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EXPONENTIAL UTILITY MAXIMIZATION UNDER MODEL
UNCERTAINTY FOR UNBOUNDED ENDOWMENTS

BY DANIEL BARTL1

University of Konstanz

We consider the robust exponential utility maximization problem in dis-
crete time: An investor maximizes the worst case expected exponential utility
with respect to a family of nondominated probabilistic models of her endow-
ment by dynamically investing in a financial market, and statically in avail-
able options.

We show that, for any measurable random endowment (regardless of
whether the problem is finite or not) an optimal strategy exists, a dual rep-
resentation in terms of (calibrated) martingale measures holds true, and that
the problem satisfies the dynamic programming principle (in case of no op-
tions). Further, it is shown that the value of the utility maximization problem
converges to the robust superhedging price as the risk aversion parameter gets
large, and examples of nondominated probabilistic models are discussed.

1. Introduction. In this article, we study the problem of robust exponential
utility maximization in discrete time. Here, the term robust reflects uncertainty
about the true probabilistic model and the consideration of a whole family of mod-
els as a consequence. This is not a new concept and since the seminal papers [23]
and [31] it has gained a lot of attention; see, for example, [1, 5, 6, 10, 11, 13,
18, 25, 35, 38, 41] and [14] for an overview. To state our problem more precisely,
given the exponential utility function

U(x) := − exp(−γ x)

with risk-aversion parameter γ > 0, a possibly nondominated set of probabilistic
models P and the agent’s random endowment X, we are interested in the opti-
mization problem

sup
(ϑ,α)∈�×Re

inf
P∈P EP

[
U
(
X + (ϑ · S)T + α(g − g0)

)]
.(1.1)

Here, g1, . . . , ge are traded options available for buying and selling at time 0 for the
prices g1

0, . . . , ge
0, the set � consists of all predictable dynamic trading strategies

for the (discounted) stock S, and (ϑ ·S)T +α(g−g0) is the outcome of a semistatic
trading strategy (ϑ,α) ∈ � ×R

e.
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The first immediate question when investigating the optimization problem (1.1)
is whether an optimal strategy (ϑ,α) (which should be defined simultaneously un-
der all models P ∈ P) exits. Due to the absence of a measure capturing all zero sets
and the failure of classic arguments such as Komlos’ theorem as a consequence,
this is nontrivial. Our second interest lies in the validity of a dual representation
with respect to linear pricing measures, namely if (1.1) is equal to

− exp
(
− inf

Q∈M
(
γEQ[X] + H(Q,P)

))
,

where M denotes the set of all martingale measures Q for the stock S calibrated
to the options (i.e., EQ[gi] = gi

0 for 1 ≤ i ≤ e) under which the robust entropy
H(Q,P) is finite. Finally, we study if (1.1) satisfies the dynamic programming
principle (in case without options), meaning that it is possible to analyze the prob-
lem locally and later “glue” everything together. In particular, this implies that a
strategy which is optimal at time 0, will be optimal again, if one starts to solve the
optimization problem at some positive time t .

The main contribution of this paper is to show that positive answers to all three
questions, namely the existence of an optimal strategy, duality and dynamic pro-
gramming can be given under weak assumptions; see Theorem 2.1 and Theo-
rem 2.2. Further, it is shown that a scaled version of (1.1) converges to the min-
imal superhedging price of X if the risk-aversion parameter γ tends to infinity;
see Theorem 2.4. In fact, we adopt the setting suggested by Bouchard and Nutz
in the milestone paper [10] and show by means of optimal control, that for any
unbounded measurable (lower semianalytic) random endowment X (regardless of
whether the optimization problem (1.1) is finite or not), existence, duality and the
dynamic programming principle hold true.

Needless to say, utility maximization is an important topic in mathematical fi-
nance starting with [28, 34]. In case of exponential utility function (though in a
continuous-time and nonrobust setting), [22] and [15] were the first to prove dual-
ity and existence, which lead to further analysis, for example, a BSDE characteri-
zation of the optimal value and solution in an incomplete market and under trading
constraints is given in [26], and the dynamics and asymptotics in the risk-aversion
parameter γ are studied in [32]. In the presence of uncertainty, starting with [42]
and [43], most results are obtained under the assumption that P is dominated; see,
for example, [2, 24, 40]. The literature focusing on a nondominated set P is still
comprehensible and in continuous-time results are given in [18, 33, 35].

In the present setting (i.e., discrete-time and a nondominated set P), the dy-
namic programming principle and the existence of an optimal strategy are first
shown in [38], where the author considers a random utility function U defined on
� × R+ satisfying a certain boundedness (which would correspond to a random
endowment that is bounded from below in our setting). More recently, there are
three papers generalizing the result of [38]. In [9], the boundedness of the random
utility (still defined on the positive real line) is replaced by a certain integrability
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condition and dynamic programming as well as the existence of an optimal strat-
egy is shown. In [36, 37], the random utility function (which may be nonconcave in
the second work) is no longer defined on the positive real line, but satisfies certain
boundedness similar to [38]. Moreover, the market is more general and includes,
for example, trading constraints or proportional transaction cost. Convergence of
the utility indifference prices (to the superheding price) is shown in [8]. Duality on
the other hand is shown in Section 4.2 of [14] under a compactness condition on
the set P and (semi)continuity of the random endowment X.

In order to lighten notation, we will assume without loss of generality that the
prices of the traded options are 0 and, instead of (1.1), consider the equivalent
problem

inf
(ϑ,α)∈�×Re

sup
P∈P

logEP

[
exp

(
X + (ϑ · S)T + αg

)]
.

It is clear that both problems are one to one, except all results for an endowment
X in the original problem hold for −X in the transformed one, and vice versa.

The remainder of this paper is organized as follows: Section 2 contains the set-
ting, all main results, a discussion of the assumptions and some examples. Sec-
tions 3 and Section 4 are devoted to the proofs for the one period and general
case, respectively. Finally, technical proofs are given in Appendix A and a brief
introduction to the theory of analytic sets is given in Appendix B.

2. Main results.

2.1. Setting. Up to a change regarding the no-arbitrage condition (discussed
in Remark 2.5), we work in the setting proposed by Bouchard and Nutz [10],
which is briefly summarized below. Analytic sets and the general terminology
are shortly discussed in Appendix B. Let �0 be a singleton and �1 be a Polish
space. Fix d,T ∈ N, let �t := �t

1, and define Ft to be the universal completion
of the Borel σ -field on �t for each 0 ≤ t ≤ T . To simplify notation, we denote
(�,F) = (�T ,FT ) and often consider �t as a subset of �. For s < t , some fixed
ω ∈ �s , and a function X with domain �t , we consider X(ω, ·) as a function
with domain �t−s , that is, �t−s � ω′ �→ X(ω,ω′). For each 0 ≤ t ≤ T − 1 and
ω ∈ �t , there is a given convex and nonempty set of probabilities Pt (ω) ⊂ P(�1),
which can be seen as all possible probability scenarios for the price of the stock
at time t + 1, given the history ω. The assumption throughout is that the stock
St : �t → R

d is Borel and that the set-valued mapping Pt has analytic graph. The
latter in particular ensures that

P := {
P = P0 ⊗ · · · ⊗ PT −1 : Pt(·) ∈Pt (·)}(2.1)

is not empty. Here, each Pt is a selector of Pt , that is, a universally measurable
function Pt : �t →P(�1) satisfying Pt(ω) ∈ Pt (ω) for each ω, and the probabil-
ity P on � is defined by

P(A) :=
∫
�1

· · ·
∫
�1

1A(ω1, . . . ,ωT )PT −1(ω1, . . . ,ωT −1, dωT ) · · ·P0(dω1).



580 D. BARTL

The set of all dynamic trading strategies is denoted by � and an element ϑ ∈ � is
a vector ϑ = (ϑ1, . . . , ϑT ) consisting of Ft−1-measurable mappings ϑt : �t−1 →
R

d . The outcome at time t of trading according to the dynamic strategy ϑ starting
at time s ≤ t is given by

(ϑ · S)ts := ϑs+1	Ss+1 + · · · + ϑt	St where 	Su := Su − Su−1

and ϑu	Su := ∑d
i=1 ϑi

u	Si
u is the inner product. As P has a dynamic form, one

can consider both a local and a global no arbitrage condition: The global NA(P)

condition is satisfied if (ϑ · S)T0 ≥ 0 P-q.s. implies (ϑ · S)T0 = 0 P-q.s. for every
ϑ ∈ �, and the local NA(Pt (ω)) condition (for fixed 0 ≤ t ≤ T − 1 and ω ∈ �) is
satisfied if h	St+1(ω, ·) ≥ 0 Pt (ω)-q.s. implies h	St+1(ω, ·) = 0 Pt (ω)-q.s. for
every h ∈ R

d . Throughout this article we assume that

NA
(
Pt (ω)

)
holds for every 0 ≤ t ≤ T − 1 and ω ∈ �t.(2.2)

Note that this assumption is purely technical as NA(P) holds true if and only if
the set of all ω such that NA(Pt (ω)) fails for some t is a zero set under all P ∈ P ,
see [10], Theorem 4.5, and Remark 2.5 for a discussion. Finally, define

M = {
Q ∈ P(�) : S is a martingale under Q and H(Q,P) < +∞}

,

to be the set of martingale measures with finite robust entropy

H(Q,P) := inf
P∈P H(Q,P )

where H(Q,P ) :=
⎧⎪⎨
⎪⎩

EP

[
dQ

dP
log

dQ

dP

]
if Q � P,

+∞ else.

Throughout, the convention EP [X] := EP [X+]−EP [X−] with EP [X] := −∞ if
EP [X−] = +∞ is in force; in particular X is integrable with respect to P if and
only if EP [X] ∈ R.

2.2. Main results.

THEOREM 2.1 (Without options). Let X : � → (−∞,+∞] be upper semi-
analytic. Then

inf
ϑ∈�

sup
P∈P

logEP

[
exp

(
X + (ϑ · S)T0

)]= sup
Q∈M

(
EQ[X] − H(Q,P)

)
(2.3)

and both terms are not equal to −∞. Moreover, the infimum over ϑ ∈ � is attained
and the optimization problem satisfies the dynamic programming principle; see
Theorem 4.1 for the precise formulation of the last statement.
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In addition to the previous setting, assume that there are e ∈ N ∪ {0} op-
tions (e = 0 corresponding to the case without options), that is, Borel functions
g1, . . . , ge : � → R, available at time t = 0 for price zero. The outcome of a
semistatic trading strategy (ϑ,α) ∈ � × R

e equals (ϑ · S)T0 + αg, where αg :=∑e
i=1 αig

i again denotes the inner product. In addition to the already imposed no
arbitrage condition, assume that (ϑ ·S)T0 +αg ≥ 0 P-q.s. implies (ϑ ·S)T0 +αg = 0
P-q.s. for every strategy (ϑ,α) ∈ � ×R

e.

THEOREM 2.2 (With options). Fix a Borel function Z : � → [0,+∞) such
that |gi | ≤ Z for 1 ≤ i ≤ e and let X : � → R be an upper semianalytic function
satisfying |X| ≤ Z. Then it holds

inf
(ϑ,α)∈�×Re

sup
P∈P

logEP

[
exp

(
X + (ϑ · S)T0 + αg

)]= sup
Q∈Mg

(
EQ[X] − H(Q,P)

)
,

where Mg denotes the set of all Q ∈ M with EQ[Z] < +∞ and EQ[gi] = 0 for
1 ≤ i ≤ e. Moreover, the infimum over (ϑ,α) ∈ � ×R

e is attained.

REMARK 2.3. 1. The no-arbitrage condition NA(P) is essential. Indeed, even
if both sides in (2.3) do not take the value −∞, the condition NA(P) does not
need to hold—nor does equation (2.3); see Appendix A.

2. If X is allowed to take the value −∞ in Theorem 2.1, then neither duality
nor the existence of an optimal strategy hold true; see Appendix A.

3. In general, due the supremum over P ∈ P , the minimizer ϑ in (2.3) is not
unique and the supremum over Q is not attained.

4. In Theorem 2.1, the set M can be replaced by M(Y ) := {Q ∈M : EQ[Y ] <

+∞}, where Y : � → [0,+∞) is an arbitrary function such that −Y is upper
semianalytic. The same holds true for Theorem 2.2, that is, one can replace Mg

by Mg(Y ) := {Q ∈ Mg : EQ[Y ] < +∞}.
Another interesting problem is the study of asymptotic behavior of the opti-

mization problem in the risk-aversion parameter γ ; see, for example, [32]. Let us
give some motivation: Typically the superhedging price

π(X) := inf
{
m ∈ R : m + (ϑ · S)T0 + αg ≥ XP-q.s. for some (ϑ,α) ∈ � ×R

e}
is extremely high. A natural way of shrinking π is to allow m+ (ϑ ·S)T0 +ug < X

with positive probability in a “controlled” way; see, for example, [14, 20]. More
precisely, define

πγ (X) := inf

⎧⎨
⎩m : supP∈P

1

γ
logEP

[
exp

(
γ
(
X − m − (ϑ · S)T0 − αg

))]≤ 0

for some (ϑ,α) ∈ � ×R
e

⎫⎬
⎭

for each risk-aversion parameter γ > 0. Then πγ (X) ≤ π(X) by definition and
since exp(γ x)/γ → +∞1(0,+∞](x) as γ → +∞, an evident question is whether
the same holds true for the superhedging prices.
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THEOREM 2.4 (Entropic hedging). In the setting of Theorem 2.2, it holds

π(X) = lim
γ→+∞πγ (X)

and the limit in γ is a supremum over γ > 0.

REMARK 2.5. The reason why we require NA(Pt (ω)) to hold for every ω

and not only for P-quasi every ω as in Bouchard and Nutz [10], is the following.
In order to apply the one-period results (i.e., duality and existence of an optimal
strategy) to the local problem Et (ω, x) (see (4.1) for the precise definition), one
needs that Et+1(ω ⊗t ω′, x) > −∞ for Pt (ω)-quasi all ω′ ∈ �1, see point 2) in
Remark 2.3. However, to ensure the latter, NA(Pt+1(ω ⊗t ω′)) needs to holds
for Pt (ω)-quasi all ω′ ∈ �1. Due to the fact that the set Nt+1 := {ω̃ ∈ �t+1 :
NA(Pt (ω̃)) fails} is merely universally measurable, it is not clear that this con-
dition holds true for “sufficiently many” ω ∈ �t .

In case of only one measure (i.e., P = {P = P0 ⊗ · · · ⊗ PT −1} is a singleton),
this problem has an easy solution: Since P(Nt) = 0 for every t , one can redefine
Pt by P̃t := Pt1Nc

t
+ δSt 1Nt . Then P = P̃0 ⊗ · · · ⊗ P̃T −1 and P̃t (ω) := {P̃t (ω)}

has analytic graph (a proof is given in Appendix A). The same can be done in the
setting of general P , as long as one requires the sets Nt to be Borel; otherwise the
graph of P̃t := Pt1Nc

t
+ {δSt }1Nt needs not to be analytic.

Finally, note that P is defined though the sets Pt (and not the other way around),
which means that the assumption for NA(Pt (ω)) to hold for every ω does not seem
restrictive regarding applications; see also Section 2.3.

Recently, using a different approach, [17] were able to get rid of this assumption.

REMARK 2.6. The (technical but crucial) assumption that the graph of Pt is
analytic has two consequences: It allows for measurable selection arguments and
enables to define pointwise conditional sublinear expectations, that is, ensure that

(2.4) E(X|�t)(ω) := sup
P∈Pt (ω)

EP

[
X(ω, ·)] for ω ∈ �t and X : �t+1 →R

is upper semianalytic as a mapping of ω whenever X is [10, 39]. The converse
holds true as well: Given an arbitrary sublinear conditional expectation E(·|�t)

(satisfying some continuity), there always exists a set-valued mapping Pt with
analytic graph such that (2.4) holds true [3], Theorem 1.1. Similarly, the “time-
consistency” (2.1) of P is equivalent to the tower-property [3], Theorem 1.2.

2.3. Examples. In this section, we discuss a general method of robustifying
a given probability and also give applications to financial models. All nontrivial
claims are proven at the beginning of Appendix A.

In many cases, the physical measure is not known a priori, but rather a result of
collecting data and estimation. In particular, the estimator is not equal to, but only
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“converges” (as the data grow richer) to the actual unknown physical measure.
A canonical way of taking this into account therefore consists of adding some sort
of “neighborhood” to the estimator P ∗ = P ∗

0 ⊗ · · · ⊗ P ∗
T −1, that is, to define

Pt (ω) := {
P ∈ P(�1) : dist

(
P,P ∗

t (ω)
)≤ εt (ω)

}
.(2.5)

Here, as the name suggests,

dist : �1 × �1 → [0,+∞]
can be thought of a distance and εt : �t → [0,+∞] as the size of the neighbor-
hood. If dist, εt (and P ∗

t ) are Borel—from now on a standing assumption—then
Pt has analytic graph. If dist is in fact a metric or at least fulfills dist(P,P ) = 0,
the values of Pt are also nonempty. Since the distance should be compatible with
estimation, natural choices include the Wasserstein distances of order p or, more
generally, the cost of transportation, that is,

dist(Q,P ) := inf
{∫

�1×�1

c(x, y)
(dx, dy) : 

}
,

where the infimum is taken over all measures on the product 
 ∈ P(�1 × �1)

with 
(· × �1) = Q and 
(�1 × ·) = P , and c : �1 × �1 → [0,+∞] is a given
lower semicontinuous function (the “cost”). This includes the Wasserstein distance
of order p; then the cost c equals a metric on �1 to the power p; see, for exam-
ple, Chapters 5 and 6 in [45]. This traceable distance has many advantages, for
example, that besides metrizing weak convergence, it controls the integrability of
the tails. In this case, Pt has convex values. Moreover, [4] provide a finite dimen-
sional formula how to compute the worst case expectation over all probabilities in
a Wasserstein neighborhood of a baseline distribution.

The above method can also be applied when a certain model for the dynamics
of the underlying is fixed and only the parameters are uncertain. For simplicity, as-
sume that � = R

T , St (ω) = ωt is the canonical space of a one-dimensional stock.
We illustrate in two concrete examples: the binomial model, which reads as

St+1(ω, ·) = St (ω) + B(·)(2.6)

for every t and ω ∈ �t where B : �1 →R is binomially distributed, and a discrete
version of the Black–Scholes model, which reads as

St+1(ω, ·) = St (ω)
(
μ	t + σ	W(·)),(2.7)

where μ ∈ R, σ,	t > 0, and 	W : �1 → R is normally distributed with mean
0 and variance 	t ; we write 	W ∼ N(0,	t). Defining ft (ω, x) := St (ω) + x,
X := B in case of the binomial, and ft (ω, x) := St (ω)x, X := μ	t + σ	W in
case of the Black–Scholes model, it follows that both can be written in the more
general form

St+1(ω, ·) = ft

(
ω,X(·)),(2.8)
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where ft : �t ×R→R and X : �1 →R are Borel. In terms of distributions, (2.8)
means nothing but

lawSt+1(ω, ·) = R ◦ f (ω, ·)−1 where R := lawX.

Therefore, a canonical way of robustifying a given model of the form (2.8) is to
replace R in the equation above by a set Rt (ω) ⊂ P(�1), and to define

P̂t (ω) := {
lawSt+1(ω, ·) = R ◦ f (ω, ·)−1 : R ∈ Rt (ω)

}
.

For example, in line with the first part of this section, one can take some neighbor-
hood

Rt (ω) = {
R ∈P(�1) : dist(R, lawX) ≤ εt (ω)

}
,(2.9)

or, if there are even less data, one might argue that

Rt (ω) := {
R ∈ P(�1) : ER

[
φi

t (ω, ·)]≤ 1 for 1 ≤ i ≤ n
}

(2.10)

for some given Borel functions φ1
t , . . . , φ

n
t : �t ×R

d →R is a good choice. Here,
if infx φi

t (ω, x) ≤ 0 for all i and ft in (2.8) is such that St (ω) lies in the relative
interior of ft (ω,Rd) for every ω ∈ �t—an assumption which is usually fulfilled—
then the resulting model of (2.10) satisfies NA(Pt (ω)) for every t and ω. The
same holds true for Rt defined by (2.9) under the mentioned assumption on ft

if, for example, dist is the Wasserstein distance of order p and X has a finite pth
moment.

On a technical level, Rt defined by (2.10) has analytic graph and so do P̂t and
Pt , the latter begin defined as Pt (ω) := conv P̂t (ω) the convex hull of P̂t . The
same holds true for Rt defined by (2.9).

EXAMPLE 2.7 (Binomial model). Besides what was mentioned above, an-
other natural generalization of the Binomal model is to allow for the jump size and
probability to take values in some intervals (which may depend on the time t and
past ω ∈ �t ). This corresponds to

Rt (ω) :=
{
pδa + (1 − p)δb : p ∈ [

p
t
(ω),pt (ω)

]
and

a ∈ [
at (ω), at (ω)

]
, b ∈ [

bt (ω), bt (ω)
]
}

,

where 0 < p
t
≤ pt < 1, at ≤ at < 0 < bt ≤ bt are Borel functions. Here, δa de-

notes the Dirac measure at point a. Note that NA(Pt (ω)) is trivially satisfied for
every t and ω.

Regarding the Black–Scholes model in continuous time, there is a popular and
well-studied way of robustification (see, e.g., [41]): Consider all models (2.7) with
μ and volatility σ in some given intervals. This can be done as in the previous
example, however, then each Pt (ω) and, therefore, also the resulting family P
is dominated (by the Lebesgue measure). In the present discrete-time setting, it
seems more interesting to discard the assumption of normality of 	W in (2.7).



EXPONENTIAL UTILITY MAXIMIZATION UNDER MODEL UNCERTAINTY 585

EXAMPLE 2.8 (Black–Scholes). Fix two Borel functions μt : �1 → R and
σt : �1 → (0,+∞), and let εt and dist be as above. Now define

Rt (ω) := {
R ∗ δμ	t : μ ∈ [

μt(ω),μt (ω)
]

and dist
(
R,N

(
0, σ 2

t (ω)	t
))≤ εt (ω)

}
,

where R ∗ δμ	t denotes the convolution R ∗ δμ	t (A) := R(A − μ	t). The set P̂t

therefore corresponds to the Black–Scholes model with drift and volatility uncer-
tainty in the sense that one considers all models

St+1(ω, ·) = St (ω)(μ	t + Y),
μ ∈ [

μt(ω),μt (ω)
]

and the law of
Y is εt (ω) close to N

(
0, σ 2

t (ω)	t
)

simultaneously. To be more in line with the original model, one can also require
that R (resp., Y ) has mean 0 in the definition of Rt . Note that for any reason-
able choice for the distance (e.g., Wasserstein), the set Pt (ω) satisfies all of our
assumptions.

3. Proof for the one-period setting. Let (�,F) be a measurable space armed
with a family of probability measures P ⊂ P(�). Further, let S0 ∈R and S1 : � →
R be measurable. We write h ∈ � = R

d for trading strategies and assume the
no-arbitrage NA(P), that is, h	S ≥ 0 P-q.s. implies h	S = 0 P-q.s. for every
h ∈ R

d . Given some random variable Z : � → [0,+∞), denote by

M(Z) = {
Q ∈ P(�) : EQ

[|	S| + Z
]+ H(Q,P) < +∞ and EQ[	S] = 0

}
the set of martingale measures that have finite entropy and integrate Z. The fol-
lowing is the main result of this section.

THEOREM 3.1. Fix a random variable X : � → (−∞,+∞]. Then one has

inf
h∈Rd

sup
P∈P

logEP

[
exp(X + h	S)

]= sup
Q∈M(Y )

(
EQ[X] − H(Q,P)

)
(3.1)

for every random variable Y : � → [0,+∞) and both terms are not equal to −∞.
Moreover, the infimum over h ∈ R

d is attained.

The following lemma, which turns out to be be helpful in the multiperiod case,
is shown in the course of the proof of Theorem 3.1.

LEMMA 3.2. Let Xn : � → (−∞,+∞] be a sequence of random variables
increasing point-wise to X. Then it holds

sup
n

inf
h∈Rd

sup
P∈P

logEP

[
exp(Xn + h	S)

]= inf
h∈Rd

sup
P∈P

logEP

[
exp(X + h	S)

]
,

that is, the optimization problem is continuous from below.
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LEMMA 3.3. Fix a random variable X : � →R. Then one has

sup
P∈P

logEP

[
exp(X + h	S)

]= sup
Q∈C

(
EQ[X + h	S] − H(Q,P)

)

for every h ∈ R
d , where

C := {
Q ∈P(�) : EQ

[|X| + |	S| + Y
]+ H(Q,P) < +∞}

and Y : � → [0,+∞) is an arbitrary random variable.

PROOF. (a) Define Z := X + h	S and fix a measure P ∈ P . It follows from
the well-known representation of expected exponential utility and the monotone
convergence theorem that

logEP

[
exp(Z)

]= sup
Q∈AP

(
EQ[Z] − H(Q,P )

)
,(3.2)

where

AP := {
Q ∈ P(�) : EQ

[
Z−]+ H(Q,P ) < +∞}

.

For the sake of completeness, a proof is provided in Lemma A.1. We claim that
one can replace AP with CP in (3.2) without changing the value of the supremum,
where

CP := {
Q ∈P(�) : EQ

[|X| + |	S| + Y
]+ H(Q,P ) < +∞}

.

Since CP is a subset of AP , it suffices to show that for any Q ∈ AP , there ex-
ists a sequence Qn ∈ CP such that EQn[Z] − H(Qn,P ) converges to EQ[Z] −
H(Q,P ). To that end, fix some Q ∈ AP and define

Qn := Q(·|Bn) where Bn := {|X| + |	S| + Y ≤ n
}

for all n large enough such that Q(Bn) > 0. Then it holds

dQn

dP
= 1Bn

Q(Bn)

dQ

dP

and since Bn ↑ �, a straightforward computation shows that

H(Qn,P ) = EP

[
1Bn

Q(Bn)

dQ

dP
log

dQ

dP

]
− logQ(Bn) → H(Q,P ).

In particular, H(Qn,P ) < +∞ and since X, 	S, and Y are integrable with respect
to Qn, it follows that Qn ∈ CP . Further, the integrability of Z− with respect to Q

guarantees the convergence of EQn[Z] to EQ[Z] and, therefore,

EQ[Z] − H(Q,P ) = lim
n

(
EQn[Z] − H(Qn,P )

)≤ sup
Q∈CP

(
EQ[Z] − H(Q,P )

)
.

Taking the supremum over all Q ∈ AP yields the claim.
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(b) To conclude the proof, make the simple observation that C equals the union
over CP where P runs trough P . This implies that

sup
P∈P

logEP

[
exp(Z)

]= sup
P∈P

sup
Q∈CP

(
EQ[Z] − H(Q,P )

)
= sup

Q∈C
(
EQ[Z] − H(Q,P)

)
,

where the first equality follows from step (a). �

LEMMA 3.4. The relative entropy H is jointly convex. Moreover, the function
H(·,P) and the set C defined in Lemma 3.3 are convex.

PROOF. It follows from [21], Lemma 3.29, that

H(Q,P ) = sup
{
EQ[Z] − logEP

[
exp(Z)

] : Z is a bounded random variable
}
.

For any such Z, the function (Q,P ) �→ EQ[Z] − logEP [exp(Z)] is convex. Thus
H , as the supremum over convex functions, is itself convex. Furthermore, the con-
vexity of P yields that H(·,P) and C are convex. �

In the proof of Theorem 3.1, it will be important that 0 ∈ ri{EQ[	S] : Q ∈ C}
where C was defined in Lemma 3.3 and ri denotes the relative interior. To get the
idea why this is true, assume for simplicity that d = 1 and that 	S is not P-quasi
surely equal to 0. Then, by the no-arbitrage condition, there exist two measures
P ± such that P ±(±	S > 0) > 0. Now define

Qλ := λP +(·|0 < 	S, |X|, Y < n
)+ (1 − λ)P −(·|−n < 	S,−|X|,−Y < 0

)
for n large enough and every λ ∈ [0,1]. Then X, 	S, and Y are integrable
with respect to Qλ and since EQ0[	S] < 0, EQ1[	S] > 0 it follows that 0 ∈
int{EQλ[	S] : λ ∈ [0,1]}. As the density of Qλ with respect to (P + + P −)/2 ∈ P
is bounded, it holds H(Qλ,P) < +∞, and thus Qλ ∈ C.

LEMMA 3.5 ([10], Lemma 3.3). Let X,Y : � → R be random variables and
assume that Y is nonnegative. Then one has 0 ∈ ri{EQ[	S] : Q ∈ C} where C was
defined in Lemma 3.3.

PROOF. Even though [10], Lemma 3.3, states that 0 ∈ ri{EQ[	S] : Q ∈ �}
for the set � = {Q : EQ[|X| + |	S| + Y ] < +∞ and Q � P for some P ∈ P},
the constructed measures Q have bounded densities dQ/dP with respect to some
P ∈ P , in particular H(Q,P) is finite. The proof can be copied word by word.

�

Before being ready for the proof of the main theorem, one last observation
on the decomposition of Rd into relevant and irrelevant strategies h needs to be
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made. Denote by suppP 	S the smallest closed subset of Rd such that 	S(ω) ∈
suppP 	S for P-quasi every ω; see [10], Lemma 4.2. Further, write linA for the
smallest linear space which contains a given set A ⊂ R

d , and L⊥ := {h ∈ R
d : hl =

0 for all l ∈ L} for the orthogonal complement of a linear space L ⊂ R
d .

LEMMA 3.6 ([38], Lemma 2.6). Define L := lin suppP 	S. Then one has h ∈
L⊥ if and only if h	S = 0 P-quasi surely.

PROOF OF THEOREM 3.1 AND LEMMA 3.2. In step (a), duality is shown un-
der the assumption that X is bounded from above. The existence of an optimizer
h ∈ R

d as well as continuity from below are proven simultaneously in step (b).
Finally, the results from (a) and (b) are combined to extend to unbounded random
endowment X in step (c).

(a) Throughout this step, assume that X is bounded from above, meaning that
there exists some constant k such that X(ω) ≤ k for every ω. The goal is to show
the following dual representation:

(3.3) inf
h∈Rd

sup
P∈P

logEP

[
exp(X + h	S)

]= sup
Q∈M(|X|+Y )

(
EQ[X] − H(Q,P)

)
.

By Lemma 3.3, it holds

inf
h∈Rd

sup
P∈P

logEP

[
exp(X + h	S)

]= inf
h∈Rd

sup
Q∈C

(
EQ[X + h	S] − H(Q,P)

)
,

where

C := {
Q ∈ P(�) : EQ

[|X| + |	S| + Y
]+ H(Q,P) < +∞}

.

Thus, if interchanging the infimum over h ∈ R
d and the supremum over Q ∈ C

were possible, (3.3) would follow since infh∈Rd EQ[h	S] = −∞ whenever Q is
not a martingale measure. In what follows, we argue why one can in fact inter-
change the infimum and the supremum. Define

� := lin
{
EQ[	S] : Q ∈ C

}
and notice that if � = {0}, then C = M(|X| +Y) and EQ[h	S] = 0 for all h ∈ R

d

and Q ∈ C so that there is nothing to prove. Therefore, assume in the sequel that
� �= {0} and let

{e1, . . . , er} be an orthonormal basis of �.

Further, to simplify notation, define the function J : C ×R
d →R,

J (Q,h) := hEQ[	S] + EQ[X] − H(Q,P).

By Lemma 3.4, the set C and the function H(·,P) are convex, which shows that
J (·, h) is concave for all h ∈ R

d . Further, J (Q, ·) is convex for all Q ∈ C. There-
fore, [44], Theorem 4.1, gives a sufficient condition for

inf
h∈Rd

sup
Q∈C

J (Q,h) = sup
Q∈C

inf
h∈Rd

J (Q,h)
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to hold true, namely that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

for every c < inf
h∈Rd

sup
Q∈C

J (Q,h) one can find a finite set F ⊂ C

such that for every h ∈ R
d there exists Q ∈ F satisfying

J (Q,h) > c.

(3.4)

To prove (3.4), fix such c and notice that{
h ∈ R

d : J (Q,h) > c
}= {

h ∈ � : J (Q,h) > c
}+ �⊥

since hEQ[	S] = 0 for every h ∈ �⊥ and Q ∈ C. Therefore, we can assume with-
out loss of generality that h ∈ � in the sequel. In fact, we shall distinguish between
elements in � with large and small (Euclidean) length. From Lemma 3.5, it follows
that

0 ∈ ri
{
EQ[	S] : Q ∈ C

}
which implies that there exist a±

i > 0 and Q±
i ∈ C satisfying

EQ±
i
[	S] = ±a±

i ei for 1 ≤ i ≤ r.

We claim that {
max

{
J
(
h,Q±

i

) : 1 ≤ i ≤ r
}
> c + 1 > c

for all h ∈ � such that |h| > m
√

r/δ,
(3.5)

where

m := max
{
c + 1 − EQ±

i
[X] + H

(
Q±

i ,P
) : 1 ≤ i ≤ r

} ∈ R

and

δ := min
{
a±
i : 1 ≤ i ≤ r

}
> 0.

Indeed, since
∑r

i=1(hei)
2 = |h|2 > r(m/δ)2, it follows that |hej | > m/δ for some

1 ≤ j ≤ r . If hej > m/δ, it holds

hEQ+
j
[	S] = ha+

j ej >
ma+

j

δ
≥ m ≥ c + 1 − EQ+

j
[X] + H

(
Q+

j ,P
)

and a rearrangement of the appearing terms yields J (h,Q+
j ) > c + 1. If hej <

−m/δ, the same argumentation shows that J (h,Q−
j ) > c + 1. Further, as

J (Q, ·) is continuous and c < inf
h∈�

sup
Q∈C

J (Q,h),

the collection

UQ := {
h ∈ � : J (Q,h) > c

}
,
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where Q ∈ C, forms an open cover of �. By compactness of the set {h ∈ � : |h| ≤
m

√
r/δ}, there exists a finite family F ′ ⊂ C such that

{
h ∈ � : |h| ≤ m

√
r/δ

}⊂⋃{
UQ : Q ∈ F ′}.

Then F := F ′⋃{Q±
i : 1 ≤ i ≤ r} is still finite and it holds

� =⋃{UQ : Q ∈ F },
which is a reformulation of (3.4). Putting everything together, it follows that

inf
h∈Rd

sup
P∈P

logEP

[
exp(X + h	S)

]
= inf

h∈Rd
sup
Q∈C

J (Q,h)

= sup
Q∈C

inf
h∈Rd

J (Q,h) = sup
Q∈M(|X|+Y )

(
EQ[X] − H(Q,P)

)
.

In particular, since M(|X| + Y) is not empty by Lemma 3.5, it follows that the
optimization problem does not take the value −∞.

(b) We proceed to show that the optimization problem is continuous from be-
low (Lemma 3.2) and that an optimal strategy h ∈ R

d exists. Recall that Xn is
a sequence increasing point-wise to X. For the existence of an optimal strategy
for a fixed function X, consider the constant sequence Xn := X in the following
argumentation. For each natural number n, let hn ∈ R

d such that

inf
h∈Rd

sup
P∈P

logEP

[
exp(Xn + h	S)

]

≥ sup
P∈P

logEP

[
exp(Xn + hn	S)

]− 1

n
.

(3.6)

By step (a), this is possible, that is, the left-hand side of (3.6) is not equal to −∞.
By Lemma 3.6, we may assume without loss of generality that every hn is an
element of L := lin suppP 	S.

First assume that the sequence hn is unbounded, that is, supn |hn| = +∞. Then,
possibly after passing to a subsequence, hn/|hn| converges to some limit h∗. Since
|h∗| = 1 and h∗ ∈ L, it follows from Lemma 3.6 and the NA(P)-condition, that
P ′(A) > 0 for some P ′ ∈ P where A := {h∗	S > 0}. However, since

exp(Xn + hn	S)1A → +∞1A,

an application of Fatou’s lemma yields

inf
h∈Rd

sup
P∈P

logEP

[
exp(Xn + h	S)

]≥ logEP ′
[
exp(Xn + hn	S)

]− 1

n
→ +∞.
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But then, since the sequence Xn is increasing, it follows that

inf
h∈Rd

sup
P∈P

logEP

[
exp(X + h	S)

]
≥ lim

n
inf

h∈Rd
sup
P∈P

logEP

[
exp(Xn + h	S)

]= +∞.

Hence the optimization problem is continuous from below and every h ∈ R
d is

optimal for X.
If the sequence hn is bounded, again possibly after passing to a subsequence,

hn converges to some limit h∗ ∈ R
d . Now it follows that

sup
P∈P

logEP

[
exp

(
X + h∗	S

)]

≤ lim inf
n

(
sup
P∈P

logEP

[
exp(Xn + hn	S)

]− 1

n

)

≤ lim inf
n

inf
h∈Rd

sup
P∈P

logEP

[
exp(Xn + h	S)

]
≤ inf

h∈Rd
sup
P∈P

logEP

[
exp(X + h	S)

]
,

where the first inequality follows from Fatou’s lemma, the second one since hn was
chosen optimal up to an error of 1/n, and the last one since Xn is an increasing
sequence. This shows both that the optimization problem is continuous from below
and that h∗ is optimal for X.

(c) In the final step, the duality established in (a) is extended to general random
endowment. Let X : � → (−∞,+∞] be measurable and observe that

M
(
X− + Y

)=M
(|X ∧ n| + Y

)
for all n ∈ N

since X− is integrable if and only if (X ∧n)− is. Moreover, for any Q ∈ M(X− +
Y) the monotone convergence theorem applies and yields that supn EQ[X ∧ n] =
EQ[X]. But then it follows that

inf
h∈Rd

sup
P∈P

logEP

[
exp(X + h	S)

]
= sup

n
inf

h∈Rd
sup
P∈P

logEP

[
exp(X ∧ n + h	S)

]
= sup

n
sup

Q∈M(X−+Y )

(
EQ[X ∧ n] − H(Q,P)

)

= sup
Q∈M(X−+Y )

(
EQ[X] − H(Q,P)

)
,

where the first and second equality follow from step (b) and (a), respectively, and
the last one by interchanging two suprema. �
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4. Proofs for the multiperiod case.

4.1. The case without options. In this section, measurable selection arguments
are used to show that the global analysis can be reduced to a local one wherein the
results of the one-period case are used. For each 0 ≤ t ≤ T − 1 and ω ∈ �t , define

PT
t (ω) = {

Pt ⊗ · · · ⊗ PT −1 : Ps(·) ∈ Ps(ω, ·) for t ≤ s ≤ T − 1
}
,

where each Ps(·) is a universally measurable selector of Ps(ω, ·). Thus PT
t (ω) cor-

responds to the set of all possible probability scenarios for the future stock prices
St+1, . . . , ST , given the past ω ∈ �t . In particular, it holds P = PT

0 in line with
Bouchard and Nutz. In order to keep the indices to a minimum, fix two functions

X : � → (−∞,+∞] and Y : � → [0,+∞)

such that X and −Y are upper semianalytic, and define the set of all martingale
measures for the future stock prices St+1, . . . , ST given the past ω ∈ �t by

MT
t (ω) =

{
Q ∈ P(�T −t ) :

(
Ss(ω, ·))t≤s≤T is a Q-martingale and

EQ

[
X(ω, ·)− + Y(ω, ·)]+ H

(
Q,PT

t (ω)
)
< +∞

}

for each 0 ≤ t ≤ T −1 and ω ∈ �t . It is shown in Lemma 4.5 that MT
t has analytic

graph and within the proof of Theorem 4.1 that its values are not empty. Note
that MT

0 = M(Y ) = {Q ∈ M : EQ[Y + X−] < +∞}, where M was defined in
Section 2. Further, introduce the dynamic version of the optimization problem:
Define

ET (ω, x) := X(ω) + x

for (ω, x) ∈ � ×R and recursively

(4.1) Et (ω, x) := inf
h∈Rd

sup
P∈Pt (ω)

logEP

[
exp

(
Et+1

(
ω ⊗t ·, x + h	St+1(ω, ·)))]

for (ω, x) ∈ �t × R. Here, we write ω ⊗t ω′ := (ω,ω′) ∈ �t+s for ω ∈ �t and
ω′ ∈ �s instead of (ω, ·) to avoid confusion. It will be shown later that Et is well
defined, that is, that the term inside the expectation is appropriately measurable.

The following theorem is the main result of this section and includes Theo-
rem 2.1 as a special case (corresponding to t = 0).

THEOREM 4.1. For every 0 ≤ t ≤ T − 1 and ω ∈ �t , it holds

Et (ω, x) − x = inf
ϑ∈�

sup
P∈PT

t (ω)

logEP

[
exp

(
X(ω, ·) + (ϑ · S)Tt (ω, ·))]

= sup
Q∈MT

t (ω)

(
EQ

[
X(ω, ·)]− H

(
Q,PT

t (ω)
))

and both terms are not equal to −∞. Moreover, the infimum over ϑ ∈ � is at-
tained.
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We start by investigating properties of the (robust) relative entropy and the graph
of Mt , which will ensure that measurable selection arguments can be applied. We
then focus on deriving a duality for Et and last prove the dynamic programming
principle.

LEMMA 4.2 ([19], Lemma 1.4.3.b). The relative entropy H is Borel.

PROOF. Any Borel function can be approximated in measure by continuous
functions, so it follows as in the proof of Lemma 3.4 that

H(Q,P ) = sup
{
EQ[Z] − logEP

[
exp(Z)

] : Z is bounded and continuous
}
.

Therefore, {H ≤ c} is closed for any real number c showing that H is Borel. �

The so-called chain rule for the relative entropy is well known; a proof can
be found, for example, in Appendix C3 of the book by Dupuis and Ellis [19].
However, since we are dealing with universally measurable kernels and also in
order to be self-contained, a proof is given in the Appendix. For the link between
dynamic risk measures and this chain rule, see, for example, [12] in the dominated,
and [3, 29] in the nondominated setting.

LEMMA 4.3. Let 0 ≤ t ≤ T − 1 and P,Q ∈ P(�T −t ). Then

H(Q,P ) =
T −1∑
s=t

EQ

[
H
(
Qs(·),Ps(·))],

where Qs and Ps are universally measurable kernels such that Q = Qt ⊗ · · · ⊗
QT −1 and P = Pt ⊗ · · · ⊗ PT −1.

LEMMA 4.4. For any 0 ≤ t ≤ T − 1, the function

�t ×P(�T −t ) → [−∞,0], (ω,Q) �→ −H
(
Q,PT

t (ω)
)

is upper semianalytic. Moreover, it holds

H
(
Q,PT

t (ω)
)= H

(
Qt,Pt (ω)

)+ EQ

[
H
(
Q′(·),PT

t+1(ω, ·))],
where Q′ is a universally measurable kernel such that Q = Qt ⊗ Q′.

PROOF. Every probability Q ∈ P(�T −t ) can be written as Q = Qt ⊗ · · · ⊗
QT −1 where Qs are the kernels from Remark B.2, that is, such that

�s−t ×P(�T −t ) →P(�1), (ω̄,Q) �→ Qs(ω̄)

is Borel.
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(a) We start by showing that

�t ×P(�T −t ) → [−∞,0],
(4.2)

(ω,Q) �→
T −1∑
s=t

−EQ

[
H
(
Qs(·),Ps(ω, ·))]

is upper semianalytic. Fix some t ≤ s ≤ T − 1. In the sequel, ω will refer to ele-
ments in �t and ω̄ to elements in �s−t . Since (ω̄,Q) �→ Qs(ω̄) is Borel by con-
struction and the entropy H is Borel by Lemma 4.2, the composition

�t × �s−t ×P(�T −t ) ×P(�1) → [−∞,0],
(ω, ω̄,Q,R) �→ −H

(
Qs(ω̄),R

)
is Borel as well. As the graph of Ps is analytic, it follows from [7], Proposi-
tion 7.47, that

�t × �s−t ×P(�T −t ) → [−∞,0],
(4.3)

(ω, ω̄,Q) �→ −H
(
Qs(ω̄),Ps(ω, ω̄)

)
is upper semianalytic. Moreover, [7], Proposition 7.50, guarantees that for any
ε > 0, there exists a universally measurable kernel P ε

s such that{
P ε

s (ω, ω̄,Q) ∈ Ps(ω, ω̄),

H
(
Qs(ω̄),P ε

s (ω, ω̄,Q)
)≤ H

(
Qs(ω̄),Ps(ω, ω̄)

)+ ε
(4.4)

for all (ω, ω̄,Q). This will be used in part (b). Further, since

�t ×P(�T −t ) → [−∞,0], (ω,Q) �→ −EQ

[
H
(
Qs(·),Ps(ω, ·))]

is just (4.3) integrated with respect to Q(dω̄), an application of Lemma B.1 shows
that this mapping is upper semianalytic. Finally, the fact that sums of upper semi-
analytic functions are again upper semianalytic (see [7], Lemma 7.30) implies that
(4.2) is upper semianalytic as was claimed.

(b) Fix some ω ∈ �t and Q ∈ P(�T −t ). From Lemma 4.3, it follows that

H
(
Q,PT

t (ω)
)= inf

P∈PT
t (ω)

T −1∑
s=t

EQ

[
H
(
Qs(·),Ps(·))]

≥
T −1∑
s=t

EQ

[
H
(
Qs(·),Ps(ω, ·))].

For the other inequality, let ε > 0 be arbitrary and P ε
s be the kernels from (4.4).

Recall that Q and ω are fixed so that

P ′
s : �s−t →P(�1), ω̄ �→ P ε

s (ω, ω̄,Q)
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is still universally measurable by [7], Lemma 7.29. Then it follows that

P ′ := P ′
t ⊗ · · · ⊗ P ′

T −1 ∈ PT
t (ω)

and, using Lemma 4.3 once more, that

T −1∑
s=t

EQ

[
H
(
Qs(·),Ps(ω, ·))]

≥
T −1∑
s=t

EQ

[
H
(
Qs(·),P ′

s (·)
)− ε

]

= H
(
Q,P ′)− (T − t)ε ≥ H

(
Q,PT

t (ω)
)− (T − t)ε.

As ε was arbitrary, this shows the desired inequality.
(c) Finally, kernels are almost-surely unique so that

Q′ = Qt+1 ⊗ · · · ⊗ QT −1, Qt -almost surely.

Hence it follows that

H
(
Q′(·),Pt+1(ω, ·))=

T −1∑
s=t+1

EQ′(·)
[
H
(
Qs(·),Ps(ω, ·))], Qt -almost surely.

It only remains to integrate this equation with respect to Qt . �

Fix a measure Q = Qt ⊗ · · · ⊗ QT −1 ∈ P(�T −t ) and ω ∈ �t . An elementary
computation shows that Q is a martingale measure for (Ss(ω, ·))t≤s≤T if and only
if EQ[|	Ss+1(ω, ·)|] < +∞ and

EQs(ω̄)

[
	Ss+1(ω, ω̄, ·)]= 0 for Qt ⊗ · · · ⊗ Qs−1-almost every ω̄ ∈ �s−t

and every t ≤ s ≤ T − 1. This is used in the sequel without reference.

LEMMA 4.5. The graph of MT
t is analytic.

PROOF. First notice that Z := X ∧ 0 − Y is upper semianalytic. This follows
from the fact that {X ∧ 0 ≥ a} equals ∅ if a > 0 and {X ≥ a} else and that the
sum of upper semianalytic functions remains upper semianalytic. Therefore, an
application of Lemma B.1 shows that

�t ×P(�T −t ) → [−∞,0], (ω,Q) �→ EQ

[
Z(ω, ·)]

is upper semianalytic. Then, since (ω,Q) �→ −H(Q,PT
t (ω)) is upper semiana-

lytic by Lemma 4.4 and the sum of upper semianalytic mappings is again upper
semianalytic, it follows that

A := {
(ω,Q) : EQ

[
Z(ω, ·)]− H

(
Q,PT

t (ω)
)
> −∞}
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is an analytic set. The missing part now is the martingale property. First notice
that

�t ×P(�T −t ) → [0,+∞], (ω,Q) �→ EQ

[∣∣	Ss+1(ω, ·)∣∣]
is Borel by Lemma B.1. As before, for every Q ∈ P(�T −t ), we will write
Q = Qt ⊗· · ·⊗QT −1 for the kernels Qs from Remark B.2. Then, since (ω̄,Q) �→
Qs(ω̄) is Borel, a twofold application of Lemma B.1 shows that

�t ×P(�T −t ) → [0,+∞], (ω,Q) �→ EQ

[∣∣EQs(·)
[
	Ss+1(ω, ·)]∣∣]

is Borel. Thus

Bs := {
(ω,Q) : EQ

[∣∣	Ss+1(ω, ·)∣∣]< +∞ and EQ

[∣∣EQs(·)
[
	Ss+1(ω, ·)]∣∣]= 0

}
is Borel which implies that

graphMT
t =⋂{Bs : t ≤ s ≤ T − 1} ∩ A,

as the finite intersection of analytic sets, is itself analytic (see [7], Corol-
lary 7.35.2). �

Define

Dt (ω) := sup
Q∈MT

t (ω)

(
EQ

[
X(ω, ·)]− H

(
Q,PT

t (ω)
))

for all 0 ≤ t ≤ T − 1 and ω ∈ �t , and recall that

Et (ω, x) := inf
h∈Rd

sup
P∈Pt (ω)

logEP

[
exp

(
Et+1

(
(ω, ·), x + h	St+1(ω, ·)))]

for (ω, x) ∈ �t ×R.

PROOF OF THEOREM 4.1—DUALITY. We claim that{
Et (ω, x) =Dt (ω) + x and Dt (ω) ∈ (−∞,+∞]

for all ω ∈ �t , x ∈ R and 0 ≤ t ≤ T − 1.
(4.5)

The proof will be a backward induction. For t = T − 1, (4.5) is just the statement
of Theorem 3.1.

Now assume that (4.5) holds true for t + 1. First we artificially bound X from
above and then pass to the limit. More precisely, define

Dn
s (ω) := sup

Q∈MT
s (ω)

(
EQ

[
X(ω, ·) ∧ n

]− H
(
Q,PT

s (ω)
))

for s = t, t + 1 and ω ∈ �s , and notice that Dn
s is upper semianalytic. Indeed,

since X(ω, ·) ∧ n is upper semianalytic, the mapping (ω,Q) �→ EQ[X(ω, ·) ∧ n]
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is upper semianalytic by Lemma B.1. Then Lemma 4.4 and the fact that the sum
of upper semianalytic functions stays upper semianalytic implies that

(ω,Q) �→ EQ

[
X(ω, ·) ∧ n

]− H
(
Q,PT

s (ω)
)

is upper semianalytic. Since the graph of MT
s is analytic by Lemma 4.5, it follows

from [7], Proposition 7.47, that Dn
s is upper semianalytic. Moreover, [7], Proposi-

tion 7.50, guarantees that for any ε > 0 there exists a universally measurable kernel
Qε(·) ∈ MT

t+1(ω, ·) such that

Dn
t+1(ω ⊗t ·) ≤ EQε(·)

[
X(ω, ·) ∧ n

]− H
(
Qε(·),PT

t+1(ω, ·))+ ε.(4.6)

By interchanging two suprema, it holds Ds = supnDn
s (for more details, see part

(c) of the proof of Theorem 3.1). In particular, Ds is upper semianalytic, as the
countable supremum over upper semianalytic functions. Therefore, it follows from
Lemma 3.2 that Et = supn En

t where

En
t (ω, x) := inf

h∈Rd
sup

P∈Pt (ω)

logEP

[
exp

(
Dn

t+1(ω ⊗t ·) + h	St+1(ω, ·) + x
)]

.

The goal now is to show that En
t equals Dn

t for all n, from which it follows that

Et (ω, x) = sup
n

En
t (ω, x) = sup

n
Dn

t (ω) + x = Dt (ω) + x

and the proof is complete. To show that indeed En
t (ω, x) = Dn

t (ω) + x, fix some
n, x, and ω ∈ �t . By Theorem 3.1, it holds

En
t (ω, x) = sup

Qt∈Mt (Z)

(
EQt

[
Dn

t+1(ω ⊗t ·)]− H
(
Qt,Pt (ω)

))+ x > −∞,

where

Mt (Z) :=
{
Q ∈ P(�1) : EQ

[
Dn

t+1(ω ⊗t ·)− + ∣∣	St+1(ω, ·)∣∣+ Z
]
< +∞,

H
(
Q,Pt (ω)

)
< +∞ and EQ

[
	St+1(ω, ·)]= 0

}

and Z : �1 → [0,+∞) is an arbitrary universally measurable function.
We start by showing that En

t (ω, x) ≤ Dn
t (ω) + x. Fix some ε > 0, let Qε(·) ∈

MT
t+1(ω, ·) be the kernel from (4.6), and define Z : �1 → [0,+∞),

Z := EQε(·)
[
X(ω, ·)− + Y(ω, ·) +

T∑
s=t+2

∣∣	Ss(ω, ·)∣∣
]

+ H
(
Qε(·),PT

t+1(ω, ·)).
Then Z is real-valued by the definition of MT

t+1(ω, ·) and it follows from
Lemma B.1, Lemma 4.4 and [7], Proposition 7.44, that Z is universally measur-
able. Moreover,

Qt ⊗ Qε ∈ MT
t (ω) for any Qt ∈ Mt (Z).(4.7)
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To show this, fix some Qt ∈Mt (Z) and define Q := Qt ⊗Qε . Then an application
of Lemma 4.4 yields

H
(
Q,PT

t (ω)
)= H

(
Qt,Pt (ω)

)+ EQt

[
H
(
Qε(·),PT

t+1(ω, ·))]
≤ H

(
Qt,Pt (ω)

)+ EQt [Z] < +∞.

Moreover, it holds

EQ

[
X(ω, ·)− + Y(ω, ·) +

T∑
s=t+1

∣∣	Ss(ω, ·)∣∣
]

≤ EQt

[∣∣	St+1(ω, ·)∣∣+ Z
]
< +∞

so that indeed Q ∈MT
t (ω) and, therefore,

EQt

[
Dn

t+1(ω ⊗t ·)]− H
(
Qt,Pt (ω)

)
≤ EQt

[
EQε(·)

[
X(ω, ·) ∧ n

]− H
(
Qε(·),PT

t+1(ω, ·))+ ε
]− H

(
Qt,Pt (ω)

)
= EQ

[
X(ω, ·) ∧ n

]− H
(
Q,PT

t (ω)
)+ ε ≤ Dn

t (ω) + ε.

As Qt ∈ Mt (Z) and ε > 0 were arbitrary, it follows that En
t (ω, x) ≤ Dn

t (ω) + x.
To show the other inequality, that is, En

t (ω, x) ≥ Dn
t (ω) + x, fix some measure

Q ∈ MT
t (ω) which we write as

Q = Qt ⊗ Q′

for a measure Qt on �1 and a Borel kernel Q′ : �1 →P(�T −t−1). Then

Qt ∈ Mt (0) and Q′(·) ∈ MT
t+1(ω, ·) Qt -almost surely,

where Mt (0) = Mt (Z) for the function Z ≡ 0. Indeed, first notice that

H
(
Qt,Pt (ω)

)+ EQt

[
H
(
Q′(·),PT

t+1(ω, ·))]= H
(
Q,PT

t (ω)
)
< +∞

by Lemma 4.4, so that

H
(
Q′(·),PT

t+1(ω, ·))< +∞ Qt -almost surely.

Similarly, we conclude that EQ′(·)[X(ω, ·)− + Y(ω, ·) + |	Ss(ω, ·)|] < +∞ Qt -
almost surely for all t + 2 ≤ s ≤ T . Thus it holds

Q′(·) ∈ MT
t+1(ω, ·) Qt -almost surely.

But then it follows from the definition of Dn
t+1 that

EQ′(·)
[
X(ω, ·) ∧ n

]− H
(
Q′(·),PT

t+1(ω, ·))≤ Dn
t+1(ω ⊗t ·)

Qt -almost surely, so that

EQt

[
Dn

t+1(ω ⊗t ·)−]≤ EQt

[(
EQ′(·)

[
X(ω, ·) ∧ n

]− H
(
Q′(·),PT

t+1(ω, ·)))−]
≤ EQ

[
X(ω, ·)−]+ H

(
Q,PT

t (ω)
)
< +∞
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by Jensen’s inequality and Lemma 4.4. Therefore, one has Qt ∈ Mt (0) and it
follows that

EQ

[
X(ω, ·) ∧ n

]− H
(
Q,PT

t (ω)
)

= EQt

[
EQ′(·)

[
X(ω, ·) ∧ n

]− H
(
Q′(·),PT

t+1(ω, ·))]− H
(
Qt,Pt (ω)

)
≤ sup

R∈Mt (0)

(
ER

[
Dn

t+1(ω ⊗t ·)]− H
(
R,Pt (ω)

))= En
t (ω, x) − x

and as Q ∈ MT
t (ω) was arbitrary, that indeed Dn

t (ω)+x ≤ Et (ω, x). Coupled with
the other inequality which was shown before, it holds Et (ω, x) = Dn

t (ω) + x and
the proof is complete. �

The following lemma will be important in the proof of the dynamic program-
ming principle. Since it was already shown that Et (ω, x) = Dt (ω) + x, the proof
is almost one to one to the one for [38], Lemma 3.7. For the sake of completeness,
a proof is given in the Appendix.

LEMMA 4.6 ([38], Lemma 3.7). For every 0 ≤ t ≤ T − 1 and x ∈ R, there
exists a process ϑ∗ ∈ � such that

Es

(
ω,x + (

ϑ∗ · S)st (ω)
)

= sup
P∈Ps (ω)

logEP

[
exp

(
Es+1

(
ω ⊗s ·, x + (

ϑ∗ · S)s+1
t (ω, ·)))]

for all t ≤ s ≤ T − 1 and ω ∈ �s .

PROOF OF THEOREM 4.1—DYNAMIC PROGRAMMING. We turn to the proof
of the dynamic programming principle, that is, we show that

(4.8) C := inf
ϑ∈�

sup
P∈PT

t (ω)

logEP

[
exp

(
X(ω, ·) + x + (ϑ · S)Tt (ω, ·))]= Et (ω, x)

for all x, ω ∈ �t , and 0 ≤ t ≤ T − 1 and that the infimum over ϑ ∈ � is attained.
Again, fix some x, t , and ω ∈ �t . By the first part of the proof of Theorem 4.1,
that is, the part which focuses on duality, it holds Et (ω, x) = Dt (ω)+x. Therefore,
x can be subtracted on both sides of (4.8) and there is no loss of generality in
assuming that x = 0. This will lighten notation.

First we focus on the inequality C ≥ Et (ω, x). Fix some ϑ ∈ �, P ∈ PT
t (ω),

and Q ∈ MT
t (ω). If

C′ := logEP

[
exp

(
X(ω, ·) + (ϑ · S)Tt (ω, ·))]≥ EQ

[
X(ω, ·)]− H(Q,P ),

then the claim follows by taking the supremum over all those Q and P , and in a
second step the infimum over all ϑ ∈ �. To show this, one may assume that C′ and
H(Q,P ) are finite, otherwise there is nothing to prove. Define

Z := X(ω, ·) + (ϑ · S)Tt (ω, ·).
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Applying the elementary inequality ab ≤ exp(a) + b logb to “a = Z+” and “b =
dQ/dP ” yields

EQ

[
Z+]≤ EP

[
exp

(
Z+)]+ H(Q,P ) ≤ exp

(
C′)+ 1 + H(Q,P ) < +∞.

Therefore, it holds

EQ

[
(ϑ · S)Tt (ω, ·)+]≤ EQ

[
X(ω, ·)−]+ EQ

[
Z+]< +∞

by the definition of MT
t (ω). But then it follows from a result on local martingales

(see [27], Theorem 1 and 2) that (ϑ · S)Tt (ω, ·) is actually integrable with respect
to Q and has expectation 0. Hence EQ[Z−] < +∞ and, therefore, Lemma A.1
yields

C′ = logEP

[
exp(Z)

]≥ EQ[Z] − H(Q,P ) = EQ

[
X(ω, ·)]− H(Q,P ),

which is what we wanted to show.
We complete the proof by showing that C ≤ Et (ω,0) and that an optimal strat-

egy ϑ∗ ∈ � exists. Let ϑ∗ be the as in Lemma 4.6, that is, such that

(4.9) Es

(
ω,

(
ϑ∗ · S)st (ω)

)= sup
P∈Ps (ω)

logEP

[
exp(Es+1

(
ω ⊗s ·, (ϑ∗ · S)s+1

t (ω, ·))]

for all t ≤ s ≤ T − 1. Then ϑ∗ is optimal and C ≤ Et (ω,0). Indeed, let P = Pt ⊗
· · · ⊗ PT −1 ∈ PT

t (ω) and fix some t ≤ s ≤ T − 1. Then it follows from (4.9) that

logEP

[
exp(Es

(
ω ⊗t ·, (ϑ∗ · S)st (ω, ·))]

= logEPt⊗···⊗Ps−1

[
exp

(
Es

(
ω ⊗t ·, (ϑ∗ · S)st (ω, ·)))]

≥ logEPt⊗···⊗Ps−1

[
exp

(
logEPs(·)

[
exp

(
Es+1

(
ω ⊗t ·, (ϑ∗ · S)s+1

t (ω, ·)))])]
= logEP

[
exp

(
Es+1

(
ω ⊗t ·, (ϑ∗ · S)s+1

t (ω, ·)))],
and an iteration yields

Et (ω,0) = logEP

[
exp

(
Et

(
ω,

(
ϑ∗ · S)tt (ω)

))]
≥ logEP

[
exp

(
ET

(
ω ⊗t ·, (ϑ∗ · S)Tt (ω, ·)))]

= logEP

[
exp

(
X(ω, ·) + (

ϑ∗ · S)Tt (ω, ·))].
As P ∈ PT

t (ω) was arbitrary, it holds C ≤ Et (ω, x) and since ϑ∗ ∈ �, it follows
from the previously shown inequality that ϑ∗ is optimal. �

4.2. The case with options. Fix some function Y : � → [0,+∞) such that
−Y is upper semianalytic and recall that M(Y ) := {Q ∈ M : EQ[Y ] < +∞} and
Mg(Y ) := {Q ∈ Mg : EQ[Y ] < +∞}, where M and Mg where defined in Sec-
tion 2. Moreover, fix some Borel function Z : � →R.
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We first claim that for every upper semianalytic function X : � → R bounded
by Z, that is, |X| ≤ Z, one has

inf
{
m ∈R : m + (ϑ · S)T0 ≥ XP-q.s. for some ϑ ∈ �

}
(4.10)

= sup
Q∈M(Y )

EQ[X]

in case of no options and, if |gi | ≤ Z for 1 ≤ i ≤ e, then

0 ∈ ri
{
EQ

[
ge] : Q ∈ Mĝ(Y )

}
,(4.11)

where ĝ := (g1, . . . , ge−1) and also

inf

{
m ∈ R : m + (ϑ · S)T0 + αg ≥ XP-q.s.

for some (ϑ,α) ∈ � ×R
e

}
= sup

Q∈Mg(Y )

EQ[X].(4.12)

All these claims are proven in [10] if one relaxes M in the sense that the rela-
tive entropy does not need to be finite. In fact, Bouchard and Nutz deduce (4.12)
from (4.11), and (4.11) from (4.10); see Theorem 4.9 as well as equation (5.1)
and Theorem 5.1 in [10], respectively. The same can be done here (with the exact
same arguments as in [10]), so we shall only give a (sketch of a) proof for (4.10).
Consider first the one-period case and define

C′ := {
Q ∈ P(�) : EQ

[|	S| + Y
]
< +∞ and Q � P for some P ∈P

}
,

and M′ := {Q ∈ C : EQ[	S] = 0}. Then the following superhedging duality

inf
{
m ∈ R : m + h	S ≥ XP-q.s. for some h ∈ R

d}= sup
Q∈M′

EQ[X]

(see [10], Theorem 3.4) is a consequence of the fact that 0 ∈ ri{EQ[	S] : Q ∈ C′};
see Lemma 3.5 and Lemma 3.6 in [10]. However, since

0 ∈ ri
{
EQ[g] : Q ∈ C

}
for C = {

Q ∈ C : H(Q,P) < +∞}
by Lemma 3.5, the same arguments as for [10], Theorem 3.4, show that

inf
{
m ∈ R : m + h	S ≥ XP-q.s. for some h ∈ R

d}= sup
Q∈M(Y )

EQ[X],

in particular supQ∈M′ EQ[X] = supQ∈M(Y ) EQ[X]. For the transition to the mul-
tiperiod case define recursively mT := m′

T := X and

m′
t (ω) := sup

Q∈M′
t (ω)

EQ

[
m′

t+1(ω, ·)] and mt(ω) = sup
Q∈MZ

t (ω)

EQ

[
mt+1(ω, ·)],

for 0 ≤ t ≤ T − 1 and ω ∈ �t , where

M′
t (ω) := {

Q ∈P(�1) : Q � P for some P ∈ Pt (ω) and EQ

[
	St+1(ω, ·)]= 0

}
,

MZ
t (ω) := {

Q ∈M′
t (ω) : EQ[Z] + EQ

[
mt+1(ω, ·)−]+ H

(
Q,Pt (ω)

)
< +∞}
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and Z : �1 → [0,+∞) an arbitrary universally measurable function. A backward
induction shows that mt = m′

t for each t . Moreover, following the exact same
arguments as in the part of the proof for Theorem 4.1 which focuses on duality,
one can show that mt(ω) = supQ∈MT

t (ω) EQ[X(ω, ·)] where we recall

MT
t (ω) =

{
Q ∈ P(�T −t ) :

(
Ss(ω, ·))t≤s≤T is a Q-martingale and

EQ

[
X(ω, ·)− + Y(ω, ·)]+ H

(
Q,PT

t (ω)
)
< +∞

}

so that MT
0 = M(Y ). Since it is shown in (or rather within the proof of) [10],

Lemma 4.13, that

inf
{
m ∈ R : m + (ϑ · S)T0 ≥ XP-q.s. for some ϑ ∈ �

}= m′
0,

the claim follows from m′
0 = m0 = supQ∈M(Y ) EQ[X].

PROOF OF THEOREM 2.2. The proof is an induction over e. For e = 0, the
statement is a special case of Theorem 4.1, so assume that both claims (duality
and existence) are true for e − 1 ≥ 0. By assumption, there is a Borel function Z

such that |X| + |gi | ≤ Z for every 1 ≤ i ≤ e. Using the induction hypothesis, it
follows that

inf
(ϑ,α)∈�×Re

sup
P∈P

logEP

[
exp

(
X + (ϑ · S)T0 + αg

)]
(4.13)

= inf
β∈R min

(ϑ,α̂)∈�×Re−1
sup
P∈P

logEP

[
exp

(
X + (ϑ · S)T0 + α̂ĝ + βge)]

(4.14)
= inf

β∈R sup
Q∈Mĝ

(
EQ[X] + βEQ

[
ge]− H(Q,P)

)= inf
β∈R sup

Q∈Mĝ

J (Q,β),

where ĝ = (g1, . . . , ge−1) and

J : Mĝ ×R→R, (Q,β) �→ EQ[X] + βEQ

[
ge]− H(Q,P).

It is already shown that 0 ∈ ri{EQ[ge] : Q ∈ Mĝ} (see (4.11)), which can be used
exactly as in the proof of Theorem 3.1 to prove that

inf|β|≤n
sup

Q∈Mĝ

J (Q,β) = inf
β∈R sup

Q∈Mĝ

J (Q,β) = sup
Q∈Mĝ

inf
β∈RJ (Q,β)(4.15)

for some n ∈ N; see (3.5) for the first, and the text below (3.4) for the second
equality. Hence

inf
(ϑ,α)∈�×Re

sup
P∈P

logEP

[
exp

(
X + (ϑ · S)T0 + αg

)]
= inf

β∈R sup
Q∈Mĝ

J (Q,β) = sup
Q∈Mĝ

inf
β∈RJ (Q,β) = sup

Q∈Mg

(
EQ[X] − H(Q,P)

)
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showing that duality holds. The first equality in (4.15) together with the lower
semicontinuity of supQ∈Mĝ

J (Q, ·) imply that there is some β∗ ∈ R such that

sup
Q∈Mĝ

J
(
Q,β∗)= inf

β∈R sup
Q∈Mĝ

J (Q,β).

For this β∗, the induction hypotheses (4.14) guarantees the existence of an optional
strategy (ϑ∗, α̂∗) ∈ �×R

e−1 showing that (ϑ∗, α∗) ∈ �×R
e is optimal for (4.13),

where α∗ := (α̂∗, β∗). This completes the proof. �

PROOF OF THEOREM 2.4. Since � and R
e are vector spaces, it follows from

Theorem 2.2 that

πγ (X) = inf
(ϑ,α)∈�×Re

sup
P∈P

1

γ
logEP

[
exp

(
γX + (ϑ · S)T0 + αg

)]

= 1

γ
sup

Q∈Mg

(
EQ[γX] − H(Q,P)

)= sup
Q∈Mg

(
EQ[X] − 1

γ
H(Q,P)

)
.

This formula implies both that πγ is increasing in γ and, by interchanging the
suprema over γ and Q, that supγ πγ (X) = supQ∈Mg

EQ[X]. The latter term co-
incides by (4.12) with π(X), hence the proof is complete. �

APPENDIX A: TECHNICAL PROOFS

We start by proving Remark 2.3, Remark 2.5, and the statements of Section 2.3.

PROOF OF REMARK 2.3. 1) Let T = d = 1, � = R, S0 = 0, S1(ω) = ω, and
define P = conv{δx : x ∈ [0,1]} so that NA(P) fails. Then in (2.3) the left-hand
side is always larger or equal than X(0), and the right-hand side equals X(0) since
M = {δ0}. For the choice X = −1{0}, a short computation yields that the left-hand
side actually equals 0, showing that there is a gap.

2) Let again T = d = 1, � = R, S0 = 0, S1(ω) = ω and define P =
conv{δ−1, δx : x ∈ (0,1]}. Then NA(P) holds true and every martingale measure
Q with H(Q,P) < +∞ satisfies Q({−1}) > 0. In particular, for X := −∞1{−1}
the right-hand side of (2.3) equals −∞ while the right-hand side satisfies

inf
h∈R sup

P∈P
logEP

[
exp(X + h	S)

]≥ inf
h∈R lim

x↓0
log

exp(−∞) + exp(hx)

2
= log

1

2

as (δ−1 + δx)/2 ∈ P for every x ∈ (0,1]. To see that an optimal strategy h ∈ R

needs not to exists, take the same X but let P = {(δ−1 + δ1)/2}. �

PROOF OF REMARK 2.5. We claim that for any probability P satisfying
the classical no-arbitrage, it is possible to construct Pt such that P = {P } and
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NA(Pt (ω)) holds for every t and ω ∈ �t and only sketch the proof. Write
P = P0 ⊗ · · · ⊗ PT −1 for the kernels Pt from Remark B.2 and define Nt := {ω ∈
�t : NA(Pt (ω)) fails}. Then it holds

Nt = π

{
(ω,h) ∈ �t ×R

d : Pt(ω)
(
h	St+1(ω, ·) ≥ 0

)= 1 and
Pt(ω)

(
h	St+1(ω, ·) > 0

)
> 0

}

and by the classical fundamental theorem of asset pricing

Nc
t = π

{
(ω,Q) ∈ �t ×P(�1) : EQ

[
	St+1(ω, ·)]= 0 and Q ∼ Pt(ω)

}
.

In both cases, π denotes the projection onto �t . It can be shown that both sets,
which the projection acts on, are Borel. Thus Nt and Nc

t are analytic sets. Now
define Pt (ω) = {Pt(ω)} if ω ∈ Nc

t and Pt (ω) = {δSt (ω)} else. Then Pt has analytic
graph and since Nt is a zero set under P , it follows that P = {P }. �

PROOFS FOR SECTION 2.3. (a) The graphs of (2.5), (2.9) and (2.10) are Borel:
For Pt defined by (2.5), notice that

g : �t ×P(�1) → [0,+∞], (ω,R) �→ dist
(
R,Pt(ω)

)
/εt (ω)

is Borel, hence graphPt = {g ≤ 1} is Borel and, therefore, analytic. The proofs for
(2.9) and (2.10) are analogue.

(b) If Rt has analytic graph, then so do P̂t and Pt : Define

g : �t ×P(�1) → �t ×P(�1), (ω,P ) �→ (
ω,P ◦ ft (ω, ·)−1)

and notice that g is Borel by Lemma B.1 and [7], Proposition 7.26. Therefore,
graph P̂t = g(graphRt ) is an analytic set, as the image of such set under a Borel
function. As for Pt , define the Borel function

gn : ((�t ×P(�1)
)n ∩ 	n

)× Cn → �t ×P(�1),((
ωi,P i)

i , λ
) �→ (

ω1, λ1P
1 + · · · + λnP

n)
for every n ∈ N, where

	n := {(
ωi,P i)

i ∈ (
�t ×P(�1)

)n : ω1 = ωi for 1 ≤ i ≤ n
}
,

Cn := {
λ ∈ [0,+∞) : λ1 + · · · + λn = 1

}
.

Therefore, as the countable union of the images under Borel functions of analytic
sets,

graphPt =⋃
n

gn

(
(graph P̂t )

n ∩ 	n

)× Cn))

is again an analytic set.
(c) On the no-arbitrage condition. We only prove the claim for the Wasserstein

distance of order p, that is, Rt given by (2.9), the proof for Rt given by (2.10)
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works similarly. Fix ω ∈ �t and let h ∈ R such that h	St+1(ω, ·) ≥ 0 Pt (ω)-
q.s. If ft (ω,R) = {St (ω)}, then trivially h	St+1(ω, ·) = 0 Pt (ω)-q.s. Otherwise,
there are y± ∈ R such that ±f (ω,y±) > 0 by assumption. Now define R± :=
λ±δy± + (1 − λ±) lawX, where λ± := 1 ∧ 1/(dist(δy±, lawX)εt (ω)) is strictly
positive since X has finite pth moment. By convexity,

dist
(
R±, lawX

)≤ λ± dist(δ±x, lawX) + (
1 − λ±)dist(lawX, lawX) ≤ εt (ω)

so that R± ∈ Rt (ω). Hence hf (ω,y±) ≥ 0, which in turn implies h = 0.
(d) The binomial and Black–Scholes model. A computation as in a) shows that

the graph of �t defined by

�t(ω) := {
(q, a, b) : p ∈ [

p
t
(ω),pt (ω)

]
, a ∈ [

at (ω), at (ω)
]
, b ∈ [

bt (ω), bt (ω)
]}

is an analytic set. Since

g : �t ×R
3 → �t ×P(�1), (ω,p, a, b) �→ (

ω,pδa + (1 − p)δb

)
is continuous, it follows that graphRt = g(graph�t) is an analytic set. The proof
for the Black–Scholes model works similarly. �

The following lemma is related to [21], Lemma 3.29, where X is assumed to be
bounded.

LEMMA A.1. Let X : � →R be measurable and let P ∈ P(�). Then one has

logEP

[
exp(X)

]= sup
Q∈A

(
EQ[X] − H(Q,P )

)
,

where A := {Q ∈ P(�) : H(Q,P ) + EQ[X−] < +∞}.

PROOF. For each natural number n, define Qn by

dQn

dP
:= exp(X ∧ n)

EP [exp(X ∧ n)] .

Then Qn is equivalent to P and since exp(X ∧ n)X− ≤ 1, it follows that X− is
integrable with respect to Qn. By equivalence of P and Qn, one can write

dQ

dP
= dQ

dQn

dQn

dP
for any Q ∈A.

Applying Jensen’s inequality to the convex function [0,∞) → [−1,∞), x �→
x logx with “x = dQ/dQn” yields

H(Q,P ) = EQn

[
dQ

dQn

log
dQ

dQn

]
+ EQ

[
log

dQn

dP

]

≥ EQ

[
log

dQn

dP

]
= EQ[X ∧ n] − logEP

[
exp(X ∧ n)

]
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with equality if (and only if) Q = Qn. Since the right-hand side is finite for Q =
Qn, it follows that H(Qn,P ) < +∞ and, therefore, Qn ∈ A. Rearranging the
terms which appear in the inequality above yields

logEP

[
exp(X ∧ n)

]≥ EQ[X ∧ n] − H(Q,P )

for all Q ∈ A with equality for Q = Qn ∈ A. This shows the claim if X were
bounded. The general case follows by letting n tend to infinity. Indeed, since the
set A does not depend on n, we can interchange two suprema and conclude that

logEP

[
exp(X)

]= sup
n

sup
Q∈A

(
EQ[X ∧ n] − H(Q,P )

)= sup
Q∈A

(
EQ[X] − H(Q,P )

)
.

The use of the monotone convergence theorem in the last step was justified because
EQ[X−] < +∞ for every Q ∈ A. �

LEMMA A.2. Let V and W be two Polish spaces and P,Q ∈ P(V × W)

with representation P = μ ⊗ K , Q = μ′ ⊗ K ′ for measures μ,μ′ ∈ P(V ) and
universally measurable kernels K,K ′ : V →P(W). Then one has

Q � P if and only if μ′ � μ and K ′(v) � K(v)

for μ′-almost every v.

PROOF. If μ′ � μ and K ′(v) � K(v) for μ′-almost every v, it follows from
the definition that Q � P . Indeed, for any Borel set A ⊂ V × W such that
0 = P(A) = Eμ(dv)[K(v)(Av)], it holds Q(A) = Eμ′(dv)[K ′(v)(Av)] = 0. Here,
Av := {w ∈ W : (v,w) ∈ A}.

The other direction needs more work. The idea is to show that the generalized
Radon–Nikodym derivative (see, e.g., [21], Theorem A.13) is measurable with
respect to the kernels. Assume that Q � P and first notice that μ′ � μ. If this
were not the case, then μ′(A) > 0 while μ(A) = 0 for some Borel set A ⊂ V

which implies Q(A × W) = μ′(A) > 0 but P(A × W) = 0. We proceed to show
the absolute continuity of the kernels. Notice that the mapping

P(W) ×P(W) × W,
(
R′,R,w

) �→ dR′

dR
(w)

can be shown to be Borel, where dR′/dR denotes the Radon–Nikodym derivative
of the absolutely continuous part of R′ with respect to R. This result, due to Doob,
can be found, for example, in [16], Theorem V.58, and the subsequent remark.
Hence

V × W →P(W) ×P(W) × W, (v,w) �→ (
K(v),K ′(v),w

)
is universally measurable. Thus, since (R,R′) �→ (R + R′)/2 is Borel, it follows
that Z : V × W → [0,+∞],

Z(v,w) := dK ′(v)

d(K(v) + K ′(v))/2
(w)

(
dK(v)

d(K(v) + K ′(v))/2
(w)

)−1
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is universally measurable, with the convention x/0 := +∞ for all x ≥ 0.
A straightforward computation as in [21], Theorem A.13, yields K(v)(Z(v, ·) =
+∞) = 0,

K ′(v)(B) = K ′(v)
(
B ∩ {

Z(v, ·) = +∞})+ EK(v)

[
1BZ(v, ·)]

for any universally measurable set B ⊂ W , and as a consequence that

K ′(v) � K(v) if and only if K ′(v)
(
Z(v, ·) = +∞)= 0.

Heading for a contradiction, assume that the set of all such v has not full μ′ mea-
sure and define the universally measurable set

A := {
(v,w) : Z(v,w) = +∞}

.

Then

Q(A) = Eμ′(dv)

[
K ′(v)

(
Z(v, ·) = +∞)]

> 0,

while on the other hand P(A) = Eμ(dv)[K(v)(Z(v, ·) = +∞)] = 0. This contra-
dicts the absolute continuity of Q with respect to P . �

PROOF OF LEMMA 4.3. The goal is to show that

H(Q,P ) =
T −1∑
s=t

EQ

[
H
(
Qs(·),Ps(·))].(A.1)

(a) We first comment on the measurability of terms appearing later. Fix some
t ≤ s ≤ T − 1 and notice as in the proof of Lemma A.2 that

�s−t →P(�1) ×P(�1), ω̄ �→ (
Qs(ω̄),Ps(ω̄)

)
is universally measurable. Since the entropy H is Borel by Lemma 4.2, one can
check that

�s−t → [0,+∞], ω̄ �→ H
(
Qs(ω̄),Ps(ω̄)

)
is universally measurable. Similarly, using Doob’s result on the measurability of
the Radon–Nikodym derivative as in the proof of Lemma A.2, it follows that

�s−t × �1 → [0,+∞], (
ω̄,ω′) �→ dQs(ω̄)

dPs(ω̄)

(
ω′)

is universally measurable. Moreover, by [7], Lemma 7.29, the same holds true if
ω̄ ∈ �s−t is fixed in the above mapping, and the latter is considered as a function
of ω′.

(b) A direct application of Lemma A.2 shows that

Q � P if and only if Qs � Ps, Qt ⊗ · · · ⊗ Qs−1-almost surely
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for all t ≤ s ≤ T − 1, where in case s = t the above should be understood as
Qt � Pt . This implies that whenever Q is not absolutely continuous with respect
to P , then both sides in (A.1) are equal to +∞. Hence we may assume that Q � P .
Then dQ/dP can be expressed as the product of dQs(·)/dPs(·), where s ranges
from t to T − 1. Therefore, for any t ≤ s ≤ T − 1, it follows that

EQ

[(
log

dQs(·)
dPs(·)

)−]
= EQt⊗···⊗Qs−1

[
EPs(·)

[
dQs(·)
dPs(·)

(
log

dQs(·)
dPs(·)

)−]]
≤ 1,

where the last inequality holds since x(logx)− ≤ 1 for all x ≥ 0. By integrability,
the same steps may be repeated without the negative parts so that

H(Q,P ) = EQ

[
log

dQ

dP

]
=

T −1∑
s=t

EQ

[
log

dQs(·)
dPs(·)

]
=

T −1∑
s=t

EQ

[
H
(
Qs(·),Ps(·))]

as claimed. �

PROOF OF LEMMA 4.6. First we claim that for any ϑ ∈ � and 0 ≤ t ≤ T − 1,
there exists a universally measurable mapping ĥt : �t →R

d such that

Et

(
ω,x + (ϑ · S)t0(ω)

)
= sup

P∈Pt (ω)

logEP

[
exp

(
Et+1

(
ω ⊗t ·, x + (ϑ · S)t0(ω)(A.2)

+ ĥt (ω)	St+1(ω, ·)))]
for all ω ∈ �t . To that end, fix some ϑ ∈ �, 0 ≤ t ≤ T − 1, and recall that Ft was
defined as the universal completion of the Borel σ -field on �t . From the first part
of the proof of Theorem 4.1, we already know that Et (ω, x) = Dt (ω) + x for all
ω ∈ �t and x ∈ R and that Dt is upper semianalytic, in particular Ft -measurable.
This implies that Et is Ft ⊗B(R)-measurable. Define the function

φ(ω,x,h) := sup
P∈Pt (ω)

logEP

[
exp

(
Dt+1(ω ⊗t ·) + x + h	St+1(ω, ·))].

For fixed x and h, it follows from [7], Proposition 7.47 (as in the first first part of
the proof of Theorem 4.1) that φ(·, x, h) is upper semianalytic. Moreover, for fixed
ω, an application of Fatou’s lemma (as in part (b) of the proof of Theorem 3.1)
shows that φ(ω, ·, ·) is lower semicontinuous. Therefore, we can conclude by [10],
Lemma 4.12, that φ is Ft ⊗B(R) ⊗B(Rd)-measurable. Now fix x ∈ R and define
the set-valued mapping

�(ω) := {
h ∈ R

d : φ(ω,x + (ϑ · S)t0(ω),h
)= Et

(
ω,x + (ϑ · S)t0(ω)

)}
.

By Theorem 3.1, it holds �(ω) �= ∅ and by the above its graph is in Ft ⊗ B(Rd).
Hence it follows by Theorem 5.5 in [30] or rather the corollary and scholim after,
that � admits an Ft -measurable selector ĥt .



EXPONENTIAL UTILITY MAXIMIZATION UNDER MODEL UNCERTAINTY 609

To conclude the proof of the lemma, define ϑ∗
s := 0 for s ≤ t , let ĥt be an

optimal strategy for time t and define ϑ∗
t+1 := ĥt . By the above, there is a univer-

sally measurable mapping ĥt+1 : �t+1 →R such that (A.2) holds for t +1. Define
ϑ∗

t+2 := ĥt+1. Proceeding in a recursive matter until t = T , we construct ϑ∗ ∈ �

which fulfills the requirements of the lemma. �

APPENDIX B: ANALYTIC SETS

We briefly recall the used terminology and give a short overview on the theory
of analytic sets; for more details see, for example, Chapter 7 in the book of Bert-
sekas and Shreve [7]. Throughout, fix two Polish spaces V and W . A subset of a
Polish space is called analytic, if it is the image of a Borel set of another Polish
space under a Borel function. Similarly, a function f : V → [−∞,+∞] is upper
semianalytic, if {f ≥ c} ⊂ V is an analytic set for every real number c. Further
define B(V ) to be the Borel σ -field on V and P(V ) to be the set of all probability
measures on B(V ). The set P(V ) is endowed with the weak topology induced by
all continuous bounded functions, that is, σ(P(V ),Cb(V )). Then P(V ) becomes
a Polish space itself. The set of universally measurable subsets of V is defined as⋂{B(V )P : P ∈ P(V )}, where B(V )P is the completion of B(V ) with respect to
the probability P . A function f : V → W is said to be universally measurable, if
{f ∈ B} is universally measurable for every B ∈ B(W). It follows from the defi-
nition that every Borel set is analytic, and from Lusin’s theorem (see [7], Propo-
sition 7.42) that every analytic set is universally measurable. The same of course
holds true if we replace sets by functions in the previous sentence. A set-valued
function � : V → W is said to have analytic graph, if

graph� := {
(v,w) : v ∈ V,w ∈ �(v)

}⊂ V × W

is an analytic set. Finally, given a set P ⊂ P(V ), a set N ⊂ V is said to be P-polar
if P(N) = 0 for all P ∈ P . Similarly, a property is said to hold P-quasi surely (q.s.
for short), if it holds outside a P-polar set.

One can readily verify that (v,P (dw)) �→ EP [X(v, ·)] is continuous, when-
ever X : V ×W →R is uniformly continuous and bounded. The following lemma
generalizes this.

LEMMA B.1 ([7], Propositions 7.29/7.46/7.48). Let X : V × P(W) × W →
[−∞,+∞] be Borel/upper semianalytic/universally measurable. Then the map-
ping V ×P(W) → [−∞,+∞], (v,P ) �→ EP [X(v,P, ·)] is Borel/upper semian-
alytic/universally measurable.

PROOF. The proof is an application of Proposition 7.29/Proposition 7.46/
Proposition 7.48 in [7], depending on the given measurability. Indeed, using the
notation of [7], define the Borel spaces X := V × P(W) and Y = W as well



610 D. BARTL

as the Borel/upper semianalytic/universally measurable mapping f : X × Y →
[−∞,+∞] f (x, y) = f (c,P,w) := X(v,P,w) and Borel kernel q(dy, x) =
q(dw, (v,P )) := P(dw). By the mentioned proposition the mapping V ×
P(W) = X → [−∞,+∞], (v,P ) = x �→ ∫

f (x, y)q(dy, x) = EP [X(v,P, ·)]
is Borel/upper semianalytic/universally measurable. �

REMARK B.2. By means of the disintegration theorem, every probability P ∈
P(V × W) can be written as P = μ ⊗ K , where μ ∈ P(V ) and K : V → P(W)

is Borel. In fact, it is possible to construct the kernel K in a way such that the
mapping

V ×P(V × W) →P(W), (v,P ) �→ K(v)

is Borel; see [7], Proposition 7.27.
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