Abstract
For many stochastic diffusion processes with mean field interaction, convergence of the rescaled total mass processes towards a diffusion process is known.
Here, we show convergence of the so-called finite system scheme for interacting jump-type processes known as mutually catalytic branching processes with infinite branching rate. Due to the lack of second moments, the rescaling of time is different from the finite rate mutually catalytic case. The limit of rescaled total mass processes is identified as the finite rate mutually catalytic branching diffusion. The convergence of rescaled processes holds jointly with convergence of coordinate processes, where the latter converge at a different time scale.
Citation
Leif Döring. Achim Klenke. Leonid Mytnik. "Finite system scheme for mutually catalytic branching with infinite branching rate." Ann. Appl. Probab. 27 (5) 3113 - 3152, October 2017. https://doi.org/10.1214/17-AAP1277
Information