by {X̂r (t)}. Then for the
second term, using the strong Markov property,

P
r
yr

(
φr

m < πr
m < ζ r

m+1
) = E

r
yr

[
E

r
yr

[
1{φr

m<πr
m<ζ r

m+1} | F r
φr

m

]]

= E
r
yr

[
ψr

j

(
X̂r(φr

m

))]
,

where ψr
j (z) = E

r
z[1{π̂ r<ζ r

0 }] and π̂ r = inf{s ≥ 0 : R̂r (s) > ε,‖X̂r(s)−R̂r (s)ej‖ ≤
u(r)}. It remains to show that limr→∞ sup‖z‖≤cu(r) ψ

r
j (z) = 0, for c > 0 a constant.

Now, ψr
j (z) ≤ E

r
z[1{τ̂ r<ζ r

0 }], where τ̂ r = inf{s ≥ 0 : R̂r (s) ≥ ε}. The last term goes
to zero, uniformly in ‖z‖ ≤ cu(r). This shows (3.12).

Equipped with (3.12), we have from (3.11)

F r
y = ∑

i

M∑
m=0

E
r
yr

[
f

(
X̂r (t)

)
1{τ r

m≤t<ζ r
m+1}1{χr

m∈Br
i }1{‖X̂r (t)−R̂r (t)ei‖≤u(r)}

]

+ oM,r(1).
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Thus, using the uniform continuity of f and denoting fi(z) = f (zei), z ∈ R+,

F r
y = ∑

i

M∑
m=0

E
r
yr

[
fi

(
R̂r (t)

)
1{τ r

m≤t<ζ r
m+1}1{χr

m∈Br
i }1{‖X̂r (t)−R̂r (t)ei‖≤u(r)}

]

+ oM,r(1)

= ∑
i

M∑
m=0

E
r
yr

[
fi

(
R̂r (t)

)
1{τ r

m≤t<ζ r
m+1}1{χr

m∈Br
i }

] + oM,r(1),

again using Lemma 3.2. The (i,m)th term can be written as

E
r
yr

[
E

r
yr

[
fi

(
R̂r (t)

)
1{τ r

m≤t<ζ r
m+1}|F r

τ r
m

]
1{χr

m∈Br
i }

]
.

By strong Markovity, the conditional expectation above can be written as
ϕr

i (τ
r
m,χr

m), where

ϕr
i (s, z) = E

r
z

[
fi(R̂

r (t − s)1{ζ r
0 >t−s}

]
1{s≤t}.

This gives

F r
y = ∑

i

M∑
m=0

E
r
yr

[
ϕr

i

(
τ r
m,χr

m

)
1{χr

m∈Br
i }

] + oM,r(1).

Define ϕi(s) = Eε[fi(ρt−s)1{ζ0>t−s}]1{s≤t}. Then by Lemma 3.2(iii) one has
ϕr

i (s, z) = ϕi(s) + or(1) for z ∈ Br
i . Hence

F r
y = ∑

i

M∑
m=0

E
r
yr

[
ϕi

(
τ r
m

)
1{χr

m∈Br
i }

] + oM,r(1).

It will be shown below that, for fixed (i,m), τ r
m and χr

m are asymptotically inde-
pendent, in the sense that

(3.14) E
r
yr

[
ϕi

(
τ r
m

)
1{χr

m∈Br
i }

] = E
r
yr

[
ϕi

(
τ r
m

)]
qi + or(1).

Hence

F r
y = ∑

i

qi

M∑
m=0

E
r
yr

[
ϕi

(
τ r
m

)] + oM,r(1).

Using (3.6), and a similar argument based on strong Markovity,

F r
y = ∑

i

qi

M∑
m=0

E‖x‖
[
ϕi(τm)

] + oM,r(1)

= ∑
i

qi

M∑
m=0

E‖x‖
[
fi

(
ρ(t)

)
1{τm≤t<ζm+1}

] + oM,r(1)
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= ∑
i

qiE‖x‖
[
fi

(
ρ(t)

)
1{t≥ζ0}

] + oM,r(1)

= E‖x‖
[
f̄

(
ρ(t)

)
1{t≥ζ0}

] + oM,r(1).

Thus sending r → ∞, then M → ∞ gives the second statement in (3.10).
It remains to prove (3.14). Since ϕi is continuous on [0, t] and the law of τm has

no atoms, it suffices to prove that for every s ∈ [0, t] and (i,m),

(3.15) P
r
yr

(
τ r
m ≤ s,χr

m ∈ Br
i

) → P‖x‖(τm ≤ s)qi,

uniformly over u-admissible pairs (x, y). Toward showing (3.15), we argue that it
suffices to establish this assertion for y ≡ 0 and m = 0. Indeed,

P
r
z

(
τ r
m ≤ s,χr

m ∈ Br
i

) = E
r
z

[
E

r
z

[
τ r
m ≤ s,χr

m ∈ Br
i |F r

ζ r
m

]]
= E

r
z

[
ϕ̃r(ζ r

m

)]
,

where we used the fact that ζ r
m < τr

m, and X̂r(ζ r
m) = 0, and denoted

ϕ̃r (s) = P
r
0
(
τ r

0 < t − s, X̂r(τ r
0
) ∈ Br

i

)
.

Similarly, Pr
z(τ

r
m ≤ s) = E

r
z[ϕ∗,r (ζ r

m)], ϕ∗,r (s) = P
r
0(τ

r
0 < t − s) → P0(τ0 < t − s).

Thus if Pr
0(τ

r
0 < t − s, X̂r(τ r

0 ) ∈ Br
i ) → qiP0(τ0 < t − s) then we obtain

P
r
yr

(
τ r
m ≤ s,χr

m ∈ Br
i

) − qiP
r
yr

(
τ r
m ≤ s

) → 0,

and since P
r
yr (τ r

m ≤ s) → P‖x‖(τm ≤ s) uniformly over u-admissible pairs (x, y),
(3.15) follows.

To prove (3.15) for y ≡ 0 and m = 0, note that under Pr
0, ζ r

0 = 0 and so τ r
0 is

a.s. equal to τ r = τ r(ε) = inf{s ≥ 0 : R̂r (s) ≥ ε} (see (3.2)). Moreover, χr
0 that

has been defined as X̂r (τ r
0 ) is a.s. equal to χr := X̂r (τ r). Hence we aim now at

showing

(3.16) P
r
0
(
τ r ≤ s,χr ∈ Br

i

) → P0(τ ≤ s)qi.

Without loss of generality, we take i = 1. In addition to the parameter ε, that
has been fixed, we introduce a new parameter, a ∈ (0, ε), that will play the role
of the parameter ε in Proposition 3.3. We introduce several pieces of notation
associated with a in a way analogous to those defined in terms of ε. Namely,
B

r,a
i = B(aei, u(r)), τ r,a = inf{s ≥ 0 : R̂r (s) ≥ a} and χr,a = X̂r (τ r,a). In ad-

dition, we let ν
r,a
i denote the probability measures supported on B

r,a
i , given by

P
r
0(χ

r,a ∈ ·|χr,a ∈ B
r,a
i ).

Let

gr(z) = P
r
z

(
τ r < t,χr ∈ Br

1
)
.

We analyze gr(0) by studying its relation to g
r,a
i := ∫

gr(z)ν
r,a
i (dz). First,

gr(0) = E
r
0
[
E

r
0
[
1{τ r<t,χr∈Br

1}|F r
τ r,a

]] = E
r
0
[
ψr(τ r,a, χr,a)]

,(3.17)
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where

ψr(s, z) = P
r
z

(
τ r < t − s,χr ∈ Br

1
)
.

Hence

(3.18) gr(0) = E
r
0
[
ψr(0, χr,a)] + δr

a,

where
∣∣δr

a

∣∣ ≤ E
r
0
[∣∣ψr(τ r,a, χr,a) − ψr(0, χr,a)∣∣].

We denote by Or
a(h(a)) (resp., or

a(h(a))) any function g of the tuple (x, y, r, a)

satisfying lim supa↓0 lim supr→∞ sup(x,y)u-admissible h(a)−1|g(x, y, r, a)| < ∞
(resp., = 0). We argue that δr

a = Or
a(a

2). To this end, note that

0 ≤ ψr(0, z) − ψr(s, z) = P
r
z

(
τ r < t,χr ∈ Br

1
) − P

r
z

(
τ r < t − s,χr ∈ Br

1
)

≤ P
r
z

(
t − s < τ r < t

)
.

Now, τ r ⇒ τ as t → ∞, uniformly for z in B(0, ε/2). Moreover, for RBM, de-
noting the density d

dθ
Pη(τ ≤ θ) by l(η, θ) (where, as before, τ = τ(ε)), a uniform

bound holds in the form

(3.19) sup
η∈[0,ε/2],θ∈[t/2,∞)

l(η, θ) < ∞.

Indeed, an explicit eigenfunction expansion of the density l is given in [15]. Using
equations (3.15)–(3.19) of [15], one can directly obtain the bound

sup
x∈[0,ε],t≥t0

l(x, t) < ∞

for any constant t0 > 0. This gives (3.19). Using (3.19) for s ∈ [0, t/2] and the
trivial bound 1 for s ∈ [t/2, t] gives

sup
η∈[0,ε/2]

Pη(t − s < τ < t) ≤ cs,

for some constant c (which may depend on t), for all s ∈ [0, t]. In view of this,
lim supr |δr

a| ≤ c lim supr E
r
0[τ r,a] ≤ ca2, where the last inequality is standard, and

follows by Brownian scaling.
Going back to (3.18) and noting that ψr(0, z) = gr(z), we have gr(0) =

E
r
0[gr(χr,a)] + Or

a(a
2). Therefore, it follows from Lemma 3.2(ii) that the prob-

ability of having χr,a /∈ ⋃
i B

r,a
i is or(1), hence

gr(0) = ∑
i

P
r
0
(
χr,a ∈ B

r,a
i

)
g

r,a
i + Or

a

(
a2)

= ∑
i

q
r,a
i g

r,a
i + Or

a

(
a2)

,
(3.20)
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where by Proposition 3.3, q
r,a
i := P

r
0(χ

r,a ∈ B
r,a
i ) = qi + or

a(1) (note that B
r,a
i

agrees with the ball from Proposition 3.3).
Next, consider initial condition ν

r,a
i , for which we can write

g
r,a
i = E

r
ν

r,a
i

[
gr(X̂r(0)

)] = E
r
ν

r,a
i

[
ψ̂r(τ̃ r , X̂r(τ̃ r))],

where τ̃ r = inf{s ≥ 0 : R̂r (s) /∈ (0, ε)} and ψ̂r (s, z) = P
r
z(τ

r < t − s,χr ∈ Br
1).

Now,

ψ̂r (s,0) = P
r
0
(
τ r < t − s,χr ∈ Br

1
)
,

and for every s that satisfies ρ(s) ≥ ε,

ψ̂r (s, z) = 1{s≤t} for z ∈ Br
1 and ψ̂r (s, z) = 0 for z ∈ Br

i , i 
= 1.

Hence

g
r,a
i = E

r
ν

r,a
i

[
1{R̂r (τ̃ r )=0}ψ̂

r(τ̃ r ,0
)] +E

r
ν

r,a
i

[
1{R̂r (τ̃ r )≥ε}ψ̂

r(τ̃ r , X̂r(τ̃ r))]

= P
r
ν

r,a
i

(
R̂r(τ̃ r) = 0

)
ψ̂r (0,0) + 1{i=1}Pr

ν
r,a
i

(
R̂r(τ̃ r) ≥ ε, τ̃ r < t

)

+ δ̂r
a + or(1),

(3.21)

where ∣∣δ̂r
a

∣∣ ≤ E
r
ν

r,a
i

[
1{R̂r (τ̃ r )=0}

∣∣ψ̂r(τ̃ r ,0
) − ψ̂r (0,0)

∣∣],
and we used again the bound (3.12). To further bound δ̂r

a , note that the ar-
gument provided earlier for ψr can be used also for ψ̂r , and gives |δ̂r

a| ≤
cEr

ν
r,a
i

[1{R̂r (τ̃ r )=0}τ̃
r ]. On the indicated event, τ̃ r is bounded by the exit time of R̂r

from the interval (0,2a), the expectation of which is Or
a(a

2). Hence δ̂r
a = Or

a(a
2).

Next, for the RBM ρ denote analogously τ̃ = inf{s ≥ 0 : ρ(s) /∈ (0, ε)}. Denote

β1(a) = 1 − Pa

(
ρ(τ̃ ) = 0

) = Pa

(
ρ(τ̃ ) = ε

)
, β2(a) = Pa

(
ρ(τ̃ ) = ε, τ̃ ≤ t

)
.

Then P
r
ν

r,a
i

(R̂r (τ̃ r ) = 0) = 1 − β1(a) + or(1) for all i. Moreover, Pr
ν

r,a
i

(R̂r (τ̃ r ) ≥
ε, τ̃ r < t) = β2(a) + or(1). Hence from (3.20) and (3.21), we obtain⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

gr(0) = ∑
i

(
qi + or

a(1)
)
g

r,a
i + Or

a

(
a2)

,

g
r,a
1 = (

1 − β1(a) + or(1)
)
gr(0) + β2(a) + Or

a

(
a2) + or(1),

g
r,a
i = (

1 − β1(a) + or(1)
)
gr(0) + Or

a

(
a2) + or(1), i 
= 1.

Solving this system of equations gives

gr(0) = (q1 + or
a(1))β2(a) + Or

a(a
2)

β1(a) + or(1)
.
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Denote

Ga = (q1 + oa(1))β2(a) + Oa(a
2)

β1(a)
.

In order to show that limr gr(0) = q1P0(τ < t) it suffices to show that lima↓0 Ga =
q1P0(τ < t). Since it is known for RBM (equivalently, for a 1-dimensional BM)
that β1(a) > ca for some constant c > 0 and all small a, it suffices to show that
β2(a)/β1(a) → P0(τ < t) as a ↓ 0. To this end, use strong Markovity to write

Pa

(
ρ(τ̃ ) = 0, τ ≤ t

) = Ea

[
1{ρ(τ̃ )=0}ϕ#(

τ̃ , ρ(τ̃ )
)]

,

ϕ#(s, x) = Px(τ ≤ t − s) for x ∈ R+. Now, 0 ≤ ϕ#(0,0) − ϕ#(s,0) ≤ cs, and
therefore

∣∣Pa

(
τ ≤ t, ρ(τ̃ ) = 0

) − P0(τ ≤ t)Pa

(
ρ(τ̃ ) = 0

)∣∣ ≤ cEa[1{ρ(τ̃ )=0}τ̃ ] ≤ ca2.

Hence

β2(a) = Pa(τ ≤ t) − Pa

(
τ ≤ t, ρ(τ̃ ) = 0

)
= Pa(τ ≤ t) − P0(τ ≤ t)Pa

(
ρ(τ̃ ) = 0

) + O
(
a2)

= P0(τ ≤ t)β1(a) + δ#(a) + O
(
a2)

,

where δ#(a) = Pa(τ ≤ t) − P0(τ ≤ t). If we show that δ#(a) = O(a2) then
β2(a)/β1(a) → P0(τ ≤ t) as a ↓ 0, and the proof is established.

To show that δ#(a) = O(a2), let L denote the generator of the process ρ, and
v(x, s) = Px(τ > s) for x ∈ R+. Then L is given by σ 2

2
d2

dx2 + b d
dx

, with the Neu-
mann boundary condition at 0 and the Dirichlet boundary condition at ε, and v is
a smooth function satisfying

∂sv = Lv, x ∈ (0, ε), s > 0,

∂xv(0, s) = v(ε, s) = 0, s > 0,

v(x,0) = 1, x ∈ (0, ε).

In particular, it is a smooth function satisfying ∂xv(0, s) = 0 and, therefore,
v(x, t) = v(0, t) + O(x2), for t fixed and x ↓ 0. This shows that δ#(a) = O(a2).

3.2. The total nominal workload process. In this section, we prove Lem-
ma 3.1. Roughly stated, this lemma asserts that the total nominal workload process
converges at diffusion scale to an RBM. This is a well-understood fact for an arbi-
trary nonidling policy. However, for completeness and since the statement of the
lemma involves uniform convergence, which is perhaps less standard, we provide
a proof.
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PROOF OF LEMMA 3.1(i). We start the proof with some notation aimed at de-
scribing the scaled nominal workload process in terms of scaled arrival and service
processes. Let T̄i(t) = λi

μi
t , and

Âr
i (t) = r−1(

Ar
i (t) − λr

i t
)
, Ŝr

i (t) = r−1(
Sr

i (t) − μr
i t

)
,

Ŷ r
i (t) = μr

i r
−1(

T̄i(t) − T r
i (t)

)
, br

i = r−1
(
λr

i − λi

μi

μr
i

)
,

for t ∈R+. Then by (2.5),

(3.22) Q̂r
i (t) = Q̂r

i (0) + Âr
i (t) − Ŝr

i

(
T r

i (t)
) + br

i t + Ŷ r
i (t), t ∈ R+.

Note by (2.1) and (2.10) that R̂r = 1 · X̂r = ∑
i

r2

μr
i
Q̂r

i . If we denote

Br(t) = ∑
i

r2

μr
i

[
Âr

i (t) − Ŝr
i

(
T r

i (t)
) + br

i t
]
,

Ur(t) = ∑
i

r2

μr
i

Ŷ r
i (t) = r

[
t − 1 · T r(t)

]
,

then we have the identity R̂r = Br + Ur . Moreover, by its definition, R̂r takes
values in R+. Furthermore, by the nonidling property, the right derivative of 1 ·T r

at t assumes the value 1 if and only if the system is nonempty at this time, that is,
R̂r (t) > 0 (it otherwise assumes the value 0). Consequently,

∫ ∞
0 R̂r (t)dUr(t) = 0.

These three properties imply

(3.23)
(
R̂r ,Ur) = Γ

[
R̂r (0) + Br].

It follows from expression (3.1) for � that, for t > 0,

(3.24)
∣∣R̂r (t) − R̂r (0)

∣∣ ≤ 2
∥∥Br

∥∥
t .

Now, the bound T r
i (t) ≤ t for all t gives ‖Ŝr

i ◦T r
i ‖T ≤ ‖Ŝr

i ‖T . The quantities r2/μr
i

as well as br
i converge in view of (2.8). Hence ‖Br‖T ≤ c(‖Âr‖T + ‖Ŝr‖T + 1).

Therefore, ∥∥R̂r − R̂r (0)
∥∥
T ≤ c

(∥∥Âr
∥∥
T + ∥∥Ŝr

∥∥
T + 1

)
.

By the functional central limit theorem for renewal processes (see Theorem 14.6
of [4]), (Âr , Ŝr ) converge to a BM with drift zero and diffusion matrix Ξ , where

Âr = (
Âr

i

)N
i=1, Ŝr = (

Ŝr
i

)N
i=1, Ξ = diag

(
λ

1/2
1 , . . . , λ

1/2
N ,μ

1/2
1 , . . . ,μ

1/2
N

)
.

This implies that ‖Âr‖T + ‖Ŝr‖T is a tight sequence of RVs (for each fixed T ),
and in view of the above bound, so is ‖R̂r‖T .

By the discussion preceding Theorem 2.1, X̂r and Q̂r are asymptotically related
via the matrix M̂ . Appealing to (3.22) again and recalling that 1 ·X̂r = R̂r , we have
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‖Ŷ r‖T ≤ c(‖Âr‖T +‖Ŝr‖T + 1), and we get the tightness of ‖Ŷ r‖T (uniformly in
the initial state). In view of the definition of Ŷ r , we obtain that for every T , v > 0,

(3.25) lim sup
r→∞

sup
x∈Sr

Pr
x

(∥∥T r − T̄
∥∥
T > v

) = 0.

Set

B̃r (t) = ∑
i

r2

μr
i

[
Âr

i (t) − Ŝr
i

(
T̄i(t)

) + bit
]
, Er = Br − B̃r .

Notice that B̃r is measurable w.r.t. σ {Ar(t), Sr(t), t ∈R+}. Now,

∥∥Er
∥∥
T ≤ ∑

i

r2

μr
i

∥∥Ŝr
i ◦ T r

i − Ŝr
i ◦ T̄i

∥∥
T ≤ c

∑
i

wT

(
Ŝr

i , θ
r),

where θ t = ‖T r − T̄ ‖T . The C-tightness of Ŝr along with (3.25) give (3.3). Finally,
the convergence in law of (Âr , Ŝr ) gives B̃r ⇒ B , where B is a (b, σ )-BM.

(ii) Fix v, t0 > 0. For every x ∈ Sr with 1 · x < v, one has by the representation
R̂r = Γ1[R̂r (0) + Br ], noting that Br is measurable w.r.t. σ {Ar,Sr,Xr},

P
r
x

(
ζ r ≤ t0

) = P
r
x

(
inf

t∈[0,t0]
R̂r (t) = 0

)

= Pr
x

(
R̂r (0) + inf

t∈[0,t0]
Br(t) ≤ 0

)

≥ Pr
x

(
inf

t∈[0,t0]
Br(t) < −v

)
.

By part (i) of the lemma, specifically, the convergence of B̃r to B (indep of x) and
the uniform estimate (3.3) on Er , it follows that for every δ > 0 and all sufficiently
large r and x ∈ Sr with 1 · x ≤ v, the RHS of the above display is bounded below
by P(inft∈[0,t0] B(t) < −2v) − δ. The last expression does not depend on x and, as
B is a BM starting at the origin, converges to 1 − δ as v ↓ 0. Therefore,

lim inf
δ↓0

lim inf
r→∞ inf

x∈Sr :1·x<v
P

r
x

(
ζ r ≤ t0

) ≥ 1 − δ.

Taking δ ↓ 0 gives the result. �

3.3. Estimates on exiting the tubes. In this section, we develop an estimate
on the displacement of the prelimit process X̂r away from S0. The main use of
this estimate is in the argument provided in Section 3.4. In addition, the statement
constitutes a strong form of that of Lemma 3.2(i). Thus at the end of the section
we provide a proof of Lemma 3.2 based on this estimate.

The proof is based on a Lyapunov function technique. This function is con-
structed so that it expresses the total nominal workload in all buffers save the one
where queue length is greatest. For a precise definition, we need some notation.
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Recall from (2.3) the sets K(x), and note that K(X̂r(t)) gives the set of shortest
nonempty queues at time t . For x ∈ R

N+ , let

M(x) = {
i ∈ [N ] : xi ≥ xj for all j ∈ [N ]}.

Then M(X̂r) gives the set of longest queues. Let F :RN+ →R be given by

(3.26) F(x) = ∑
i

xi − max
i

xi .

Note that F is nonnegative and vanishes on the set S0 and only there.

LEMMA 3.4. Given c0 > 0, κ0 ∈ (0,1/2) and 0 < γ1 < γ2 < ∞, there exist
constants r0, c1 > 0 such that for every r > r0 and every initial state x ∈ Sr that
satisfies F(x) ≤ γ1r

−κ0 ,

(3.27) P
r
x

(∥∥F (
X̂r(·))∥∥c0 log r > γ2r

−κ0
) ≤ r−c1 .

Lemma 3.4 and the first item of Lemma 3.2 are similar, where the former is con-
cerned with long time intervals as well as rates of convergence. However, the latter
is not an immediate consequence of the former. We present their proofs together.

PROOF OF LEMMA 3.4 AND LEMMA 3.2(i). For the proof of Lemma 3.4, fix
c0, κ0, γ1 and γ2 as in the statement of the lemma. Using the expression (2.7) for
the generator of Xr write the one for X̂r = rXr (see (2.10)), as

(3.28)

Lrf (x) = ∑
i

λr
i

(
f

(
x + r

μr
i

ei

)
− f (x)

)

+ ∑
i∈K(x)

p
K(x)
i μr

i

(
f

(
x − r

μr
i

ei

)
− f (x)

)
,

for bounded f : Sr →R.
Recall that c denotes a generic positive constant that does not depend on r . We

begin by showing that there exists a constant c such that for all r sufficiently large,

(3.29) LrF (x) < −cr for all x such that F(x) > 0.

To this end, note that the first term on the RHS of (3.28), upon substituting F for
f , equals

∑
i

λr
i

(
r

μr
i

+ max{x1, . . . , xN } − max
{
x1, . . . , xi−1, xi + r/μr

i , xi+1, . . . , xN

})

≤ r
∑

i∈[N]\M(x)

λr
i

μr
i

.
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The inequality above is valid since for i ∈ M(x) the ith term in the sum is zero,
and for i /∈M(x),

max{x1, . . . , xN } ≤ max
{
x1, . . . , xi−1, xi + r/μr

i , xi+1 . . . , xN

}
.

The second term on the RHS of (3.28) (with f = F ) can be expressed as

(3.30)

∑
i∈K(x)

p
K(x)
i μr

i

(
− r

μr
i

+ max{x1, . . . , xN }

− max
{
x1, . . . , xi−1, xi − r/μr

i , xi+1, . . . , xN

})
.

We argue that for i ∈K(x),

max{x1, . . . , xN } = max
{
x1, . . . , xi−1, xi − r/μr

i , xi+1 . . . , xN

}
.

If K(x) = M(x) = {xj } for some j ∈ [N ], then F(x) = 0. Therefore, if F(x) > 0
then either K(x) 
= M(x) or K(x) = M(x) and K(x) contains more than one
element. In both cases, for every i ∈ K(x) there is j ∈ M(x), different from i,
such that both maxima above equal xj . This shows that the expression in (3.30)
equals −r . Combining this with the bound on the first term, and recalling that
λr

i /μ
r
i is asymptotic to λi/μi , and that the latter fractions sum to 1, shows (3.29).

We analyze the event Ωr := {‖F(X̂r(·))‖c0 log r > γ2r
−κ0} under Pr

x for x such
that F(x) ≤ γ1r

−κ0 . Recall that the jump sizes of X̂r are at the scale of r−1; as a
result, the same is true for the process F(X̂r(·)). Since κ0 < 1/2, r−κ0 is at a larger
scale than these jumps. Hence there exist random times 0 ≤ θr

1 < θr
2 ≤ c0 log r

such that Pr
x-a.s. on Ωr ,

(3.31)
F

(
X̂r(θr

1
)) ≤ γ1r

−κ0, F
(
X̂r(θr

2
)) ≥ γ2r

−κ0 and

0 < F
(
X̂r(t)

) ≤ γ2r
−κ0, t ∈ [

θr
1 , θr

2
)
.

The process

(3.32) Mr(t) = F
(
X̂r (t)

) − F(x) −
∫ t

0
LrF

(
X̂r(s)

)
ds, t ∈ R+,

is a local martingale. From (3.29) and (3.31), denoting δ = γ2 − γ1 > 0, one has

(3.33) Mr(θr
2
) − Mr(θr

1
) ≥ cr

(
θr

2 − θr
1
) + δr−κ0 .

Fix a constant d ∈ (2κ0,1) and consider the events

Ωr
1 = {

θr
2 − θr

1 ≤ r−d and (3.33) holds
}
,

Ωr
2 = {

θr
2 − θr

1 > r−d and (3.33) holds
}
.

Then P
r
x(Ω

r) ≤ P
r
x(Ω

r
1) + P

r
x(Ω

r
2). We argue separately for the two events.
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The event Ωr
1 . Let intervals I r

j be defined by I r
j = [jr−d/2, (j + 1)r−d/2] for

j ∈ {0,1, . . . , j1(r)}, where j1(r) = �2c0r
d log r�. On Ωr

1 there must exist j and
an interval J ⊂ I r

j ∩ (θr
1 , θr

2 ) such that

oscJ Mr ≥ δr−κ0/3,

where here and throughout, oscA f = supA f − infA f . As a result, oscI r
j
Mr ≥

δr−κ0/3. Therefore, using the Burkholder–Davis–Gundy (BDG) inequality [22],
Theorem 48, and denoting by [Mr ]I the quadratic variation of Mr over an inter-
val I ,

(3.34) P
r
x

(
Ωr

1
) ≤

j1(r)∑
j=0

P
r
x

(
oscI r

j
Mr ≥ δr−κ0

3

)
≤ Ck

j1(r)∑
j=0

(
6rκ0

δ

)2k

E
r
x

{[
Mr]k

I r
j

}
,

where k is any number in [1/2,∞). The quadratic variation process [Mr ] has
piecewise-constant samples paths with jumps taking values in the set {(r/μr

1)
2, . . . ,

(r/μr
N)2}. The number of its jumps in an interval [s, t] is stochastically dominated

by a Poisson RV with parameter (t − s)
∑

i (μ
r
i + λr

i ). Since μr
i and λr

i scale like
r2, [Mr ]I r

j
is stochastically dominated by Kr = cr−2πr , where πr is a Poisson

RV with parameter cr2−d . Consequently,

E
r
x

{[
Mir

]k
I r
j

} ≤ cr−dk.

Therefore, the right-hand side of (3.34) is bounded above by crd−k(d−2κ0) log r

(where c may depend on k). Taking k > max{1/2, d/(d − 2κ0)} gives the bound
P

r
x(Ω

r
1) ≤ r−c, provided that r is sufficiently large.

The event Ωr
2 . Clearly,

P
r
x

(
Ωr

2
) ≤ P

r
x

(
osc[0,c0 log r] Mr ≥ cr1−d)

.

Using again the BDG inequality (with k = 1/2) followed by a domination of the
number of jumps in terms of a Poisson RV with parameter c0r

2 log r , and the sizes
of the jumps by r−2, gives

P
r
x

(
Ωr

2
) ≤ P

r
x

(
2
∥∥Mr

∥∥
c0 log r ≥ cr1−d)

≤ c
E

r
x{[Mr ]c0 log r}

r2(1−d)
≤ c log r

r2(1−d)
< r−c.

This completes the proof of Lemma 3.4.

In order to establish the proof of Lemma 3.2(i) we prove below the following
stronger result that also serves us in the proof of Lemma 3.2(iii): for every u ∈ U0
satisfying limr→∞ r(u(r))3 = ∞, one has

(3.35) lim inf
r→∞ inf

x∈Sr∩Su(r)/2
P

r
x

(
X̂r(t) ∈ Su(r) for all t ∈ [0, T ]) = 1.
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This statement implies Lemma 3.2(i), since by the assumption on νr , there exists
u ∈ U0, such that νr(X̂r (0) ∈ Su(r)/2) → 1; without loss of generality, we may
assume that limr→∞ r(u(r))3 = ∞.

We next show how the details of the above proof are modified in order to prove
(3.35). Fix an arbitrary u ∈ U0 that satisfies limr→∞ r(u(r))3 = ∞. We claim that

lim sup
r→∞

sup
x∈Sr∩Su(r)/2

P
r
x

(∥∥F (
X̂r(·))∥∥T > u(r)

) = 0.

Unlike in (3.27), we consider here a fixed horizon T , we do not provide a conver-
gence rate, and the polynomial tube widths are replaced by u(r).

Recall (3.28), (3.29) and (3.32). We analyze the event Ω̄r := {‖F(X̂r(·))‖T >

u(r)} under P
r
x . Since ru(r) → ∞ and the jump sizes of the process F(X̂r(·))

are at the scale of r−1, there must exist random times 0 ≤ θ̄ r
1 < θ̄r

2 ≤ T such that
P

r
x-a.s. on Ω̄r ,

(3.36)
F

(
X̂r(θ̄ r

1
)) ≤ 1

2
u(r), F

(
X̂r(θ̄ r

2
)) ≥ u(r) and

0 < F
(
X̂r (t)

) ≤ u(r), t ∈ [
θ̄ r

1 , θ̄ r
2
)
.

From (3.29) and (3.36), one has

(3.37) Mr(θ̄ r
2
) − Mr(θ̄ r

1
) ≥ cr

(
θ̄ r

2 − θ̄ r
1
) + 1

2
u(r).

Set u0(r) = (u(r))3 and consider the events

Ω̄r
1 = {

θ̄ r
2 − θ̄ r

1 ≤ u0(r) and (3.37) holds
}
,

Ω̄r
2 = {

θ̄ r
2 − θ̄ r

1 > u0(r) and (3.37) holds
}
.

Then P
r
x(Ω̄

r) ≤ P
r
x(Ω̄

r
1) + P

r
x(Ω̄

r
2). We argue separately for the two events.

The event Ω̄r
1 . Let intervals Ī r

j be defined by

Ī r
j = [

ju0(r)/2, (j + 1)u0(r)/2
]

for j ∈ {0,1, . . . , �2T/u0(r)�}. The same arguments given before with the choice
of k = 2 in BDG inequality lead to the following sequence of inequalities and the
uniform limit over Sr ∩ Su(r)/2:

(3.38)

P
r
x

(
Ωr

1
) ≤

j1(r)∑
j=0

P
r
x

(
oscI r

j
Mr ≥ u(r)

6

)
≤ Ck

j1(r)∑
j=0

(
12

u(r)

)4
E

r
x

{[
Mr]2

I r
j

}

≤
j1(r)∑
j=0

(
12

u(r)

)4(
u0(r)

)2 ≤ cu2(r) → 0.
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The event Ω̄r
2 . Arguing as before, we obtain

P
r
x

(
Ωr

2
) ≤ P

r
x

(
2
∥∥Mr

∥∥
T ≥ cru0(r)

) ≤ c
E

r
x{[Mr ]T }
(ru0(r))2 ≤ c

(ru0(r))2 .

By our choice of the function u, the last expression converges to 0 as r → ∞,
uniformly for x ∈ Sr ∩ Su(r)/2. �

PROOF OF LEMMA 3.2 (CONTINUED). First, the assertion regarding C-
tightness follows directly from Lemma 3.1(i) and Lemma 3.2(i).

(ii) The statement of this part follows from part (i) with initial condition 0 and
strong Markovity.

(iii) It is sufficient to show that for every u ∈ U0 satisfying limr→∞ r(u(r))3 =
∞, one has

(3.39)
lim sup
r→∞

sup
y∈Sr ,x∈[0,k]:‖y−xei‖<u(r)/2

∣∣Er
y

[
f

(
X̂r (t)

)
1{t<ζ r }

]

−Ex

[
f

(
ρ(t)ei

)
1{t<ζ }

]∣∣ = 0.

We first show that for every such u and every ε > 0,

lim sup
r→∞

sup
y∈Sr ,x∈[0,k]:‖y−xei‖<u(r)/2

P
r
y

(
ζ r > t, R̂r(t) > ε,

∥∥X̂r(t) − X̂r
i (t)ei

∥∥ > u(r)
) = 0.

Indeed, in order for the process X̂r , starting inside the u(r)/2-tube around axis i,
to exit the u(r)-tube around the same axis by time t and reach cε away from the
origin, it must either escape Su(r) before t or pass through a cu(r)-neighborhood
of the origin without hitting the origin and then move through a different tube
and cε away from the origin. The probabilities of these two events converge to
zero uniformly in the initial conditions; the first convergence follows by (3.35).
The second event can be expressed in terms of an atypical behavior of R̂r , as a
sequence of processes converging in law to an RBM.

The assertion above along with the uniform continuity of f and a further appli-
cation of (3.35), imply

lim sup
r→∞

sup
y∈Sr ,x∈[0,k]:‖y−xei‖<u(r)/2

∣∣Er
y

[
f

(
X̂r (t)

)
1{t<ζ r }

]

−E
r
y

[
f

(
R̂r (t)ei

)
1{t<ζ r }

]∣∣ = 0.

Finally, the statement in Lemma 3.1(i), according to which R̂r ⇒ ρ holds with an
error term that converges to zero uniformly in the initial conditions, (3.39) follows,
hence the result. �
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3.4. The small ball exit measure. This section and the next are devoted to the
proof of Proposition 3.3. By assumption, the parameters λr

i and μr
i scale like r2,

as expressed in equation (2.8). The special case where, for all r , λr
i = λir

2 and
μr

i = μir
2 is referred to as the homogeneous case. Our strategy is to first prove

the lemma in the homogeneous case, where the processes X̂r can all be expressed
as scaled versions of a single process. This is the content of this section. In §3.5,
the general case is considered, and by appealing to a change of measure argument,
Proposition 3.3 is proved.

LEMMA 3.5. The statement of Proposition 3.3 holds in the homogeneous
case, with u(r) = r−κ0 , for any κ0 ∈ (0,1/2).

PROOF. Let 2N mutually independent Poisson processes Ai,Si , be given,
with intensities λi and μi , respectively. Since by assumption μr

i = μir
2 and

λr
i = λir

2, the tuple (Ar
i , S

r
i ) is equal in law, for each r , to (Ai(r

2·), Si(r
2·)), and

without loss of generality we may, and will, assume that Ar
i (t) = Ai(r

2t) and
Sr

i (t) = Si(r
2t) for all r , i and t . Let now Q, X, T and D be defined as the pro-

cesses Q1, X1, T 1 and respectively X1 (that is, Q = Qr where one sets r = 1).
Then in particular, equations (2.1), (2.2) and (2.5) are satisfied by Q, X, T and D,
and X is a Markov process on S1

u (see (2.6)).
Since for each r we have the aforementioned relation between (Ar

i , S
r
i ) and

(Ai, Si), one can also express (Qr,Xr, T r,Dr) as certain path transformations
of (Q,X,T ,D), for each r . The most significant aspect of this in the proof is
that the rescaled processes X̂r and R̂r can be written as rescaled versions of a
single process. Denote R = 1 · X. Then by (2.1), Xi = (μi)

−1Qi , whereas Xr
i =

(r2μi)
−1Qr

i . Hence Xr = r−2X(r2·), and thus by (2.10),

(3.40) X̂r (t) = r−1X
(
r2t

)
, R̂r (t) = r−1R

(
r2t

)
.

The state space Sr for the Markov process X̂r is given in the case under consider-
ation as Sr = r−1S1

u = (rμ1)
−1

Z+ × · · · × (rμN)−1
Z+.

For ε > 0, set

(3.41) τ(ε) = inf
{
t ≥ 0 : R(t) ≥ ε

}
.

Clearly, we have the identity τ r(ε) = r−2τ(εr) (see (3.2)). Let κ0 be as in the
statement of the lemma, that is, κ0 ∈ (0, 1

2), and set κ = 1 − κ0 ∈ (1
2 ,1). Denote

Br
i = B

(
rei, r

κ)

and qr = (qr
i )i , where

qr
i = P

1
0
(
X

(
τ(r)

) ∈ Br
i

)
,
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where P
1
x (with the corresponding expectation E

1
x) stands for the law of X = X1

with X(0) = x. Then

(3.42)

P
r
0
(
X̂r(τ r(ε)

) ∈ B
(
εei, r

−κ0
)) = P

1
0
(
X

(
τ(εr)

) ∈ B
(
εrei, r

1−κ0
))

≥ P
1
0
(
X

(
τ(εr)

) ∈ B
(
εrei, (εr)

1−κ0
))

≥ P
1
0
(
X

(
τ(εr)

) ∈ Bεr
i

)
= qεr

i .

Using the fact that the balls B(εei, r
−κ0) are disjoint for each ε and sufficiently

large r , (3.4) will follow once we show that

(3.43) there exists q ∈ M1 such that lim
r→∞qr = q.

Note that Proposition 3.3 asserts, moreover, that q does not depend on the choice of
κ0. To address this point, consider 0 < κ0 < κ ′

0 < 1
2 for which q and, respectively

q ′, satisfy (3.43). Then the fact that the LHS of (3.42) is monotone decreasing in
κ0 gives qi ≥ q ′

i for all i, and since q and q ′ are members of M1, this shows that
q = q ′. Hence the proof will be complete once we show (3.43) for fixed κ0.

To this end, note that it suffices to show that there exist δ ∈ (0,1) and K > 0
such that for every k ∈ N, k ≥ K , one has

(3.44)
∣∣qr

i − qm
i

∣∣ ≤ δk for all i ∈ [N ] and r ∈ [
2k,2k+1]

, where m = 2k+2

and

(3.45) lim
r→∞

∑
i

qr
i = 1.

Indeed, if r and m are both within [2k,2k+1] then (3.44) gives |qr
i − qm

i | ≤ 2δk .
As a result, for arbitrary r < m, denoting a(�) = �log2(�)�,

∣∣qr
i − qm

i

∣∣ ≤
a(m)∑

j=a(r)

2δj ≤ 2(1 − δ)−1δa(r).

This shows that, for fixed i, any sequence {qr
i }r is a Cauchy sequence as r → ∞.

Along with (3.45), we obtain that (3.43) holds.
In what follows, we prove (3.44) and (3.45). We let r ∈ [2k,2k+1] and m =

2k+2, where k is arbitrary, but fixed. Without loss of generality, the proof of (3.44)
considers only i = 1.

To help explain the main idea and motivate a couple of technical tools, we first
consider a highly simplified model, illustrated in Figure 1. Consider a discrete time
Markov process on a finite set S that is star shaped. That is, S consists of 2N + 1
states, denoted by 0, Fi , Gi , i ∈ [N ]. For each i, Fi communicates only with 0
and Gi . The state 0 communicates only with the states Fi , while Gi are absorbing.
Denoting transition probabilities by p(s, s′), we have p(0,Fi) > 0, p(Fi,0) > 0,
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FIG. 1. In this toy model, denoting transition probabilities by p(·, ·), the quantity
maxi,j |p(Fi,0) − p(Fj ,0)| controls maxi |p(0,Fi) − P0(the process is absorbed at Gi)|.

p(Fi,Gi) > 0, and p(Gi,Gi) = 1, while all other transition probabilities are zero.
For s ∈ S, let p̄(s,Gi) denote the probability to get absorbed at Gi starting from s.
Then

p̄(0,G1) = ∑
i≥1

p(0,Fi)p̄(Fi,G1)

= p(0,F1)p(F1,G1) + ∑
i≥1

p(0,Fi)p(Fi,0)p̄(0,G1).

From this, one obtains

p̄(0,G1)

p(0,F1)
= 1 − p(F1,0)

1 − ∑
i≥1 p(0,Fi)p(Fi,0)

.

If the transition probabilities starting at Fi depend weakly on i, in the sense that
for some δ > 0 one has |p(Fi,0) − p(F1,0)| < δ for all i, and if in addition 1 −
p(F1,0) > c > 0 for some constant c, it follows that∣∣p̄(0,G1) − p(0,F1)

∣∣ ≤ c′δ,
where c′ depends on c but not on δ. The relevance to our problem is as follows.
Roughly speaking, the states Fi and Gi represent the collections of states within Br

i

and Bm
i , respectively, and 0 represents the origin. The calculation above suggests

that if the probability of reaching 0 before reaching Bm
i starting anywhere in Br

i

depends weakly on i then the difference pr
i − pm

i is small.
We now consider the process X and the stopping times τ(ε), and in addition let

ζ = inf
{
t ≥ 0 : X(t) = 0

}
.

We aim at showing there exist r0, c > 0 such that for every r > r0, one has

for every i ∈ [N] and x ∈ Br
i ,

∣∣∣∣P1
x

(
ζ < τ(m)

) − m − r

m

∣∣∣∣ ≤ r−c,(3.46)
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P
1
0
(
r−2τ(r) > t

) ≤ e−ct ,(3.47)

P
1
0

(
X

(
τ(r)

)
/∈ ⋃

i

Br
i

)
≤ r−c,(3.48)

for every i ∈ [N ] and x ∈ Br
i , P

1
x

(
τ(m) < ζ,X

(
τ(m)

)
/∈ Bm

i

) ≤ r−c.(3.49)

For estimate (3.46), note that it follows from the identity R = 1 · X, the expres-
sion (2.7) for the generator of X (with λi and μi substituted for λr

i and μr
i ), and

condition (2.9), that the stopped process R(· ∧ ζ ∧ τ(m)) is a martingale. By this
martingale property and the fact that X lives on the grid S1

u , there is a constant c

such that

m − r − rκ − c

m + c
≤ P

1
x

(
ζ < τ(m)

) ≤ m − r + rκ + c

m
.

Estimate (3.46) follows, using the fact that m ≥ 2r .
For inequality (3.47), the relation r−2τ(r) = τ r(1) gives P

1
0(r

−2τ(r) > 1) =
P

r
0(‖R̂r‖1 < 1). By Lemma 3.1, R̂r converges in law to an RBM ρ, and so

P
r
0(‖R̂r‖1 < 1) → P0(‖ρ‖1 < 1) < 1. Thus there exists γ ∈ (0,1) such that for

all r sufficiently large, P1
0(r

−2τ(r) > 1) ≤ γ . For other initial conditions x, the
probability of this event under P1

x is even smaller and, therefore, is still bounded
by γ . Markovity thus gives (3.47).

For estimate (3.48), fix c0 > 0 to be a constant c that satisfies (3.47). Recall the
definition of F from (3.26). Since X takes values in S1

u , 1 · X(τ(r)) must take a
value within [r, r + c1], for some constant c1 > 0. We claim that if x ∈R

N+ , 1 · x ∈
[r, r + c1] and x /∈ ⋃

i B
r
i then F(x) ≥ rκ/

√
2. To this end, assume, without loss of

generality, that x1 = maxi xi . Since x /∈ Br
1 , we have (x1 − r)2 + ∑N

i=2 x2
i ≥ r2κ .

Therefore, if r − rκ/
√

2 ≤ x1 ≤ r + c1, we have that F(x)2 = (
∑N

i=2 xi)
2 ≥ r2κ/2,

and hence F(x) ≥ rκ/
√

2. If on the other hand x1 < r − rκ/
√

2, then using 1 · x ≥
r , we obtain again F(x) = ∑N

i=2 xi > rκ/
√

2.
As a result of the above claim, for all large r ,

(3.50)
P

1
0

(
X

(
τ(r)

)
/∈ ⋃

i

Br
i

)
≤ P

1
0
(
τ(r) > c0r

2 log r
)

+ P
1
0
(∥∥F (

X(·))∥∥c0r
2 log r ≥ rκ/

√
2
)
.

By (3.47), the first term above is bounded by r−c0 . Since F(X(0)) = 0, we have
by Lemma 3.4, relation (3.40), and the relation κ = 1 − κ0, that the second term is
bounded by r−c.

For estimate (3.49), define

ν(m) = inf
{
t ≥ 0 : R(t) ≤ mκ}

.
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Fix i and consider x ∈ Br
i . Denote B0,m = B(0,mκ) ∩ S1

u . Then a use of strong
Markovity gives

(3.51)
P

1
x

(
τ(m) < ζ,X

(
τ(m)

)
/∈ Bm

i

) ≤ P
1
x

(
τ(m) < ν(m),X

(
τ(m)

)
/∈ Bm

i

)
+ max

z∈B0,m

P
1
z

(
τ(m) < ζ

)
.

To bound the first term consider the event τ(m) < ν(m). If X(τ(m)) ∈ ⋃
j 
=i B

m
j ,

then ‖F(X(·))‖τ(m) > mκ holds, whereas if X(τ(m)) /∈ ⋃
j Bm

j , then by the argu-

ment provided in the previous paragraph we have ‖F(X(·))‖τ(m) ≥ mκ/
√

2. This
implies that the first term in (3.51) is bounded by

P
1
x

(
τ(m) ∧ ν(m) > c0m

2 logm
) + P

1
x

(∥∥F (
X(·))∥∥c0m

2 logm > mκ/
√

2
)
.

This expression can be handled as the RHS of (3.50). Since x ∈ Br
i , ‖F(X(0))‖ ≤

rκ ≤ 1
2κ mκ . Thus Lemma 3.4 is applicable with γ1 = 2−κ < γ2 = 1/

√
2. This gives

the bound r−c on the first term on the RHS of (3.51).
To bound the second term in (3.51), we again use the martingale property of

R(· ∧ ζ ∧ τ(m)). It gives

P
1
z

(
τ(m) < ζ

) ≤ mκ

m − 2mκ
.

Since 2r ≤ m ≤ 4r , we obtain that for sufficiently large r , the last term in (3.51) is
bounded above by r−c. This completes the proof of (3.46)–(3.49).

We now deduce (3.44) and (3.45) from (3.46)–(3.49). Identity (3.45) follows
immediately from (3.48). For x ∈ Sr

u (see (2.6)), denote

q(x, r,m) = P
1
0
(
X

(
τ(r)

) = x
)
P

1
x

(
X

(
τ(m)

) ∈ Bm
1

)
and Br,i = Br

i ∩ Sr
u . Then

qm
1 = ∑

x∈Sr
u :x /∈⋃

i≥1 Br
i

q(x, r,m) + ∑
i>1

∑
x∈Br,i

q(x, r,m) + ∑
x∈Br,1

q(x, r,m)

=: βr,m,1 + βr,m,2 + βr,m,3.

(3.52)

It follows from (3.48) that βr,m,1 ≤ r−c. Next, consider the term βr,m,2. Let i > 1
and x ∈ Br,i . Then

P
1
x

(
X

(
τ(m)

) ∈ Bm
1

) = P
1
x

(
ζ < τ(m),X

(
ζ(m)

) ∈ Bm
1

)
+ P

1
x

(
ζ(m) < ζ,X

(
τ(m)

) ∈ Bm
1

)
.

The first term above is equal to P
1
x(ζ < τ(m))qm

1 . By (3.49), the second term
bounded by r−c. Combining this with (3.46),

βr,m,2 = ∑
i>1

qr
i

m − r

m
qm

1 + ε(r,m),
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where here and in the remainder of this proof, ε(r,m) denotes a generic function
of (r,m) which satisfies |ε(r,m)| ≤ r−c for all large r .

As for βr,m,3, consider x ∈ Br
1 . We have

P
1
x

(
X

(
τ(m)

) ∈ Bm
1

)
= P

1
x

(
ζ < τ(m),X

(
τ(m)

) ∈ Bm
1

) + P
1
x

(
τ(m) < ζ,X

(
τ(m)

) ∈ Bm
1

)
= P

1
x

(
ζ < τ(m)

)
qm

1 + P
1
x

(
τ(m) < ζ

) − P
1
x

(
τ(m) < ζ,X

(
τ(m)

)
/∈ Bm

1
)
.

Using (3.49), the last term above is bounded, in absolute value, by r−c. Combined
with (3.46), this gives

βr,m,3 = qr
1

(
m − r

m
qm

1 + r

m

)
+ ε(r,m).

Combining the three estimates,

qm
1 =

r∑
i=1

qr
i

m − r

m
qm

1 + qr
1

r

m
+ ε(r,m)

= (
1 − ε(r,m)

)m − r

m
qm

1 + qr
1

r

m
+ ε(r,m),

where (3.48) is used. Hence, using m/r ≤ 4,
∣∣qm

1 − qr
1
∣∣ ≤ m

r

∣∣ε(r,m)
∣∣ ≤ cr−c.

This gives (3.44) and completes the proof of the lemma. �

3.5. Relaxation of the homogeneity assumption. In this section, we prove
Proposition 3.3 based on Lemma 3.5, by means of a change of measure. Thus
the general setting, where λr

i and μr
i satisfy the hypotheses of Theorem 2.1, is in

force. Since the statement of Proposition 3.3 refers to P
r
0, we may and will assume

in this section that the initial condition is Qr(0) = Xr(0) = 0 identically. Thus the
only stochastic primitives in the model are the processes (Ar, Sr). In particular,
as follows from equations (2.1), (2.2), (2.4), (2.5) and (2.10), the processes Xr(t),
t ∈ [0, T ] and X̂r(t), t ∈ [0, T ] are determined by (Ar(t), Sr(t)), for t ∈ [0, T ]. In
addition to the measure P, we introduce below a reference probability measure Q
on (Ω,F) under which, for all r , the Poisson processes Ar

i and Sr
i have intensities

λ
0,r
i and μ

0,r
i , respectively, where we denote λ

0,r
i = λir

2 and μ
0,r
i = μir

2. Denote
by EQ the corresponding expectation. The laws of the driving Poisson processes
as well as that of the queue length process Qr under P can then be obtained from
those under Q by a change of measure (as shown below). However, this does not
apply to the nominal workload process Xr , for which the parameters λr

i and μr
i

determine not only the jump intensities but also the scaling factors in the definition
(2.1) of Xr in terms of Qr . This is reflected also in the formula for the generator
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Lr
u (see (2.7)) where these parameters enter in both the jump rates and the jump

sizes. An intermediate transformation is required.
To this end, we define analogously to (2.1) and (2.10), a process X

0,r
i and its

scaled version by

X
0,r
i = (

μ
0,r
i

)−1
Qr

i , X̂
0,r
i = rX

0,r
i .

Similarly, we let R̂0,r = 1 · X̂0,r and τ 0,r (ε) = inf{t ≥ 0 : R̂0,r (t) ≥ ε}.
The starting point of this section is to notice that Lemma 3.5, proved in the

previous section, implies that there exists q ∈ M1 such that for κ0 ∈ (0,1/2),

(3.53) lim
ε↓0

lim sup
r→∞

∣∣Q(
X̂0,r(τ 0,r (ε)

) ∈ B
(
εei, r

−κ0
)) − qi

∣∣ = 0, i ∈ [N ].
The proof proceeds in two steps. First, it is shown that a version of (3.53), that
refers to X̂r (τ r(ε)) in place of X̂0,r (τ 0,r (ε)), is valid, and then that the same state-
ment remains true under P (equivalently, under Pr

0).

PROOF OF PROPOSITION 3.3. We first prove that, for q as in (3.53), there
exists u ∈ U0 such that

(3.54) lim
ε↓0

lim sup
r→∞

∣∣Q(
X̂r(τ r(ε)

) ∈ B
(
εei, u(r)

)) − qi

∣∣ = 0, i ∈ [N ].
Based on (3.53), the statement (3.54) is almost an immediate consequence of con-
vergence of R̂0,r to an RBM under Q and the closeness of X̂0,r and X̂r . Indeed,
the relation between X̂0,r and X̂r is X̂

0,r
i = βr

i X̂
r
i where βr

i = μr
i /μ

0,r
i . We have

maxi |βr
i − 1| < cr−1 by (2.8). Thus for ε < 1, ‖X̂0,r (t) − X̂r(t)‖ < cr−1 for

all t ≤ τ r(ε) ∧ τ 0,r (ε). Hence (3.54) will follow from (3.53) if we show that, as
r → ∞, supε∈(0,1) ‖X̂0,r (τ r(ε)) − X̂0,r (τ 0,r (ε))‖ → 0 in probability. Since X̂0,r

are C-tight by Lemma 3.2 and τ 0,r (ε) are dominated by τ 0,r (1), that form a tight
sequence of RVs, it suffices to prove that

(3.55) sup
ε∈(0,1)

∣∣τ r(ε) − τ 0,r (ε)
∣∣ → 0 in probability.

The convergence of R̂0,r to RBM implies that for any M > 0 and δ > 0,

lim
κ↓0

lim sup
r→∞

Q
(

inf
t∈[0,M] sup

u∈(0,δ)

∣∣R̂0,r (t + u) − R̂0,r (t)
∣∣ < κ

)
= 0.

It follows that for any M > 0 and δ > 0,

lim sup
r→∞

Q
(

sup
ε∈(0,1)

∣∣τ r(ε) ∧ M − τ 0,r (ε) ∧ M
∣∣ > δ

)
= 0.

Using again the tightness of the RVs τ 0,r (1), (3.55) follows, hence also (3.54).
The second and final step is to prove that in (3.54), Q may be replaced by P.

Denote the events of interest by Kr
ε,i = {X̂r(τ r(ε)) ∈ B(εei, u(r))}. Since

∑
i qi =
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1, using the fact that for any ε and all sufficiently large r , {Kr
ε,i}i are disjoint, it

suffices to prove for each i the lower bound

(3.56) lim inf
ε↓0

lim inf
r→∞ P

(
Kr

ε,i

) ≥ qi.

Given any δ > 0, we clearly have limε↓0 lim supr→∞ Q(τ r(ε) > δ) = 0. Hence by
(3.54), denoting Kr

ε,δ,i = Kr
ε,i ∩ {τ r(ε) ≤ δ}, we have

(3.57) lim
ε↓0

lim sup
r→∞

∣∣Q(
Kr

ε,δ,i

) − qi

∣∣ = 0, i ∈ [N ].

A change of measure is formulated in terms of the exponential martingale

ψr
t = exp

∑
i

[
Ar

i (t) log
(

λr
i

λ
0,r
i

)
− (

λr
i − λ

0,r
i

)
t

+ Sr
i (t) log

(
μr

i

μ
0,r
i

)
− (

μr
i − μ

0,r
i

)
t

]
.

Let Ar
t = (Ar

i (u), Sr
i (u))i∈[N],u∈[0,t]. Let also Gr

t = σ {Ar
t }. For each r and t , let a

probability measure Pr,t on (Ω,Gr
t ) be defined by Pr,t (G) = EQ[ψr

t 1G] for G ∈
Gr

t . Then, for each r and t , the law of Ar
t under Pr,t is the same as that under P.

Moreover, note that for each i, the event Kr
ε,δ,i is measurable on Gr

δ . Hence to
establish (3.56), it suffices to prove that for each i,

(3.58) q̃i := lim inf
δ↓0

lim inf
ε↓0

lim inf
r→∞ EQ

[
ψr

δ 1Kr
δ,ε,i

] ≥ qi.

For η > 0, denote Gr
δ,η = {ψr

δ > 1 − η}. Suppose we show that for any η > 0,

(3.59) lim inf
δ↓0

lim inf
r→∞ Q

(
Gr

δ,η

) = 1.

Then we may argue as follows:

EQ
[
ψr

δ 1Kr
ε,δ,i

] ≥ EQ
[
ψr

δ 1Kr
ε,δ,i∩Gr

δ,η

] ≥ (1 − η)Q
(
Kr

ε,δ,i

) − Q
((

Gr
δ,η

)c)
.

Taking r → ∞ then ε ↓ 0, then using (3.57), and finally taking δ ↓ 0, gives

q̃i ≥ (1 − η)qi − lim sup
δ↓0

lim sup
r→∞

Q
((

Gr
δ,η

)c) = (1 − η)qi.

Since η > 0 is arbitrary, this gives (3.58), and consequently (3.56).
Thus the proof will be complete once (3.59) is shown. To this end, let

Ãr
i (t) = r−1(

Ar
i (t) − λ

0,r
i t

)
, S̃r

i (t) = r−1(
Sr

i (t) − μ
0,r
i t

)
.

These processes, defined analogously to Âr and Ŝr , converge under Q to BMs.
Denote λ̂r

i = r−1(λr
i − λ

0,r
i ) and μ̂r

i = r−1(μr
i − μ

0,r
i ) and recall by (2.8) that
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these sequences converge. Write ψr
t in terms of Ãr and S̃r as

ψr
t = exp

∑
i

[
Ãr

i (t)rU
r
i + (

λ
0,r
i Ur

i − rλ̂r
i

)
t + S̃r

i (t)rV
r
i + (

μ
0,r
i V r

i − rμ̂r
i

)
t
]
,

where Ur
i = log(1+ λ̂r

i

rλi
), V r

i = log(1+ μ̂r
i

rμi
). Denoting Lr

t = maxi |Ãr
i (t)|∨|S̃r

i (t)|
and using | log(1 + x) − x| ≤ cx2 for all |x| < 1/2, we have for all large r ,

logψr
t ≥ −cLr

t − ct.

The aforementioned convergence to BM clearly implies that, for any η > 0,

lim inf
δ↓0

lim inf
r→∞ Q

(
Lr

δ < η
) = 1.

We thus obtain (3.59) and complete the proof. �

4. Concluding remarks.

1. It is desirable to extend the main result of this paper beyond the Markovian
setting, to general service time distributions and renewal arrival distributions,
under second moment conditions. Whereas the behavior of the modulus ac-
cording to an RBM certainly holds in vast generality, and the attraction to the
collection of axes S0 can likely be extended, the existence of limiting entrance
laws appears to require different machinery. Indeed, the proof presented here
makes crucial use of the strong Markovity of the prelimit processes.

2. The proof presented in this paper sheds no light on the angular distribution q

(except that it does not depend on the second order parameters λ̂i , μ̂i ). A char-
acterization of q that would be useful and lead to further information about it is
desirable.

3. Figure 2 depicts results of Monte Carlo simulations for an SSQ model with
N = 2 at criticality, aimed at estimating q . It shows the behavior of q1 as several
parameters vary. They all suggest monotone dependence, that one would wish
to substantiate mathematically.

(a) The graph shown at Figure 2(c) is, in particular, relevant to the heuristic
mentioned in the Introduction, according to which more variable traffic attains
lower priority. In this example, the traffic intensities λi/μi are kept fixed. As
λ1 increases, the inter-arrival variance increases, which, according to the graph,
increases q1, indicating lower priority for this class.

(b) Figure 2(d) shows the dependence on the tie breaking parameter, p1.
It exhibits that the tie breaking rule affects the limiting angular distribution.
However, we have not aimed at providing a proof of this claim.
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FIG. 2. Simulation of q1 as a function of various parameters, for N = 2. (a) q1 as a function of
λ1, fixed μ’s: μ1 = μ2 = 20, λ2 = μ2 − λ1. (b) q1 as a function of μ1, fixed λ’s: λ1 = λ2 = 10,
μ2 = 1/(1/λ1 − 1/μ1). (c) q1 as a function of λ1, fixed ratio λ1/μ1, λ2 and μ2: λ2 = 10, μ2 = 20,
μ1 = 2λ1. (d) q1 as a function of p1, fixed λ’s and μ’s: λ1 = λ2 = 10, μ1 = μ2 = 20, p2 = 1 − p1.

Acknowledgments. The authors are grateful to Ross Pinsky for useful discus-
sions about heat equation estimates, to Bert Zwart for bringing reference [18] to
their attention, and to the referee for careful reading and valuable comments.

REFERENCES

[1] BARLOW, M., PITMAN, J. and YOR, M. (1989). On Walsh’s Brownian motions. In Sémi-
naire de Probabilités, XXIII. Lecture Notes in Math. 1372 275–293. Springer, Berlin.
MR1022917

[2] BAXTER, J. R. and CHACON, R. V. (1984). The equivalence of diffusions on networks to
Brownian motion. In Conference in Modern Analysis and Probability (New Haven, Conn.,
1982). Contemp. Math. 26 33–48. Amer. Math. Soc., Providence, RI. MR0737386

[3] BENAMEUR, N., GUILLEMIN, F. and MUSCARIELLO, L. (2013). Latency reduction in home
access gateways with shortest queue first. In Proc. ISOC Workshop on Reducing Internet
Latency.

[4] BILLINGSLEY, P. (1999). Convergence of Probability Measures, 2nd ed. Wiley, New York.
MR1700749

http://www.ams.org/mathscinet-getitem?mr=1022917
http://www.ams.org/mathscinet-getitem?mr=0737386
http://www.ams.org/mathscinet-getitem?mr=1700749


650 R. ATAR AND A. COHEN

[5] BONALD, T., MUSCARIELLO, L. and OSTALLO, N. (2011). Self-prioritization of audio and
video traffic. In IEEE International Conference on Communications (ICC) 1–6. IEEE,
New York.

[6] CAROFIGLIO, G. and MUSCARIELLO, L. (2010). On the impact of TCP and per-flow schedul-
ing on Internet performance. In INFOCOM, 2010 Proceedings IEEE 1–9. IEEE, New
York.

[7] ETHIER, S. N. and KURTZ, T. G. (1986). Markov Processes: Characterization and Conver-
gence. Wiley, New York. MR0838085

[8] GUILLEMIN, F. and SIMONIAN, A. (2013). Analysis of the shortest queue first service dis-
cipline with two classes. In Proceedings of the 7th International Conference on Perfor-
mance Evaluation Methodologies and Tools 1–10. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), Portland.

[9] GUILLEMIN, F. and SIMONIAN, A. (2014). Stationary analysis of the shortest queue first ser-
vice policy. Queueing Syst. 77 393–426. MR3225817

[10] GUILLEMIN, F. and SIMONIAN, A. (2017). Stationary analysis of the “shortest queue first”
service policy: The asymmetric case. Stoch. Models 33 256–296. MR3650557

[11] HAJRI, H. (2012). Discrete approximations to solution flows of Tanaka’s SDE related to Walsh
Brownian motion. In Séminaire de Probabilités XLIV. Lecture Notes in Math. 2046 167–
190. Springer, Heidelberg. MR2953347

[12] HARRISON, J. M. (1995). Balanced fluid models of multiclass queueing networks: A heavy
traffic conjecture. In Stochastic Networks. IMA Vol. Math. Appl. 71 1–20. Springer, New
York. MR1381003

[13] HARRISON, J. M. and SHEPP, L. A. (1981). On skew Brownian motion. Ann. Probab. 9 309–
313. MR0606993

[14] HARRISON, J. M. and WILLIAMS, R. J. (1996). A multiclass closed queueing network with
unconventional heavy traffic behavior. Ann. Appl. Probab. 6 1–47. MR1389830

[15] HU, Q., WANG, Y. and YANG, X. (2012). The hitting time density for a reflected Brownian
motion. Comput. Econ. 40 1–18.

[16] ICHIBA, T., KARATZAS, I., PROKAJ, V. and YAN, M. (2018). Stochastic integral equa-
tions for Walsh semimartingales. Ann. Inst. Henri Poincaré Probab. Stat. 54 726–756.
MR3795064

[17] KRUK, Ł. (2011). An open queueing network with asymptotically stable fluid model and un-
conventional heavy traffic behavior. Math. Oper. Res. 36 538–551. MR2832406

[18] LAMBERT, A. and SIMATOS, F. (2014). The weak convergence of regenerative processes using
some excursion path decompositions. Ann. Inst. Henri Poincaré Probab. Stat. 50 492–
511. MR3189081

[19] NASSER, N., AL-MANTHARI, B. and HASSANEIN, H. (2005). A performance comparison of
class-based scheduling algorithms in future UMTS access. In IPCCC 2005. 24th IEEE
International 437–441. IEEE, New York.

[20] OSTALLO, N. (2008). Service differentiation by means of packet scheduling. Master’s thesis,
Institut Eurècom Sophia Antipolis, Biot, France.

[21] PLAMBECK, E., KUMAR, S. and HARRISON, J. M. (2001). A multiclass queue in heavy traffic
with throughput time constraints: Asymptotically optimal dynamic controls. Queueing
Syst. 39 23–54. MR1865457

[22] PROTTER, P. E. (2004). Stochastic Integration and Differential Equations: Stochastic Mod-
elling and Applied Probability, 2nd ed. Applications of Mathematics (New York) 21.
Springer, Berlin. MR2020294

[23] ROGERS, L. C. G. (1983). Itô excursion theory via resolvents. Z. Wahrsch. Verw. Gebiete 63
237–255. MR0701528

[24] SALISBURY, T. S. (1986). Construction of right processes from excursions. Probab. Theory
Related Fields 73 351–367. MR0859838

http://www.ams.org/mathscinet-getitem?mr=0838085
http://www.ams.org/mathscinet-getitem?mr=3225817
http://www.ams.org/mathscinet-getitem?mr=3650557
http://www.ams.org/mathscinet-getitem?mr=2953347
http://www.ams.org/mathscinet-getitem?mr=1381003
http://www.ams.org/mathscinet-getitem?mr=0606993
http://www.ams.org/mathscinet-getitem?mr=1389830
http://www.ams.org/mathscinet-getitem?mr=3795064
http://www.ams.org/mathscinet-getitem?mr=2832406
http://www.ams.org/mathscinet-getitem?mr=3189081
http://www.ams.org/mathscinet-getitem?mr=1865457
http://www.ams.org/mathscinet-getitem?mr=2020294
http://www.ams.org/mathscinet-getitem?mr=0701528
http://www.ams.org/mathscinet-getitem?mr=0859838


SERVE THE SHORTEST QUEUE AND WBM 651

[25] TSIRELSON, B. (1997). Triple points: From non-Brownian filtrations to harmonic measures.
Geom. Funct. Anal. 7 1096–1142. MR1487755

[26] VAROPOULOS, N. T. (1985). Long range estimates for Markov chains. Bull. Sci. Math. (2) 109
225–252. MR0822826

[27] WALSH, J. B. (1978). A diffusion with a discontinuous local time. Astérisque 52 37–45.
[28] WHITT, W. (1971). Weak convergence theorems for priority queues: Preemptive-resume disci-

pline. J. Appl. Probab. 8 74–94. MR0307389
[29] WILLIAMS, R. J. (1996). On the approximation of queueing networks in heavy traffic. In

Stochastic Networks: Theory and Applications 35–56. Oxford Univ. Press, Oxford.

DEPARTMENT OF ELECTRICAL ENGINEERING

TECHNION—ISRAEL INSTITUTE OF TECHNOLOGY

HAIFA 32000
ISRAEL

DEPARTMENT OF STATISTICS

UNIVERSITY OF HAIFA

HAIFA 31905
ISRAEL

E-MAIL: shloshim@gmail.com
URL: https://sites.google.com/site/asafcohentau/

http://www.ams.org/mathscinet-getitem?mr=1487755
http://www.ams.org/mathscinet-getitem?mr=0822826
http://www.ams.org/mathscinet-getitem?mr=0307389
mailto:shloshim@gmail.com
https://sites.google.com/site/asafcohentau/

	Introduction
	Notation

	Setting and result
	Serve-the-shortest-queue in heavy trafﬁc
	Walsh Brownian motion
	Main result

	Proof of the main result
	Proof of Theorem 2.1
	The total nominal workload process
	Estimates on exiting the tubes
	The small ball exit measure
	Relaxation of the homogeneity assumption

	Concluding remarks
	Acknowledgments
	References
	Author's Addresses

