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FAST LANGEVIN BASED ALGORITHM FOR MCMC
IN HIGH DIMENSIONS
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Telecom ParisTech∗, University of Warwick†, Université de Genève‡

and University of Edinburgh§

We introduce new Gaussian proposals to improve the efficiency of
the standard Hastings–Metropolis algorithm in Markov chain Monte Carlo
(MCMC) methods, used for the sampling from a target distribution in large
dimension d. The improved complexity is O(d1/5) compared to the com-
plexity O(d1/3) of the standard approach. We prove an asymptotic diffusion
limit theorem and show that the relative efficiency of the algorithm can be
characterised by its overall acceptance rate (with asymptotical value 0.704),
independently of the target distribution. Numerical experiments confirm our
theoretical findings.

1. Introduction. Consider a probability measure π on R
d with density again

denoted by π with respect to the Lebesgue measure. The Langevin diffusion
{xt , t ≥ 0} associated with π is the solution of the following stochastic differential
equation:

(1) dxt = 1

2
�∇ logπ(xt )dt + �1/2 dWt,

where {Wt, t ≥ 0} is a standard d-dimensional Brownian motion, and � is a given
positive definite symmetric matrix. Under appropriate assumptions [11] on π , it
can be shown that the dynamic generated by (1) is ergodic with unique invariant
distribution π . This is a key property of (1) and taking advantage of it permits
to sample from the invariant distribution π . In particular, if one could solve (1)
analytically and then take time t to infinity then it would be possible to generate
samples from π . However, there exists a limited number of cases [14] where such
an analytical formula exists. A standard approach is to discretise (1) using a one-
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step integrator. The drawback of this approach is that it introduces a bias, because
in general π is not invariant with respect to the Markov chain defined by the dis-
cretization [1, 16, 27]. In addition, the discretization might fail to be ergodic [25],
even though (1) is geometrically ergodic.

An alternative way of sampling from π , which does not face the bias issue
introduced by discretizing (1), is by using the Metropolis–Hastings algorithm [12].
The idea is to construct a Markov chain {xj , j ∈ N}, where at each step j ∈ N,
given xj , a new candidate yj+1 is generated from a proposal density q(xj , ·). This
candidate is then accepted (xj+1 = yj+1) with probability α(xj , yj+1) given by

(2) α(x, y) = min
(

1,
π(y)q(y, x)

π(x)q(x, y)

)
,

and rejected (xj+1 = xj ) otherwise. The resulting Markov chain {xj , j ∈ N} is
reversible with respect to π and under mild assumptions is ergodic [15, 20].

The simplest proposals are random walks for which q is the transition kernel
associated with the proposal

(3) y = x + √
h�1/2ξ,

where ξ is a standard Gaussian random variable in R
d , and leads to the well known

Random Walk Metropolis algorithm (RMW). This proposal is very simple to im-
plement, but it suffers from (relatively) high rejection rate, due to the fact that it
does not use information about π to construct appropriate candidate moves.

Another family of proposals commonly used, is based on the Euler–Maruyama
discretization of (1), for which q is the transition kernel associated with the pro-
posal

(4) y = x + (h/2)�∇ logπ(x) + √
h�1/2ξ,

where ξ is again a standard Gaussian random variable in R
d . This algorithm is also

known as the Metropolis Adjusted Langevin Algorithm (MALA), and it is well
established that it has better convergence properties than the RWM algorithm in
general. This method directs the proposed moves towards areas of high probability
for the distribution π , using the gradient of logπ . There is now a growing literature
on gradient-based MCMC algorithms, as exemplified through the two papers [5,
9] and the references therein. We also mention here function space MCMC meth-
ods [5]. Assuming that the target measure has a density w.r.t. a Gaussian measure
on a Hilbert space, these algorithms are defined in infinite dimension and avoid
completely the dependence on the dimension d faced by standard MCMC algo-
rithms.

A natural question is if one can improve on the behaviour of MALA by incorpo-
rating more information about the properties of π in their proposal. A first attempt
would be to use as proposal a one-step integrator with high weak order for (1),
as suggested in the discussion of [9]. Although this turns out to not be sufficient,



FAST LANGEVIN BASED ALGORITHM FOR MCMC 2197

we shall show that, by slightly modifying this approach and not focusing on the
weak order itself, we are able to construct a new proposal with better convergence
properties than MALA. We mention that an analogous proposal is presented inde-
pendently in [8] in a different context to improve the strong order of convergence
of MALA.

Thus our main contribution in this paper is the introduction and theoretical anal-
ysis of the fMALA algorithm (fast MALA), and its cousins which will be intro-
duced in Section 3. These algorithms provide for the first time, implementable
gradient-based MCMC algorithms which can achieve convergence in O(d1/5) iter-
ations, thus improving on the O(d1/3) of MALA and many related methods. These
results are demonstrated as a result of high-dimensional diffusion approximation
results. As well as giving these order of magnitude results for high-dimensional
problems, we shall also give stochastic stability results, specifically results about
the geometric ergodicity of the algorithms we introduce under appropriate regular-
ity conditions.

Whilst the algorithms we describe have clear practical relevance for MCMC use,
it is important to recognise the limitations of this initial study of these methodolo-
gies, and we shall note and comment on two which are particularly important. In
order to obtain the diffusion limit results we give, it is necessary to make strong as-
sumptions about the structure of the sequence of target distributions as d increases.
In our analysis, we assume that the target distribution consists of d i.i.d. compo-
nents as in the initial studies of both high-dimensional RWM and MALA algo-
rithms [21, 22]. Those analyses were subsequently extended (see, e.g., [23]) and
supported by considerable empirical evidence from applied MCMC use. We also
expect that in the context of this paper, our conclusions should provide practi-
cal guidance for MCMC practitioners well beyond the cases where rigorous re-
sults can be demonstrated, and we provide an example to illustrate this in Sec-
tion 5.

Second, our diffusion limit results depend on the initial distribution of the
Markov chain being the target distribution π , clearly impractical in real MCMC
contexts. The works [4, 13] study the case of MCMC algorithms (specifically
RWM and MALA algorithms) started away from stationarity. On the one hand,
it turns out that MALA algorithms are less robust than RWM when starting at
under-dispersed values in that scaling strategies. Indeed, optimising mixing in sta-
tionarity can be highly suboptimal in the transient phase, often with initial moves
having exponentially small acceptance probabilities (in d). On the other hand, a
slightly more conservative strategy for MALA still achieves O(d1/2) compared to
O(d) for RWM. It is natural to expect the story for fMALA to be at least as in-
volved as that for MALA, and we give some empirical evidence to support this in
the simulations study of Section 5. Future work will underpin these investigations
with theoretical results analogous to those of [4, 13]. From a practical MCMC per-
spective. However, it should be noted that strategies which mix MALA-transient
optimal scaling with fMALA-stationary optimal scaling will perform in a robust
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manner, both in the transient and stationary phases. Two of these effective strate-
gies are illustrated in Section 5.

The paper is organised as follows. In Section 2, we provide a heuristic for the
choice of the parameter h used in the proposal as a function of the dimension d

of the target and present three different proposals that have better complexity scal-
ing properties than RWM and MALA. In Section 3, we present fMALA and its
variants, and prove our main results for the introduced methods. Section 4 investi-
gates the ergodic properties of the different proposals for a wide variety of target
densities π . Finally, in Section 5, we present numerical results that illustrate our
theoretical findings.

2. Preliminaries. In this section, we discuss some key issues regarding the
convergence of MCMC algorithms. In particular, in Section 2.1 we discuss some
issues related to the computational complexity of MCMC methods in high dimen-
sions, while in Section 2.2 we present a useful heuristic for understanding the
optimal scaling of a given MCMC proposal, and based on this heuristic formally
derive a new proposal with desirable scaling properties.

2.1. Computational complexity. Here, we discuss a heuristic approach for se-
lecting the parameter h in all proposals mentioned above as the dimension of the
space d goes to infinity. In particular, we choose h proportional to an inverse power
of the dimension d such that

(5) h ∝ d−γ .

This implies that the proposal y is now a function of: (i) the current state x; (ii) the
parameter γ through the scaling above; and (iii) the random variable ξ which ap-
pears in all the considered proposals. Thus, y = y(x, ξ ;γ ). Ideally γ should be as
small as possible so the chain makes large steps and samples are correlated as little
as possible. At the same time, the acceptance probability should not degenerate
to 0 as d → ∞, also to prevent high correlation amongst samples. This naturally
leads to the definition of a critical exponent γ0 given by

(6) γ0 = inf
γc≥0

{
γc : lim inf

d→∞ E
[
α(x, y)

]
> 0 ∀γ ∈ [γc,∞)

}
.

The expectation here is with respect to x distributed according to π and y chosen
from the proposal distribution. In other words, we take the largest possible value
for h, as function of d , constrained by asking that the average acceptance prob-
ability is bounded away from zero, uniformly in d . The time-step restriction (5)
can be interpreted as a kind of Courant–Friedrichs–Lewy restriction arising in the
numerical time-integration of PDEs.

If h is of the form (5), with γ ≥ γ0, the acceptance probability does not degen-
erate, and the Markov chain arising from the Metropolis–Hastings method can be
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thought of as an approximation of the Langevin SDE (1). This Markov chain trav-
els with time-steps h on the paths of this SDE and, therefore, requires a minimal
number of steps to reach timescales of O(1) given by

(7) M(d) = dγ0 .

If it takes O(1) for the limiting SDE to reach stationarity, then we obtain that M(d)

gives the computational complexity of the algorithm.4

If we now consider the case of a product measure where

(8) π(x) = πd(x) = Zd

d∏
i=1

eg(xi),

and Zd is the normalizing constant, then it is well known [21] that for the RWM
it holds γ0 = 1, while for MALA it holds γ0 = 1/3 [22]. In the next subsection,
we recall the main ideas that allows one to obtain these scalings (valid also for
some nonproduct cases), and derive a new proposal which we will call the fast
Metropolis Adjusted Langevin Algorithm (fMALA) and which satisfies γ0 = 1/5
in the product case, that is, it has a better convergence scaling.

2.2. Formal derivation. Here, we explain the main idea that is used for prov-
ing the scaling of a Gaussian5 proposal in high dimensions. In particular, the pro-
posal y is now of the form

(9) y = μ(x,h) + S(x,h)ξ,

where ξ ∼ N (0, Id) is a standard d dimensional Gaussian random variable. Note
that in the case of the RWM,

μ(x,h) = x, S(x,h) = √
h�1/2,

while in the case of MALA

μ(x,h) = x + (h/2)�∇ logπ(x), S(x,h) = √
h�1/2.

The acceptance probability can be written in the form

α(x, y) = min
{
1, exp

(
Rd(x, y)

)}
for some function Rd(x, y) which depends on the Gaussian proposal (9). Now
using the fact that y is related to x according to (9), Rd(x, x) = 0, together with
appropriate smoothness properties on the function g(x), one can expand Rd in
powers of

√
h using a Taylor expansion:

(10) Rd(x, y) =
k∑

i=1

d∑
j=1

hi/2Cij (x, ξ) + h(k+1)/2Lk+1
(
x,h∗, ξ

)
.

4In this definition of the cost, one does not take into account the cost of generating a proposal. This
is discussed in Remark 2.3.

5We point out that Gaussianity here is not necessary but it greatly simplifies the calculations.



2200 DURMUS, ROBERTS, VILMART AND ZYGALAKIS

It turns out [2] that the scaling associated with each proposal relates directly with
how many of the Cij terms are zero in (10). This simplifies if we further assume
that � = Id in (1) and that π satisfies (8), because we get for all i ∈ {1, . . . , k},
j ∈ {1, . . . , j}, Cij (x, ξ) = Ci(xj , ξj ) and (10) can be written as

(11) Rd(x, y) =
k∑

i=1

d∑
j=1

√
hid√
d

Ci(xj , ξj ) + h(k+1)/2Lk+1
(
x,h∗, ξ

)
.

We then see that if Ci = 0, for i = 1, . . . ,m, then this implies that γ0 =
1/(m + 1). Indeed, this value of γ0 yields hm+1d = 1 and the leading order term
in (10) becomes

1√
d

d∑
j=1

Cm+1(xj , ξj ).

To understand the behaviour for large d , we typically assume conditions to ensure
that the above term has an appropriate (weak) limit. It turns out that m + 1 is gen-
erally an odd integer for known proposals, and the above expression is frequently
approximated by a central limit theorem. The second dominant term in (10) turns
out to be C2(m+1), although to turn this into a rigorous proof one also needs to
be able to control the appropriate number of higher order terms, from m + 1 to
2(m + 1), as well as the remainder term in the above Taylor expansion.

2.3. Classes of proposals with γ0 = 1/5. We introduce new Gaussian pro-
posals for which γ0 = 1/5 in (7). We start by presenting the simplest method,
and then give two variations of it, motivated by the desire to obtain robust and
stable ergodic properties (geometric ergodicity). The underlying calculations that
show Ci = 0, i = 1, . . . ,m with m = 4 and γ0 = 1/5 for these methods are con-
tained in the supplementary materials in the form of a Mathematica file [6]. Re-
call that f (x) = �∇ logπ(x). In the sequel, we denote by Df and D2f the Ja-
cobian (d × d-matrix) and the Hessian (d × d2-matrix) of f respectively. Thus,
(Df (x))i,j = ∂fi(x)

∂xj
and

D2f (x) = [
H1(x) · · · Hd(x)

]
where

{
Hi (x)

}
j,k = ∂fi(x)

∂xk ∂xj

.

Finally, for all x ∈ R
d , {� : D2f (x)} ∈R

d is defined by for i = 1, . . . , d :{
� : D2f (x)

}
i = trace

(
�T Hi (x)

)
.

Notice that for � = Id , the above quantity reduces to the Laplacian and we have
{� : D2f (x)}i = �fi .

REMARK 2.1. Since by assumption � is positive definite, notice that the Ja-
cobian matrix Df (x) is diagonalizable for all x ∈ R

d . Indeed, it is similar to the
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symmetric matrix �−1/2Df (x)�1/2 = �1/2D2 logπ(x)�1/2, and we use that a
symmetric matrix is always diagonalizable. This will permit us to define analytic
functionals of Df (x).

2.3.1. Fast Metropolis-Adjusted Langevin Algorithm (fMALA). We first give
a natural proposal for which γ0 = 1/5 based on the discussion of Section 2.2. We
restrict the class of proposal defined by (9) by setting for all x ∈ R

d and h > 0,

μ(x,h) = x + hμ1(x) + h2μ2(x), S(x,h) = h1/2S1(x) + h3/2S2(x).

By a formal calculation (see the supplementary materials), explicit expressions for
the functions μ1,μ2, S1, S2 have to be imposed for the four first term Ci(x, ξ),
i ∈ {1,2,3,4}, in (11) to be zero. This result implies the following definition for μ

and S:

μfM(x,h) = x + h

2
f (x) − h2

24

(
Df (x)f (x) + {

� : D2f (x)
})

,(12a)

SfM(x,h) = (
h1/2Id + (

h3/2/12
)
Df (x)

)
�1/2.(12b)

We will refer to (9) when μ,S are given by (12) as the fast Unadjusted Langevin
Algorithm (fULA) when viewed as a numerical method for (1) and as the fast
Metropolis-Adjusted Langevin Algorithm (fMALA) when used as a proposal in
the Metropolis–Hastings framework.

REMARK 2.2. It is interesting to note that compared with Unadjusted
Langevin Algorithm (ULA), fULA has the same order of weak convergence one,
if applied as a one-step integrator for (1). One could obtain a second-order weak
method by changing the constants in front of the higher order coefficients, but
in fact the corresponding method would not have better scaling properties than
MALA when used in the Metropolis–Hastings framework. This observation an-
swers negatively in part one of the questions in the discussion of [9] about the
potential use of higher order integrators for the Langevin equation within the
Metropolis–Hastings framework.

REMARK 2.3. The proposal given by equation (12) contains higher order
derivatives of the vector field f (x), resulting in higher computational cost than
the standard MALA proposal. This additional cost might offset the benefits of the
improved scaling, since the corresponding Jacobian and Hessian can be full matri-
ces in general. However, there exist cases of interest6 where due to the structure of
the Jacobian and Hessian the computational cost of the fMALA proposal is of the
same order with respect to the dimension d as for the MALA proposal. Further-
more, we note that one possible way to avoid derivatives is by using finite differ-
ences or Runge–Kutta-type approximations of the proposal (12). This, however, is
out of the scope of the present paper.

6We study one of those in Section 5.
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2.3.2. Modified Ozaki–Metropolis Algorithm (mOMA). One of the problems
related to the MALA proposal is that it fails to be geometrically ergodic for a wide
range of targets π [25]. This issue was addressed in [24] where a modification of
MALA based on the Ozaki discretization [19] of (1) was proposed and studied. In
the same spirit as in [24], we propose here a modification of fMALA, defined by

μmO(x,h) = x + T1
(
Df (x),h,1

)
f (x) − (

h2/6
)
Df (x)f (x)

− (
h2/24

){
� : D2f (x)

}
,

(13a)

SmO(x,h) = (
T1

(
Df (x),2h,1

) − (
h2/3

)
Df (x)

)1/2
�1/2,(13b)

where

(14) T1(M, h, a) = (aM)−1(
e(ah/2)M − Id

)
for all7 M ∈ R

d×d, h > 0, a ∈ R.
The Markov chain defined by (13) will be referred to as the modified Unadjusted

Ozaki Algorithm (mUOA), whereas when it is used in a Hastings–Metropolis algo-
rithm, it will be referred to as the modified Ozaki Metropolis Algorithm (mOMA).
Note that t �→ (eht − 1)/t − (1/3)h2t is positive on R for all h > 0. It then follows
from Remark 2.1 that for all x ∈ R

d , the matrix T1(Df (x),2h,1)− (h2/3)Df (x)

is diagonalizable with nonnegative eigenvalues, which permits to define its matrix
square-root, and SmO(x,h) is well defined for all x ∈ R

d and h > 0.

REMARK 2.4. In regions where ‖�∇ logπ(x)‖ is much greater than ‖x‖, we
need in practice to take h very small [of order ‖x‖/‖�∇ logπ(x)‖] for MALA
to exit these regions. However, such a choice of h depends on x and cannot be
used directly. Such a value of h can therefore be hard to find theoretically as well
as computationally. This issue can be tackled by multiplying f = �∇ logπ(x) by
T1(Df (x),h, a) in (13a). Indeed under some mild conditions, in that case, we can
obtain an algorithm with good mixing properties for all h > 0; see [24], Theorem
4.1. mOMA faces similar problems due to the term Df (x)f (x).

2.3.3. Generalised boosted Ozaki–Metropolis Algorithm (gbOMA). Having
discussed the possible limitations of mOMA in Remark 2.4, we generalise here
the approach in [24] to deal with the complexities arising to the presence of the
Df (x)f (x) term. In particular, we now define

μgbO(x,h) = x + T1
(
Df (x),h, a1

)
f (x)

− (1/3)T3
(
Df (x),h, a3

){
� : D2f (x)

}
+ (

(a1/2) + (1/6)
)
T2

(
Df (x),h, a2

)
f (x),

(15a)

7Notice that the matrix functionals in (14), (16), (17) remain valid if matrix aM is not invertible,
using the appropriate power series for the matrix exponentials.
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SgbO(x,h) = (
T1

(
Df (x),2h,a4

)
+ (

(a4/2) − (1/6)
)
T2

(
Df (x),2h,a5

))1/2
�1/2,

(15b)

where ai, i = 1, . . . ,5 are positive parameters, T1 is given by (14) and

T2(M, h, a) = (aM)−1(
e−(ah2/4)M2 − Id

)
,(16)

T3(M, h, a) = (aM)−2(
e(ah/2)M − Id − (ah/2)M

)
(17)

with M ∈ R
d×d , h > 0, a ∈ R and Id is the identity matrix. The Markov chain

defined by (15) will be referred to as the generalised boosted Unadjusted Ozaki
Algorithm (gbUOA), whereas when it is used in a Hastings–Metropolis algo-
rithm, it will be referred to as the generalised boosted Ozaki Metropolis Algorithm
(gbOMA). Note that SgbO in (15b) is not always well defined in general. How-
ever, using Remark 2.1, the following condition is sufficient to define SgbO with
the square-root of a diagonalizable matrix with nonnegative eigenvalues.

ASSUMPTION 1. The function t �→ (ea4t − 1)/(a4t) + (a4/2 − (1/6)) ×
(e−a5t

2 − 1)/(a5t) is positive on R.

For a4 = a5 = 1, this assumption is satisfied, and choosing ai = 1 for all
i = 1, . . . ,5, (15) leads to a well defined proposal, which will be referred to
as the boosted Unadjusted Ozaki Algorithm (bUOA), whereas when it is used
in a Hastings–Metropolis algorithm, it will be referred to as the boosted Ozaki
Metropolis Algorithm (bOMA). We will see in Section 4 that bOMA has nicer
ergodic properties than fMALA.

3. Main scaling results. In this section, we present the optimal scaling re-
sults for fMALA and gbOMA introduced in Section 2. We recall from the discus-
sion in Section 2 that the parameter h depends on the dimension and is given as
hd = 	2d−1/5, with 	 > 0. Finally, we prove our results for the case of target distri-
butions of the product form given by (8), we take � = Id , and make the following
assumptions on g.

ASSUMPTION 2. We assume:

1. g ∈ C10(R) and g′′ is bounded on R.
2. The derivatives of g up to order 10 have at most a polynomial growth, that is,

there exists constants C,κ such that∣∣g(i)(t)
∣∣ ≤ C

(
1 + |t |κ)

, t ∈ R, i = 1, . . . ,10.

3. For all k ∈ N, ∫
R

tkeg(t) dt < +∞.
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3.1. Optimal scaling of fMALA. The Markov chain produced by fMALA, with
target density πd and started at stationarity, will be denoted by {Xd,fM

k , k ∈ N}. Let
qfM
d be the transition density associated with the proposal of fMALA relatively to

πd . In a similar manner, we denote by αfM
d the acceptance probability. Now we

introduce the jump process based on {Xd,fM
k , k ∈ N}, which allows us to compare

this Markov chain to a continuous-time process. Let {Jt , t ∈ R+} be a Poisson
process with rate d1/5, and let �d,fM = {�d,fM

t , t ∈R+} be the d-dimensional jump
process defined by �

d,fM
t = X

d,fM
Jt

. We denote by

afM
d (	) =

∫
Rd

∫
Rd

πd(x)qfM
d (x, y)αfM

d (x, y)dx dy

the mean under πd of the acceptance rate.

THEOREM 3.1. Assume Assumption 2. Then

lim
d→+∞afM

d (	) = afM(	),

where afM(	) = 2�(−K fM	5/2) with �(t) = (1/(2π))
∫ t
−∞ e−s2/2 ds and the ex-

pression of K fM is given in Appendix D.

THEOREM 3.2. Assume Assumption 2. Let {Yd,fM
t = �

d,fM
t,1 , t ∈ R+} be the

process corresponding to the first component of �d,fM. Then {Yd,fM, d ∈ N
∗} con-

verges weakly (in the Skorokhod topology), as d → ∞, to the solution {Y fM
t ,

t ∈R+} of the Langevin equation defined by

(18) dY fM
t = (

hfM(	)
)(1/2) dBt + (1/2)hfM(	)∇ logπ1

(
Y fM

t

)
dt,

where hfM(	) = 2	2�(−K fM	5/2) is the speed of the limiting diffusion. Further-
more, hfM(	) is maximised at the unique value of 	 for which afM(	) = 0.704343.

PROOF. The proof of these two theorems are in Appendix A. �

REMARK 3.3. The above analysis shows that for fMALA, the optimal expo-
nent defined in (6) is given by γ0 = 1/5 as discussed in Section 2.2. Indeed, if hd

has the form 	2d−1/5+ε , then an adaptation of the proof of Theorem 3.1 implies
that for all 	 > 0, if ε ∈ (0,1/5), limd→+∞ afM(	) = 0. In contrast, if ε < 0 then
limd→+∞ afM(	) = 1.

3.2. Scaling results for gbOMA. As in the case of fMALA, we assume πd is of
the form (8) and we take � = Id , hd = 	2d−1/5. The Metropolis-adjusted Markov
chain based on gbOMA, with target density πd and started at stationarity, is de-
noted by {Xd,gbO

k , k ∈ N}. We will denote by q
gbO
d the transition density associated

with the proposals defined by gbOMA with respect to πd . In a similar manner, the
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acceptance probability relatively to πd and gbOMA will be denoted by α
gbO
d . Let

{Jt , t ∈R+} be a Poisson process with rate d1/5, and let �d,gbO = {�d,gbO
t , t ∈ R+}

be the d-dimensional jump process defined by �
d,gbO
t = X

d,gbO
Jt

. Denote also by

a
gbO
d (	) =

∫
Rd

∫
Rd

πd(x)q
gbO
d (x, y)α

gbO
d (x, y)dx dy

the mean under πd of the acceptance rate of the algorithm.

THEOREM 3.4. Assume Assumptions 1 and 2. Then

lim
d→+∞a

gbO
d (	) = agbO(	),

where agbO(	) = 2�(−KgbO	5/2) with �(t) = (1/(2π))
∫ t
−∞ e−s2/2 ds and KgbO

are given in Appendix D.

THEOREM 3.5. Assume Assumptions 1 and 2. Let {Gd,gbO
t = �

d,gbO
t,1 , t ∈ R+}

be the process corresponding to the first component of �d,gbO. Then {Gd,gbO,

d ∈ N
∗} converges weakly (in the Skorokhod topology) to the solution {GgbO

t ,

t ∈ R+} of the Langevin equation defined by

dG
gbO
t = (

hgbO(	)
)(1/2) dBt + (1/2)hgbO(	)∇ logπc

(
G

gbO
t

)
dt,

where hgbO(	) = 2	2�(−KgbO	5/2) is the speed of the limiting diffusion. Further-
more, hgbO(	) is maximised at the unique value of 	 for which agbO(	) = 0.704343.

PROOF. Note that under Assumption 2(1), at fixed a > 0, using the regularity
properties of (x,h) �→ Ti (x, h, a) on R

2 for i = 1, . . . ,3, there exists an open
interval I , which contains 0, and M0 ≥ 0 such that for all x ∈ R, k = 1, . . . ,11,
and i = 1, . . . ,3 ∣∣∣∣∂k(Ti (g

′′(x), h, a))

∂hk

∣∣∣∣ ≤ M0 ∀h ∈ I.

Using in addition Assumption 1, there exists m0 > 0 such that for all h ∈ I and for
all x ∈ R,

T1
(
g′′(x),2h,a4

) + (
(a4/2) − (1/6)

)
T2

(
g′′(x),2h,a5

) ≥ m0.

Using these two results, the proof of both theorems follows the same lines as The-
orems 3.1 and 3.2, which can be found in Appendix A. �
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4. Geometric ergodicity results for high order Langevin schemes. Having
established the scaling behaviour of the different proposals in the previous sec-
tion, we now proceed with establishing geometric ergodicity results for our new
Metropolis algorithms. Furthermore, for completeness, we study the behaviour of
the corresponding unadjusted proposal. For simplicity, we will take in the follow-
ing � = Id and we limit our study of gbOMA to the one of bOMA, which is given
by

ybO = μbO(x,h) + SbO(x,h)ξ,

μbO(x,h) = x + T1
(
Df (x),h,1

)
f (x) + (2/3)T2

(
Df (x),h,1

)
f (x)

− (1/3)T3
(
Df (x),h,1

){
� : D2f (x)

}
,

SbO(x,h) = (
T1

(
Df (x),2h,1

) + (1/3)T2
(
Df (x),2h,1

))1/2
,

(19)

where T1, T2 and T3 are respectively defined by (14), (16) and (17). First, let us
begin with some definitions. For a signed measure ν on R

d , we define the total
variation norm of ν by

‖ν‖TV = sup
A∈B(Rd )

∣∣ν(A)
∣∣,

where B(Rd) is the Borel σ -algebra of Rd . Let P be a Markov kernel with invari-
ant measure π . For a given measurable function V : Rd → [1,+∞), we will say
that P is V -geometrically ergodic if there exist C ≥ 0 and ρ ∈ [0,1) such that for
all x ∈ R

d and n ≥ 0 ∥∥P n(x, ·) − π
∥∥
V ≤ CρnV (x),

where for ν a signed measure on R
d , the V -norm ‖ · ‖V is defined by

‖ν‖ = sup
{f ;|f |≤V }

∫
Rd

f (x)ν(dx).

We refer the reader to [18] for the definitions of small sets, ϕ-irreducibility and
transience. Let P be a Markov kernel on R

d , Lebd -irreducible, where Lebd is the
Lebesgue measure on R

d , and aperiodic and V : Rd → [1,+∞) be a measurable
function. In order to establish that P is V -geometric ergodicity, a sufficient and
necessary condition is given by a geometrical drift (see [18], Theorem 15.0.1),
namely for some small set C, there exist λ < 1 and b < +∞ such that for all
x ∈ R

d :

(20) PV (x) ≤ λV (x) + b1C(x).

Note that the different considered proposals belong to the class of Gaussian
Markov kernels. Namely, let Q be a Markov kernel on R

d . We say that Q is a
Gaussian Markov kernel if for all x ∈ R

d , Q(x, ·) is a Gaussian measure, with
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mean μ(x) and covariance matrix S(x)ST (x), where x �→ μ(x) and x �→ S(x) are
measurable functions from R

d to respectively R
d and S∗+(Rd), the set of symmet-

ric positive definite matrices of dimension d . These two functions will be referred
to as the mean value map and the the variance map, respectively. The Markov
kernel Q has transition density q given by

(21) q(x, y) = 1

(2π)d/2|S(x)| exp
(−(1/2)

〈
S(x)−2(

y − μ(x)
)
,
(
y − μ(x)

)〉)
,

where for M ∈ R
d×d , |M| denotes the determinant of M. Geometric ergodicity of

Markov chains with Gaussian Markov kernels and the corresponding Metropolis–
Hastings algorithms was the subject of study of [10, 25]. But contrary to [10], we
assume for simplicity the following assumption on the functions μ :Rd →R

d and
S :Rd → S∗+(Rd).

ASSUMPTION 3. The functions x �→ μ(x) and x �→ S(x) are continuous.

Note that if π , a target probability measure on R
d , is absolutely continuous with

respect to the Lebesgue measure with density still denoted by π , the following
assumption ensures that the various different proposals introduced in this paper
satisfy Assumption 3.

ASSUMPTION 4. The log-density g of π belongs to C3(Rd).

We proceed in Section 4.1 with presenting and extending where necessary the
main results about geometric ergodicity of Metropolis–Hasting algorithms us-
ing Gaussian proposals. In Section 4.2, we then introduce two different potential
classes on which we apply our result in Section 4.3. Finally in Section 4.4, for com-
pleteness, we make the same kind of study but for unadjusted Gaussian Markov
kernels on R.

4.1. Geometric ergodicity of Hastings–Metropolis algorithm based on Gaus-
sian Markov kernel. We first present an extension of the result given in in [10]
for geometric ergodicity of Metropolis–Hastings algorithms based on Gaussian
proposal kernels. In particular, let Q be a Gaussian Markov kernel with mean
value map and variance map satisfying Assumption 3. We use such proposal in
a Metropolis algorithm with target density π satisfying Assumption 4. Then the
produced Markov kernel P is given by

(22) P(x,dy) = α(x, y)q(x, y)dy + δx(dy)

∫
Rd

(
1 − α(x, y)

)
q(x, y)dy,

where q and α are respectively given by (21) and (2).

ASSUMPTION 5. We assume lim inf‖x‖→+∞
∫
Rd α(x, y)q(x, y)dy > 0.
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Note that this condition is necessary to obtain the geometric ergodicity of a
Metropolis–Hastings algorithm by [26], Theorem 5.1. We shall follow a well-
known technique in MCMC theory in demonstrating that Assumption 5 allows
us to ensure that geometric ergodicity of the algorithm is inherited from that of the
proposal Markov chain itself. Thus, in the following lemma we combine the con-
ditions given by [10], which imply geometric ergodicity of Gaussian Markov ker-
nels, with Assumption 5 to get geometric ergodicity of the resultant Metropolis–
Hastings Markov kernels.

LEMMA 4.1. Assume Assumptions 3, 5 and there exists τ ∈ (0,1) such that

(23) lim sup
‖x‖→+∞

∥∥μ(x)
∥∥/‖x‖ = τ, and lim sup

‖x‖→+∞
∥∥S(x)

∥∥/‖x‖ = 0.

Then the Markov kernel P given by (22) are V -geometrically ergodic, where
V (x) = 1 + ‖x‖2.

PROOF. The proof is postponed to Appendix B.1. �

We now provide some conditions which imply that P is not geometrically er-
godic.

THEOREM 4.2. Assume Assumptions 3, 4, that π is bounded and there exists
ε > 0 such that

(24) lim inf‖x‖→+∞
∥∥S(x)−1μ(x)

∥∥‖x‖−1 > ε−1, lim inf‖x‖→+∞ inf‖y‖=1

∥∥S(x)y
∥∥ ≥ ε,

and

(25) lim‖x‖→+∞ log
(∣∣S(x)

∣∣)/‖x‖2 = 0.

Then P is not geometrically ergodic.

PROOF. The proof is postponed to Appendix B.2. �

4.2. Exponential potentials. We illustrate our results on the following classes
of density.

4.2.1. The one-dimensional class E (β, γ ). Let π be a probability density on
R with respect to the Lebesgue measure. We will say that π ∈ E(β, γ ) if π is
positive, belongs to C3(R) and there exist Rπ,β > 0 such that for all x ∈ R,
|x| ≥ Rπ ,

π(x) ∝ e−γ |x|β .

Then for |x| ≥ Rπ , log(π(x))′ = −γβx|x|β−2, log(π(x))′′ = −γβ(β − 1)|x|β/x2

and log(π(x))(3) = −γβ(β − 1)(β − 2)|x|β/x3.
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4.2.2. The multidimensional exponential class Pm. Let π be a probability
density on R

d with respect to the Lebesgue measure. We will say that π ∈ Pm if
it is positive, belongs to C3(Rd) and there exists Rπ ≥ 0 such that for all x ∈ R

d ,
‖x‖ ≥ Rπ ,

π(x) ∝ e−q(x),

where q is a function of the following form. There exists a homogeneous polyno-
mial p of degree m and a three-times continuously differentiable function r on R

d

satisfying

(26)
∥∥D2(∇r)(x)

∥∥ =‖x‖→+∞ o
(‖x‖m−3)

,

and for all x ∈ R
d

q(x) = p(x) + r(x).

Recall that p is an homogeneous polynomial of degree m if for all t ∈ R and
x ∈ R

d , p(tx) = tmp(x). Finally, we define P+
m , the set of density π ∈ Pm such

that the Hessian of p at x, ∇2p(x) is positive definite for all x �= 0. When p is an
homogeneous polynomial of degree m, it can be written as

p(x) = ∑
|k|=m

akxk,

where k ∈ N
d , |k| = ∑

i ki and xk = x
k1
1 · · ·xkd

d . Then denoting by �nx = x/‖x‖, it
is easy to see that the following relations holds for all x ∈ R

d :

p(x) = ‖x‖mp(�nx),(27)

∇p(x) = ‖x‖m−1∇p(�nx),(28)

∇2p(x) = ‖x‖m−2∇2p(�nx),(29)

D2(∇p)(x) = ‖x‖m−3D2(∇p)(x),(30) 〈∇p(x), x
〉 = mp(x),(31)

∇2p(x)x = (m − 1)∇p(x),(32) 〈∇2p(x)x, x
〉 = m(m − 1)p(x).(33)

From (29), it follows that ∇2p(x) is definite positive for all x ∈ R
d \ 0 if and only

if ∇2p(�n) is positive definite for all �n, with ‖�n‖ = 1. Then, p belongs to P+
m only

if m ≥ 2.

4.3. Geometric ergodicity of the proposals: The case of Metropolis–Hastings
algorithms. In this section, we study the behaviour of our proposals within the
Metropolis–Hastings framework. We will split our investigations in two parts: in
the first we study fMALA and mOMA; while in the second we have a more de-
tailed look in the properties of bOMA not only for the class E (β, γ ), but also for
the polynomial class P+

m .
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4.3.1. Geometric ergodicity of fMALA, mOMA for the class E (β, γ ). In
the case β ∈ (0,2), fMALA and mOMA have their mean map behaving like
x − βγ x|x|β−2/2 at infinity and their variance map bounded from above. This
is exactly the behaviour that MALA [25] has for the same values of β , thus one
would expect them to behave in the same way. This is indeed the case and thus
using the same reasoning as in the proof [25], Theorem 4.3, we deduce that the
two algorithms are not geometrically ergodic for β ∈ (0,1). Similarly, the proof in
[25], Theorem 4.1, can be used to show that the two algorithms are geometrically
ergodic for β ∈ [1,2). Furthermore, for values of β ≥ 2 we have the following
cases:

(a) For β = 2,
– fMALA is geometrically ergodic if hγ (1 + hγ/6) ∈ (0,2) by [25], The-

orem 4.1, and not geometrically ergodic if hγ (1 + hγ/6) > 2 by Theo-
rem 4.2, since μfM is equivalent at infinity to (1 − hγ (1 + hγ/6))x and
SfM(x) is constant for |x| ≥ Rπ .

– Since μmO is equivalent at infinity to (e−γ h − 2(hγ )2/3)x, we observe that
mOMA is geometrically ergodic if hγ ∈ (0,1.22) by [25], Theorem 4.1,
and not geometrically ergodic if hγ > 1.23 by [26], Theorem 5.1.

(b) For β > 2, fMALA and mOMA are not geometrically ergodic by Theorem 4.2
since the mean value maps of their proposal kernels are equivalent at infinity to
−C1|x|2β−2/x, their variance map to C2|x|β−2 for some constants C1,C2 > 0,
and the variance maps are bounded from below.

4.3.2. Geometric ergodicity of bOMA. In this section, we give some condi-
tions under which bOMA is geometrically ergodic and some examples of den-
sity which satisfy such conditions. For a matrix M ∈ R

d×d , we denote λmin(M) =
min Sp(M) and λmax(M) = max Sp(M), where Sp(M) is the spectrum of M. We
can observe three different behaviours of the proposal given by (19) when x is
large, which are implied by the behaviour of λmin(Df (x)) and λmax(Df (x)).

If lim inf‖x‖→+∞ λmin(Df (x)) = 0. Then g(x) = o(‖x‖2) as ‖x‖ → ∞, and
ybO tends to be as the MALA proposal at infinity, and we can show that bOMA is
geometrically ergodic with the same conditions introduced in [25] for this one.

EXAMPLE 4.3. By [25], Theorem 4.1, bOMA is geometrically ergodic for
π ∈ E (γ,β) with β ∈ [1,2).

Now, we focus on the case where lim sup‖x‖→+∞ λmax(Df (x)) < 0. For in-
stance, this condition holds for π ∈ E (γ,β) when β ≥ 2. We give conditions simi-
lar to the one for geometric convergence of the Ozaki discretization, given in [10],
to check conditions of Lemma 4.1. Although these conditions does not cover all
the cases, they seem to apply to interesting ones. Here are our assumptions where
we denote by S

d = {x ∈ R
d,‖x‖ = 1}, the sphere in R

d and �nx = x/‖x‖.
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ASSUMPTION 6. We assume:

1. lim sup‖x‖→+∞ λmax(Df (x)) < 0;
2. lim‖x‖→+∞ Df (x)−2{Id : D2f (x)} = 0;
3. Df (x)−1f (x) is asymptotically homogeneous to x when ‖x‖ → +∞, that is,

there exists a function c : Sd →R such that

lim‖x‖→+∞

∥∥∥∥Df (x)−1f (x)

‖x‖ − c(�nx)�nx

∥∥∥∥ = 0.

The condition 1 in Assumption 6 implies that for all x ∈ R
d , λmax(Df (x)) ≤

Mf , and guarantees that SbO(x,h) is bounded for all x ∈ R
d .

LEMMA 4.4. Assume Assumptions 4 and 6. There exists M� ≥ 0 such that for
all x ∈ R

d ‖SbO(x,h)‖ ≤ M� .

PROOF. Since SbO(x,h) is symmetric for all x ∈ R
d , and t �→ (eht − 1)/t +

(1/3)(e−(ht)2 − 1)/t is bounded on (−∞,M] for all M ∈ R, we just need to show
that there exists Mf ≥ 0 such that for all x, λmax(Df (x)) ≤ Mf . First, by As-
sumption 6(1), there exists R ≥ 0, such that for all x,‖x‖ ≥ R, Sp(Df (x)) ⊂ R−.
In addition by Assumption 4 x �→ Df (x) is continuous, and there exists M ≥ 0
such that for all x,‖x‖ ≤ R, ‖Df (x)‖ ≤ M . �

THEOREM 4.5. Assume Assumptions 4, 5 and 6. If

(34) 0 < inf
n∈Sd

c(n) ≤ sup
n∈Sd

c(n) < 6/5,

then bOMA is geometrically ergodic.

PROOF. We check that the conditions of Lemma 4.1 hold. By Assumption 4
and (19), Assumption 3 holds, thus it remains to check (23). First, Lemma 4.4
implies that the second equality of (23) is satisfied, and we just need to prove the
first equality. By [10], Lemma 3.4, it suffices to prove that

(35) lim sup
‖x‖→+∞

〈
η(x)

‖x‖ ,
η(x)

‖x‖ + 2�nx

〉
< 0,

where η(x) = μbO(x,h) − x. Since lim sup‖x‖→+∞ λmax(Df (x)) < 0 we can
write G (x) = B(x)Df (x)−1f (x), where

B(x) = (
e(h/2)Df (x) − Id

) + (2/3)
(
e−(hDf (x)/2)2 − Id

)
,
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and x �→ B(x) is bounded on R
d . Since B is bounded on R

d , by Assump-
tion 6(2)–(3) and (34),

lim‖x‖→+∞

∣∣∣∣〈η(x)

‖x‖ ,
η(x)

‖x‖ + 2�nx

〉
− ∥∥B(x)�nx

∥∥2
c(�nx)

2 + 2
〈
B(x)�nx, �nx

〉
c(�nx)

∣∣∣∣ = 0.

(36)

In addition, if we denote the eigenvalues of B(x) by {λi(x), i = 1, . . . , d} and
{ei(x), i = 1, . . . , d} an orthonormal basis of eigenvectors, we have∥∥B(x)�nx

∥∥2
c(�nx)

2 + 2
〈
B(x)�nx, �nx

〉
c(�nx)

=
d∑

i=1

c(�nx)λi(x)
〈
ei(x), �nx

〉2(
c(�nx)λi(x) + 2

)
.

(37)

Since lim sup‖x‖→+∞ Df (x) < 0, for all i and ‖x‖ large enough, λi(x) ∈
[−5/3,0). Therefore, using (34) we get from (37),∥∥B(x)�nx

∥∥2
c(�nx)

2 + 2
〈
B(x)�nx, �nx

〉
c(�nx) < 0.

The proof is complete using this result in (36). �

4.3.3. Application to the convergence of bOMA for π ∈ P+
m . For the proof of

the main result of this section, we need the following lemma.

LEMMA 4.6 ([10], Proof of Theorem 4.10). Let π ∈ P+
m for m ≥ 2, then π

satisfies Assumption 6(3) with c(�n) = 1/(m − 1) ∈ (0,6/5) for all �n ∈ S
d .

PROPOSITION 4.7. Let π ∈ P+
m for m ≥ 2, then bOMA is V -geometrically

ergodic, with V (x) = ‖x‖2 + 1.

PROOF. Let us denote π ∝ exp(−p(x)− r(x)), with p and r satisfying the con-
ditions from the definition in Section 4.2.2. We prove that if π ∈ P+

m , Theorem 4.5
can be applied. First, by definition of P+

m , Assumption 4 is satisfied. Furthermore,
Assumption 6(1)–(2) follows from (26), (29), (30) and the condition that ∇2p(�n) is
positive definite for all �n ∈ S

d . Also by Lemma 4.6, Assumption 6(3) is satisfied.
Now we focus on Assumption 5. For ease of notation, in the following we denote
μbO and SbO by μ and S, and do not mention the dependence in the parameter h

of μ and S when it does not play any role. Note that

(38)
∫
Rd

α(x, y)q(x, y)dy = (2π)−d/2
∫
Rd

{
1 ∧ exp α̃(x, ξ)

}
exp

(−‖ξ‖2/2
)

dξ,
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where

α̃(x, ξ) = −p
(
μ(x) + S(x)ξ

) + p(x) − r
(
μ(x) + S(x)ξ

) + r(x)

− log
(∣∣S(

μ(x) + S(x)ξ
)∣∣) + log

(∣∣S(x)
∣∣) + (1/2)‖ξ‖2(39)

− (1/2)
〈(
S̃(x, ξ)

)−1{
x − μ

(
μ(x) + S(x)ξ

)}
, x − μ

(
μ(x) + S(x)ξ

)〉
,

and S̃(x, ξ) = S(μ(x) + S(x)ξ)S(μ(x) + S(x)ξ)T . First, we consider m ≥ 3, then
we have the following estimate of the terms in (39) by (26)–(30) and Lemma 4.6:

μ(w) =‖w‖→+∞
{
1 − 5/

(
3(m − 1)

)}
w + o

(‖w‖)
,(40)

(
S(w)S(w)T

)−1 =‖w‖→+∞
3

4
m(m − 1)‖w‖m−2∇2p(�nw) + o

(‖w‖m−2)
,(41)

log
(∣∣S(w)

∣∣) =‖w‖→+∞ o
(‖w‖)

.(42)

Then by (40)–(42), if we define � : [3,+∞) →R by

m �→ 1 −
{

1 − 5

3(m − 1)

}m

− (3/8)m(m − 1)

{
1 −

(
1 − 5

3(m − 1)

)2}2{
1 − 5

3(m − 1)

}m−2
,

we get

α̃(x, ξ) =‖x‖→+∞ ‖x‖mp(�nx)�(m) + o
(‖x‖m)

.

Since � is positive on [3,+∞), for all ξ ∈ R
d lim‖x‖→+∞ α̃(x, ξ) = +∞. This

result, (38) and Fatou’s lemma imply that Assumption 5 is satisfied. For m = 2, we
can assume p(x) = 〈Ax, x〉 with A ∈ S∗+(Rd). Let us denote for M an invertible
matrix of dimension p ≥ 1,

�(M) = (
e−M − Ip

) + (2/3)
(
e−M2 − Ip

)
,

ς(M) = (
e−2M − Ip

) + (1/3)
(
e−4M2 − Ip

)
.

Then we have the following estimates:

α̃(x, ξ) =‖x‖→+∞
〈
A

(
ς(hA)

)−1{(
2�(hA) + �(hA)2)

x
}
,
(
2�(hA) + �(hA)2)

x
〉

(43)
+ 〈Ax, x〉 − 〈

A
{(

Id + �(hA)
)
x
}
,
(
Id + �(hA)

)
x
〉 + o

(‖x‖2)
.

If we denote the eigenvalues of A by {λi, i = 1, . . . , d} and {xi, i = 1, . . . , d}, the
coordinates of x in an orthonormal basis of eigenvectors for A, (43) becomes

α̃(x, ξ) =‖x‖→+∞

d∑
i=1

�(h,λi)x
2
i + o

(‖x‖2)
,(44)
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TABLE 1
Summary of ergodicity results for the Metropolis–Hastings algorithms for the class E (β, γ )

Method β ∈ [1,2) β = 2 β > 2

fMALA (12) Geometrically ergodic Geometrically ergodic or not Not geometrically ergodic
mOMA (13) Geometrically ergodic Geometrically ergodic or not Not geometrically ergodic
bOMA (19) Geometrically ergodic Geometrically ergodic Geometrically ergodic

where for h,λ > 0,

�(h,λ) = λ
(
1 − (

�(hλ) + 1
)2 + ς(hλ)−1(

4�(hλ)2 + 4�(hλ)3 + �(hλ)4))
.

Using that for any h,λ > 0, �(h,λ) > 0 and (44), we have for all ξ ∈ R
d ,

lim‖x‖→+∞ α̃(x, ξ) = +∞, and as in the first case Assumption 5 is satisfied. �

REMARK 4.8. Using the same reasoning as in Proposition 4.7, one can show
that bOMA is geometrically ergodic for π ∈ E (β, γ ) with β ≥ 2.

We now summarise the behaviour for all the different algorithms for the one
dimensional class E (β, γ ) in Table 1.

4.4. Convergence of Gaussian Markov kernel on R. We now present precise
results for the ergodicity of the unadjusted proposals, by extending the results of
[25] for the ULA to Gaussian Markov kernels on R. Under Assumption 3, it is
straightforward to see that Q is Lebd -irreducible, where Lebd is the Lebesgue
measure, aperiodic and all compact set of Rd are small; see [10], Theorem 3.1. We
now state our main theorems, which essentially complete [25], Theorems 3.1–3.2.
Since their proof are very similar, they are omitted.

THEOREM 4.9. Assume Assumption 3, and there exist s∧, u+, u− ∈ R
∗+ and

χ ∈ R such that:

lim sup
|x|→+∞

S(x) ≤ s∧,

lim
x→+∞

{
μ(x) − x

}
x−χ = −u+, and lim

x→−∞
{
μ(x) − x

}|x|−χ = u−.

(1) If χ ∈ [0,1), then Q is geometrically ergodic.
(2) If χ = 1 and (1 − u+)(1 − u−) < 1, then Q is geometrically ergodic.
(3) If χ ∈ (−1,0), then Q is ergodic but not geometrically ergodic.

PROOF. See the proof of [25], Theorem 3.1. �
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THEOREM 4.10. Assume Assumption 3, and there exist s∨, u+, u− ∈ R
∗+ and

χ ∈R such that

lim inf|x|→+∞S(x) ≥ s∨,

lim
x→+∞S(x)−1μ(x)x−χ = −u+, and lim

x→−∞S(x)−1μ(x)|x|−χ = u−.

(1) If χ > 1, then Q is transient.
(2) If χ = 1 and (u+ ∧ u−)s∨ > 1, then Q is transient.

PROOF. See the proof of [25], Theorem 3.2. �

4.4.1. Ergodicity of the unadjusted proposals for the class E (β, γ ). We now
apply Theorems 4.9 and 4.10 in order to study the ergodicity of the differ-
ent unadjusted proposals applied to π ∈ E (β, γ ). In the case β ∈ (0,2), all the
three algorithms (fULA, mUOA, bUOA) have their mean map behaving like
x − βγ x|x|β−2/2 at infinity and their variance map bounded from above. This
is exactly the behaviour that ULA [25] has for the same values of β , thus it should
not be a surprise that Theorem 4.9 implies that all the three algorithms behaved as
the ULA does for the corresponding values, namely being ergodic for β ∈ (0,1)

and geometrically ergodic for β ∈ [1,2). Furthermore, for values of β ≥ 2 we have
the following cases:

(a) For β = 2,
– fULA is geometrically ergodic if hγ (1+hγ/6) ∈ (0,2) by Theorem 4.9(2),

and is transient if hγ (1 + hγ/6) > 2 by Theorem 4.10(2), since μfM is
equivalent at infinity to (1 − hγ (1 + hγ/6))x and SfM(x) is constant for
|x| ≥ Rπ .

– mUOA is geometrically ergodic if 1 + 2(hγ )2/3 − e−γ h ∈ (0,2) by Theo-
rem 4.9(2), and is transient if 1+2(hγ )2/3−e−γ h > 2 by Theorem 4.10(2),
since μmO is equivalent at infinity to (e−γ h − 2(hγ )2/3)x and SmO(x) is
constant for |x| ≥ Rπ .

– bUOA is geometrically ergodic by Theorem 4.9(2), since μbO is equivalent
at infinity to −2x/3 and SbO(x) is constant for |x| ≥ Rπ .

(b) For β > 2,
– fULA and mUOA are transcient by Theorem 4.10(1) since their mean value

map is equivalent at infinity to −C1|x|2β−2/x, and their variance map
to C2|x|β−2 for some constants C1,C2 > 0, and their variance map are
bounded from below.

– bUOA is geometrically ergodic by Theorem 4.9(1) since its mean value
map is equivalent at infinity to {1 − 5/(3(β − 1))}x and its variance map
is bounded from above.

The summary of our findings can be found in Table 2.
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TABLE 2
Summary of ergodicity results for the unadjusted proposals for the class E (β, γ )

Method β ∈ (0,1) β ∈ [1,2) β = 2 β > 2

fULA (12) Ergodic Geometrically ergodic Geometrically ergodic/transient Transient
mUOA (13) Ergodic Geometrically ergodic Geometrically ergodic/transient Transient
bUOA (19) Ergodic Geometrically ergodic Geometrically ergodic Geometrically

ergodic

5. Numerical illustration of the improved efficiency. In this section, we il-
lustrate our analysis (Section 3.1) of the asymptotic behaviour of fMALA as the
dimension d tends to infinity, and we demonstrate its gain of efficiency as d in-
creases compared to the standard MALA. Following [22], we define the first-order
efficiency of a multidimensional Markov chain {Xk, k ∈ N} with first component
denoted X

(1)
k as E[(X(1)

k+1 − X
(1)
k )2]. In Figure 1, we consider as a test problem

the product case (8) using the double well potential with g(x) = −1
4x4 + 1

2x2 in
dimensions d = 10,100,500,1000, respectively. We consider many time stepsizes
h = 	2d−1/5, plotting the first order efficiency (multiplied by d1/5 because this is
the scale which is asymptotically constant for fMALA as d → ∞) as a function of
the acceptance rate for the standard MALA (white bullets) and the acceptance rate
afM
d (	) of the improved version fMALA (black bullets), respectively. For simplic-

ity, each chain is started from the origin. The expectations are approximated as the
average over 2×105 iterations of the algorithms and we use the same sets of gener-
ated random numbers for both methods. For comparison, we also include (as solid
lines) the asymptotic efficiency curve of fMALA as d goes to infinity, normalised
to have the same maximum as fMALA in finite dimension d . This corresponds
to the (rescaled) limiting diffusion speed hfM(	) as a function of afM(	) (quanti-
ties given respectively in Theorems 3.1 and 3.2). We observe excellent agreement
of the numerical first-order efficiency compared to the asymptotic one, especially
as d increases, which corroborates the scaling results of fMALA. In addition, we
observe for the considered dimensions d that the optimal acceptance rate maxi-
mizing the first-order efficiency remains very close to the limiting value of 0.704
predicted in Theorem 3.2. This numerical experiment shows that the efficiency im-
provement of fMALA compared to MALA is significant and indeed increases as
the dimension d increases, which confirms the analysis of Section 3.1.

For our next experiments, we consider the d-dimensional zero-mean Gaussian
distribution with covariance matrix Id for d = 1000, as target distribution. We aim
to numerically study the transient behaviour of fMALA and propose some solu-
tions to overcome this issue. In Figure 2, we plot the squared norm of 104 samples
generated by the RWM, MALA, fMALA and some hybrid strategies for MALA
and fMALA, all started from the origin. We also include a zoom on the first 100
steps. In Figure 2(a), we use standard implementations of the schemes. The time
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FIG. 1. First-order efficiency of the new fMALA and the standard MALA for the double well
potential g(x) = − 1

4x4 + 1
2x2, as a function of the overall acceptance rates in dimensions

d = 10,100,500,1000. The solid line is the reference asymptotic curve of efficiency for the new
fMALA, normalised to have the same maximum value as the finite dimensional fMALA.

step h for each algorithm is chosen as the optimal parameter based on the optimal
scaling results of all the algorithms at stationarity: for the RWM h = 2.382d−1,
for MALA h = 1.652d−1/3 and for fMALA h = 1.792d−1/5. It can observed that
MALA exhibits many rejected steps in contrast to RWM. This is a known issue
of MALA in the transient phase [4, 13] due to a tiny acceptance probability at
first steps, and the same behaviour can be observed for fMALA, with zero ac-
cepted step in the present simulation. To circumvent this issue, the following hy-
brid MALA scheme was presented in [4]. The idea is to combine MALA with
RWM at each step: with probability 1/2, we apply the MALA proposal (4) with
step size h = 1.652d−1/3, the optimal parameter for MALA at stationarity. Oth-
erwise, the RWM proposal (3) is used with step size h = 2.382d−1, the optimal
parameter for the RWM at stationarity. Indeed, [4] and [13] have shown that the
optimal scaling in the transient phase and at stationarity is the same and scales
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FIG. 2. Trace plots of ‖X‖2 for the Gaussian target density in dimension d = 1000 when starting
at the origin. Comparison of fMALA with h ∼ d−1/5 (solid lines), MALA with h ∼ d−1/3 (dashed
lines), RWM with h ∼ d−1 (dotted lines).

as d−1. In Figure 2(b), the plots for this hybrid MALA are presented, the same
methodology is also applied for the hybrid fMALA scheme, showing a behaviour
similar to hybrid MALA. In Figure 2(c), the RWM proposal is replaced by the
MALA proposal (4) with a different step size h = 2d−1/2, which is the optimal pa-
rameter for MALA in the transient phase according to [4]. Again, hybrid fMALA
exhibits a behaviour similar to hybrid MALA.

In Figure 3, we consider again the same schemes and hybrid versions as in
Figure 2, with the same step sizes, and we compare their autocorrelation function.
We consider for each algorithms 2×105 iterations started at stationarity, where the
first 103 iterations were discarded as burn-in. In Figure 3(a), it can be observed that
the autocorrelation associated with fMALA goes to 0 quicker than the RWM and
MALA. In Figure 3(b), and Figure 3(c), we observe that by using hybrid strategies
which are designed to robustify convergence from the transient phase, fMALA still
comfortably outperforms MALA in terms of expected square efficiency (which is
a stationary quantity).

Although our analysis applies only to product measure densities of the form
(8), we next consider the following nonproduct density in R

d , defined using a



FAST LANGEVIN BASED ALGORITHM FOR MCMC 2219

FIG. 3. Auto-correlation versus LAG for the Gaussian target density in dimension d = 1000. Com-
parison of fMALA with h ∼ d−1/5 (black), MALA with h ∼ d−1/3 (white), RWM with h ∼ d−1

(gray).

normalization constant Zd and for X0 = 0 as

(45) π(X1, . . . ,Xd) = Zd

d∏
i=1

1

1 + (Xi − α(Xi−1))2 ,

where we consider the scalar functions α(x) = x/2 and α(x) = sin(x), respec-
tively. Notice that the density (45) is associated with the AR(1) process Xi =
α(Xi−1) + Zn with non-Gaussian (Cauchy) increments Zn. Furthermore, we ob-
serve that in this case the Jacobian in (12) is a symmetric tridiagonal matrix, which
implies that the computational cost of the fMALA proposal is of the same order
O(d) as the standard MALA proposal.

In Figure 4, we compare for many timesteps the standard MALA (left pictures)
and the new fMALA (right pictures), and plot the (scaled) first order efficiency
E[‖Xk+1 − Xk‖2/d] as a function of the overall acceptance rates, using the av-
erages over 2 × 104 iterations of the algorithms. The initial condition for both
algorithms is the same and is obtained after running 104 steps of the RWM algo-
rithm to get close to the target probability measure. Analogously to the product
case studied in Figure 1, we observe in both cases α(x) = x/2 and α(x) = sin(x)

that the first-order efficiency of fMALA converges to a nonzero limiting curve
with maximum close to the value 0.704. In contrast, the efficiency of the standard
MALA drops to zero in this scaling where the first-order efficiency is multiplied
with d1/5. This numerical experiment suggests that our analysis in the product
measure setting persists in the nonproduct measure case.

APPENDIX A: PROOF OF THEOREMS 3.1 AND 3.2

We provide here the proofs of Theorems 3.1 and 3.2 for the analysis of the opti-
mal scaling properties of fMALA. We use tools analogous to that of [21] and [22].
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FIG. 4. First-order efficiency of the new fMALA and the standard MALA as a function of the over-
all acceptance rates for the dimensions d = 100 (white points), d = 500 (gray points), d = 1000
(dark points), respectively, for the nonproduct density (45) with α(x) = x/2 (top pictures) and
α(x) = sin(x) (bottom pictures).

Consider the generator of the jump process �d,fM, defined for ψd ∈ C2
c (Rd), and

x ∈ R
d by

AfM
d ψd(x) = d1/5

E
[(

ψd(y) − ψd(x)
)
αfM

d (x, y)
]
,

where y follows the distribution defined by qfM
d (x, ·). Also, consider the generator

of the process {Gt, t ≥ 0}, solution of (18), defined for ψ ∈ C2
c (R), and x ∈ R

d

by

AfMψ(x) = (
h(	)/2

)(
ψ ′(x1)g(x1) + ψ ′′(x1)

)
.

We check that the assumptions of [7], Corollary 8.7, Chapter 4, are satisfied, which
will imply Theorem 3.2. These assumptions consist in showing there exists a se-
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quence of set {Fd ⊂ R
d, d ∈N

∗} such that for all T ≥ 0:

lim
d→+∞P

[
�d,fM

s ∈ Fd ∀s ∈ [0, T ]] = 1,

lim
d→+∞ sup

x∈Fd

∣∣AfM
d ψ(x) − AfMψ(x)

∣∣ = 0

for all functions ψ in a core of AfM, which strongly separates points. Since AfM

is an operator on the set of functions only depending on the first component, we
restrict our study on this class of functions, which belong to C∞

c (R), since by [7],
Theorem 2.1, Chapter 8, this set of functions is a core for AfM which strongly
separates points. The following lemma is the proper result which was introduced
in Section 2.2. For the sequel, let {ξi, i ∈ N

∗} be a sequence of i.i.d. standard one-
dimensional Gaussian random variables and X be a random variable distributed
according to π1. Also, for all x ∈ R

d , denote by yfM the proposal of fMALA,
defined by (9), (12a) and (12b), started at x ∈ R

d , with parameter hd and associated
with the d-dimensional Gaussian random variable {ξi, i = 1, . . . , d}.

LEMMA A.1. Assume Assumption 2. The following Taylor expansion in h
1/2
d

holds: for all x ∈ R
d and i ∈ {1, . . . , d},

(46) log
(

π(yfM
i )qfM(yfM

i , xi)

π(xi)qfM(xi, y
fM
i )

)
=

10∑
j=5

CfM
j (xi, ξi)d

−j/10 + CfM
11 (xi, ξi, hd),

where CfM
5 (x1, ξ1) is given in Appendix C. Furthermore, for j = 6, . . . ,10,

CfM
j (xi, ξi) are polynomials in ξi and derivatives of g at xi and

E
[
CfM

j (X, ξ1)
] = 0 for j = 5, . . . ,9,(47)

E
[(
E

[
CfM

5 (X, ξ1)|X])2] = 	10(
K fM)2 = −2E

[
CfM

10 (X, ξ1)
]
.(48)

In addition, there exists a sequence of sets {F 1
d ⊂ R

d, d ∈ N
∗} such that

limd→+∞ d1/5πd((F 1
d )c) = 0 and for j = 6, . . . ,10

(49) lim
d→+∞d−3/5 sup

x∈F 1
d

E

[∣∣∣∣∣
d∑

i=2

Cj

(
xd
i , ξi

) −E
[
CfM

j (X, ξi)
]∣∣∣∣∣

]
= 0,

and

(50) lim
d→+∞ sup

x∈F 1
d

E

[∣∣∣∣∣
d∑

i=2

C11
(
xd
i , ξi, hd

)∣∣∣∣∣
]

= 0.

Finally,

(51) lim
d→+∞ sup

x∈F 1
d

E
[∣∣ζ d

∣∣] = 0
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with

ζ d =
d∑

i=2

log
(

π(yfM
i )qfM(yfM

i , xi)

π(xi)qfM(xi, y
fM
i )

)
−

((
d−1/2

d∑
i=2

C5
(
xd
i , ξi

)) − 	10(
K fM)2

/2

)
.

PROOF. The Taylor expansion was computed using the computational soft-
ware Mathematica [28]. Then, since just odd powers of ξi occur in C5,C7 and
C9, we deduce (47) for j = 5,7,9. Furthermore, by explicit calculation, the anti-
derivative in x1 of eg(x1)E[CfM

j (x1, ξ1)], for j = 6,8 and eg(x1)E[CfM
5 (x1, ξ1)

2 +
2CfM

10 (x1, ξ1)] are on the form of some polynomials in the derivatives of g in x1

times eg(x1). Therefore, Assumption 2(3) implies (47) for j = 6,8 and (48). We
now build the sequence of sets F 1

d , which satisfies the claimed properties.
Denote for j = 6, . . . ,10 and xi ∈ R, C̃fM

j (xi) = E[CfM
j (xi, ξi)] and VfM

j (xi) =
Var[CfM

j (xi, ξi)], which are bounded by a polynomial P1 in xi by Assumption 2(2)

since CfM
j (xi, ξi) are polynomials in ξi and the derivatives of g at xi . Therefore,

for all k ∈ N
∗,

(52) E
[∣∣C̃fM

j (X)
∣∣k] +E

[∣∣VfM
j (X)

∣∣k] < +∞.

Consider for all j = 6, . . . ,10, the sequence of sets F 1
d,j ∈ R

d defined by F 1
d,j =

F 1
d,j,1 ∩ F 1

d,j,2 where

F 1
d,j,1 =

{
x ∈ R

d;
∣∣∣∣∣

d∑
i=2

C̃fM
j (xi) −E

[
C̃fM

j (X)
]∣∣∣∣∣ ≤ d23/40

}
,(53)

F 1
d,j,2 =

{
x ∈ R

d;
∣∣∣∣∣

d∑
i=2

VfM
j (X) −E

[
VfM

j (X)
]∣∣∣∣∣ ≤ d23/20

}
.(54)

Note that limd→+∞ d1/5πd((F 1
d,j )

c) = 0 for all j = 6, . . . ,10, is implied by

limd→+∞ d1/5πd((F 1
d,j,1)

c) = 0 and limd→+∞ d1/5πd((F 1
d,j,2)

c) = 0. Let {Xi ,

i ≥ 2} be a sequence of i.i.d. random variables with distribution π1. By definition
of F 1

d,j,1, the Markov inequality and independence, we get

d1/5πd

((
F 1

d,j,1
)c) ≤ d−21/10

E

[(
d∑

i=2

C̃fM
j (Xi) −E

[
C̃fM

j (X)
])4]

≤
d∑

i1,i2=2

E
[(

C̃fM
j (Xi1) −E

[
C̃fM

j (X)
])2

× (
C̃fM

j (Xi2) −E
[
C̃fM

j (X)
])2]

≤ d−1/10
E

[(
C̃fM

j (X) −E
[
C̃fM

j (X)
])4]

,

(55)
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where we have used the Young inequality for the last line. On another hand, using
the Chebyshev and Hölder inequality, we get

d1/5πd

((
F 1

d,j,2
)c) ≤ d−21/10

E

[(
d∑

i=2

VfM
j (Xi ) −E

[
VfM

j (X)
])2]

≤ d−1/10
E

[(
VfM

j (X) −E
[
VfM

j (X)
])2]

.

(56)

Therefore, (52), (55) and (56) imply that limd→+∞ d1/5πd((F 1
d,j )

c) = 0 for all j =
6, . . . ,10. In addition, for all x ∈ F 1

d,j , by the triangle inequality and the Cauchy–
Schwarz inequality we have for all j = 6, . . . ,10

E

[∣∣∣∣∣
d∑

i=2

CfM
j (xi, ξi) −E

[
CfM

j (X, ξi)
]∣∣∣∣∣

]
≤

∣∣∣∣∣
d∑

i=2

VfM
j (xi) −E

[
VfM

j (X)
]∣∣∣∣∣

1/2

+ d1/2
E

[
VfM

j (X)
]1/2

+
∣∣∣∣∣

d∑
i=2

C̃fM
j (xi) −E

[
CfM

j (X, ξi)
]∣∣∣∣∣.

Therefore, by this inequality, (53) and (54), there exists a constant M1 such that

d3/5 sup
x∈F 1

d,j

E

[∣∣∣∣∣
d∑

i=2

CfM
j (xi, ξi) −E

[
CfM

j (X, ξi)
]∣∣∣∣∣

]
≤ d−1/40M1,

and (49) follows. It remains to show (50). By definition, C11 is the remainder in the
eleventh order expansion in σd := √

hd given by (46) of the function � defined by
�(xi, ξi, σd) = log(π1(y

fM
i )qfM

1 (yfM
i , xi)) − log(π1(xi)q

fM
1 (xi, y

fM
i )). Therefore,

by the mean-value form of the remainder, there exists ud ∈ [0, σd ] such that

C11(xi, ξi, hd) = (
σ 11

d /(11!))∂11�

∂σ 11
d

(xi, ξi, ud).

By Assumption 2(1) which implies that g′′ is bounded, and Assumption 2(2),
for all ud ∈ [0, σd ], the eleventh derivative of � with respect to σd , taken in
(xi, ξi, ud), can be bounded by a positive polynomial in (xi, ξi) on the form
P2(xi)P3(ξi). Hence, there exists a constant M2 such that

(57) E
[∣∣C11(xi, ξi, hd)

∣∣] ≤ M2d
−11/10P2(xi).

And if we define

F 1
d,11 =

{
x ∈ R

d;
∣∣∣∣∣

d∑
i=2

P2(xi) −E
[
P2(X)

]∣∣∣∣∣ ≤ d

}
,
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then we have by the Chebychev inequality, this definition and (57)

d1/5πd

((
F 1

d,11
)c) ≤ Var

[
P2(X)

]
d−4/5,

sup
x∈F 1

d,11

d∑
i=2

E
[∣∣C11(xi, ξi, hd)

∣∣] ≤ M2
(
E

[
P2(x)

] + 1
)
d−1/10.

These results, combined with Assumption 2(3), imply

lim
d→+∞d1/5πd

((
F 1

d,11
)c) = 0

and (50). Finally, F 1
d = ⋂11

j=6 F 1
d,j satisfies the claimed properties of the lemma,

and (51) directly follows from all the previous results. �

To isolate the first component of the process �d,fM, we consider the modified
generators defined for ψ ∈ C2

c (Rd) and x ∈R
d by

ÃfM
d ψ(x) = d1/5

E
[(

ψ
(
yfM) − ψ(x)

)
αfM−1,d

(
x, yfM)]

,

where for all x, y ∈ R
d ,

αfM−1,d(x, y) =
d∏

i=2

π1(yi)q1,fM(yi, xi)

π1(xi)q1,fM(xi, yi)
.

The next lemma shows that we can approximate AfM
d by ÃfM

d , and thus, in essence,
the first component becomes “asymptotically independent” from the others.

THEOREM A.2. There exists a sequence of sets {F 2
d ⊂ R

d, d ∈ N
∗} such that

limd→+∞ d1/5πd((F 2
d )c) = 0 and for all ψ ∈ C∞

c (R) (seen as function of Rd for
all d which only depends on the first component):

lim
d→+∞ sup

x∈F 2
d

∣∣AfM
d ψ(x) − ÃfM

d ψ(x)
∣∣ = 0.

In addition,

(58) lim
d→+∞ sup

x∈F 2
d

d1/5
E

[∣∣αfM
d

(
x, yfM) − αfM−1,d

(
x, yfM)∣∣] = 0.

PROOF. Using that ψ is bounded and the Jensen inequality, there exists a con-
stant M1 such that∣∣AfM

d ψ(x) − ÃfM
d ψ(x)

∣∣ ≤ M1d
1/5

E
[∣∣αfM

d

(
x, yfM) − αfM−1,d

(
x, yfM)∣∣].

Thus, it suffices to show (58). Set σd = √
hd . Since t �→ 1 ∧ exp(t) is 1-Lipschtz

on R and, by definition we have

(59) d1/5
E

[∣∣αfM
d

(
x, yfM) − αfM−1,d

(
x, yfM)∣∣] ≤ d1/5

E
[∣∣�(x1, ξ1, σd)

∣∣],
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where �(x1, ξ1, σd) = log(π1(y
fM
1 )qfM

1 (yfM
1 , x1)) − log(π1(x1)q

fM
1 (x1, y

fM
1 )). By

a fifth-order Taylor expansion of � in σd , and since by (46) ∂j�(x1, ξ1,0)/

(∂σ
j
d ) = 0 for j = 0, . . . ,4, we have

�(x1, ξ1, σd) = ∂5�

∂σ 5
d

(x1, ξ1, ud)
(
σ 5

d /5!)
for some ud ∈ [0, σd ]. Using Assumption 2(1)–(2), and an explicit expression of
∂j�(x1, ξ1, ud)/(∂σ

j
d ), there exists two positive polynomials P1 and P2 such that∣∣�(x1, ξ1, σd)

∣∣ ≤ (
σ 5

d /5!)P1(x1)P2(ξ1).

Plugging this result in (59) and since σ 5
d = 	5/2d−1/2, we get

d1/5
E

[∣∣αfM
d

(
x, yfM) − αfM−1,d

(
x, yfM)∣∣] ≤ 	5/2d−3/10P1(x1).

Setting F 2
d = {x ∈ R

d;P1(x1) ≤ d1/10}, we have

sup
x∈F 2

d

d1/5
E

[∣∣αfM
d

(
x, yfM) − αfM−1,d

(
x, yfM)∣∣] ≤ 	5/2d−1/5,

and (58) follows. Finally, F 2
d satisfied limd→+∞ d1/5πd((F 2

d )c) = 0 since by the
Markov inequality

d1/5πd

((
F 2

d

)c) ≤ d−1/10
E

[
P1(X)3]

,

where E[P1(X)3] is finite by Assumption 2(3). �

LEMMA A.3. For all ψ ∈ C∞
c (R),

lim
d→+∞ sup

x1∈R
∣∣d1/5

E
[
ψ

(
yfM

1
) − ψ(x1)

] − (
	2/2

)(
ψ ′(x1)f (x1) + ψ ′′(x1)

)∣∣ = 0.

PROOF. Consider σd = √
hd and W(x1, ξ1, σd) = ψ(yfM

1 ). Note that
W(x1, ξ1,0) = ψ(x1). Then using that ψ ∈ C∞

c (R), a third-order Taylor expan-
sion of this function in σd implies there exists ud ∈ [0, hd ] and M1 ≥ 0 such that

E
[
W(x1, ξ1, σd) − ψ(x1)

] = (
	2d−1/5/2

)(
ψ ′(x1)f (x1) + ψ ′′(x1)

) + M1d
−3/10

+ ∂3W

∂σ 3
d

(x1, ξ1, ud)σ 3
d .

Moreover since ψ ∈ C∞
c (R), the third partial derivative of W in σd are bounded

for all x1, ξ1 and σd . Therefore, there exists M2 ≥ 0 such that for all x1 ∈ R,∣∣d1/5
E

[
ψ

(
yfM

1
) − ψ(x1)

] − (
	2/2

)(
ψ ′(x1)f (x1) + ψ ′′(x1)

)∣∣ ≤ M2	
3/2d−1/10,

which completes the proof. �



2226 DURMUS, ROBERTS, VILMART AND ZYGALAKIS

As in [22], we prove a uniform central limit theorem for the sequence of random
variables defined for i ≥ 2 and xi ∈ R by CfM

5 (xi, ξi). Define now for d ≥ 2 and
x ∈ R

d ,

M̄d(x) = n−1/2
d∑

i=2

CfM
5 (xi, ξi),

and the characteristic function of M̄d for t ∈ R by

ϕd(x, t) = E
[
eitM̄d (x)].

Finally, define the characteristic function of the zero-mean Gaussian distribution
with standard deviation 	5K fM, given in Lemma A.1, by: for t ∈R,

ϕ(t) = e−(	5K fMt)2/2.

LEMMA A.4. There exists a sequence of set {F 3
d ⊂ R

d, d ∈ N
∗}, satisfying

limd→+∞ d1/5πd((F 3
d )c) = 0 and we have the following properties:

(i) for all t ∈ R, limd→+∞ supx∈F 3
d
|ϕd(x, t) − ϕ(t)| = 0,

(ii) for all bounded continuous function b :R →R,

lim
d→+∞ sup

x∈F 3
d

∣∣∣∣E[
b
(
M̄d(x)

)] − (
2π	10(

K fM)2)−1/2
∫
R

b(u)e−u2/(2	10(K fM)2) du

∣∣∣∣
= 0.

In particular, we have

lim
d→+∞ sup

x∈F 3
d

∣∣E[
1 ∧ eM̄d (x)−	10(K fM)2/2] − 2�

(
	5K fM/2

)∣∣ = 0.

PROOF. We first define for all d ≥ 1, F 3
d = F 3

d,1 ∩ F 3
d,2 where

F 3
d,1 = ⋂

j=2,4

{
x ∈ R

d;
∣∣∣∣∣d−1

d∑
i=2

E
[
CfM

5 (xi, ξi)
j ] −E

[
CfM

5 (X1, ξ1)
j ]∣∣∣∣∣ ≤ d−1/4

}
,

(60)

F 3
d,2 = {

x ∈ R
d;E[

CfM
5 (xi, ξi)

2] ≤ d3/4 ∀i ∈ {2, . . . , d}}.(61)

It follows from (52), and the Chebychev and Markov inequalities that there ex-
ists a constant M such that πd((F 3

d,1)
c) + πd((F 3

d,2)
c) ≤ Md−1/2. Therefore,

limd→+∞ d1/5πd((F 3
d )c) = 0.
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(i) Let t ∈ R and x ∈ F 3
d and denote

V(xi) = Var
[
CfM

5 (xi, ξi)
] = E

[
CfM

5 (xi, ξi)
2]

,

where the second equality follows from Lemma A.1. By the triangle inequality,

∣∣ϕd(x, t) − ϕ(t)
∣∣ ≤

∣∣∣∣∣ϕd(x, t) −
d∏

i=2

(
1 − 	10V(xi)t

2

2d

)∣∣∣∣∣
+

∣∣∣∣∣
d∏

i=2

(
1 − 	10V(xi)t

2

2d

)
− e−	10(K fM)2t2/2

∣∣∣∣∣.
(62)

We bound the two terms of the right-hand side separately. Note that by indepen-
dence for all d , ϕd(x, t) = ∏d

i=2 ϕ1(xi, t/
√

d). Since x ∈ F 3
d , by (61), for d large

enough 	10V(xi)t
2/(2d) ≤ 1 for all i ∈ {2, . . . , d}. Thus, by [3], Equation (26.5),

we have for such large d , all i ∈ {2, . . . , d} and all δ > 0:∣∣∣∣ϕ1(xi, t/
√

d) −
(

1 − 	10V(xi)t
2

2d

)∣∣∣∣
≤ E

[( |t |3	15

6d3/2

∣∣CfM
5 (xi, ξi)

∣∣3)
∧

(
t2	10

d
CfM

5 (xi, ξi)
2
)]

≤ E

[ |t |3	15

6d3/2

∣∣CfM
5 (xi, ξi)

∣∣31{|CfM
5 (xi ,ξi )|≤δd1/2}

]

+E

[
t2	10

d
CfM

5 (xi, ξi)
21{|CfM

5 (xi ,ξi )|>δd1/2}
]

≤ δ|t |3	15

6d
E

[
CfM

5 (xi, ξi)
2] + 	10t2

δ2d2 E
[
CfM

5 (xi, ξi)
4]

.

In addition, by [3], Lemma 1, Section 27, and using this result we get∣∣∣∣∣ϕd(x, t) −
d∏

i=2

(
1 − 	10V(xi)t

2

2d

)∣∣∣∣∣ ≤
d∑

i=2

δ|t |3	15

6d
E

[
CfM

5 (xi, ξi)
2]

+ 	10t2

δ2d2 E
[
CfM

5 (xi, ξi)
4]

≤ (
E

[
CfM

5 (X1, ξ1)
2] + d−1/4)

	15δ|t |3/6

+ (
E

[
CfM

5 (X1, ξ1)
4] + d−1/4)

	10t2/
(
δ2d

)
,

where the last inequality follows from x ∈ F 3
d and (60) Let now ε > 0, and choose

δ small enough such that the fist term is smaller than ε/2. Then there exists d0 ∈ N
∗

such that for all d ≥ d0, the second term is smaller than ε/2 as well. Therefore, for
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d ≥ d0 we get

sup
x∈F 3

d

∣∣∣∣∣ϕd(x, t) −
d∏

i=2

(
1 − 	10V(xi)t

2

2d

)∣∣∣∣∣ ≤ ε.

Consider now the second term of (62), by the triangle inequality,∣∣∣∣∣
d∏

i=2

(
1 − 	10V(xi)t

2

2d

)
− e−	10(K fM)2t2/2

∣∣∣∣∣
≤

∣∣∣∣∣
d∏

i=2

(
1 − 	10V(xi)t

2

2d

)
−

d∏
i=2

e−	10V(xi )t
2/(2d)

∣∣∣∣∣
+

∣∣∣∣∣
d∏

i=2

e−	10V(xi )t
2/(2d) − e−	10(K fM)2t2/2

∣∣∣∣∣.
(63)

We deal with the two terms separately. First, since for all xi , V(xi) ≥ 0, we have∣∣1 − V(xi)	
10t2/(2d) − e−V(xi )	

10t2/(2d)
∣∣ ≤ V(xi)

2	20t4/
(
8d2)

.

Using this result, [3], Lemma 1, Section 27, and the Cauchy–Schwarz inequality,
it follows:∣∣∣∣∣

d∏
i=2

(
1 − 	10V(xi)t

2

2d

)
−

d∏
i=2

e−	10V(xi )t
2/(2d)

∣∣∣∣∣
≤

d∑
i=2

∣∣1 − V(xi)	
10t2/(2d) − e−V(xi )	

10t2/(2d)
∣∣(64)

≤
d∑

i=2

V(xi)
2	20t4/

(
8d2) ≤ (

E
[
CfM

5 (X1, ξ1)
4] + d−1/4)

	20t4/(8d),

where the last inequality is implied by (60). Finally, since on R−, u �→ eu is 1-
Lipschitz and using (60), we get∣∣∣∣∣

d∏
i=2

e−	10V(xi )t
2/(2d) − e−	10(K fM)2t2/2

∣∣∣∣∣ ≤ (
t2	10/2

)∣∣∣∣∣
d∑

i=2

d−1V(xi) − (
K fM)2

∣∣∣∣∣
(65)

≤ t2	10d−1/4/2.

Therefore, combining (64) and (65) in (63), we get

lim
d→+∞ sup

x∈F 3
d

∣∣∣∣∣
d∏

i=2

(
1 − 	10V(xi)t

2

2d

)
− e−	10(K fM)2t2/2

∣∣∣∣∣ = 0,

which completes the proof of (i).
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(ii) Let b : R → R be a bounded continuous function. Consider the sequence
{xd, d ∈ N

∗} of elements of F 3
d which satisfies for all d ∈ N

∗,

sup
y∈F 3

d

∣∣∣∣E[
b
(
M̄d(y)

)] − (
2π	10(

K fM)2)−1/2
∫
R

b(u)e−u2/(2	10(K fM)2) du

∣∣∣∣
≤

∣∣∣∣E[
b
(
M̄d

(
xd))] − (

2π	10(
K fM)2)−1/2

∫
R

b(u)e−u2/(2	10(K fM)2) du

∣∣∣∣(66)

+ d−1.

Then using (i) and Levy’s continuity theorem, we get

lim
d→+∞

∣∣∣∣E[
b
(
M̄d

(
xd))] − (

2π	10(
K fM)2)−1/2

∫
R

b(u)e−u2/(2	10(K fM)2) du

∣∣∣∣ = 0.

This limit and (66) complete the proof. �

PROOF OF THEOREM 3.1. The theorem follows from Lemma A.1, (58) in
Theorem A.2 and the last statement in Lemma A.4. �

PROOF OF THEOREM 3.2. Consider Fd = ⋂
j=1,2,3 F

j
d , where the sets F

j
d

are given resp. in Lemma A.1, Theorem A.2 and Lemma A.4. We then obtain
limd→+∞ d−1/5πd((Fd)c) = 0 and by the union bound, for all T ≥ 0,

lim
d→+∞P

[
�d,fM

s ∈ Fd ∀s ∈ [0, T ]] = 1.

Furthermore, combining the former results with Lemma A.3, we have for all ψ ∈
C∞

c (R) (seen as a function of the first component):

lim
d→+∞ sup

x∈Fd

∣∣AfM
d ψ(x) − AfMψ(x)

∣∣ = 0.

Then the weak convergence follows from [7], Corollary 8.7, Chapter 4. �

APPENDIX B: POSTPONED PROOFS

B.1. Proof of Lemma 4.1. By Assumption 3(4), π and q are positive and
continuous. It follows from [17], Lemma 1.2, that P is Lebd -irreducible aperiodic,
where Lebd is the Lebesgue measure on R

d . In addition, all compact set C such
that Lebd(C) > 0 are small for P . Now by [18], Theorem 15.0.1, we just need to
check the drift condition (20). But by a simple calculation, using α(x, y) ≤ 1 for
all x, y ∈ R

d , and the Cauchy–Schwarz inequality, we get

PV (x) ≤ 1 + ‖x‖2 + (∥∥μ(x)
∥∥2 − ‖x‖2) ∫

Rd
α(x, y)q(x, y)dy

+ (2π)−d/2(
2
∥∥μ(x)

∥∥∥∥S(x)
∥∥ + ∥∥S(x)

∥∥2) ∫
Rd

max
(‖ξ‖2,1

)
e−‖ξ‖2/2 dξ.
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By (23), lim sup‖x‖→+∞(2‖μ(x)‖‖S(x)‖+‖S(x)‖2)‖x‖−2 = 0. Therefore, using
again the first inequality of (23) and Assumption 5:

lim sup
‖x‖→+∞

PV (x)/V (x) ≤ 1 − (
1 − τ 2)

lim inf‖x‖→+∞

∫
Rd

α(x, y)q(x, y)dy < 1.

This completes the proof of Lemma 4.1. �

B.2. Proof of Theorem 4.2. We prove this result by contradiction. The strat-
egy of the proof is the following: first, under our assumptions, most of the pro-
posed moves by the algorithm has a norm which is greater than the current point.
However, if P is geometrically ergodic, then it implies a upper bound on the re-
jection probability of the algorithm by some constant strictly smaller than 1. But
combining these facts, we can exhibit a sequence of point {xn,n ∈ N}, such that
limn→+∞ π(xn) = +∞. Since we assume that π is bounded, we have our contra-
diction.

If P is geometrically ergodic, then by [26], Theorem 5.1, there exists η > 0 such
that for almost every x ∈R

d ,

(67)
∫
Rd

α(x, y)q(x, y)dy ≥ η,

and let M ≥ 0 such that

(68) P
[‖ξ‖ ≥ M

] ≤ η/2,

where ξ is a standard d-dimensional Gaussian random variable. By (24), there
exist Rε, δ > 0 such that

inf{‖x‖≥Rε}
∥∥S(x)−1μ(x)

∥∥‖x‖−1 ≥ ε−1 + δ,(69)

inf{‖x‖≥Rε}
inf‖z‖=1

∥∥S(x)z
∥∥ ≥ ε(1 + δε/2)−1.(70)

Note that we can assume Rε is large enough so that

(71) εδRε/2 ≥ M.

Now define for x ∈ R
d , ‖x‖ ≥ Rε

(72) B(x) = {
y ∈R

d |∥∥S(x)−1(
y − μ(x)

)∥∥ ≤ M
}
.

Note if y ∈ B(x), we have by definition and the triangle inequality ‖S(x)−1y‖ ≥
‖S(x)−1μ(x)‖ − M . Therefore, by (69)–(70) and (71)

‖y‖ = ∥∥S(x)S(x)−1y
∥∥ ≥ ε(1 + δε/2)−1∥∥S(x)−1y

∥∥
≥ ε(1 + δε/2)−1{(

ε−1 + δ
)‖x‖ − M

} ≥ ‖x‖.
(73)

We then show that this inequality implies

(74) lim inf‖x‖→+∞ inf
y∈B(x)

q(y, x)

q(x, y)
= 0.
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Let x ∈ R
d , ‖x‖ ≥ Rε , y ∈ B(x). First, it is straightforward by (72), that

|S(x)|q(x, y) is uniformly bounded away from 0, and it suffices to consider
|S(x)|q(y, x). By (70)–(73), we have ‖y‖ ≥ Rε and for all z ∈ R

d , ‖S(y)z‖ ≥
ε(1 + δε/2)−1‖z‖, which implies for all z ∈ R

d , ε−1(1 + δε/2)‖z‖ ≥ ‖S(y)−1z‖.
By this inequality and (69), we have∣∣∥∥S(y)−1μ(y)

∥∥ − ∥∥S(y)−1x
∥∥∣∣

≥ ∥∥S(y)−1μ(y)
∥∥ − ∥∥S(y)−1x

∥∥(75)

≥ (
ε−1 + δ

)‖y‖ − ε−1(1 + δε/2)‖x‖ ≥ (δ/2)‖y‖,
where the last inequality follows from (73). Using this result, the triangle inequal-
ity, (75)–(70) and (73), we get

q(y, x) = (2π)−d/2 exp
{−(1/2)

∥∥S(y)−1(
x − μ(y)

)∥∥2 − log
(∣∣S(y)

∣∣)}
≤ (2π)−d/2 exp

{−(1/2)
(∥∥S(y)−1μ(y)

∥∥ − ∥∥S(y)−1x
∥∥)2 − log

(∣∣S(y)
∣∣)}

≤ (2π)−d/2 exp
{−(

δ2/8
)‖y‖2 − log

(∣∣S(y)
∣∣)}

≤ (2π)−d/2 exp
{−(

δ2/8
)‖x‖2 − d log

(
ε(1 + δε/2)−1)}

.

Using this inequality and (25) imply lim‖x‖→+∞ infy∈B(x) |S(x)|q(y, x) = 0 and
then (74). Therefore, there exists Rq ≥ 0 such that for all x ∈R

d , ‖x‖ ≥ Rq

(76) inf
y∈B(x)

q(y, x)

q(x, y)
≤ η/4.

Now we are able to build the sequence {xn,n ∈ N} such that for all n ∈ N,
‖xn+1‖ ≥ max(Rε,Rq) and limn→+∞ π(xn) = +∞. Indeed, let x0 ∈ R

d such
that ‖x0‖ ≥ max(Rε,Rq). Assume, we have built the sequence up to the nth term
and such that for all k = 0, . . . , n − 1, ‖xk+1‖ ≥ max(Rε,Rq) and π(xk+1) ≥
(3/2)π(xk). Now we choose xn+1 depending on xn, satisfying π(xn+1) ≥
(3/2)π(xn) and ‖xn+1‖ ≥ max(Rε,Rq). Since ‖xn‖ ≥ max(Rε,Rq), by (67)–(68)
and (76)

η ≤
∫
Rd

α(xn, y)q(xn, y)dy ≤ η/2 +
∫
B(xn)

min
(

1,
π(y)q(y, xn)

π(xn)q(xn, y)

)
q(xn, y)dy

≤ η/2 + (η/4)

∫
B(xn)

π(y)

π(xn)
q(xn, y)dy.

This inequality implies that
∫
B(xn)

π(y)
π(xn)

q(xn, y)dy ≥ 2 and, therefore, there ex-
ists xn+1 ∈ B(xn) such that π(xn+1) ≥ (3/2)π(xn), and since xn+1 ∈ B(xn) by
(73), ‖xn+1‖ ≥ max(Rε,Rq). Therefore, we have a sequence {xn,n ∈ N} such
that for all n ∈ N, π(xn+1) ≥ (3/2)π(xn). Since by assumption π(x0) > 0, we
get limn→+∞ π(xn) = +∞, which contradicts the assumption that π is bounded.
This completes the proof of Theorem 4.2. �
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APPENDIX C: EXPRESSIONS OF C•
5(x1, ξ1)

CfM
5 (x1, ξ1) = 	5

720

(
ξ5

1 g(5)(x1) + 5ξ3
1 g(5)(x1) + 15ξ3

1 g(4)(x1)g
′(x1)

+ 15ξ1g
(4)(x1)g

′(x1) + 30ξ3
1 g(3)(x1)g

′′(x1)

+ 10ξ1g
(3)(x1)g

′′(x1) + 30ξ1g
(3)(x1)g

′(x1)
2

+ 35ξ1g
′(x1)g

′′(x1)
2)

,

CmO
5 (x1, ξ1) = 	5

(
1

720
ξ5

1 g(5)(x1) + 1

144
ξ3

1 g(5)(x1) + 1

48
ξ3

1 g(4)(x1)g
′(x1)

+ 1

48
ξ1g

(4)(x1)g
′(x1) + 29

144
ξ3

1 g(3)(x1)g
′′(x1)

− 7

48
ξ1g

(3)(x1)g
′′(x1) + 1

24
ξ1g

(3)(x1)g
′(x1)

2

+ 1

6
ξ1g

′(x1)g
′′(x1)

2
)
,

CbO
5 (x1, ξ1) = 	5

(
1

720
ξ5

1 g(5)(x1) + 1

144
ξ3

1 g(5)(x1) + 1

48
ξ3

1 g(4)(x1)g
′(x1)

+ 1

48
ξ1g

(4)(x1)g
′(x1) + 29

144
ξ3

1 g(3)(x1)g
′′(x1)

− 19

144
ξ1g

(3)(x1)g
′′(x1) + 1

24
ξ1g

(3)(x1)g
′(x1)

2

+ 1

6
ξ1g

′(x1)g
′′(x1)

2
)
,

C
gbO
5 (x1, ξ1) = 	5

(
1

720
ξ5

1 g(5)(x1) + 1

144
ξ3

1 g(5)(x1) + 1

48
ξ3

1 g(4)(x1)g
′(x1)

+ 1

48
ξ1g

(4)(x1)g
′(x1) + 1

72
a3ξ1g

(3)(x1)g
′′(x1)

+ 1

6
a2

4ξ3
1 g(3)(x1)g

′′(x1) − 1

6
a2

4ξ1g
(3)(x1)g

′′(x1)

+ 5

144
ξ3

1 g(3)(x1)g
′′(x1) + 1

48
ξ1g

(3)(x1)g
′′(x1)

+ 1

24
ξ1g

(3)(x1)g
′(x1)

2 − 1

24
a2

1ξ1g
′(x1)g

′′(x1)
2

+ 1

6
a2

4ξ1g
′(x1)g

′′(x1)
2 + 1

24
ξ1g

′(x1)g
′′(x1)

2
)
.
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APPENDIX D: EXPRESSIONS OF K•

We provide here the expressions of the quantities K• involved in Theorems 3.1,
3.2, 3.4, 3.5. Let X be a random variable distributed according to π1,

K fM = E

[
79g(5)(X)2

17,280
+ 11g(4)(X)2g′(X)2

1152
+ 77g(3)(X)2g′′(X)2

2592

+ 1

576
g(3)(X)2g′(X)4 + 49g′(X)2g′′(X)4

20,736
+ 7

576
g(4)(X)g(5)(X)g′(X)

+ 19

864
g(3)(X)g(5)(X)g′′(X) + 1

288
g(3)(X)g(5)(X)g′(X)2

+ 7g(5)(X)g′(X)g′′(X)2

1728
+ 1

144
g(3)(X)g(4)(X)g′(X)3

+ 7

864
g(4)(X)g′(X)2g′′(X)2 + 7g(3)(X)g′(X)3g′′(X)2

1728

+ 5

432
g(3)(X)2g′(X)2g′′(X) + 35g(3)(X)g′(X)g′′(X)3

2592

+ 29

864
g(3)(X)g(4)(X)g′(X)g′′(X)

]
,

KmO = E

[
79g(5)(X)2

17,280
+ 11g(4)(X)2g′(X)2

1152
+ 1567g(3)(X)2g′′(X)2

3456

+ 1

576
g(3)(X)2g′(X)4 + 1

36
g′(X)2g′′(X)4 + 7

576
g(4)(X)g(5)(X)g′(X)

+ 17

192
g(3)(X)g(5)(X)g′′(X) + 1

288
g(3)(X)g(5)(X)g′(X)2

+ 1

72
g(5)(X)g′(X)g′′(X)2 + 1

144
g(3)(X)g(4)(X)g′(X)3

+ 1

36
g(4)(X)g′(X)2g′′(X)2 + 1

72
g(3)(X)g′(X)3g′′(X)2

+ 11

288
g(3)(X)2g′(X)2g′′(X) + 11

72
g(3)(X)g′(X)g′′(X)3

+ 73

576
g(3)(X)g(4)(X)g′(X)g′′(X)

]
,

KgbO = E

[
1

36
g′(X)2g′′(X)4a4

4 + 5

18
g′′(X)2g(3)(X)2a4

4

+ 1

9
g′(X)g′′(X)3g(3)(X)a4

4 − 1

72
a2

1g′(X)2g′′(X)4a2
4
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+ 1

72
g′(X)2g′′(X)4a2

4 + 11

72
g′′(X)2g(3)(X)2a2

4

+ 1

108
a3g

′′(X)2g(3)(X)2a2
4 + 1

36
g′(X)2g′′(X)g(3)(X)2a2

4

− 1

36
a2

1g′(X)g′′(X)3g(3)(X)a2
4 + 5

72
g′(X)g′′(X)3g(3)(X)a2

4

+ 1

216
a3g

′(X)g′′(X)3g(3)(X)a2
4 + 1

72
g′(X)3g′′(X)2g(3)(X)a2

4

+ 1

36
g′(X)2g′′(X)2g(4)(X)a2

4 + 7

72
g′(X)g′′(X)g(3)(X)g(4)(X)a2

4

+ 1

72
g′(X)g′′(X)2g(5)(X)a2

4 + 5

72
g′′(X)g(3)(X)g(5)(X)a2

4

+ 1

576
a4

1g′(X)2g′′(X)4 − 1

288
a2

1g′(X)2g′′(X)4 + 1

576
g′(X)2g′′(X)4

+ 1

576
g′(X)4g(3)(X)2 + a2

3g′′(X)2g(3)(X)2

5184

+ 1

288
a3g

′′(X)2g(3)(X)2 + 79g′′(X)2g(3)(X)2

3456

+ 1

96
g′(X)2g′′(X)g(3)(X)2 + 1

864
a3g

′(X)2g′′(X)g(3)(X)2

+ 11g′(X)2g(4)(X)2

1152

+ 79g(5)(X)2

17,280
− 1

96
a2

1g′(X)g′′(X)3g(3)(X)

+ 1

96
g′(X)g′′(X)3g(3)(X) − 1

864
a2

1a3g
′(X)g′′(X)3g(3)(X)

+ 1

864
a3g

′(X)g′′(X)3g(3)(X) − 1

288
a2

1g′(X)3g′′(X)2g(3)(X)

+ 1

288
g′(X)3g′′(X)2g(3)(X) − 1

144
a2

1g′(X)2g′′(X)2g(4)(X)

+ 1

144
g′(X)2g′′(X)2g(4)(X) + 1

144
g′(X)3g(3)(X)g(4)(X)

+ 17

576
g′(X)g′′(X)g(3)(X)g(4)(X) + 1

432
a3g

′(X)g′′(X)g(3)(X)g(4)(X)

− 1

288
a2

1g′(X)g′′(X)2g(5)(X) + 1

288
g′(X)g′′(X)2g(5)(X)
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+ 1

288
g′(X)2g(3)(X)g(5)(X) + 11

576
g′′(X)g(3)(X)g(5)(X)

+ 1

864
a3g

′′(X)g(3)(X)g(5)(X) + 7

576
g′(X)g(4)(X)g(5)(X)

]
.
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SUPPLEMENTARY MATERIAL

Supplement to “Fast Langevin based algorithm for MCMC in high dimen-
sions” (DOI: 10.1214/16-AAP1257SUPP; .zip). Mathematica notebooks.
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