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THE GLAUBER DYNAMICS OF COLORINGS ON
TREES IS RAPIDLY MIXING THROUGHOUT

THE NONRECONSTRUCTION REGIME

BY ALLAN SLY1,∗,† AND YUMENG ZHANG†

Australian National University∗ and University of California, Berkeley†

The mixing time of the Glauber dynamics for spin systems on trees is
closely related to the reconstruction problem. Martinelli, Sinclair and Weitz
established this correspondence for a class of spin systems with soft con-
straints bounding the log-Sobolev constant by a comparison with the block
dynamics [Comm. Math. Phys. 250 (2004) 301–334; Random Structures Al-
gorithms 31 (2007) 134–172]. However, when there are hard constraints, the
dynamics inside blocks may be reducible.

We introduce a variant of the block dynamics extending these results to a
wide class of spin systems with hard constraints. This applies to essentially
any spin system that has nonreconstruction provided that on average the root
is not locally frozen in a large neighborhood. In particular, we prove that
the mixing time of the Glauber dynamics for colorings on the regular tree is
O(n logn) in the entire nonreconstruction regime.

1. Introduction. There has been substantial interest in understanding the
mixing times of Markov chains for sampling spin systems, in particular how they
relate to the spatial mixing properties of the Gibbs measure. In the case of random
colorings on trees, one natural conjecture is that such chains are rapidly mixing
[i.e., the mixing time is O(n logn)] whenever the corresponding model is in its
nonreconstruction regime. The conjecture was previously verified for the so-called
block dynamics by Bhatnagar et al. [2]. In this paper, we establish the result for
the original Glauber dynamics and establish the following result.

THEOREM 1.1. For any β < 1 − ln 2, there exists a constant k(β), for any
k > k(β) and

d ≤ k[log k + log logk + β],
the mixing time of the Glauber dynamics of the k-coloring model on n-vertex d-ary
tree is O(n logn).
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Our requirement in d is sharp with respect to the best known bound for nonre-
construction established in [17]. In the same paper, it is shown that the k-coloring
model is reconstructible for d ≥ k[log k + log log k + 1 + o(1)]. In a forthcom-
ing work, we will give an improved upper bound on the reconstruction threshold
from which it will follow that the O(n logn) mixing holds throughout the whole
nonreconstruction regime [18].

1.1. Previous work. There have been intensive studies on the mixing times of
Markov chains for sampling spin systems in both theoretical computer science and
statistical physics. Many results have shown that the mixing time of the Glauber
dynamics, both for the k-coloring model and general spin systems, are related to
the spatial properties of the Gibbs measure. Two properties of primary interest
are the uniqueness of the infinite volume Gibbs measure and reconstructability,
which corresponds to the extremality of the infinite Gibbs measure induced by
free boundary conditions.

In a sequence of results by Martinelli, Sinclair and Weitz [12, 13, 21], it was
shown under quite general settings that the Glauber dynamics exhibits rapid mix-
ing on d-regular trees regardless of the boundary condition, when the correspond-
ing spin system admits an unique infinite-volume Gibbs measure. Their method
uses the decay of correlation between the root and the leaves to bound the log-
Soblev constant of the block dynamics. Less general results are known beyond the
uniqueness threshold. The main obstacle, as in the case of graph colorings, is that
the chain might be reducible under certain boundary conditions. Thus, one can not
hope to get a meaningful bound for all boundary conditions.

Notwithstanding this, it is still interesting to consider the mixing time under
the free boundary condition. The correlation between the roots and leaves in the
absence of boundary conditions is closely related to the problem of reconstruc-
tions on trees. Roughly speaking, a model on trees is reconstructible if, given the
leaves of a randomly chosen configuration, one’s best guess for the root is “strictly
better” than the stationary distribution, as the number of levels goes to infinity. In
other words, reconstruction corresponds to a nonvanishing influence of an average
boundary configurations on the root. It is natural to hope that the rapid mixing of
the Glauber dynamics holds throughout the nonreconstruction regime.

We restrict our attention to the k-coloring problem on d-ary trees for the mo-
ment. The uniqueness of the Gibbs measure is shown to hold for k ≥ d + 2 by
Jonasson [9] and the results of [12, 13] imply an O(n logn) mixing time in the
same region. For the reconstruction threshold, Mossel and Peres [15] proved re-
construction for k ≥ (1 + o(1))d/ logd by considering the probability of having
a frozen boundary condition, that is, boundary condition that uniquely determines
the root. In the other direction, Bhatnagar et al. [2] and Sly [17] independently
proved that the model is nonreconstructible for k ≤ (1 + o(1))d/ logd . It is also
shown in [2] that the block dynamics for k-coloring model mixes in O(n logn)

time in the same region using nonreconstruction and following the methods of
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[12]. However, their result cannot be easily extended to the Glauber dynamics due
to the failure of Markov chain comparison between the two dynamics. Namely, one
step of the block dynamics might not be replaced by steps of the Glauber dynamics
of bounded length.

For more results in the nonuniqueness regime, Berger et al. [1] showed for gen-
eral models that the mixing time on trees is at most polynomial whenever the
dynamics is ergodic, which in the case of coloring corresponds to k ≥ 3 and d ≥ 2.
Goldberg et al. [7] proved an upper bound of nO(d/ logd) for the complete tree with
branching factor d . Lucier et al. [10] showed nO(1+d/k logd) mixing time for all
d and k ≥ 3. Recently, Tetali et al. [19] proved that the mixing time undergoes a
phase transition at the reconstruction threshold k = (1+o(1))d/ logd , where their
upper bound for the mixing time when k ≥ (1+o(1))d/ logd is O(n1+ok(1)). They
also showed that the mixing time is �(nd/k logd−ok(1)) for k ≤ (1 − o(1))d/ logd ,
that is, rapid mixing does not hold in the reconstruction regime.

The main purpose of this paper is to reduce the mixing time in the nonrecon-
struction regime from the polynomial upper-bound of n1+o(1) to the sharp bound
of O(n logn). Our proof is based on a modification of the techniques used in [12].
The main obstacle, as hinted above, is the reducibility of the Glauber dynamics
on subtrees under fixed boundary condition. Heuristically, below the uniqueness
threshold, there will be vertices whose states are “frozen” by their neighbors.
While the block dynamics can update “frozen” vertices together with their neigh-
bors in one single move, extra efforts are needed for the Glauber dynamics to pass
around the barrier and “defreeze” the vertices, leading to the failure of the standard
Markov chain comparison result between the two dynamics. With that in mind, we
introduce a new variant of the block dynamics that focuses on the connected com-
ponent on the state space of the usual block dynamics induced by valid moves of
the Glauber dynamics. By carefully examining the portion of “frozen” vertices and
their influences on nearby sites, we will show rapid mixing of our new version of
the block dynamics which implies the final result.

We conclude this section by describing the literature on the mixing times on
general graphs. For k-colorings on graphs with n vertices and maximal degree d ,
the Glauber dynamics is not in general irreducible if k ≤ d + 1. A long-standing
conjectured is that the chain exhibits rapid mixing whenever k ≥ d + 2. So far,
the best result on general graphs is given by Vigoda in [20], where he showed
O(n2 logn) mixing time for k ≥ 11

6 d . A series of improvements on the constant 11
6

for rapid mixing have been made with extra conditions on the degree or the girth.
See the survey [5] for more results toward this direction.

1.2. General spin system. The correspondence between rapid mixing and spa-
tial correlation decay is not restricted to the coloring model alone, but is a com-
mon phenomenon that extends to general spin systems. For instance, Weitz con-
jectured in [21] that for any k-state spin system on regular trees, the system mixes
in O(n logn) time whenever it admits an unique Gibbs measure and the Glauber
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dynamics is connected under given boundary condition. He proved the statement
for k = 2 and for the ferromagnetic Potts model and colorings as two special cases
of k > 2. He also provided a sufficient condition that applies to a wide range of
other models.

As suggested by the case of the coloring model, the mixing time under free
boundary condition is more closely related to the reconstruction threshold. In fact,
Berger et al. [1] showed that for general spin systems on trees, O(n) relaxation
time under free-boundary condition implies nonreconstruction. Our methods for
the coloring model can also be extended to general k-state spin systems provided
that the spin system satisfies certain mild connectivity conditions. Therefore, as an
intermediate result, we provide a sufficient condition for spin systems to exhibit
rapid mixing in the nonreconstruction region.

In Section 2.1, we specify a spin system by its Markov chain kernel M , where
M(c, c′) = μ(σy = c′ | σx = c) for any (x, y) ∈ E, and restrict our discussion to
kernels that are ergodic and reversible (see also [6] for more details). Let λ be the
second largest eigenvalue of M . We show that the Glauber dynamics is rapidly
mixing for spin systems M assuming a certain connectivity condition C that will
be specified in Section 2.3.

THEOREM 1.2. Let M be a k-state spin system on the n-vertex d-ary tree T

with second eigenvalue λ. If M satisfies the connectivity condition C, is nonre-
constructible on T , and dλ2 < 1 then the mixing time of Glauber dynamics on T

under free boundary condition is O(n logn).

In the statement of Theorem 1.2, the connectivity condition C mainly concerns
about the hard constraints. Roughly speaking, it requires the root to be able to
“change freely” between all k states with high probability as the size of the tree
grows. In particular, it includes all models without hard constraints or models with
a permissive state, a state that can occur next to all other states (e.g., the hardcore
model).

The requirement of dλ2 < 1 comes from the Kesten–Stigum bound dλ2 = 1
in reconstruction problems: Whenever dλ2 > 1, the system is reconstructible by
simply counting the number of leaves in each state [14]. Hence, nonreconstruc-
tion implies dλ2 ≤ 1. The Kestin–Stigum bound is known to be tight for models
including the Ising model (symmetric binary channel) and near-symmetric binary
channels [3]. For other models such as hardcore model and graph colorings, it
is strictly larger than the true threshold. Nonetheless, it has been suggested that
the speed of decay of correlation undergoes a phase transition at the critical value
dλ2 = 1 with different scalings for dλ2 = 1 and dλ2 < 1. Indeed, a recent work
of Ding, Lubetzky and Peres [4] showed that the mixing time for the Ising model
is at least of order n log3 n when dλ2 = 1. Therefore, we can only hope to prove
Theorem 1.2 for dλ2 strictly smaller than 1.
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2. Preliminaries.

2.1. Definition of model. General spin systems: Throughout the paper, we will
write T = (V ,E) for the d-ary tree (i.e., every vertex have d offspring) with root
ρ and |V | = n vertices and denote the lth level of T by Ll . In particular, we have
L0 = {ρ}. Given vertex x ∈ T , we will use Tx to represent the subtree rooted at x

and let Bx,l , Lx,l denote the first l levels and the lth level of Tx , respectively.
Let [k] = {1, . . . , k} denote the set of possible spin values. We are interested in

general k-state spin systems specified by potentials U and W , where U is a sym-
metric function from [k] × [k] → R ∪ {∞} and W is a function from [k] → R.
Given U and W , the (free-boundary) Gibbs measure on T is the probability mea-
sure on configurations σ ∈ [k]V defined as

μ(σ) = 1

Z
exp

[
−

( ∑
(x,y)∈E

U(σx, σy) + ∑
x∈V

W(σx)

)]
,

where Z, also known as the partition function, is the normalizing constant such
that

∑
σ∈[k]V μ(σ) = 1. We say that a configuration σ is proper if μ(σ) > 0 and

denote the set of proper configurations on T by �T = {σ : μ(σ) > 0}. For each
pair of states (i, j) ∈ [k]2, we say that (i, j) is a hard constraint if U(i, j) = ∞,
otherwise we say that i and j are compatible. For each subset of vertices A ⊆ T ,
we will write σA for the restriction of σ to A and use superscript for boundary
conditions. In particular, �

η
A = {σ : σ ∈ �T ,σT \A = ηT \A} is the set of configura-

tions compatible with boundary condition η and we denote the conditional law on
�η(A) as μ

η
A(σ) = μ(σ | σ ∈ �

η
A).

For the reconstruction problem, it is easy to work with the Markov chain con-
struction of the Gibbs measure on trees, which can be taken as a special case of the
broadcast model on trees. Information is sent on tree T from the root ρ downwards
and each edge acts as a noisy channel. For each input c1 ∈ [k], the output of c2 is
chosen randomly according to some probability kernel M(c1, c2). If the input at
the root is chosen according to the stationary distribution of M , denoted by π , then
the law of a random configuration on T is given by

μ(σ) = π(σρ)
∏

(x,y)∈E

M(σx, σy).

It is easy to check that for any reversible probability kernel M , the aformen-
tioned probablity measure corresponds to the spin system with potentials U,W

given by

(2.1) U(c1, c2) = − ln
(

M(c1, c2)

π(c2)

)
, W(c) = − lnπ(c).

Note that not all potential pairs U,W can be expressed this way. A necessary
condition for (2.1) is that∑

c′∈[k]
exp

[−(
U

(
c, c′) + W

(
c′))] ≡ C ∀c ∈ [k]
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for some constant C. We will henceforth restrict our attention to spin systems that
can be expressed as (2.1) and refer such systems by their probability kernel M . We
will also assume that M is ergodic and reversible.

The principal example of spin systems for this paper is the graph coloring
model, where for each c, c ∈ [k] W(c) ≡ 0,U(c, c′) = ∞ · 1(c = c′), or equiv-
alently M(c, c′) = 1

k−11(c = c′),π(c) ≡ 1
k

. A proper k-coloring of the graph
G = (V ,E) is an assignment σ : V → [k] such that for each edge (x, y) ∈ E,
σx 
= σy and the Gibbs measure is the uniform distribution over all proper col-
orings. In the statistical physics literature, this corresponds to zero-temperature
anti-ferromagnetic Potts model.

Uniqueness and reconstruction: Two key notions of spatial decay of correla-
tion for spin systems on trees are the uniqueness and reconstruction thresholds.
Recalling that Ll is the set of the vertices at level l in T , we have the following
definition.

DEFINITION (Reconstruction). For k ≥ 2, we say that a k-state system M is
reconstructible on tree T if there exist two states c, c′ ∈ [k] such that

lim sup
l→∞

dTV
(
μ(σLl

= · | σρ = c),μ
(
σLl

= · | σρ = c′)) > 0.

Otherwise, we say that the system has nonreconstruction on T .

Nonreconstruction is equivalent to the extremality of infinite volume Gibbs
measure under free boundary conditions. More equivalent definition and an ex-
tensive literature review are given in the survey [14]. A strictly stronger condition
is the uniqueness property.

DEFINITION (Uniqueness). For k ≥ 2, we say that a k-state system M has
uniqueness on tree T if

lim sup
l→∞

sup
η,η′∈�Ll

dTV
(
μ(σρ = · | σLl

= η),μ
(
σρ = · | σLl

= η′)) > 0,

where �Ll
is the set of configurations restricted to level l.

Glauber dynamics and mixing time: The Glauber dynamics of a k-state spin
system M is a Markov chain Xt on state space �T . A step of the Markov chain
from Xt to Xt+1 is defined as follows:

1. Pick a vertex x uniformly at random from T ;
2. Pick a state c ∈ [k] according to the conditional distribution of the spin value

of x given the rest of configuration, that is, state c is picked with probability
μσ{x}(c) = μ(σ ′

x = c | σ ′
y = σy,∀y 
= x);

3. Set Xt+1(x) = c and Xt+1(y) = Xt(y), for all y 
= x.
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In the case of graph coloring, the second step corresponds to picking uniformly at
random colors that do not appear in the neighborhood of x.

To justify our study of the Glauber dynamics under free boundary condition, we
first show that the Markov chain is irreducible, and hence ergodic on the set of all
proper configurations. For the sake of recursive analysis on subtrees later, we also
prove irreducibility in a related case where the root of T is connected to one more
vertex, namely its “parent”, and the value of its parent is fixed. For each c ∈ [k], let
�c

T denote the set of configurations with the parent of root ρ fixed to state c and
let μc

T be the corresponding conditional Gibbs measure.

LEMMA 2.1. For any k-state system M on d-ary tree T , if M is reversible
and ergodic, then �T is irreducible under the Glauber dynamics and so is �c

T for
each c ∈ [k].

PROOF. We first prove the irreducibility of �c
T by induction on the number

of levels l in T . For l = 0, it is trivially true since �c
T is simply the set of states

compatible of c. Suppose that the Glauber dynamics is irreducible on the (l − 1)-
level tree. For the l-level tree T , we need to show that for any two configurations
σ,σ ′ ∈ �c

T , there exists a path of valid moves of the dynamics connecting σ to σ ′.
To construct such a path, one can first change every vertex x ∈ L1 to state c by a
sequence of moves in the tree Tx . This is possible since alternating layers of states
c and σρ is a proper configuration in �

σρ

Tx
and any two configurations in �

σρ

Tx
are

connected by the inductive hypothesis. One may then change the spin of the root
from σρ to σ ′

ρ , since both states are compatible with c. Finally, we may change the
configuration of every subtree Tx to σ ′

Tx
using the inductive hypothesis, ending in

the configuration σ ′.
To show the irreducibility of �T , we choose σ,σ ′ ∈ �T . By the ergodicity of

M , there exists a sequence of states c0, . . . , c2m ∈ [k] such that c0 = σρ , c2m = σ ′
ρ

and for each 0 ≤ i ≤ 2m − 1, ci is compatible with ci+1. For each 0 ≤ i ≤ m, let
τi ∈ �T be the configuration with alternating layers of c2i and c2i+1(let c2m+1 be
an arbitrary state compatible with c2m = σ ′

ρ ). One can first change σ to τ0 using
the irreducibility of the Glauber dynamics on �

σρ

Tx
for each x ∈ L1, then for each

1 ≤ i ≤ m change from τi−1 to τi by first changing all vertices on even levels to
c2i then vertices on odd levels to c2i+1, and finally change each (τm)Tx to σ ′

Tx
. �

Lemma 2.1 implies that the Glauber dynamics with free boundary conditions
will always converges to the Gibbs measure μ. The mixing time of the Glauber
dynamics is defined as

tmix = max
σ∈�T

min
{
t : dTV

(
P t(σ, ·),μ) ≤ 1

2e

}
,

where P is the probability kernel of Xt and dTV(η,μ) = 1
2

∑
σ |η(σ) − μ(σ)|

is the total variance distance. To bound the mixing time, we will make use of
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the log-Sobolev constant. For a nonnegative function f : �T → R, let μ(f ) =∑
σ μ(σ)f (σ ) be the expectation of f and Ent(f ) = μ(f logf ) − μ(f ) logμ(f )

be its entropy. The Dirichlet form of f is defined as

D(f ) = 1

2

∑
σ,σ ′∈�T

μ(σ)P
(
σ,σ ′)(f (σ) − f

(
σ ′))2

.

And the log-Sobolev constant is defined as γ = inff ≥0
D(

√
f )

Ent(f )
. Applying results in

functional analysis to the Glauber dynamics yields the following bound (see, e.g.,
Theorem 2.2.5 of [16]).

THEOREM. For k-state system M on n-vertex d-ary tree T , there exists a
constant C > 0 such that tmix ≤ 1

γ
· Cn logn.

Therefore, to show rapid mixing it is enough to show that γ is uniformly
bounded away from zero as n → ∞.

2.2. Component dynamics. Next, we define a new variant of block dynamics
on T , which we call the “component dynamics”. Each step of the new dynam-
ics updates a block of vertices each step, but only chooses configurations within
the connected component of the Glauber dynamic. In this way, we can utilize the
techniques in [12] while bypassing the problem that one step of the block dynam-
ics may not be connected in the Glauber dynamics when k ≤ d + 1. To give a
formal definition, for A ⊂ T , we say that σ ′ ∼A σ if σ ′

T \A = σT \A and σ ′
A,σA

are connected by valid moves of the Glauber dynamics on A with fixed bound-
ary condition σT \A. We will omit the A in σ ∼A σ ′ when it is clear from context.
Let �

∗,σ
A = {σ ′ ∈ �σ

A,σ ′ ∼A σ } denote the connected component of σ in �σ
A, and

μ
∗,σ
A (σ ′) = μ(σ ′ | �

∗,σ
A ) be the Gibbs distribution conditioned on both configura-

tion outside A and the connected component within A.
For l ≥ 1, recall Bx,l is the block of l levels rooted at x and Lx,l be the lth

level of Bx,l . If x is within distance l of the leaves, let Bx,l = Tx . We define the
component dynamics to be the Markov chain on �T with the following update
rule: In each step:

1. Pick a vertex x uniformly randomly from T .
2. Replace σ by σ ′ drawn from conditional distribution μ

∗,σ
Bx,l

.

The dynamics is reversible with respect to the Gibbs distribution. For test functions
f : �T → R, let μ

∗,σ
A (f ) = ∑

σ ′∈�
∗,σ
A

f (σ ′)μ∗,σ
A (σ ′) be the conditional expecta-

tion of f on �
∗,σ
A and for f ≥ 0, let

Ent∗,σ
A (f ) = Ent

(
f | �∗,σ

A

) = μ
∗,σ
A (f logf ) − μ

∗,σ
A (f ) logμ

∗,σ
A (f )

be the conditional entropy of f . We write the sum of local entropies of block size
l as E∗

l = ∑
x∈T μT (Ent∗,σ

Bx,l
(f )). With minor modification, the comparison result
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of block dynamics also works for component dynamics (see, e.g., Proposition 3.4
of [11]; in the proof substitute ED(f,f ) by E∗

l and note
∑

σ ′ μτ
T (σ ′)μ∗,σ ′

Bx,l
(σ ) =

μτ
T (σ )):

γ ≥ 1

l
· inf
f ≥0

E∗
l

Ent(f )
· min

σ,x
γ

∗,σ
Bx,l

,

where γ
∗,σ
Bx,l

is the log-Soblev constant of the Glauber dynamics on �
∗,σ
Bx,l

with the

boundary condition on ∂Bx,l given by σ . From our definition of �
∗,σ
Bx,l

, it is easy
to see that minσ,x γ

∗,σ
Bx,l

is a constant only depending on the branching number d ,
block size l and M itself and is strictly greater than 0 independent of T . Thus,
to show O(n logn) mixing time for the Glauber dynamics, it is enough to show
E∗

l ≥ const × Ent(f ) for all f ≥ 0 and some choice of block size l independent of
tree size |T | = n.

2.3. Connectivity condition. In this section, we specify the connectivity con-
dition C mentioned in Theorem 1.2. First, we will define the notion of free vertices.
Let T be a tree of l levels. Given configuration σ ∈ �T with σρ = c, σLl

= η, we
say that the root can change (from c) to state c′ in one step if and only if there
exists a path σ = σ 0, σ 1, . . . , σ n ∈ �T such that:

1. σ i
Ll

≡ η for each 0 ≤ i ≤ n. σ i
ρ = c, for each 0 ≤ i ≤ n − 1 and σn

ρ = c′.
2. For each 0 ≤ i ≤ n − 1, configuration σ i differs from σ i+1 at exactly one

vertex.

Put another way, the path is a valid trajectory of the Glauber dynamics with fixed
boundary condition which changes the state of ρ only once in the final step. For
x ∈ T , we say x is free (in σ ) if, considered as the root of Tx , x can change to all
the other (k − 1)-states in one step. We are interested in the probability that the
root of an l-level tree is free and we denote it by pfree

l = μ(σ : ρ is free in σ).

DEFINITION. We say that a k-state system M on the d-ary tree satisfies the
connectivity condition C if M is ergodic, reversible and satisfies the following
conditions:

1. If k ≥ 3, then for any c1, c2, c3 ∈ [k], there exists c ∈ [k] such that c is com-
patible with c1, c2, c3.

2. The probability of being free tends to 1 as l tends to infinity, that is,
liml→∞ pfree

l = 1.

Roughly speaking, the connectivity condition controls the behavior of “frozen”
vertices in a typical configuration. As will be shown in Section 4, under the connec-
tivity condition the probability that a vertex is “frozen” by the boundary condition
is extremely small and the extra restriction of the component dynamics is negligi-
ble for vertices faraway from the bottom (see the remark after Claim 4.2 for more
discussions).
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2.4. Outline of proof. A key ingredient in [12] is that a certain strong con-
centration property implies “entropy mixing” in space which in turn implies the
fast mixing of the block dynamics. The following Theorem 2.2 can be seen as the
combination of Theorems 3.4 and 5.3 of [12] adapted to the component dynamics
(the notation here is closer to Theorem 5.1 of [2]). For completeness, we include
an outline of the proof in Section 5, highlighting the differences from [12].

THEOREM 2.2. There exists some constant α > 0 such that for every δ > 0
and l ≥ 1 the following statement holds: If for all x ∈ T that is at least l levels from
the leaves and all compatible pairs of states c, c′ ∈ [k], the conditional measure
μc = μc

Tx
satisfies

(2.2) Pr
τ∼μc

(∣∣∣∣μ
c(σx = c′ | σ ∼Bx,l

τ )

μc(σx = c′)
− 1

∣∣∣∣ ≥ (1 − δ)2

α(l + 1 − δ)2

)
≤ e

−2α(l+1−δ)2

(1−δ)2 ,

then for every function f ≥ 0, Ent(f ) ≤ 2
δ
E∗

l .

To prove Theorem 1.2, it suffices to verify (2.2) for some choice of l and δ. We
first show a weaker inequality (2.3) in the following theorem. Note that the same
inequality is proved in Theorem 5.3 of [12] or Theorem 5.1 of [2] for specific
models such as the coloring model. Here, we provide a different proof that works
for general models using only nonreconstruction.

THEOREM 2.3. For a k-state system M , if M is nonreconstructible and
dλ2 < 1, then for any α > 0,0 < δ < 1, there exist l0 ≥ 1 such that for all l ≥ l0,
every x ∈ T that is at least l levels from the leaves, and any pair of compatible
states c, c′ ∈ [k], μc = μc

Tx
satisfies

(2.3) Pr
τ∼μc

(∣∣∣∣μ
c(σx = c′ | σLx,l

= τLx,l
)

μc(σx = c′)
− 1

∣∣∣∣ ≥ (1 − δ)2

α(l + 1 − δ)2

)
≤ e

−2α(l+1−δ)2

(1−δ)2 .

The difference between (2.2) and (2.3) is that in equation (2.2), the inner mea-
sure μc conditions not only on the boundary condition σLx,l

= τLx,l
, but also the

connected component of τ . We will show that under connectivity condition C, the
difference between σ ∼Bx,l

τ and σLx,l
= τLx,l

is negligible in the upper half of a
large block, hence (2.2) holds.

LEMMA 2.4. Let M be a k-state system satisfying C such that (2.3) holds for
l ≥ l0 and δ = δ0. Then there exist constants l1 ≥ 2l0 and δ1 ≥ δ0 such that for all
l ≥ l1, equation (2.2) holds with δ = δ1.

Theorems 2.2 and 2.3 and Lemma 2.4 together imply Theorem 1.2. The rest of
the paper is structured as follows: We will prove Theorem 2.3 in Section 3 and
Lemma 2.4 in Section 4, and we will include a sketch of Theorem 2.2 in Section 5.
After that, we will apply the result to the k-coloring model and prove Theorem 1.1
in Section 6.
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3. Proof of Theorem 2.3. In this section, we prove Theorem 2.3. The result
for the k-coloring model was proved in [2], which used the specific structure of
coloring model. Here, we will give a different proof for general systems M using
only nonreconstruction and dλ2 < 1. We first introduce some notation. Recall that
the stationary distribution of M is π . For x ∈ T , let

R̃x,l(τ )(c) = 1

π(c)
μTx (σx = c | σLx,l

= τLx,l
)

denote the ratio of conditional and unconditional distribution at x and write
Rx,l(τ ) = ‖R̃x,l(τ ) − 1‖∞ = maxc∈[k] |R̃x,l(τ )(c) − 1|. We will omit τ when it
is clear from context. In the proof, we will work with the unconditional Gibbs
measure μ = μTx and π instead of μc

Tx
and μc

Tx
(σx = c′) and show the following

stronger inequality.

THEOREM 3.1. Under the assumptions of Theorem 2.3, there exists constant
ξ > 0 and l0 > 0, such that for all l ≥ l0, every x ∈ T that is at least l levels from
the leaves, μ = μTx satisfies

(3.1) Pr
τ∼μ

(
Rx,l(τ ) ≥ e−ξ l) ≤ exp

(−eξl).
PROOF OF THEOREM 2.3. To see that (3.1) implies (2.3), consider the Markov

chain construction of σ . Let Ex be the edge set of Tx , we have

μ(σ) = π(σx)
∏

(y,z)∈Ex

M(σy, σz), μc(σ ) = M(c,σx)
∏

(y,z)∈Ex

M(σy, σz).

Hence, for any event A ⊆ �Tx ,

Pr
τ∼μc

(A) = ∑
τ∈A

μc(τ ) = ∑
τ∈A

M(c, τx)

π(τx)
μ(τ) ≤ π−1

minμ(A) = π−1
min Pr

τ∼μ
(A),

where πmin = minc∈[k] π(c) > 0. Note that∣∣∣∣μ
c(σx = c′ | σLx,l

= τLx,l
)

μc(σx = c′)
− 1

∣∣∣∣ =
∣∣∣∣μ(σx = c′ | σLx,l

= τLx,l
)

π(c′)
− 1

∣∣∣∣ ≤ Rx,l(τ ).

It follows that

Pr
τ∼μc

(∣∣∣∣μ
c(σx = c′ | σLx,l

= τLx,l
)

μc(σx = c′)
− 1

∣∣∣∣ ≥ e−ξ l

)
≤ π−1

min exp
(−eξl).

Theorem 2.3 then follows by taking l0 large enough such that exp(−ξ l0) ≤ (1 −
δ)2/α(l0 − 1 + δ)2. �

In the rest of the section, we assume that M satisfies the assumptions of Theo-
rem 3.1. The following lemma gives the recursive relation of R̃x,l(c).
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LEMMA 3.2. Fix τ ∈ �T and x ∈ T and let x1, . . . , xd denote the d children
of x. R̃x,l can be written as a rational function of R̃xi ,l−1:

(3.2)

R̃x,l(c) =
∏d

i=1 MR̃xi,l−1

π
∏d

i=1 MR̃xi,l−1
(c)

=
∏d

i=1
∑

ci∈[k] M(c, ci)R̃xi ,l−1(ci)∑
c′∈[k] π(c′)∏d

i=1
∑

ci∈[k] M(c′, ci)R̃xi ,l−1(ci)
.

PROOF. Let Ex and Exi
denote the edge set of Tx and Txi

, they satisfy that
Ex = ⋃

i (Exi
∪ {(x, xi)}). Let �x(c) = {σ : σx = c, σLx,l

= τLx,l
} and �xi

(c) =
{σ : σxi

= c, σLxi ,l−1 = τLxi ,l−1} be the set of configurations on Tx and Txi
with

boundary condition τ . By the Markov chain construction, we have

μ
(
�x(c)

) = μ(σx = c, σLx,l
= τLx,l

) = ∑
σ∈�x(c)

π(c)
∏

(y,z)∈E

M(σy, σz)

= ∑
c1,...,cd∈[k]

π(c)

d∏
i=1

M(c, ci)
∑

σ i∈�i(ci)

∏
(y,z)∈Ei

M
(
σ i

y, σ
i
z

)

= ∑
c1,...,cd∈[k]

π(c)

d∏
i=1

M(c, ci)

πci

μ
(
�i(ci)

)

= π(c)

d∏
i=1

∑
ci∈[k]

M(c, ci)

πci

μ
(
�i(ci)

)
.

Therefore, by Bayes’ formula,

R̃x,l(c) = 1

π(c)
μ(σx = c | σLx,l

= τLx,l
) = 1

π(c)

μ(�x(c))∑
c′∈[k] μ(�(c′))

=
∏d

i=1
∑

ci∈[k] M(c,ci )
πci

μ(�i(ci))∑
c′∈[k] π(c′)∏d

i=1
∑

ci∈[k] M(c′,ci )
πci

μ(�i(ci))

=
∏d

i=1
∑

ci∈[k] M(c, ci)R̃xi ,l−1(ci)∑
c′∈[k] π(c′)∏d

i=1
∑

ci∈[k] M(c′, ci)R̃xi ,l−1(ci)
,

where the last step followed by dividing both the numerator and denominator by∏d
i=1

∑
c′
i∈[k] μ(�i(c

′
i )). �

Observe that in the recursive relationship of (3.2), R̃x,l(c) is a rational function
of R̃xi ,l−1, i = 1, . . . , d , where R̃x,l takes values from the k dimensional simplex
�[k] = {R ∈ R

k : πR = 1,Ri ≥ 0, i = 1, . . . , k}. The next lemma establishes a
contraction property of Rx,l , using the continuity of (3.2) and the ergodicity of M .
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LEMMA 3.3. There exist an integer m ≥ 1 and constant ε > 0 such that for
all dm vertices y1, . . . , ydm ∈ Lx,m, if at most one yi has Ryi,l−m > ε then

(3.3) Rx,l ≤ 1

2

dm∑
i=1

Ryi,l−m.

PROOF. Let f : �d[k] → �[k] be the function on the RHS of (3.2) such that

R̃x,l = f (R̃x1,l−1, . . . , R̃xd ,l−1). Observe from (3.2) that f is a rational function
with f (1, . . . ,1) = 1. When R̃x2,l−1 = · · · = R̃xd ,l−1 = 1, f can be simplified as

R̃x,l = f (R̃x1,l−1,1, . . . ,1) = MR̃x1,l−1

πMR̃x1,l−1
= MR̃x1,l−1.

Iterating the function m times, we get R̃x,l = f (m)(R̃y1,l−m, . . . , R̃ydm,l−m) where
f (m) : �dm

[k] → �[k] is another rational function. A similar calculation shows when

R̃y2,l−m = · · · = R̃ydm,l−m = 1,

R̃x,l = f (m)(R̃y1,l−m,1, . . . ,1) = MmR̃y1,l−m.

Since f (m) is a smooth function in any regions without poles, there exists con-
stant C1 = C1(d,m,M) such that in the local neighborhood of (1, . . . ,1),∥∥∥∥∥R̃x,l − 1 −

dm∑
i=1

(
MmR̃yi,l−m − 1

)∥∥∥∥∥ ≤ C1

dm∑
i=1

‖R̃yi ,l−m − 1‖2

≤ C1k

dm∑
i=1

‖R̃yi ,l−m − 1‖2∞.

By the ergodicity of M , for sufficiently large m and all R̃ ∈ �[k] we have ‖MmR̃ −
1‖∞ ≤ 1

4‖R̃−1‖∞. Therefore, there exists ε1 = ε1(C1, k) such that if Ryi,l−m ≤ ε1
for all vertices yi ∈ Lx,m then

(3.4) ‖R̃x,l − 1‖∞ ≤
(

1

4
+ C1kε1

) dm∑
i=1

‖R̃yi ,l−m − 1‖∞ ≤ 1

2

dm∑
i=1

Ryi,l−m.

This suffices provided that there are no large Ryi,l−m.
We now consider the case when there is one large Ryi,l−m, which we can with-

out loss of generality assume is i = 1. Again since f (m) is smooth, there exists
C2, ε2 > 0 such that for all R̃y1,l−m > ε1, if supi≥2 Ryi,l−m ≤ ε2 then

∥∥R̃x,l − MmR̃y1,l−m

∥∥ ≤ C2

dm∑
i=2

‖R̃yi ,l−m − 1‖.
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Let ε = ε2 ∧ (4C2d
mk)−1ε1, if we moreover have supi≥2 Ryi,l−m ≤ ε, then

(3.5)
‖R̃x,l − 1‖∞ ≤ 1

4
‖R̃y1,l−m − 1‖∞ + C2d

mkε

≤ 1

4
Ry1,l−m + 1

4
ε1 ≤ 1

2
Ry1,l−m.

Combining equations (3.4) and (3.5) and noting that ε < ε1 completes the proof.
�

So far, we have not used the assumption of nonreconstruction and dλ2 < 1.
In [8], Janson and Mossel introduced the notion of “robust reconstruction” and
showed the following result (rephrased to the notation here).

THEOREM 3.4 (Lemma 2.7 and Lemma 2.8 of [8]). If M is ergodic and dλ2 <

1, then there exist constants C1 = C1(d) > 0 and δ = δ(d) > 0 such that for any
l ≥ 1 if dTV(μc

Ll
,μLl

) ≤ δ for all c ∈ [k], then

dTV
(
μc

Ll+1
,μLl+1

) ≤ e−C1dTV
(
μc

Ll
,μLl

)
for all c ∈ [k].

Theorem 3.4 combined with nonreconstruction implies the following weaker
concentration inequality.

COROLLARY 3.5. Under the assumptions of Theorem 3.1, there exist con-
stants C1,C2 > 0 such that

(3.6) Pr
τ∼μ

(Rx,l > z) ≤ C2

z
e−C1l .

PROOF. By the definition of nonreconstruction, liml→∞ dTV(μc
Ll

,μLl
) = 0.

Hence, for sufficiently large l, dTV(μc
Ll

,μLl
) ≤ δ and by induction there exists

constant C2 > 0 that

dTV
(
μc

Ll
,μLl

) ≤ C2e
−C1l .

A duality argument then shows that

Eτ∼μ

∣∣R̃x,l(c) − 1
∣∣

= Eτ∼μ

∣∣∣∣ 1

π(c)
μ(σx = c | σLx,l

= τLx,l
) − 1

∣∣∣∣ = Eτ∼μ

∣∣∣∣μ
c(σLx,l

= τLx,l
)

μ(σLx,l
= τLx,l

)
− 1

∣∣∣∣
= ∑

τ

∣∣μc(σLx,l
= τLx,l

) − μ(σLx,l
= τLx,l

)
∣∣ = 2dTV

(
μc

Ll
,μLl

) ≤ 2C2e
−C1l .

Maximizing over c ∈ [k], we get Eτ∼μRx,l ≤ C2e
−C1l for some (different) con-

stant C1,C2 > 0 and (3.6) follows by Markov’s inequality. �

Finally, we improve the concentration bound of (3.6) using Lemma 3.3.
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PROOF OF THEOREM 3.1. By Lemma 3.3, the event Rx,l > z implies that ei-
ther there exist two i ∈ [dm] such that Ryi,l−m > ε or

∑dm

i=1 Ryi,l−m > 2z. In the
second case if the event

∑dm

i=1 Ryi,l−m > 2z holds and for every yi , Ryi,l−m ≤
3
2z, then there must exist at least two i such that Ryi,l−m > 1

2dm z, otherwise∑dm

i=1 Ryi,l−m ≤ 3
2z + dm−1

2dm z < 2z. Therefore, we can write

Pr
τ∼μ

(Rx,l > z) ≤ Pr
τ∼μ

(∃ two yi ∈ Lx,m,Ryi,l−m > ε)

+ Pr
τ∼μ

(
∃yi ∈ Lx,m,Ryi,l−m >

3

2
z

)

+ Pr
τ∼μ

(
∃ two yi ∈ Lx,m,Ryi,l−m >

1

2dm
z

)
.

Let g(z, l) = Prτ∼μ(Rx,l > z) and C = max{2dm, 1
επmin

}, note g(z, l) is a decreas-
ing function in z, the equation above become

g(z, l) ≤ d2mg2(ε, l − m) + dmg

(
3

2
z, l − m

)
+ d2mg2

(
1

2dm
z, l − m

)

≤ dmg

(
3

2
z, l − m

)
+ 2d2mg2

(
1

C
z, l − m

)
.

Iterating this estimation h times, we have

(3.7) g(z, l) ≤
h∑

i=0

(
2d2m)2h−i (1+i)

g2h−i
((

3

2

)i( 1

C

)h−i

z, l − hm

)
,

where the coefficient can be shown by induction on h using inequality (a + b)2 ≤
2(a2 + b2).

Since for all z > π−1
min, we have g(z, l) = 0, the summand on the RHS of (3.7)

is zero for large i. Fix κ = log 4
3C/ log 3

2C < 1, for h ≥ log( 1
zπmin

)/ log(4
3) and

i > κh, we have (3
2)i( 1

C
)h−iz > π−1

min. Therefore

g(z, l) ≤
κh∑
i=0

(
2d2m)2h−i (1+i)

g2h−i
((

3

2

)i( 1

C

)h−i

z, l − hm

)

≤ κh
[(

2d2m)h
g
(
C−hz, l − hm

)]2(1−κ)h

.

Now apply (3.6) and let h = rl/m for small r > 0 such that (1 − r)C1 − r ·
1
m

log(2Cd2m) > 1
2C1 > 0. For large enough l such that log l ≤ 2

(1−κ)r
m

l , we have

g(z, l) ≤ κh

((
2d2m)h C2C

h

z
e−C1(l−hm)

)2(1−κ)h

≤ κr

m
l

(
C2

z

(
2Cd2m) r

m
l
e−C1(1−r)l

)2
(1−κ)r

m l

≤ κr

m

(
2C2

z
e− 1

2 C1l

)2
(1−κ)r

m l

.
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Let C3 = 2
C1

,C4 = κr
m

, C5 = (1−κ)r
m

log 2. For l > C3(1+ log 2C2 − log z), we have
g(z, l) ≤ C4 exp{− exp(C5l)}.

Finally, define ξ = 1
2 min{C−1

3 ,C5}, plug in zl = exp(−ξ l). When l is large
enough, we have C3(1 + log 2C2 − log z) ≤ C3(1 + log 2C2) + 1

2 l < l and
exp(exp(1

2C5l)) > C4, therefore,

Pr
τ∼μ

(
Rx,l(τ ) ≥ e−ξ l) = g(zl, l) ≤ C4 exp

(−eC5l
) ≤ exp

(−eξl),
completing the proof. �

4. Proof of Lemma 2.4. The proof of Lemma 2.4 contains two steps. First,
for block Bx,l with sufficiently large l, we study the measure μ

∗,τ
Bx,l

induced on
the upper half of block Bx,l/2 (here and throughout the section, we choose l to be
even) and consider the following subset of �τ

Bx,l
:

Aτ = {
σ ∈ �τ

Bx,l
: ∀x ∈ Lx,l/2+2, x is free w.r.t. σ

}
.

Aτ can be considered as the set of “good” configurations with boundary condi-
tion τ . As we will show later, under connectivity condition C, μ

∗,τ
Bx,l

(Aτ ) is close to
1 with high probability. And as the following lemma claims, conditioning on Aτ

and the configuration on Lx,l/2, the boundary of Bx,l/2, the marginal of x induced
by μ

∗,τ
Bx,l

equals to the marginal induced by μc. Therefore, as a second step we can
apply the result of Theorem 2.3 to Bx,l/2. Let �Lx,l/2 be the set of configuration
on Lx,l/2. Throughout the section, we assume that M satisfies the connectivity
condition C.

LEMMA 4.1. For arbitrary τ ∈ �c
Tx

, η ∈ �Lx,l/2 and state c′ ∈ [k] that is com-
patible with c,

(4.1) μ
∗,τ
Bx,l

(
σx = c′ | σLx,l/2 = η,σ ∈ Aτ

) = μc(σx = c′ | σLx,l/2 = η
)
.

PROOF. For convenience of notation, abbreviate σ(1) = σBx,l/2−1 , σ(2) =
σBx,l\Bx,l/2 , so every configuration σ ∈ �Bx,l

can be written as a three tuple
(σ(1), η, σ(2)). We of course have that σ(1), σ(2) are conditionally independent given
σLx,l/2 = η. By the definition of Aτ , {σ ∈ Aτ } only depends on σ(2). Therefore, to
show (4.1), it is enough to show that conditioned on σLx,l/2 and σ ∈ Aτ , σ ∼ τ is
independent of σ(1). From there we have

μ
∗,τ
Bx,l

(
σx = c′ | σLx,l/2 = η,σ ∈ Aτ

)
= μc(σx = c′ | σLx,l/2 = η,σ ∼ τ, σ ∈ Aτ

)
= μc(σx = c′ | σLx,l/2 = η,σ ∈ Aτ

) = μc(σx = c′ | σLx,l/2 = η
)
.

Since “∼” is a transitive relation, the conditional independence of σ ∼ τ and σ(1)

follows from the following claim. �
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CLAIM 4.2. For each τ ∈ �c
Tx

, η ∈ �Lx,l/2 and for all σ = (σ(1), η, σ(2)), σ ′ =
(σ ′

(1), η, σ(2)) ∈ �τ
Bx,l

if σ,σ ′ ∈ Aτ , then σ ∼ σ ′.

PROOF. For each x ∈ T , let p(x) denote the parent of x. By Lemma 2.1, there
exists a path � connecting σ(1) to σ ′

(1) in �c
Bx,l/2

via valid moves of the Glauber
dynamics on Bx,l/2 with σp(x) = c and free boundary condition on Lx,l/2. We will
construct a path �′ in �τ

Bx,l
connecting σ to σ ′ by adding steps between steps of �

which only changes the configuration on Bx,l \Bx,l/2, such that vertices in Lx,l/2+1
won’t block the moves in � and after finishing �, we can change the configuration
on Bx,l \Bx,l/2 back to the original σ(2). The construction of �′ is specified below:

(1) Before starting �. For each y ∈ Lx,l/2+2, σ ∈ Aτ implies that there exists
a path �y in Ty changing y from σy to σp(p(y)) = ηp(p(y)) in one step. To see
�y is also a connected path in Bx,l , we have to show that the parent of y won’t
block �y . The only neighbor of p(y) in Ty is y and the only move involving y

in �y is the last step changing y from σy to σp(p(y)). The value of p(y) will not
block this last step because σp(y) is compatible with both σy and σp(p(y)) (they
are states of neighboring vertices in σ ). Now we will concatenate the �y’s for
each y ∈ Lx+l/2+2 and change σy to σp(p(y)). After that, for each w ∈ Lx,l/2, all
vertices in Lw,2 are in state σw = ηw . The configuration on and below Lx,l/2+2
will henceforth remain fixed until we finish �.

(2) Performing �. For each step in �, the existence of Bx,l−1 \ Bx,l/2 might
block this move only if it changes the state of some vertex w ∈ Lx,l/2. Suppose it
changes w from c1 to c2. Remember in the construction above, all vertices in Lw,2
have states ηw . By part 1 of C, we can find c3 ∈ [k] which is compatible with c1, c2
and ηw . Now in order to change w from c1 to c2, it suffices to first change the state
of every vertex z ∈ Lw,1 to c3, and then change w from c1 to c2. This construction
keeps the configuration on and below Lx,l/2+2 unchanged.

(3) After �. After the moves in �, the configuration in Bx,l/2 is (σ ′
(1), η). We can

change every vertex z ∈ Lx,l/2+1 back to σ ′
z = σz because at this moment its parent

p(z) ∈ Lx,l/2 and all children of z in Lz,1 have state ηp(z) = σp(z), which is com-
patible with σz. From there, we can reverse the path �y for each y ∈ Lx,l/2+2 and
change the configuration on and below Lx,l/2+2 back to the original configuration
σ(2). This completes the construction achieving σ ′

(2) = σ(2). �

LEMMA 4.3. There exist constants C1 > 1, C2 > 0 such that for all l ≥ 1,

(4.2) 1 − pfree
l ≤ C2 exp

(−Cl
1
)
.

PROOF. Fix x ∈ T and σ ∈ �Tx . First if for all 1 ≤ i ≤ d , zi ∈ Lx,1 is free,
then x is also free. To see that, for any c ∈ [k], by connectivity condition there
exists c′ ∈ [k] such that c′ is compatible with both c and σx , we can first change all
zi to c′ in one step and then change x from σx to c as the final step.
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Now consider the set of yij ’s where yij ∈ Lzi,1 ⊂ Lx,2 for 1 ≤ i, j ≤ d . If at
most one of the yij ’s is not free, say y11 ∈ Lz1,1, then for each i 
= 1, zi is free and
z1 can change in one step to all states compatible with σy11 . Again by C, for all
c ∈ [k] there exists c′ ∈ [k] such that c′ is compatible with c, σx and σy11 . By the
construction above, we can change x from σx to c in one step, hence x is also free.

This implies if x is not free, then there exist at least two yij ∈ Lx,2 that are not
free. By part 2 of C, there exists l0 > 0, such that for all l > l0 we have 1 − pfree

l <

1/d8, and hence

1 − pfree
l ≤

(
d2

2

)(
1 − pfree

l−2
)2 ≤ d4(

1 − pfree
l−2

)2 ≤ (
1 − pfree

l−2
)1.5

.

By induction, 1 − pfree
l ≤ (1 − pfree

l0
)(1.5)(l−l0)/2

which completes the proof. �

REMARK. Claim 4.2 and Lemma 4.3 are the two main places where connec-
tivity conditions are used: The first part of condition C is used in the construction
of �′. It might be possible circumvented the assumption by using more carefully
constructed paths. However, this would be purely technical and not the main inter-
est of this paper. The second part of condition C is used to show that Aτ happens
with high probability.

Note that Claim 4.2 implies that when restricted to Aτ , the fixed boundary
Glauber dynamics on Bx,l/2 is irreducible as a subgraph of the Glauber dynamic
on the larger block Bx,l . It is possible to replace the current connectivity condition
by general assumptions bounding the probability of the later events directly.

Now we can complete the proof of Lemma 2.4, from which Theorem 1.2 follows
immediately.

PROOF OF LEMMA 2.4. Let C = α(l/2 + 1 − δ)2/[(1 − δ)2μc(σx = c′)] be
the quantity on the left-hand side of (2.3). It is enough to show that there exist
constants l1 ≥ 2l0, K ≥ 1 such that for all l ≥ l1

Pr
τ∼μc

(∣∣μc(σx = c′ | σ ∼ τ
) − μc(σx = c′)∣∣ ≥ K

C

)
≤ e−2C/K.

To see the sufficiency, note that this is just equation (2.2) with δ1 satisfying 1−δ1 =
1

4K
(1 − δ).
Recall Aτ = {σ ∈ �τ

Bx,l
: ∀x ∈ Lx,l/2+2, x is free in σ }. Lemma 4.3 implies that

for some constant C1 > 1, C2 > 0 and l ≥ 1,

Eτ∼μc

(
μ

∗,τ
Bx,l

(
Ac

τ

)) = Eτ∼μc

(
μc(σ /∈ Aτ | σ ∼ τ)

)
= Pr

σ∼μc
(∃y ∈ Lx,l/2+2, y is not free)

≤ dl/2+2(
1 − pfree

l/2−2
) ≤ C2d

l/2+2 exp
(−C

l/2−2
1

)
.
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By Markov’s inequality,

(4.3)
Pr

τ∼μc

(
μ

∗,τ
Bx,l

(
Ac

τ

)
>

1

2C

)
≤ 2CEτ∼μc

(
μ

∗,τ
Bx,l

(
Ac

τ

))
≤ Cdl/2+2C2 exp

(−C
l/2−2
1

) → 0

as l → ∞. In the event {τ : μ∗,τ
Bx,l

(Ac
τ ) ≤ 1

2C
},

μ
∗,τ
Bx,l

(
σx = c′ | σ ∈ Aτ

) ≤ μ
∗,τ
Bx,l

(σx = c′)
μ

∗,τ
Bx,l

(σ ∈ Aτ )
≤ μ

∗,τ
Bx,l

(
σx = c′) + 1

C
,

(4.4)

μ
∗,τ
Bx,l

(
σx = c′ | σ ∈ Aτ

) ≥ μ
∗,τ
Bx,l

(
σx = c′, σ ∈ Aτ

) ≥ μ
∗,τ
Bx,l

(
σx = c′) − 1

C
.

Combining the two results together, we have

(4.5)
∣∣μ∗,τ

Bx,l

(
σx = c′) − μ

∗,τ
Bx,l

(
σx = c′ | σ ∈ Aτ

)∣∣ ≤ 1

C
.

Now splitting μ
∗,τ
Bx,l

(σx = c′ | σ ∈ Aτ ) according to σLx,l/2 and applying
Lemma 4.1, we have

(4.6)

μ
∗,τ
Bx,l

(
σx = c′ | σ ∈ Aτ

)
= ∑

η

μ
∗,τ
Bx,l

(
σx = c′ | σ ∈ Aτ ,σLx,l/2 = η

)
μ

∗,τ
Bx,l

(σLx,l/2 = η | σ ∈ Aτ )

= ∑
η

μc(σx = c′ | σLx,l/2 = η
)
μ

∗,τ
Bx,l

(σLx,l/2 = η | σ ∈ Aτ ).

We would like to estimate the set of η such that μc(σx = c′ | σLx,l/2 = η) has a
large bias. Let

B =
{
η : ∣∣μc(σx = c′ | σLx,l/2 = η

) − μc(σx = c′)∣∣ ≥ 1

C

}
.

Theorem 2.3 implies that for l/2 ≥ l0 and some δ > 0, we have Prη∼μc(B) ≤
e−2C , where η ∼ μc denotes the measure μc induced on Lx,l/2. Again by Markov’s
inequality,

(4.7)
Pr

τ∼μc

(
μ

∗,τ
Bx,l

(σLx,l/2 ∈ B) >
1

C

)
≤ CEτ∼μcμ

∗,τ
Bx,l

(σLx,l/2 ∈ B)

= Cμc(B) ≤ Ce−2C.

On the event {τ : μ∗,τ
Bx,l

(σLl/2 ∈ B) ≤ 1
C

}∩{τ : μ∗,τ
Bx,l

(Ac
τ ) ≤ 1

2C
}, from (4.6) we have∣∣μ∗,τ

Bx,l

(
σx = c′ | σ ∈ Aτ

) − μc(σx = c′)∣∣
≤ ∑

η

∣∣μc(σx = c′ | σLl/2 = η
) − μc(σx = c′)∣∣μ∗,τ

Bx,l
(σLl/2 = η | σ ∈ Aτ )(4.8)
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≤ ∑
η∈Bc

1

C
μ

∗,τ
Bx,l

(σLl/2 = η | σ ∈ Aτ ) + μ
∗,τ
Bx,l

(σLl/2 ∈ B | σ ∈ Aτ )

≤ 1

C
· 1 + 1

C
+ 1

C
= 3

C
,

where the last inequality follows from similar argument to (4.4).
Combining the result of equations (4.5) and (4.8), on the event {τ : μ∗,τ

Bx,l
(σLl/2 ∈

B) ≤ 1
C

} ∩ {τ : μ∗,τ
Bx,l

(Ac
τ ) ≤ 1

2C
}, we have

∣∣μ∗,τ
Bx,l

(
σx = c′) − μc(σx = c′)∣∣ ≤ 3

C
+ 3

C
= 6

C
.

Therefore, using the bounds from (4.3) and (4.7), for all l ≥ 2l0,

Pr
τ∼μc

(∣∣μc(σx = c′ | σ ∼ τ
) − μc(σx = c′)∣∣ >

6

C

)

≤ Pr
(
μ

∗,τ
Bx,l

(σLl/2 ∈ B) ≤ 1

C

)
+ Pr

(
μ

∗,τ
Bx,l

(
Ac

τ

) ≤ 1

2C

)

≤ Cdl/2+2C2 exp
(−C

l/2−2
1

) + Ce−2C ≤ e−16C,

where the last step is true for large enough constant l̃ depending on d , C1, C2
and C′. This means that the strong concentration inequality (2.2) holds for K = 6,
δ1 = 1 − 1

4K
(1 − δ) and l1 = max{2l0, l̃}. Moreover, by taking l large enough and

changing the constant C to 6C in (4.5) and (4.8), we can make K arbitrarily close
to 1. �

5. Component dynamics version of fast mixing results. In this section, we
prove Theorem 2.2. The theorem was originally proved for block dynamics in
[12]. Here, we give a modification of their theorem adapted to the component
dynamics by roughly “adding stars” at all occurrence of Bx,l . We will only state
the key steps and refer the details to [12]. For the remainder of this section, we let
μ = μc

T ,� = �c
T . Recall that T̃x = Tx \ {x}. First, we define the entropy mixing

condition for Gibbs measure to be the following.

DEFINITION (Entropy mixing). We say that μ satisfies EM∗(l, ε) if for every
x ∈ T , η ∈ � and any f ≥ 0 that does not depend on the connected component
of Bx,l , that is, f (σ) = μ

∗,σ
Bx,l

(f ),∀σ ∈ �, we have EntηTx
[μ

T̃x
(f )] ≤ ε · EntηTx

(f )

where EntηTx
means the entropy w.r.t. μ

η
Tx

.

Let pmin = minc,c′∈[k]{M(c, c′) : M(c, c′) > 0}. By the Markov chain con-
struction of configurations, it satisfies that pmin = minx,c,c′ {μc

Tx
(σx = c′) :

c, c′ are compatible}. The following theorem relates the entropy mixing condition
to the log-Soblev constant.
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THEOREM 5.1. For any l and δ > 0, if μ satisfies EM∗(l, [(1 − δ)pmin/(l +
1 − δ)]2) then Ent(f ) ≤ 2

δ
· E∗

l (f ).

To prove Theorem 5.1, we need the following modification of Lemma 3.5(ii)
of [12]. The proof follows from its analog in [12] immediately once we replace
νA,EntA, νB,EntB there with ν

T̃x
,Ent

T̃x
, ν∗

Bx,l
,Ent∗Bx,l

, respectively.

LEMMA 5.2. For any ε < p2
min, if μ satisfies EM∗(l, ε) then for every x ∈ T ,

any η ∈ � and any f ≥ 0 we have EntηTx
[μ

T̃x
(f )] ≤ 1

1−ε′ ·μη
Tx

[Ent∗Bx,l
(f )]+ ε′

1−ε′ ·
μ

η
Tx

[Ent
T̃x

(f )] with ε′ = √
ε/pmin.

Now plugging ε = [(1 − δ)pmin/(l + 1 − δ)]2 into Lemma 5.2 verifies the hy-
pothesis of the following claim, which then implies Theorem 5.1:

CLAIM 5.3. If for every x ∈ T , η ∈ � and any f ≥ 0,

(5.1) EntηTx

[
μ

T̃x
(f )

] ≤ c · μη
Tx

[
Ent∗Bx,l

(f )
] + 1 − δ

l
· μη

Tx

[
Ent

T̃x
(f )

]
,

then Ent(f ) ≤ c
δ
· E∗

l (f ) for all f ≥ 0.

PROOF. First, we decompose Ent(f ) as a sum of EntηTx
[μ

T̃x
(f )]. Suppose T

have m levels, consider ∅ = F0 ⊂ F1 ⊂ · · · ⊂ Fm+1 = T , where Fi is the lowest
i levels of T . By basic properties of conditional entropy (equation (3), (4), (5) of
[12]) and Markov’s property of Gibbs measure, we have

(5.2)

Ent(f ) = · · · =
m+1∑
i=1

μ
[
EntFi

(
μFi−1(f )

)]

≤
m+1∑
i=1

∑
x∈Fi\Fi−1

μ
[
EntTx

(
μFi−1(f )

)] ≤ ∑
x∈T

μ
[
EntTx

(
μ

T̃x
(f )

)]
.

Denote the final sum by PEnt(f ). For each term in the sum of PEnt(f ), apply
(5.1) to g = μTx\Bx,l∪∂Bx,l

(f ) and perform the decomposition trick of (5.2) again,
we have for every x ∈ T and η ∈ � that

EntηTx

[
μ

T̃x
(f )

]
= EntηTx

[
μ

T̃x
(g)

]
≤ c · μη

Tx

[
Ent∗Bx,l

(g)
] + 1 − δ

l
· μη

Tx

[
Ent

T̃x
(g)

]

≤ c · μη
Tx

[
Ent∗Bx,l

(f )
] + 1 − δ

l
· ∑
y∈Bx,l∪∂Bx,l\{x}

μ
η
Tx

[
EntTy

(
μ

T̃y
(f )

)]
.
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Now sum over x ∈ T and take expectation w.r.t. μ for η ∈ �. Note that the first
term of the last line sums up to E∗

l = ∑
x∈T μ(Ent∗Bx,l

(f )) and each y in second
term appears in at most l blocks, we have

PEnt(f ) ≤ c · E∗
l (f ) + 1 − δ

l
· ∑
x∈T

∑
y∈Bx,l∪∂Bx,l\{x}

μ
[
EntTy

(
μ

T̃y
(f )

)]

≤ c · E∗
l (f ) + 1 − δ

l
· l · ∑

y∈T

μ
[
EntTy

(
μ

T̃y
(f )

)]

= c · E∗
l (f ) + (1 − δ) · PEnt(f ),

and hence Ent(f ) ≤ PEnt(f ) ≤ c
δ
· E∗

l . �

Given the result of Theorem 5.1, it is enough to show that for some constant α,
concentration inequality of (2.2) implies EM∗(l, [(1 − δ)pmin/(l + 1 − δ)]2). For
convenience of notation, we define the two following functions for each c′ ∈ [k]:

gc′(σ ) = μ(σ | σρ = c′)
μ(σ)

= 1

μ(σρ = c′)
· 1

{
σρ = c′}, g

∗(l)
c′ = μ∗

Bρ,l
(gc′).

Letting δ′ = (1 − δ)2/α(l + 1 − δ)2, we can rewrite (2.2) as

(5.3) μ
(∣∣g∗(l)

c′ − 1
∣∣ > δ′) ≤ e−2/δ′

.

THEOREM 5.4. There exists a constant C such that if (5.3) holds for some
δ′ ≥ 0 and all pairs of states c, c′ ∈ [k], we have Ent[μ

T̃
(f )] ≤ Cδ′ Ent(f ) for any

f ≥ 0 satisfying f (σ) = μ
∗,σ
Bρ,l

(f ),∀σ ∈ �c, that is, EM∗(l,Cδ′) holds.

PROOF. Since for any f ′ ≥ 0, Ent(f ′) ≤ Var(f ′)/μ(f ), we can write

Ent
[
μ

T̃
(f )

] ≤ Var[μ
T̃
(f )]

μ(μ
T̃
(f ))

= 1

μ(f )

∑
c′∈[k]

μ
(
σρ = c′)(μ(

f | σρ = c′) − μ(f )
)2

(5.4)

= 1

μ(f )

∑
c′∈[k]

μ
(
σρ = c′) Cov(gc′, f )2

≤ max
c′∈[k]

Cov(gc′, f )2

μ(f )
= max

c′∈[k]
Cov(g

∗(l)
c′ , f )2

μ(f )
,

where covariance is taken w.r.t. μ and the last step is because f (σ) = μ
∗,σ
Bρ,l

(f ).
Now using Lemma 5.4 of [12] (cited below) with

f1 = (
g

∗(l)
c′ − 1

)
/
∥∥g∗(l)

c′
∥∥∞, f2 = f/μ(f )



2668 A. SLY AND Y. ZHANG

and noting that ‖g∗(l)
c′ ‖∞ ≤ ‖gc′‖∞ ≤ pmin, we have

Cov
(
g

∗(l)
c′ , f

)2 ≤ Cδ′μ(f )Ent(f )

for some constant C = C ′/p2
min. Plug it into (5.4), we get Ent[μ

T̃
(f )] ≤

Cδ′ Ent(f ). �

LEMMA 5.5 (Lemma 5.4 of [12]). Let {�,F, ν} be a probability space and let
f1 be a mean-zero random variable such that ‖f ‖∞ ≤ 1 and ν[|f1| > δ] ≤ e−2/δ

for some δ ∈ (0,1). Let f2 be a probability density w.r.t. ν, that is, f2 ≥ 0 and
ν(f2) = 1. Then there exists a numerical constant C′ > 0 independent of ν,f1, f2
and δ, such that ν(f1f2) ≤ C′δ Entν(f2).

PROOF OF THEOREM 2.2. Fix α = C/p2
min where C is the constant in The-

orem 5.4. The desired result follows the combination of Theorems 5.1 and 5.4.
�

6. Results for k-coloring. In this section, we prove Theorem 1.1, for which it
is enough to verify the connectivity condition C, in particular to show that pfree

l →
1, as l → ∞. In fact for the coloring model, as we will show in a moment, a vertex
can change to all k states in one step if all its children can change to 2 or 3 states
in one step. We will first formalize this idea by defining the “types” of vertices and
then analyze the recursion of this new definition.

Recall the definition that for given configuration σ ∈ �T with σρ = c, we say
that the root can change to color c′ in one step if and only if there exists a path
σ = σ 0, σ 1, . . . , σ n ∈ �σ

T such that for each i, σ i, σ i+1 differs by only one vertex
and

σ i
ρ =

{
c, 0 ≤ i ≤ n − 1,

c′, i = n.

Let C(ρ) denote the set of colors the root can change to in one step (including
its original color). We define the type of root to be rigid (type 2, type 3, resp.)
if |C(ρ)| = 1 (=2, ≥3, resp.). For general vertex x ∈ T , not necessarily the root,
we can similarly define C(x) and rigid, type 2, type 3 by treating x as the root of
subtree Tx and considering σ |Tx . Set C(x) is a function of σTx and is independent
of the rest of the tree.

Let pr
l = μl(the root is rigid), where μl is the Gibbs measure on l-level tree

with free boundary condition. Define p
(2)
l , p

(3)
l and similarly we have pr

l + p
(2)
l +

p
(3)
l = 1. For tree T with l′ > l levels and vertex x ∈ T , that is, l levels above the

bottom boundary, noting that μl′ |Tx = μl , we have

μl′(x is rigid) = μl′ |Tx (x is rigid) = pr
l ,

and the same goes for type 2, type 3 and p2
l , p

3
l , respectively.
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Observe that the definition above is independent of the parent of x. In order
to analyze these probabilities recursively, we introduce one further definition de-
scribing how the type of one vertex affects the type of its parent. Recall that p(x)

denotes the parent of x. Fix a configuration σ ∈ �T . For any x ∈ T̃ = T \ {ρ},
we say x is bad if C(x) \ {σp(x)} = {σx} and good other wise. Observe that σx

is always an element of C(x). If x is good, then |C(x) \ {σp(x)}| ≥ 2, that is, x

has at least one more choice other than σp(x). Note that the event that x is bad
depends only on σ |Tp(x)

and given σx , for xi ∈ Lx,1, events {xi is bad} are condi-
tionally i.i.d. and independent of the configurations outside Tx . Hence, by similar
argument, we can define pb

l = 1 − p
g
l = μl′(x is bad). The relation between the

type of a vertex and its goodness/badness is given in the following lemma.

LEMMA 6.1. For l′ > l > 0 and x ∈ T l levels above the bottom boundary,

(6.1)

μl′(x is bad | x is rigid) = 1,

μl′(x is bad | x is type 2) = 1

k − 1
,

μl′(x is bad | x is type 3) = 0.

Hence, pb
l = pr

l + 1
k−1p

(2)
l , p

g
l = p

(3)
l + k−2

k−1p
(2)
l .

PROOF. The first and third equations of (6.1) is obvious as |C(x)| and |C(x) \
{σp(x)}| differs at most by one, and the equality about pb

l and p
g
l follows immedi-

ately from (6.1). Hence, it lefts to show the second equation. Given |C(x)| = 2, x is
bad if and only if σp(x) ∈ C(x). Therefore, the conditional probability on the left-
hand side of the second equation equals to Pr(C(x) = {σp(x), σx} | |C(x)| = 2).

Note that C(x) is a function of σTx , in particular it is conditionally independent
of σp(x) given σx . By symmetry, the distribution of C(x) \ {σx} given |C(x)| and
σx is the uniformly distribution on the

( k−1
|C(x)|−1

)
ways of choosing |C(x)| − 1

elements from [k] \ {σx}. Hence,

Pr
(
C(x) = {σp(x), σx} | ∣∣C(x)

∣∣ = 2
) = 1(k−1

1

) = 1

k − 1
.

�

The next lemma follows a similar argument to Claim 4.2 and Lemma 4.3, and
shows that in order to bound the probability of a vertex being free, it is enough to
bound the probability of being bad.

LEMMA 6.2. Suppose k ≥ 4. For any σ ∈ �T and x ∈ T , if every child of x is
good, then x is free.

PROOF. Fix c ∈ [k]. Since all children of x are god, for each child yi there
exists ci ∈ C(yi) \ {c, σx}. Therefore, to change x from σx to c in one step, we can
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first change the color of every yi to ci in one step and then in the final step change
x from σx to c. Since this is true for all c ∈ [l], we conclude that x is free. �

Now we will show that for large enough k, in the nonreconstruction regime, the
probability of seeing a bad vertex l levels above bottom decays double exponen-
tially fast in l. In fact, we will prove the result for a region slightly larger than
the known nonreconstruction region, which is d ≤ k[log k + log log k +β], for any
β < 1 − ln 2 (see [17]).

THEOREM 6.3. Suppose β < 1, For sufficiently large k and d ≤ k[log k +
log log k + β], there exists a constant l0 depending only on k and d , such that for
l ≥ l0,

(6.2) pb
l ≤ exp

(−(k/2)l−l0
)
.

We first finish the proof of Theorem 1.1 using Lemma 6.2 and Theorem 6.3.

PROOF OF THEOREM 1.1. It has been shown in [17] that for any β < 1− ln 2,
there exist k0 = k0(β) such that for any k ≥ k0 and d ≤ k(log k+ log log k+β), the
k-coloring model is nonreconstructible on d-ary trees. Therefore by Theorem 1.2,
it is enough to show that the connectivity condition holds. The first part of the
condition is obviously true for k ≥ 4. For the second condition,

1 − pfree
l = Pr

σ∼μl
(root is not free) ≤ Pr(∃x ∈ L1, x is bad)

≤ dpb
l−1 ≤ d exp

(
−

(
1

2
k

)l−l0
)
.

The last term in the equation above tends to 0 as l tends to infinity, which completes
the proof. �

The proof of Theorem 6.3 is split into two phases: when pb
l is close to 1 and

when pb
l is smaller than 1

ed
.

LEMMA 6.4. Under the assumption of Theorem 6.3, there exist a constant l0
depending only on k and d such that pb

l0
< 1

ed
.

PROOF. This proof is similar to Lemma 2 and Lemma 4 of [17]. We recur-
sively analyze the probabilities as a function of the depth of the tree l. For l = 0,
T consist only the bottom boundary, and hence pr

0 = 1,p
(2)
0 = p

(3)
0 = 0,pb

0 =
pr

0 + 1
k−1p

(2)
0 = 1.

For l ≥ 1, suppose without loss of generality that the color of the root is 1 and its
children are x1, . . . , xd ∈ L1. Let F denote the sigma-field generated by (σxi

)di=1
and let dc = |{i, σxi

= c}| be the number of children with color c for 2 ≤ c ≤ k.
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By definition, the sizes of C(xi)’s, and hence the types of xi’s are independent
of F and i.i.d. distributed. Conditioning on F and (|C(xi)|)ki=1, set C(xi) \ {σxi

}
is uniformly randomly chosen among all subsets of [k] \ {σxi

} with (|C(xi)| − 1)

elements. Therefore, the number of bad vertices of color c given F is follows the
binomial distribution with parameter Bin(dc,p

b
l−1).

Following the similar argument of Lemma 6.2, the root can change to color c

in one step if and only if none of the xi ’s with color c is bad, which happens with
probability (1 − pb

l−1)
dc . Therefore, we have

pb
l = pr

l + 1

k − 1
p

(2)
l

=
k∏

c=2

E
[
1 − (

1 − pb
l−1

)dc
]

+ 1

k − 1

k∑
c′=2

E

[(
1 − pb

l−1
)dc′

∏
c 
=c′

(
1 − (

1 − pb
l−1

)dc
)]

.

Viewing the right-hand side as a function of (d2, . . . , dk), increasing dc means
adding more vertices of color c, which increases the probability of blocking the
move of the root. Therefore, pb

l is an increasing function w.r.t. every dc. By sym-
metry, (d2, . . . , dk) follows a multi-nominal distribution. Fix β < β∗ < 1 and let d̃c

be i.i.d. Poisson(D) random variables where D = log k + log log k + β∗. We can
couple (d2, . . . , dk) and (d̃2, . . . , d̃k) such that (d2, . . . , dk) ≤ (d̃2, . . . , d̃k) when-
ever

∑k
c=2 d̃c ≥ d . Letting p = Pr(Poisson((k − 1)D) < d), the recursion relation-

ship satisfies

pb
l = pr

l + 1

k − 1
p

(2)
l

=
k∏

c=2

E
[
1 − (

1 − pb
l−1

)dc
]

+ 1

k − 1

k∑
c′=2

E

[(
1 − pb

l−1
)dc′

∏
c 
=c′

[
1 − (

1 − pb
l−1

)dc
]]

≤
k∏

c=2

E
[
1 − (

1 − pb
l−1

)d̃c
]

+ 1

k − 1

k∑
c′=2

E
(
1 − pb

l−1
)d̃c′

∏
c 
=c′

E
[
1 − (

1 − pb
l−1

)d̃c
] + p

= (
1 − exp

(−pb
l−1D

))k−1
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+ k − 1

k − 1
exp

(−pb
l−1D

)(
1 − exp

(−pb
l−1D

))k−2 + p

= (
1 − exp

(−pb
l−1D

))k−2 + p ≤ exp
(−(k − 2) exp

(−pb
l−1D

)) + p,

where the last step follows from the fact that (1 − r)k ≤ e−kr for 0 < r < 1.
The rest of the proof resembles the argument of Lemma 3 of [17]. Let f (x) =

exp(−(k − 2) exp(−xD)) + p, y0 = pb
0 = 1 and recursively define yl = f (yl−1).

Since f (x) is an increasing function of x, we have that pb
l ≤ yl for any l ≥ 0.

Hence, it is enough to show the existence of l0 such that yl0 ≤ 1
ed

.
Note that d

dx
exp(−x) |x=0= −1. For any sufficiently small ε > 0, there exists

δ > 0 such that for any 0 < x < δ, e−x ≤ 1 − (1 − ε)x. Let k be large enough such
that (k − 2) exp(−D) = k−2

k log k
e−β∗

< δ. We have

y1 = f (1) ≤ 1 − (1 − ε)
k − 2

k log k
e−β∗ + p.

Recall our choice of β < β∗ < 1 and (k − 1)D − d ≥ (β∗ − β)k + o(k), by Ho-
effding’s inequality, the error term p satisfies that p = exp(−�( k√

d
)) = o(k−2) =

o(d−1). Therefore, for large enough k,

y1 ≤ 1 − 1 − ε

2e log k
+ o

(
k−1) ≤ 1 = y0.

Repeating the arguments above shows that yl is decreasing in l as long as (k −
2) exp(−ylD) < δ. Pick ε small enough such that (1 − ε)e−β∗

> e−1 and choose
r ′ > r > 0 such that (1 − ε)e−β∗

> e−1(1 + r ′). It follows that

1 − yl+1 ≥ 1 − (
p + 1 − (1 − ε)(k − 2) exp(−ylD)

)
≥ (1 − ε)

(k − 2)e−β∗

k log k
exp

(
(1 − yl) logk

) − p

≥ k − 2

k
(1 − ε)e1−β∗

(1 − yl) − p

≥ (
1 + r ′)(1 − yl) − p ≥ (1 + r)(1 − yl),

where the second-last inequality follows from inequality ex > ex, and the last
inequality follows from that 1 − yl ≥ 1 − y1 = O( 1

log k
) while p = o(k−2). There-

fore, after a constant number of steps, there must exist some l such that (k −
2) exp(−ylD) ≥ δ. Now choose α,α′ such that e−δ < α′ < α < 1. When k is large
enough, yl+1 ≤ p + e−δ < α′ < 1. Then again for k large enough, exp(−yl+1D) ≥
exp(−α′D) ≥ exp(−α log k) = k−α . Therefore, for k large enough,

yl+2 ≤ p + exp
(−(k − 2) exp(−yl+1D)

) ≤ p + exp
(
−1

2
k1−α

)
≤ 1

ed
. �
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After first l0 levels, we cannot use the same method because the error of Poisson
coupling becomes nonnegligible; but meanwhile, pb

l is small enough such that
bounding the total number of bad children is enough to complete the proof.

PROOF OF THEOREM 6.3. In order for a vertex to be bad, there must be at
least k − 2 of its children which are bad. Therefore,

pb
l ≤

(
d

k − 2

)(
pb

l−1
)k−2 ≤ (

dpb
l−1

)k−2
.

Let l0 be the constant in Lemma 6.4. We complete the proof by inducting on l for
l ≥ l0: If l = l0, then pb

l0
≤ 1

ed
≤ 1

e
. If for l > l0, pb

l satisfies (6.2), then for k large

enough such that log(2k log k) ≤ 1
6k and k − 2 ≥ 3

4k,

pb
l+1 ≤ (

dpb
l

)k−2 ≤ [
2k log k exp

(−(k/2)l−l0
)]k−2

= exp
{
(k − 2)

[−(k/2)l−l0 + log(2k log k)
]}

≤ exp
{
−3

4
k · 2

3
(k/2)l−l0

}
= exp

{−(k/2)l+1−l0
}
.

Therefore, (6.2) holds for all l ≥ l0. �
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