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A STRONG ORDER 1/2 METHOD FOR MULTIDIMENSIONAL
SDES WITH DISCONTINUOUS DRIFT

BY GUNTHER LEOBACHER1 AND MICHAELA SZÖLGYENYI2

University of Graz and Vienna University of Economics and Business WU

In this paper, we consider multidimensional stochastic differential equa-
tions (SDEs) with discontinuous drift and possibly degenerate diffusion co-
efficient. We prove an existence and uniqueness result for this class of SDEs
and we present a numerical method that converges with strong order 1/2. Our
result is the first one that shows existence and uniqueness as well as strong
convergence for such a general class of SDEs.

The proof is based on a transformation technique that removes the discon-
tinuity from the drift such that the coefficients of the transformed SDE are
Lipschitz continuous. Thus the Euler–Maruyama method can be applied to
this transformed SDE. The approximation can be transformed back, giving
an approximation to the solution of the original SDE.

As an illustration, we apply our result to an SDE the drift of which has a
discontinuity along the unit circle and we present an application from stochas-
tic optimal control.

1. Introduction. We consider a d-dimensional time-homogeneous stochastic
differential equation (SDE):

(1) dX = μ(X)dt + σ(X)dW, X0 = x,

where μ : Rd −→ R
d and σ : Rd −→ R

d×d are measurable functions and W =
(Wt)t≥0 is a d-dimensional standard Brownian motion on the filtered probability
space (�,F, (Ft )t≥0,P).

If both μ and σ are Lipschitz, then existence and uniqueness is guaranteed by
Picard iteration. Furthermore, (1) can be solved numerically with, for example, the
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Euler–Maruyama method, which then converges with strong order 1/2; see [10],
Theorem 10.2.2.

However, in applications one is frequently confronted with SDEs where μ is
non-Lipschitz, for example, in stochastic control theory. There, whenever an op-
timal control of bang-bang type appears, meaning that the strategy is of the form
1S(X) for some measurable set S ⊆ R

d , the drift of the controlled underlying sys-
tem is discontinuous. Furthermore, for example, in setups with incomplete infor-
mation, which are currently heavily under study, for example, for applications in
mathematical finance, the underlying systems have degenerate diffusion coeffi-
cients. Therefore, the class of SDEs that we study in this paper appears frequently
in applied mathematics and we shall elaborate our contributions to this kind of
problems later in the paper.

The question of existence and uniqueness of solutions to SDEs with non-
Lipschitz drift has been studied by various authors.

For the case where μ is only bounded and measurable and σ is bounded,
Lipschitz and satisfies a certain uniform ellipticity condition, Zvonkin [24] and
Veretennikov [21–23] prove existence and uniqueness of a solution by removing
the drift coefficient in a way such that the Lipschitz condition of the diffusion
coefficient is preserved.

But uniform ellipticity is a strong assumption which is—as mentioned above—
frequently violated in applications.

In Leobacher et al. [15], an existence and uniqueness result for (1) is presented
for the case where the drift is potentially discontinuous at a hyperplane, or a special
hypersurface, but well behaved everywhere else and where the diffusion coefficient
is potentially degenerate. In that paper, not the whole drift is removed, but only the
discontinuity is removed locally from the drift.

Due to the weaker requirements on the diffusion coefficient, the restriction to
homogeneous SDEs does not pose any loss of generality. In Shardin and Szöl-
gyenyi [18], the authors extend the result from [15] to the time-inhomogeneous
case.

In Leobacher and Szölgyenyi [13], an existence and uniqueness result, as well
as a numerical method are presented for the one-dimensional case with piecewise
Lipschitz drift coefficient. There the coefficients are globally transformed into Lip-
schitz ones. Both computation of the transformed coefficients and inversion can
be done efficiently. This leads to a numerical method for one-dimensional SDEs
through application of the Euler–Maruyama scheme on the transformed equation
and transforming the approximation back. We present a simplified version of this
result in Section 2.

However, extending the result from [13] to the d-dimensional case is far from
being straightforward. One problem is that there is no immediate generalization
of the concept of a piecewise Lipschitz function with several variables that suits
our needs. The second problem is that it is more difficult to obtain a transform
that is a Lipschitz diffeomorphism R

d −→ R
d . We use Hadamard’s global inverse
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function theorem to prove that our transform is of this kind. Moreover, we need
to show that the transform and its inverse are sufficiently well behaved for Itô’s
formula to hold.

The coefficients of the SDE obtained by transforming the original one are shown
to be Lipschitz, such that we can apply the Euler–Maruyama method to the trans-
formed SDE. An approximation to the original SDE is then obtained by applying
the inverse transform to the approximation of the transformed solution. For this
scheme, we show strong convergence with order 1/2. One might ask whether the
results of Zvonkin and Veretennikov give rise to a similar method. However, in
order to apply their method one would have to solve a system of parabolic partial
differential equations (in each step). Further, for using this solution in a numeri-
cal method like ours, one would also have to find its inverse function. Therefore,
such a method, if it exists at all, would be rather costly from the computational
perspective.

In the present paper, we present a transform for the multidimensional case which
allows to prove an existence and uniqueness result for d-dimensional SDEs with
discontinuous drift and degenerate diffusion coefficient under conditions signifi-
cantly weaker than those in the literature. The essential geometric condition in our
setup is that the diffusion must have a component orthogonal to the set of discon-
tinuities of the drift.

Furthermore, we present a numerical method for such SDEs based on the ideas
outlined above. To the authors’ knowledge, there is no other numerical method that
can deal with such a general class of SDEs and gives strong convergence, much
less giving a strong convergence rate.

We are now going to review the literature on numerical methods for SDEs with
nonglobally Lipschitz drift coefficient. In Berkaoui [1], strong convergence of
the Euler–Maruyama scheme is proven under the assumption that the drift is of
class C1. For an SDE with continuously differentiable but nonglobally Lipschitz
drift, Hutzenthaler et al. [7] introduce a new explicit numerical scheme—the tamed
Euler scheme—and prove its strong convergence. Sabanis [17] proves strong con-
vergence of the tamed Euler scheme for SDEs with one-sided Lipschitz drift. For
the Euler–Maruyama scheme, Gyöngy [5] proves almost sure convergence for the
case that the drift satisfies a monotonicity condition. A different approach is intro-
duced by Halidias and Kloeden [6], who show that the Euler–Maruyama scheme
converges strongly for SDEs with a discontinuous monotone drift coefficient, es-
pecially mentioning the case in which the drift is a Heaviside function. Kohatsu-
Higa et al. [11] show weak convergence of a method where they first regularize the
drift and then apply the Euler–Maruyama scheme. They allow the drift to be dis-
continuous. Étoré and Martinez [2, 3] introduce an exact simulation algorithm for
one-dimensional SDEs that have a bounded drift coefficient being discontinuous
in one point, but differentiable everywhere else.

This paper is organized as follows. In Section 2, we present the one-dimensional
result and algorithm in a form that can be generalized to multiple dimensions,



2386 G. LEOBACHER AND M. SZÖLGYENYI

which is subsequently done in Section 3. In Section 4, we give two numerical
examples: one where the drift coefficient has discontinuities along the unit circle
in R

2 and an example from stochastic optimal control.
Some of the more technical and geometrical proofs have been moved to the

Appendix.

2. The one-dimensional problem. Here, we consider the one-dimensional
version of SDE (1) and give simple conditions for existence and uniqueness of a
solution and a strong order 1/2 algorithm. For this, we recall the following defini-
tion.

DEFINITION 2.1. Let I ⊆ R be an interval. We say a function f : I −→ R is
piecewise Lipschitz, if there are finitely many points ξ1 < · · · < ξm ∈ I such that
f is Lipschitz on each of the intervals (−∞, ξ1) ∩ I , (ξm,∞) ∩ I and (ξk, ξk+1),
k = 1, . . . ,m.

We make the following assumptions on the coefficients.

ASSUMPTION 2.1. The drift coefficient μ :R −→ R is piecewise Lipschitz.

ASSUMPTION 2.2. The diffusion coefficient σ : R −→ R is Lipschitz with
σ(ξ) �= 0 whenever μ(ξ+) �= μ(ξ−).

For simplicity, we derive the result for μ : R −→ R that is Lipschitz with the
exception of only a single point ξ where μ is allowed to jump. We are going to
construct a transform G : R −→ R such that the process formally defined by Z =
G(X) satisfies an SDE with Lipschitz coefficients and, therefore, has a solution by
Itô’s classical theorem on existence and uniqueness of solutions; see [8].

For this, define the following bump function on R, which we need to localize
the impact of the transform G:

(2) φ(u) =
{
(1 + u)3(1 − u)3 if |u| ≤ 1,

0 else.

The function φ has the following properties:

1. φ defines a C2 function on all of R;
2. φ(0) = 1, φ′(0) = 0, φ′′(0) = −6;
3. φ(u) = φ′(u) = φ′′(u) = 0 for all |u| ≥ 1.

We define the transform G :R −→ R by

(3) G(x) = x + αφ

(
x − ξ

c

)
(x − ξ)|x − ξ |, x ∈ R,

where α �= 0 and c > 0 are some constants.
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LEMMA 2.2. Let c < 1
6|α| .

Then G′(x) > 0 for all x ∈ R. Furthermore, G′(x) = 1 for all |x − ξ | > c.
Therefore, G has a global inverse G−1.

PROOF. Differentiating G for |x − ξ | ≤ c yields

G′(x) = 1 − 6α

c2 (x − ξ)2|x − ξ |
(

1 + x − ξ

c

)2(
1 − x − ξ

c

)2

+ 2α|x − ξ |
(

1 + x − ξ

c

)3(
1 − x − ξ

c

)3
.

For positive α, this is positive, if c < 1
6|α| . For negative α, it is positive, if c < 1

2|α| .
Altogether a sufficient condition for G′ to be positive is c < 1

6|α| . �

W.l.o.g. we always choose c < 1
6|α| , such that G has a global inverse.

REMARK 2.3. In [13], the function G is constructed differently. There G is
piecewise cubic, such that G−1 is piecewise radical, and hence admits exact inver-
sion, which is advantageous for the numerical treatment.

In fact, G can be made piecewise cubic by still using equation (3), but with a
different choice for φ. Actually, any function φ with support contained in [−1,1]
satisfying properties 1, 2, 3 from page 2386 will give rise to a transform G suf-
ficient for our purpose, with a similar condition on the constant c for G to be
invertible. The form chosen here is simple in the one-dimensional case and has a
direct multidimensional analog.

Formally define Z = G(X). Abbreviating φ̄(x) := φ(
x−ξ

c
)(x − ξ)|x − ξ |, we

have

dZ = dX + αφ̄′(X)dX + 1

2
αφ̄′′(X)d[X]

=
(
μ(X) + αφ̄′(X)μ(X) + 1

2
αφ̄′′(X)σ(X)2

)
dt

+ (
σ(X) + αφ̄′(X)σ(X)

)
dW

= μ̃(Z)dt + σ̃ (Z)dW,

(4)

where

μ̃(z) = μ
(
G−1(z)

) + αφ̄′(G−1(z)
)
μ

(
G−1(z)

) + 1

2
αφ̄′′(G−1(z)

)
σ

(
G−1(z)

)2
,

σ̃ (z) = σ
(
G−1(z)

) + αφ̄′(G−1(z)
)
σ

(
G−1(z)

)
.

We now show that, for an appropriate choice of α, the transformed drift μ̃ is
Lipschitz. For this, we need the following elementary lemma from [13].
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LEMMA 2.4. Let f :R −→ R be piecewise Lipschitz and continuous.
Then f is Lipschitz on R.

From Lemma 2.4 and limh→0 φ̄′(h) = 0, we see that the mapping z �→
φ̄′(G−1(z))μ(G−1(z)) is Lipschitz. In order to make the mapping z �→
μ(G−1(z)) + 1

2αφ̄′′(G−1(z))σ (G−1(z))2 continuous, we need to choose α so that

μ
(
G−1(ξ+)

) + 1

2
αφ̄′′(G−1(ξ+)

)
σ

(
G−1(ξ+)

)2

= μ
(
G−1(ξ−)

) + 1

2
αφ̄′′(G−1(ξ−)

)
σ

(
G−1(ξ−)

)2
,

i.e.

μ(ξ+) + 1

2
αφ̄′′(ξ+)σ (ξ)2 = μ(ξ−) + 1

2
αφ̄′′(ξ−)σ (ξ)2.

Thus we get, for the choice

α = −2
μ(ξ+) − μ(ξ−)

(φ̄′′(ξ+) − φ̄′′(ξ−))σ (ξ)2
= μ(ξ−) − μ(ξ+)

2σ(ξ)2

that μ̃ is continuous. Note that at this point we need nondegeneracy of σ in ξ .
Since μ̃ is continuous with the appropriate choice of α, it is Lipschitz as well

by Lemma 2.4.
One may worry about the quadratic occurrence of σ in the expression for μ̃.

Note, however, that φ̄′′ vanishes outside [−c, c].
To prove that σ̃ is Lipschitz as well, we need the following lemma.

LEMMA 2.5. Let f :R −→ R be Lipschitz. Then f φ′ is Lipschitz.

PROOF. Let Lf be a Lipschitz constant for f . Note that 6 is a Lipschitz con-
stant for φ′. If |x|, |y| ≤ 1, then∣∣f (x)φ′(x) − f (y)φ′(y)

∣∣ ≤ ∣∣f (x)φ′(x) − f (y)φ′(x)
∣∣

+ ∣∣f (y)φ′(x) − f (y)φ′(y)
∣∣

≤ Lf |x − y| max
z∈[−1,1]

∣∣φ′(z)
∣∣

+ 6|x − y| max
z∈[−1,1]

∣∣f (z)
∣∣

≤ K|x − y|,
where K = Lf |x − y|maxz∈[−1,1] |φ′(z)| + 6|x − y|maxz∈[−1,1] |f (z)|. For −1 ≤
x ≤ 1 < y, we have∣∣f (x)φ′(x) − f (y)φ′(y)

∣∣ = ∣∣f (x)φ′(x)
∣∣ = ∣∣f (x)φ′(x) − f (1)φ′(1)

∣∣|
≤ K|x − 1 ≤ K|x − y|.
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The same estimate holds for the case x < −1 ≤ y ≤ 1. For |x|, |y| > 1, we have
|f (x)φ′(x) − f (y)φ′(y)| = 0 ≤ K|x − y|. �

Thus, σ̃ is Lipschitz by Lemma 2.5 and the fact that the composition of Lips-
chitz functions is Lipschitz.

Altogether we have that the SDE (4) for Z has Lipschitz coefficients μ̃ and σ̃ .
The generalization to finitely many discontinuities of μ in the points ξ1 < · · · <

ξm is now straightforward: define

G(x) := x +
m∑

k=1

αkφ

(
x − ξk

c

)
(x − ξk)|x − ξk|,

with

αk = μ(ξk−) − μ(ξk+)

2σ(ξk)2 and c < min
(

min
1≤k≤m

1

6|αk| , min
1≤k≤m−1

ξk+1 − ξk

2

)
.

We are ready to prove existence and uniqueness of a solution to the one-
dimensional SDE (1).

THEOREM 2.6 (cf. [20], Theorem 2.2). Let Assumptions 2.1, and 2.2 be satis-
fied, that is, μ is piecewise Lipschitz with finitely many jump points, σ is Lipschitz
and ∀ξ : μ(ξ+) �= μ(ξ−) =⇒ σ(ξ) �= 0.

Then the one-dimensional SDE (1) has a unique global strong solution.

PROOF. Since the SDE (4) for Z has Lipschitz coefficients, it follows that (4)
with initial condition Z0 = G(x) has a unique global strong solution. Furthermore,
G has a global inverse G−1, which inherits the smoothness from G. Although
G−1 /∈ C2, Itô’s formula holds for G−1; see [9], 5. Problem 7.3. Applying Itô’s
formula to G−1, we obtain that G−1(Z) satisfies

dX = μ(X)dt + σ(X)dW, X0 = x.

Setting X = G−1(Z) yields the desired result. �

For approximating the solution to the one-dimensional SDE (1), we propose the
following numerical method. Let Z

(δ)
T be the Euler–Maruyama approximation of

the solution to SDE (4) with step size smaller than δ > 0.

ALGORITHM 2.7. Go through the following steps:

1. Set Z
(δ)
0 = G(x).

2. Apply the Euler–Maruyama method to the SDE (4) to obtain Z
(δ)
T .

3. Set X̄ = G−1(Z
(δ)
T ).
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THEOREM 2.8 (cf. [20], Theorem 3.1). Let Assumptions 2.1, and 2.2 be sat-
isfied.

Then Algorithm 2.7 converges with strong order 1/2 to the solution X of the
one-dimensional SDE (1).

PROOF. We estimate the L2-error of the approximation. For every T > 0 there
is a constant C, such that

E
(
(XT − X̄T )2) = E

((
G−1(ZT ) − G−1(

Z
(δ)
T

))2)
≤ L2

G−1E
((

ZT − Z
(δ)
T

)2) = L2
G−1Cδ

for every sufficiently small step size δ, where LG−1 is the Lipschitz constant of
G−1 and where we applied [10], Theorem 10.2.2, for the L2-convergence of the
Euler–Maruyama scheme for SDEs with Lipschitz coefficients. �

3. The multidimensional problem. We now consider the multidimensional
case. Like in dimension one, we will have to make assumptions on the drift so
that it is Lipschitz apart from—relatively few—locations of discontinuity. That is,
we need a concept similar to that of “piecewise Lipschitz” in the one-dimensional
case. We will develop such a concept now.

In contrast to the one-dimensional case, we shall have to make additional as-
sumptions on the behaviour of the drift close to its points of discontinuity, which
shall all lie in a hypersurface �.

Regarding the diffusion coefficient we need to find a condition corresponding
to Assumption 2.2.

Note that most of these assumptions are automatically satisfied, or can at least
be weakened, if � is compact. We will treat the case of compact � in Section 3.6.

3.1. Piecewise Lipschitz functions. For a continuous curve γ : [0,1] −→ R
d ,

let 
(γ ) denote its length,


(γ ) := sup
n,0≤t1<···<tn≤1

n∑
k=1

∥∥γ (tk) − γ (tk−1)
∥∥ ∈ [0,∞].

DEFINITION 3.1. Let A ⊆ R
d . The intrinsic metric d on A is given by

ρ(x, y) := inf
{

(γ ) : γ : [0,1] → A is a continuous curve

satisfying γ (0) = x, γ (1) = y
}
,

where ρ(x, y) := ∞, if there is no continuous curve from x to y.

DEFINITION 3.2. Let A ⊆ R
d . Let f : A −→ R

m be a function. We say that
f is intrinsic Lipschitz, if it is Lipschitz w.r.t. the intrinsic metric on A, that is, if
there exists a constant L such that

∀x, y ∈ A:
∥∥f (x) − f (y)

∥∥ ≤ Lρ(x, y).



A STRONG ORDER 1/2 METHOD FOR MULTIDIMENSIONAL SDES 2391

REMARK 3.3. Note that for a function f : R −→ R we have that f is piece-
wise Lipschitz, iff f is intrinsic Lipschitz on R \ B , where B is a finite subset
of R.

This motivates the following definition.

DEFINITION 3.4. A function f : Rd −→ R
m is piecewise Lipschitz, if there

exists a hypersurface3 � with finitely many components and with the property, that
the restriction f |Rd\� is intrinsic Lipschitz. We call � an exceptional set for f .

The definition is more general than the more obvious requirement that Rd can
be partitioned into finitely many patches in a way such that f is Lipschitz on all of
the patches. This is illustrated by the following example.

EXAMPLE 3.5. Consider the function f : R2 −→ R, f (x) = ‖x‖ arg(x).
Then f is not Lipschitz, since limh→0+ f (cos(π − h), sin(π − h)) = π and
limh→0+ f (cos(π + h), sin(π + h)) = −π for x1 < 0.

It is readily checked, however, that f is intrinsic Lipschitz on A = R
2 \ {x ∈

R
2 : x1 < 0, x2 = 0} and {x ∈ R

2 : x1 < 0, x2 = 0} is obviously a one-dimensional
submanifold of R2.

Thus, f is piecewise Lipschitz in the sense of Definition 3.4.

The following lemma is a multidimensional generalization of Lemma 2.4.

LEMMA 3.6. Let f :Rd −→ R
m be a function. If:

1. f is continuous in every point x ∈ R
d ;

2. f is piecewise Lipschitz with exceptional set �;
3. for x, y ∈ R

d and η > 0 there exists a continuous curve γ from x to y with

(γ ) < ‖x − y‖ + η such that #(γ ∩ �) < ∞.

Then f is Lipschitz on R
d w.r.t. the Euclidean metric, and with the same Lipschitz

constant.

PROOF. Let L be the intrinsic Lipschitz constant of f , that is, ‖f (y) −
f (x)‖ ≤ Lρ(x, y) for all x, y ∈ R

d , and let x, y ∈ R
d . If ρ(x, y) = ‖x − y‖, then

clearly ‖f (x) − f (y)‖ ≤ Lρ(x, y) = L‖x − y‖.
If ρ(x, y) > ‖x − y‖, then the line segment s(x, y) := {(1 − λ)x + λy : λ ∈

[0,1]} has nonempty intersection with �.
Consider first the case where s(x, y) ∩ � = {z1, . . . , zn}, that is, we have finite

intersection. There exist λ1, . . . , λn such that zk = (1 − λk)x + λky. Define g :
[0,1] −→R

m by g(λ) := f ((1 − λ)x + λy).

3By a hypersurface, we mean a (d − 1)-dimensional submanifold of the R
d .
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Set z0 = x, zn+1 = y, λ0 = 0, λn+1 = 1. W.l.o.g., λ0 < · · · < λn+1. Now

∥∥f (y) − f (x)
∥∥ =

∥∥∥∥∥
n+1∑
k=1

f (zk) − f (zk−1)

∥∥∥∥∥
≤

n+1∑
k=1

∥∥f (zk) − f (zk−1)
∥∥ =

n+1∑
k=1

∥∥g(λk) − g(λk−1)
∥∥

= lim
h→0+

n+1∑
k=1

∥∥g(λk − h) − g(λk−1 + h)
∥∥

≤ lim
h→0+

n+1∑
k=1

Lρ
((

(1 − λk + h)x + (λk − h)y
)
,

(
(1 − λk−1 − h)x + (λk−1 + h)y

))

= lim
h→0+

n+1∑
k=1

L
∥∥(

(1 − λk + h)x + (λk − h)y
)

− (
(1 − λk−1 − h)x + (λk−1 + h)y

)∥∥
=

n+1∑
k=1

L‖zk − zk−1‖ = L‖y − x‖,

where we have used the continuity of f and g, and that the intrinsic metric coin-
cides with the Euclidean metric for pairs of points for which the connecting line
segment has empty intersection with �.

If s(x, y) ∩ � contains infinitely many points, we can replace s(x, y) by γ ,
which is only slightly longer than s(x, y), but has only finitely many inter-
sections with �. A slight modification of the argument above then gives that
‖f (y) − f (x)‖ < L‖y − x‖ + ε for any ε > 0, and thus the desired result. �

CONJECTURE 3.7. Item 3 of the assumptions of Lemma 3.6 is not necessary
to prove the assertion of the lemma.

We will later give sufficient conditions for item 3 of the assumptions of
Lemma 3.6 to hold; see Lemma 3.11. These conditions are satisfied in our ap-
plications.

It is well known that differentiable functions with bounded derivative are Lips-
chitz w.r.t. the Euclidean metric. The same holds true for the intrinsic metric.

LEMMA 3.8. Let A ⊆ R
d be open and let f : A −→ R

m be differentiable with
‖f ′‖ ≤ K .

Then f is intrinsic Lipschitz with constant K .
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PROOF. Let x, y ∈ A and let γ be a continuous curve of finite length with
γ (0) = x and γ (1) = y. [If no such curve exists, we trivially have ‖f (y) −
f (x)‖ ≤ Kρ(x, y) = ∞.] Let 0 = t0 < · · · < tn = 1. Without loss of generality,
the tk can be chosen such that the line segment spanned by γ (tk−1) and γ (tk) is in
A for every k. Then

∥∥f (y) − f (x)
∥∥ ≤

n∑
k=1

∥∥f (
γ (tk)

) − f
(
γ (tk−1)

)∥∥

≤
n∑

k=1

sup
t∈(tk−1,tk)

∥∥f ′(γ (t)
)∥∥∥∥γ (tk) − γ (tk−1)

∥∥

≤ K

n∑
k=1

∥∥γ (tk) − γ (tk−1)
∥∥ ≤ K
(γ ).

�

Furthermore, we prove that the composition of an intrinsic Lipschitz function
with a Lipschitz function is intrinsic Lipschitz.

LEMMA 3.9. Let A ⊆ R
d be open. Let g : Rd −→ A be Lipschitz with con-

stant Lg . Let f : A −→ R
m be intrinsic Lipschitz with constant Lf .

Then f ◦ g is intrinsic Lipschitz with constant Lf Lg .

PROOF. Let γ be a continuous curve of finite length with γ (0) = x and
γ (1) = y. [If no such curve exists, we trivially have ‖f (y)−f (x)‖ ≤ Lgρ(x, y) =
∞.] Let 0 = t0 < · · · < tn = 1. For every δ > 0, there are 0 = t̄0 < · · · < t̄n̄ = 1 such
that ρ(g(x), g(y)) <

∑n̄
k=1 ‖g(t̄k) − g(t̄k−1)‖ + δ/Lf . So

n∑
k=1

∥∥f ◦ g
(
γ (tk)

) − f ◦ g
(
γ (tk−1)

)∥∥ ≤ Lf

n∑
k=1

∥∥g(tk) − g(tk−1)
∥∥

≤ Lf ρ
(
g(x), g(y)

)

< Lf

(
n̄∑

k=1

∥∥g(t̄k) − g(t̄k−1)
∥∥ + δ/Lf

)

< Lf

(
Lg

n̄∑
k=1

‖t̄k − t̄k−1‖ + δ/Lf

)

≤ Lf Lg
(γ ) + δ.

Since δ > 0 was arbitrary, we obtain the result. �

3.2. The form of the set of discontinuities. We are going to generalize the idea
of transforming a discontinuous drift into a Lipschitz one to general dimensions.
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For this, we assume that the drift coefficient μ is piecewise Lipschitz in the
sense of Definition 3.4, that is, there exists a hypersurface � with finitely many
components such that μ|Rd\� is intrinsic Lipschitz. The assumption on the drift
that will make our method work therefore encompasses assumptions on �.

ASSUMPTION 3.1. The drift coefficient μ is a piecewise Lipschitz function
R

d −→ R
d . Its exceptional set � is a C3 hypersurface.

A consequence of Assumption 3.1 is that locally there exists a C2 orthonormal
vector, that is, for every sufficiently small open and connected B ⊆ � there exists
an orthonormal vector on B , that is, a C2-function n : B −→ R

d such that for all
ξ ∈ B the vector n(ξ) is orthogonal to the tangent space of � in ξ and ‖n(ξ)‖ = 1.
It is well known, that there are in general two possible choices for n and that
one can take B = � only if � is orientable. But given n on B , the only other
orthonormal vector is −n.

Define the distance d(x,�) between a point x and the hypersurface � in the
usual way, d(x,�) := inf{‖x − y‖ : y ∈ �}. For every ε > 0, we define �ε :=
{x ∈ R

d : d(x,�) < ε}.
ASSUMPTION 3.2. There exists ε0 > 0 such that �ε0 has the unique closest

point property, that is, for every x ∈ R
d with d(x,�) < ε0 there is a unique p ∈ �

with d(x,�) = ‖x − p‖.

A set possessing the property described in Assumption 3.2 is called a set of
positive reach. The reach of a set � is the supremum over all ε0 > 0 such that �ε0

has the unique closest point property. This and the notion of unique closest point
property can be found in [12].

LEMMA 3.10. Let � be a C3-hypersurface.
If � is of positive reach, then ‖n′‖ is bounded:

∥∥n′(ξ)
∥∥ ≤ 2

d − 1

reach(�)

for all ξ ∈ �.

The proof of Lemma 3.10 can be found in the Appendix.
Note that one can find examples of hypersurfaces with bounded ‖n′‖ which are

not of positive reach; see Figure 1.
Due to Assumption 3.2, there exists an ε0 > 0 for which we may define a map-

ping p : �ε0 −→ � assigning to each x the point p(x) in � closest to x.

LEMMA 3.11. If � is a C3-hypersurface that satisfies Assumption 3.2, then
item 3 of Lemma 3.6 is satisfied, that is, for x, y ∈ R

d and η > 0 there exists a
continuous curve γ from x to y with 
(γ ) < ‖x − y‖+η such that #(γ ∩�) < ∞.
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FIG. 1. A hypersurface in R
2 with bounded ‖n′‖ that is not of positive reach.

The rather technical proof of this lemma can be found in the Appendix. Note
that for many examples, like a (hyper-)sphere or hyperplane, item 3 of Lemma 3.6
is obviously satisfied. So in these cases there is no need to resort to Lemma 3.11.
However, it is an interesting fact that this condition is automatically satisfied under
our assumptions on �.

3.3. Construction of the transform G. As before, we construct a transform G

with the property that the SDE for G(X) has Lipschitz coefficients.
For this to be well-defined, we make the following assumption.

ASSUMPTION 3.3. There is a constant c0 > 0 such that ‖σ(ξ)�n(ξ)‖ ≥ c0
for all ξ ∈ �.

REMARK 3.12. Assumption 3.3 is a nonparallelity condition, meaning that
for all ξ ∈ �, σ(ξ) must not be parallel to �, in the sense that there exists some
x ∈ R

d such that σ(ξ)x is not in the tangent space of � in ξ .

Assumption 3.3 is by far weaker than uniform ellipticity. For the practical ex-
ample we study in Section 4, it is satisfied, whereas uniform ellipticity clearly is
not.

For defining the transform, we first switch to a local setting. Suppose x̃ ∈ R
d is

close to �, that is, d(x̃,�) < ε0. Let B ⊆ � be an open environment of p(x) in �

and n an orthonormal vector. It follows that the set

U = {
y1n(ξ) + ξ : y1 ∈ (−ε0, ε0), ξ ∈ B

}
is an open environment of x̃, and every point x ∈ U can be uniquely represented
in the form x = y1n(ξ) + ξ , y1 ∈ (−ε0, ε0), ξ ∈ B .

We are now ready to locally define the transform G : U −→ R
d by

(5) G(x) = x + φ̃(x)α
(
p(x)

)
,
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where φ̃(x) = (x − p(x)) · n(p(x))‖x − p(x)‖φ(
‖x−p(x)‖

c
), with φ as in (2) and

where

(6) α(ξ) := lim
h→0

μ(ξ − hn(ξ)) − μ(ξ + hn(ξ))

2n(ξ)�σ(ξ)σ (ξ)�n(ξ)
, ξ ∈ B.

One important point to note is the following proposition.

PROPOSITION 3.13. The value of the function G does not depend on the
choice of the orthonormal vector.

PROOF. Both α(p(x)) and φ̃(x) depend on the parametrization only through
the direction of the normal vector n(p(x)). But from the definitions of φ̃ and α, we
see that if n(p(x)) is replaced by −n(p(x)), then φ̃(x) and α(p(x)) both change
sign. Therefore, φ̃(x)α(p(x)) does not depend on the particular choice of the or-
thonormal vector. �

The only reason why we defined G locally at first was that for a nonorientable
hypersurface we do not have, by definition, a global orthonormal vector. However,
since the value of the locally defined function G does not depend on the particular
choice of the orthonormal vector, we can use the same equations (5) and (6) for
defining G globally on �ε0 . That is, the function G :Rd −→ R

d ,

G(x) =
{
x + φ̃(x)α

(
p(x)

)
, x ∈ �ε0,

x, x ∈ R
d \ �ε0

is well-defined. Note further that, if we require c ≤ ε0, then from d(x,�) > ε0 it
follows that d(x,�) > c and, therefore, φ(

‖x−p(x)‖
c

) = 0 with a C2-smooth paste
to 0 in all points x satisfying d(x, θ) = c.

3.4. Properties of G. We need to prove the following:

1. c can be chosen in a way such that G is a diffeomorphism R
d −→ R

d ;
2. Itô’s formula holds for G−1;
3. the SDE for G(X) has Lipschitz coefficients.

ASSUMPTION 3.4. There is a constant a such that every locally defined func-
tion α as defined in (6) is C3 and all derivatives up to order 3 are bounded by a.

THEOREM 3.14. Let Assumptions 3.1–3.4 be satisfied. If the constant c > 0
appearing in the definition of φ̃ is sufficiently small, then G is a diffeomorphism
R

d −→ R
d .

For proving Theorem 3.14, we first need to prove two technical lemmas. For
every ξ ∈ �, denote by τ(ξ) the tangent space of � in ξ .
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LEMMA 3.15. For ξ ∈ �, n′ is a linear mapping from τ(ξ) into τ(ξ).

PROOF. n′ is by definition a linear mapping τ(ξ) −→ R
d . Furthermore, we

have ‖n‖ = 1, so that for any curve γ in �:

0 = d

dt

∥∥n(
γ (t)

)∥∥2 = 2n
(
γ (t)

) · (
n′(γ (t)

)
γ ′(t)

)
.

If b ∈ τ(ξ), we can find a curve γ in � such that γ (0) = ξ and γ ′(0) = b. Thus,
n(ξ) · (n′(ξ)b) = 0, that is, n′(ξ)b ∈ τ(ξ). �

REMARK 3.16. If � is C3 and of positive reach ε0, then we may choose
0 < ε < ε0 such that, whenever y1 ∈ R with |y1| < ε, then idτ(ξ) + y1n

′(ξ) is
invertible.

Indeed, let K be a bound on ‖n′‖ and let ε = ε0
κmax(K,1)

for some fixed κ > 1.

Then for |y1| < ε we have ‖y1n
′(ξ)‖ = |y1|‖n′(ξ)‖ < 1

κ
< 1, such that idτ(ξ) +

y1n
′(ξ) is invertible by the subsequent well-known Lemma 3.17.

LEMMA 3.17. Let A be a linear operator on a subspace V ⊆ R
d and let A

have (operator) norm smaller than 1.
Then idV +A is invertible and ‖(idV +A)−1‖ ≤ (1 − ‖A‖)−1.

PROOF. Consider the Neumann series B = ∑∞
k=0(−A)k which converges in

operator norm and satisfies ‖B‖ ≤ (1 − ‖A‖)−1. Then

(idV +A)B =
∞∑

k=0

(−A)k −
∞∑

k=0

(−A)(−A)k =
∞∑

k=0

(−A)k −
∞∑

k=1

(−A)k = idV .

Thus, B is the inverse of idV +A. �

PROOF OF THEOREM 3.14. Fix some κ > 1 and set ε = ε0
κmax(K,1)

, where K

is a bound on ‖n′‖, which exists by Lemma 3.10.
Let 0 < c < ε.
For x̃ /∈ �c, differentiability of G in x̃ is obvious.
For x̃ ∈ �c, choose an open subset B of � (as before) and an orthonormal vector

n such that U ⊂ R
d is an open set with U ∩ � = B and every x ∈ U can uniquely

be written in the form x = y1n(ξ) + ξ with ξ = p(x). � can be parametrized
locally by a one-one mapping ψ : R −→ R

d , where R ⊆ R
d−1 is an open rectangle

in R
d−1, and there is a point (ỹ2, . . . , ỹd) ∈ R such that ψ(ỹ2, . . . , ỹd) = p(x̃). By

making R and/or B smaller, if necessary, we may w.l.o.g. assume that B = ψ(R).
Thus, we have a bijective mapping T : (−ε, ε) × R −→ U ,

T (y1, . . . , yd) := y1n
(
ψ(y2, . . . , yd)

) + ψ(y2, . . . , yd), y ∈ (−ε, ε) × R.

Note that p(T (y)) = ψ(y2, . . . , yd) for all y ∈ (−ε, ε) × R.



2398 G. LEOBACHER AND M. SZÖLGYENYI

We have

G ◦ T (y) = y1n
(
ψ(y2, . . . , yd)

) + ψ(y2, . . . , yd)

+ y1|y1|φ
( |y1|

c

)
α

(
ψ(y2, . . . , yd)

)
= y1n

(
ψ(y2, . . . , yd)

) + ψ(y2, . . . , yd)

+ φ̄(y1)α
(
ψ(y2, . . . , yd)

)
,

where φ̄ = y|y|φ(
y
c
), and thus

∂(G ◦ T )

∂y1
(y) = n

(
ψ(y2, . . . , yd)

) + φ̄′(y1)α
(
ψ(y2, . . . , yd)

)
, and

∂(G ◦ T )

∂yj

(y) = y1
∂(n ◦ ψ)

∂yj

(y2, . . . , yd) + ∂ψ

∂yj

(y2, . . . , yd)

+ φ̄(y1)
∂(α ◦ ψ)

∂yj

(y2, . . . , yd).

Now note that
∂(G ◦ T )

∂y1
(y) = G′(T (y)

)∂T

∂y1
(y) = G′(T (y)

)
n
(
ψ(y2, . . . , yd)

)
, and

∂(G ◦ T )

∂yj

(y) = G′(T (y)
)∂T

∂yj

(y)

= G′(T (y)
)(

y1
∂(n ◦ ψ)

∂yj

(y2, . . . , yd) + ∂ψ

∂yj

(y2, . . . , yd)

)

for all j �= 1. Further,

∂(n ◦ ψ)

∂yj

(y2, . . . , yd) = n′(ψ(y2, . . . , yd)
) ∂ψ

∂yj

(y2, . . . , yd), and

∂(α ◦ ψ)

∂yj

(y2, . . . , yd) = α′(ψ(y2, . . . , yd)
) ∂ψ

∂yj

(y2, . . . , yd).

Recall that for any ξ ∈ �, we have that n′(ξ) and α′(ξ) are linear mappings from
the tangent space of � in ξ into the Rd . For ξ = ψ(y2, . . . , yd), it then follows that

G′(T (y)
)(

idτ(ξ) + y1n
′(ξ)

) ∂ψ

∂yj

(y2, . . . , yd)

= (
idτ(ξ) + y1n

′(ξ) + φ̄(y1)α
′(ξ)

) ∂ψ

∂yj

(y2, . . . , yd).

Since this equation holds for all ∂ψ
∂yj

, j = 2, . . . , d , it also holds for every vector b

in the tangent space, that is,

G′(T (y)
)(

idτ(ξ) + y1n
′(ξ)

)
b = (

idτ(ξ) + y1n
′(ξ) + φ̄(y1)α

′(ξ)
)
b.
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For |y1| ≤ ε, the mapping idτ(ξ) + y1n
′(ξ) is invertible by the argument from Re-

mark 3.16. Denote the inverse of idτ(ξ) + y1n
′(ξ) by Iξ (y).

Then for any b ∈ τ(ξ), we can write b = (idτ(ξ) + y1n
′(ξ))b1 with b1 = Iξ (y)b

and, therefore,

G′(T (y)
)
b = b + φ̄(y1)α

′(ξ)Iξ (y)b.

For a general vector b ∈ R
d , we have that (b · n)n = nn�b is orthogonal to the

tangent space and (idRd − nn�)b is in the tangent space.
We abbreviate G′ = G′(x̃), p = p(x̃), d = ‖x̃ − p(x̃)‖, n = n(p(x̃)), n′ =

n′(p(x̃)), Iξ = Iξ (T
−1(x̃)). Then we have for b ∈R

d :

G′b = G′((b · n)n + (
b − (b · n)n

))
= (b · n)G′n + G′(b − (b · n)n

)
= (b · n)

(
n + φ̄′(d)α(p)

) + (
b − (b · n)n

) + φ̄(d)α′(p)Iξ

(
b − (b · n)n

)
= b + φ̄′(d)α(p)n�b + φ̄(d)α′(p)Iξ

(
idRd − nn�)

b.

Therefore,

G′ = idRd + φ̄′(d)α(p)n� + φ̄(d)α′(p)Iξ

(
idRd − nn�)

,

or, more explicitly,

G′(x̃) = idRd + φ̄′(‖x̃ − p(x̃)‖)
α

(
p(x̃)

)
n
(
p(x̃)

)�
+ φ̄

(‖x̃ − p(x̃)‖)
α′(p(x̃)

)
Iξ

(
T −1(x̃)

)(
idRd − n

(
p(x̃)

)
n
(
p(x̃)

)�)
.

(7)

In order to apply Hadamard’s global inverse function theorem [16], Theo-
rem 2.2, and thus to show that G is a diffeomorphism R

d −→ R
d , we need to

show that G is C1, G′(x) is invertible for all x ∈ R
d , and lim‖x‖→∞ ‖G(x)‖ = ∞.

We have already proven differentiability of G in x̃. If c is sufficiently small,
G′(x̃) is invertible, since φ̄′ and φ̄ are uniformly bounded with a bound that tends
to 0 for c → 0. For c small enough, it is therefore guaranteed that G′(x̃) is close
to the identity and, therefore, invertible by Lemma 3.17. We show in the sepa-
rate Lemma 3.18 that c > 0 can be chosen uniformly for all x̃ such that G′(x̃) is
invertible.

Since G(x) = x + φ̄(x)α(x) and both φ̄ and α are bounded by the definition of
φ̄ and Assumption 3.4, we also have the third requirement of Hadamard’s global
inverse function theorem. G is therefore a diffeomorphism. �

We will see that c can always be chosen sufficiently small in the proof of Theo-
rem 3.14.

LEMMA 3.18. Fix κ > 1 and define A = 256(κ−1)
27κ(d−1)d

.
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Let c < min(
ε0

κmax(K,1)
,min1≤i,j≤d bi,j ) where for i, j ∈ {1, . . . , d} we define

bi,j :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2d2|αi(p(x))| if
∂αi(p(x))

∂xj

= 0,

−Ad

∣∣∣∣αi(p(x))

∂αi(p(x))
∂xj

∣∣∣∣
+

√√√√A2d4
∣∣∣∣αi(p(x))

∂αi(p(x))
∂xj

∣∣∣∣2 + A

| ∂αi(p(x))
∂xj

| if
∂αi(p(x))

∂xj

�= 0.

With this choice of c, we have that G′(x) is invertible for every x ∈ R
d .

PROOF. Recall equation (7) from the proof of Theorem 3.14:

G′(x) = idRd + φ̄′(∥∥x − p(x)
∥∥)

α
(
p(x)

)
n
(
p(x)

)�
+ φ̄

(∥∥x − p(x)
∥∥)

α′(p(x)
)
Iξ

(
T −1(x)

)(
idRd − n

(
p(x)

)
n
(
p(x)

)�)
=: 1 +A.

We begin by estimating the operator norm of A:

‖A‖ ≤
d∑

i=1

∥∥φ̄′(∥∥x − p(x)
∥∥)∥∥ d∑

j=1

∣∣αi

(
p(x)

)
nj

(
p(x)

)∣∣

+ d(d − 1)

∣∣∣∣∂αi(p(x))

∂xj

∣∣∣∣∣∣φ̄(∥∥x − p(x)
∥∥)∣∣‖Iξ‖

∥∥idRd − n
(
p(x)

)
n
(
p(x)

)�∥∥
≤ max

1≤i,j≤d
d2∣∣αi

(
p(x)

)∣∣∥∥φ̄′∥∥∥∥x − p(x)
∥∥

+ d(d − 1)

∣∣∣∣∂αi(p(x))

∂xj

∣∣∣∣∣∣φ̄(∥∥x − p(x)
∥∥)∣∣‖Iξ‖

∥∥idRd − n
(
p(x)

)
n
(
p(x)

)�∥∥

≤ max
1≤i,j≤d

2cd2∣∣αi

(
p(x)

)∣∣ + 27c2

256
d(d − 1)

∣∣∣∣∂αi(p(x))

∂xj

∣∣∣∣ 1

1 + |y1|‖n′‖ ,

where we used that ‖x − p(x)‖ ≤ c and ‖φ̄′‖ ≤ 2 for x ∈ �c, |φ̄(‖x − p(x)‖)|
attains its maximum in 27c2

256 , and ‖idRd − n(p(x))n(p(x))�‖ ≤ 1. Furthermore,
‖Iξ‖ ≤ 1

1+|y1|‖n′‖ , since ‖y1n
′‖ < 1

κ
by Lemma 3.17 and Remark 3.16. Hence,

1

1 + |y1|‖n′‖ ≤ κ

κ − 1
.

To complete the proof, we have to solve the quadratic inequality:

27c2
κd(d − 1)

256(κ − 1)

∣∣∣∣∂αi(p(x))

∂xj

∣∣∣∣ + 2cd2∣∣αi

(
p(x)

)∣∣ < 1
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in c to get the second upper bound for c, such that G′(x) is invertible for x ∈ �c

by Lemma 3.17. For x ∈ R
d \ �c, G′(x) = idRd . �

W.l.o.g. we always choose c like in Lemma 3.18.
We proceed with proving that, although G /∈ C2, Itô’s formula holds for G and

G−1.

THEOREM 3.19. Let Assumptions 3.1–3.4 be satisfied.
Then Itô’s formula holds for G and G−1.

PROOF. If x ∈ R
d \�, then since G,G−1 ∈ C2 on R

d \�, Itô’s formula holds
for G and G−1 until the first time X hits �. So the only interesting case is x ∈ �.

For this, there exists an open rectangle R ∈ R
d−1 and a local parametrization

ψ : R −→ R
d of �. Let B = ψ(R). Moreover,

U = {
y1n

(
ψ(y2, . . . , yd)

) + ψ(y2, . . . , yd) : y1 ∈ (−ε, ε), (y2, . . . , yd) ∈ R
}
.

Let T : (−ε, ε) × R −→ U be defined as in the proof of Theorem 3.14. Note that
T ∈ C2, because � is C3 by Assumption 3.1, so Itô’s formula holds for T . T is
locally invertible with detT ′ �= 0, so T −1 ∈ C2 as well. If we can show that Itô’s
formula holds for G ◦ T , then it also holds for G = G ◦ T ◦ T −1.

G ◦ T fits the assumptions of [15], Theorem 2.9, (we get boundedness of the
derivatives by localizing to a bounded domain), so Itô’s formula holds for G ◦ T
and, therefore, also for G.

G̃ = T −1 ◦ G ◦ T is a function with continuous first and second derivatives,
with the sole exception of ∂2G̃

∂y2
1

, which is bounded, but may be discontinuous for

y1 = 0. Since det G̃′ �= 0 on an environment of x, this property transfers to the
inverse, which is G̃−1 = T −1 ◦ G−1 ◦ T . Thus, again by [15], Theorem 2.9, Itô’s
formula holds for G̃−1, and a fortiori for G−1. �

Now we are ready to show that the coefficients of the transformed SDE for
G(X) are Lipschitz.

ASSUMPTION 3.5. We assume the following for μ and σ :

1. the diffusion coefficient σ is Lipschitz;
2. μ and σ are bounded on �ε .

THEOREM 3.20. Let Assumptions 3.1–3.5 be satisfied.
Then the SDE for G(X) has Lipschitz coefficients.

PROOF. We first show that the drift of G(X) is continuous in �. Let B , R,
ψ and T be defined as in the proof of Theorem 3.14. Suppose now, we have a
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locally defined process X in U . Then there exists a locally defined process Y in
(−ε, ε) × R with

X = Y1n
(
ψ(Y2, . . . , Yd)

) + ψ(Y2, . . . , Yd),

that is, X = T (Y ).
If Y is a locally defined solution to dY = ν(Y )dt + ω(Y )dW , then by Itô’s

formula,

dX = T ′(Y )ν(Y ) dt + T ′(Y )ω(Y )dW + 1

2
tr

(
ω�(Y )T ′′(Y )ω(Y )

)
dt,

where T ′ and T ′′ denote the Jacobian and the Hessian of T , and tr denotes the
trace of a matrix. We want T ′ω = σ , or more precisely T ′(Y )ω(Y ) = σ(T (Y )),
that is, ω = (T ′)−1σ . For brevity, write S = T −1. Now(

ωω�)
1,1 = ω2

1,1 + · · · + ω2
1,d = e�

1 ωω�e1 = e�
1

(
S ′σσ�(

S ′)�)
e1.

We show that (S ′)�e1 = n. It is not hard to see that the Jacobian T ′ of T in a
point ξ ∈ � is given by

T ′ =
(
n,

∂ψ

∂y2
, . . . ,

∂ψ

∂yd

)
,

such that

e�
1

(
T ′)−1 = e�

1
((

T ′)−1) = n�

⇐⇒ e�
1 = n�T ′ = n�

(
n,

∂ψ

∂y2
, . . . ,

∂ψ

∂yd

)
= (‖n‖2,0, . . . ,0

) = e�
1 .

Therefore, we have ω2
1,1 + · · · + ω2

1,d = n�σσ�n on �.
The drift coefficient ν of the SDE for Y has only discontinuities in the set {y ∈

R
d : y1 = 0}. Further,

dY = d
(
S (X)

)
= S ′(X)μ(X)dt + S ′(X)σ(X)dW + 1

2
tr

(
σ�(X)S ′′(X)σ(X)

)
dt,

that is, ν(y) = S ′(T (y))μ(T (y)) + 1
2 tr(σ�(T (y))S ′′(T (y))σ (T (y))). The

second term is continuous, so that

lim
h→0

(
ν(−h,y2, . . . , yd) − ν(h, y2, . . . , yd)

)
= S ′(T (0, y2, . . . , yd)

)
× lim

h→0

(
μ

(
T (−h,y2, . . . , yd)

) − μ
(
T (h, y2, . . . , yd)

))
= S ′(T (0, y2, . . . , yd)

)
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× lim
h→0

(
μ

(
T (0, y2, . . . , yd) − hn

(
T (0, y2, . . . , yd)

))
(8)

− μ
(
T (0, y2, . . . , yd) + hn

(
T (0, y2, . . . , yd)

)))
= S ′(T (0, y2, . . . , yd)

)
2α

(
T (0, y2, . . . , yd)

)
× (

n�σσ�n
)(

T (0, y2, . . . , yd)
)

= S ′(T (0, y2, . . . , yd)
)
2α

(
T (0, y2, . . . , yd)

)
× (

ωω�)
11(0, y2, . . . , yd).

Consider

(G ◦ T )(y) = T (y) + φ̃
(
T (y)

)
α

(
p

(
T (y)

))
= y1n

(
T (0, y2, . . . , yd)

) + T (0, y2, . . . , yd)

+ y1|y1|φ
(

y1

c

)
α

(
T (0, y2, . . . , yd)

)
,

and

(S ◦ G ◦ T )(y) = S

(
y1n

(
T (0, y2, . . . , yd)

) + T (0, y2, . . . , yd)

+ y1|y1|φ
(

y1

c

)
α

(
T (0, y2, . . . , yd)

))
.

Differentiation yields

∂

∂y1
(S ◦ G ◦ T )(y)

= S ′((G ◦ T )(y)
) ∂

∂y1

(
y1n

(
T (0, y2, . . . , yd)

) + T (0, y2, . . . , yd)

+ y1|y1|φ
(

y1

c

)
α

(
T (0, y2, . . . , yd)

))

= S ′((G ◦ T )(y)
)(

n
(
T (0, y2, . . . , yd)

)

+
(

2|y1|φ
(

y1

c

)
+ y1|y1|φ′

(
y1

c

)
1

c

)
α

(
T (0, y2, . . . , yd)

))
.

We look at the second derivative w.r.t. y1:

∂2

∂y2
1

(S ◦ G ◦ T )(y)

= something continuous

+ S ′((G ◦ T )(y)
)(

2 sign(y1)φ

(
y1

c

)
α

(
T (0, y2, . . . , yd)

))
.
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Since G(x) = x for x ∈ �, we have that G(T (y)) = T (y) for y1 = 0, and thus

lim
h→0+

(
∂2

∂y2
1

(S ◦ G ◦ T )(−h,y2, . . . , yd)

− ∂2

∂y2
1

(S ◦ G ◦ T )(h, y2, . . . , yd)

)

= −4S ′((G ◦ T )(0, y2, . . . , yd)
)
α

(
T (0, y2, . . . , yd)

)
= −4S ′(T (0, y2, . . . , yd)

)
α

(
T (0, y2, . . . , yd)

)
.

(9)

Consider the drift coefficient of (S ◦ G ◦ T )k(Y ), which is

ν̃k(y) :=
d∑

j=1

∂

∂yj

(S ◦ G ◦ T )k(y)νj (y)

+ 1

2

d∑
i,j=1

∂2

∂yi ∂yj

(S ◦ G ◦ T )k(y)

d∑
l=1

ωli(y)ωlj (y).

(S ◦G◦T )′(0, y2, . . . , yd) = idRd , thus ∂
∂yj

(S ◦G◦T )k(0, y2, . . . , yd) = (ek)j .

Further, note that ∂2

∂yi ∂yj
(S ◦ G ◦ T )k is continuous for all pairs (i, j) except

(i, j) = (1,1).
Thus, using (8) and (9), we have

lim
h→0+

(
ν̃k(−h,y2, . . . , yd) − ν̃k(h, y2, . . . , yd)

)

= lim
h→0+

(
νk(−h,y2, . . . , yd) + 1

2

∂2

∂y2
1

(S ◦ G ◦ T )k

× (−h,y2, . . . , yd)
(
ωω�)

11(0, y2, . . . , yd)

− νk(h, y2, . . . , yd) − 1

2

∂2

∂y2
1

(S ◦ G ◦ T )k

× (h, y2, . . . , yd)
(
ωω�)

11(0, y2, . . . , yd)

)

= S ′(T (0, y2, . . . , yd)
)
2α

(
T (0, y2, . . . , yd)

)(
ωω�)

11(0, y2, . . . , yd)

− 2S ′(T (0, y2, . . . , yd)
)
α

(
T (0, y2, . . . , yd)

)(
ωω�)

11(0, y2, . . . , yd)

= 0.

Therefore, ν̃ is continuous on the whole of Rd .
Now the drift coefficient of the SDE for the process G(X) is continuous as well:

G(X) = T ◦ (S ◦ G ◦ T ) ◦ S (X) and compounding with T and S preserves
continuity of the drift since T ,S ∈ C2.
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The kth coordinate of the transformed drift μ̃ has the form:

μ̃k(z) = G′
k

(
G−1(z)

)
μ

(
G−1(z)

) + 1

2
tr

(
σ�(

G−1(z)
)
G′′

k

(
G−1(z)

)
σ

(
G−1(z)

))
and we have just seen that it is continuous in all z ∈ �. It remains to show that μ̃ is
intrinsic Lipschitz on R

d \�. For z ∈R
d \�c, we have μ̃(z) = μ(z). μ is intrinsic

Lipschitz on R
d \ � and, therefore, also on R

d \ �c.
On �c \ �, we have that G′ is differentiable with bounded derivative and is

therefore intrinsic Lipschitz by Lemma 3.8. μ is intrinsic Lipschitz on R
d \ � by

Assumption 3.1 and μ is bounded on �c by Assumption 3.5, item 2. Moreover,
G−1 is Lipschitz on R

d , and thus the mapping x �→ G′
k(G

−1(z))μ(G−1(z)) is
intrinsic Lipschitz by Lemma 3.9.

In the same way, we see that G′′ is differentiable with bounded derivative on
�c \� and is therefore intrinsic Lipschitz by Lemma 3.8. σ is Lipschitz on R

d and,
therefore, intrinsic Lipschitz on �c \�. Moreover, both G′′ and σ are bounded on
�c \ �, thus z �→ 1

2 tr(σ�(G−1(z))G′′
k(G

−1(z))σ (G−1(z))) is intrinsic Lipschitz
by Lemma 3.9.

Now μ̃ is intrinsic Lipschitz as a sum of intrinsic Lipschitz functions.
Altogether we have shown that μ̃ is piecewise Lipschitz and continuous, and

hence Lipschitz by Lemma 3.6 and Lemma 3.11.
The transformed diffusion coefficient is given by

σ̃ (z) = G′(G−1(z)
)
σ

(
G−1(z)

)
.

Since G−1, G′ and σ are Lipschitz, the mappings z �→ G′(G−1(z)) and z �→
σ(G−1(z)) are Lipschitz. Moreover, they are both bounded on �ε (and thus on
�c), such that their product is Lipschitz. �

3.5. Main results. Finally, we are ready to prove the two main results of this
paper.

For this, define

(10) dZ = dG(X) = μ̃(Z)dt + σ̃ (Z)dW, Z0 = G(x),

where μ̃ and σ̃ are defined in the proof of Theorem 3.20.

THEOREM 3.21. Let Assumptions 3.1–3.5 be satisfied.
Then the d-dimensional SDE (1) has a unique global strong solution.

PROOF. Since by Theorem 3.20 SDE (10) has Lipschitz coefficients, it fol-
lows that it has a unique global strong solution for the initial value G(x). Due to
Theorem 3.14, the transformation G has a global inverse G−1. Itô’s formula holds
for G−1 by Theorem 3.19. Applying Itô’s formula to G−1, we obtain that G−1(Z)

satisfies

dX = μ(X)dt + σ(X)dW, X0 = x.

Setting X = G−1(Z) closes the proof. �



2406 G. LEOBACHER AND M. SZÖLGYENYI

For calculating the solution to the d-dimensional SDE (1), the same algorithm
as for the one-dimensional case works, if applied using the transformations from
the d-dimensional case. Let Z

(δ)
T be the Euler–Maruyama approximation of the

solution to SDE (10) with step size smaller than δ > 0.

ALGORITHM 3.22. Go through the following steps:

1. Set Z
(δ)
0 = G(x).

2. Apply the Euler–Maruyama method to SDE (10) to obtain Z
(δ)
T .

3. Set X̄ = G−1(Z
(δ)
T ).

THEOREM 3.23. Let Assumptions 3.1–3.5 be satisfied.
Then Algorithm 3.22 converges with strong order 1/2 to the solution X of the

d-dimensional SDE (1).

PROOF. We estimate the L2-error of the approximation. For every T > 0,
there is a constant C, such that

E
(‖XT − X̄T ‖2) = E

(∥∥G−1(ZT ) − G−1(
Z

(δ)
T

)∥∥2)
≤ L2

G−1E
(∥∥ZT − Z

(δ)
T

∥∥2) = L2
G−1Cδ

for every sufficiently small step size δ, where LG−1 is the Lipschitz constant of
G−1. We used [10], Theorem 10.2.2, for the L2-convergence of order 1/2 of the
Euler–Maruyama scheme for SDEs with Lipschitz coefficients. �

3.6. Compact set of discontinuities. To be able to prove our main results, we
had to make a number of assumptions on the coefficient functions μ and σ . At
least one of those is indispensable for our method to work, that is, Assumption 3.1,
which demands that μ is piecewise Lipschitz and that its set of discontinuities �

is a C3 hypersurface.
There are two more assumptions on � and several on the behaviour of the co-

efficients close to �. In this subsection, we shall find out which assumptions are
automatically satisfied in the case where � is compact.

For compact �, Assumption 3.2 is also automatically satisfied. This follows
from a lemma in [4].

LEMMA 3.24. Let � ⊆ R
d be a compact Ck submanifold with k ≥ 2.

Then � has a neighbourhood U = �ε with the unique closest point property,
and the projection map p : U −→ � is Ck−1.

Assumption 3.3 prescribes a certain geometrical relation between � and direc-
tions of the diffusion coefficient. This will not be satisfied automatically only from
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making additional assumptions on �, of course. But for the case of compact �,
Assumption 3.3 follows easily from weaker requirements on σ .

PROPOSITION 3.25. Let � be a compact C2 hypersurface and let σ : Rd →
R

d×d be Lipschitz.
If σ(ξ)�n(ξ) �= 0 for all ξ ∈ �, then there exists a constant c0 > 0 such that

‖σ�(ξ)n(ξ)‖ ≥ c0 for all ξ ∈ �.

PROOF. Let B ⊆ � be a bounded, open and connected subset with the prop-
erty that there exists an orthonormal vector n on B . Since σ�n is continuous on
the closure B , there exists c > 0 such that ‖σ(ξ)�(ξ)‖ ≥ c for all ξ ∈ B .

By compactness, � can be covered by finitely many sets B1, . . . ,Bn with lower
bounds c1, . . . , cn and we can take c0 := min(c1, . . . , cn) for the conclusion to
hold. �

Note that σ(ξ)�n(ξ) �= 0 also follows from det(σ (ξ)) �= 0. So in particular,
regularity of σ implies Assumption 3.3 for compact �.

Finally, consider Assumption 3.4 which asserts boundedness of the first three
derivatives of the locally defined function α on �. Similar to what we have done
in the proof of Proposition 3.25, we can conclude boundedness of the derivatives
from their continuity.

Assumption 3.5(2) is also automatically satisfied for compact �.

4. Numerical examples. In this section, we present concrete examples. We
compute the transform G as well as the coefficients μ̃, σ̃ of the transformed SDE
to which we apply the Euler–Maruyama scheme. Furthermore, we examine the
quality of the approximation by considering the estimated L2-error.

Discontinuity on the unit circle. Let � be the unit circle in R
2, that is, the drift

of our SDE is discontinuous only in � = {x ∈R
2 : ‖x‖ = 1}. We want to solve the

following SDE numerically:

(11)
(
dX

dY

)
= μ(X,Y )dt + σ(X,Y )dWt,

(
X0
Y0

)
=

(
x

y

)
,

where

μ(x, y) =
{
(−x,−y)�, x2 + y2 > 1,

(x,0)�, x2 + y2 < 1,

σ ≡ idR2 , and W is a two-dimensional standard Brownian motion. Note that the
nonparallelity condition, Assumption 3.3 is satisfied with c0 = 1 (σ is even uni-
formly elliptic).
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We have that p(x, y) = n(x, y) = (

√
x2 + y2)−1(x, y)� yielding the transform:

G(x,y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 + (

√
x2 + y2 − 1)|

√
x2 + y2 − 1|√

x2 + y2
φ

( |1 −
√

x2 + y2|
c

))(
x

y

)
,

(1 + c)2 > x2 + y2 ≥ 1,

(
1 + (

√
x2 + y2 − 1)|

√
x2 + y2 − 1|

2
√

x2 + y2
φ

( |1 −
√

x2 + y2|
c

))(
x

y

)
,

(1 − c)2 < x2 + y2 < 1,

and G = idR2 , if x2 + y2 ≥ (1 + c)2, or x2 + y2 ≤ (1 − c)2, where we have chosen
c = 1/2.

Then the drift of the transformed SDE is given by

μ̃
(
G−1(x, y)

)

=
⎧⎪⎨
⎪⎩

∇G(x,y)(−x,−y)� + 1

2
tr

(
G′′(x, y)

)
, (1 + c)2 > x2 + y2 ≥ 1,

∇G(x,y)(x,0)� + 1

2
tr

(
G′′(x, y)

)
, (1 − c)2 < x2 + y2 < 1,

and μ̃(x, y) = (−x,−y)�, if x2 + y2 ≥ (1 + c)2, and μ̃(x, y) = (x,0)�, if x2 +
y2 ≤ (1 − c)2. Furthermore, σ̃ (G−1(x, y)) = ∇G(x,y). G−1 has to be evaluated
numerically.

Figure 2 shows the deviation of the first component of G from the identity.
Figure 3 shows the first component of μ, μ̃, and σ11, σ̃11. All other components
look similar.

We apply Algorithm 3.22 to solve SDE (11). Figure 4 shows the estimated L2-
error of the approximation of our G-transformed Euler–Maruyama method (GM),

FIG. 2. The function (x, y) �→ G1(x, y) − x.
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FIG. 3. The functions μ̃1 and σ̃11 (blue line) and μ1 and σ11 (yellow dashed).

compared to the Euler–Maruyama (EM) scheme:

errk := log2

(
d

√
Ê

(∥∥X(k)
T − X

(k−1)
T

∥∥2))
plotted over log2 δ(k), where X

(k)
T is the numerical approximation with step size

δ = δ(k), Ê is an estimator of the mean value using 1024 paths and d is a normal-
izing constant so that err1 = √

1/2.
We observe that our G-transformed (GM) method converges roughly with or-

der 1/2, and the crude Euler–Maruyama (EM) method seems to converge even at a
higher rate. Note however that, even though the Euler–Maruyama method is exten-
sively used in practice, it is not even known whether the method converges strongly
for SDEs of the kind considered here. Especially we cannot conclude whether for
even smaller step-size the error of the Euler–Maruyama method will still become
smaller, will flatten out or whether it will even explode.

FIG. 4. The estimated L2-error for the example where � is the unit circle.
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Dividend maximization. In [20], the dividend maximization problem from ac-
tuarial mathematics, that is, the problem of maximizing the expected discounted
future dividend payments until the time of ruin τ of an insurance company, is stud-
ied. In actuarial mathematics, the solution of this optimization problem serves as
a risk measure. The problem is studied in a setup with incomplete information,
where the drift of the underlying surplus process of the insurance company from
which dividends are paid is driven by an unobservable Markov chain, the states
of which represent different phases of the economy; an assumption that makes the
model more realistic. In order to solve the optimization problem, the underlying
surplus process has to be replaced by a multidimensional process consisting of fil-
ter probabilities of the states of the hidden Markov chain and the surplus written
in terms of the filter probabilities. The resulting system is

(12)

dRt = (ᾱt − ut ) dt + β dWt,

dπi(t) =
(
qdi +

d−1∑
j=1

(qji − qdi)πj (t)

)
dt

+ πi(t)
αi − ᾱt

β
dWt, i = 1, . . . , d − 1,

where ᾱt := αd + ∑d−1
i=1 (αi − αd)πi(t) and where (ut )t≥0 ∈ [0, ū] is the dividend

strategy, R = (Rt )t≥0 is the surplus process and the (πi(t))t≥0, i = 1, . . . , d − 1,
are the conditional probabilities that the underlying hidden Markov chain is in
state ei . W = (Wt)t≥0 is a one-dimensional Brownian motion. We assume knowl-
edge of the following constants: (qij )

d
i,j=1 are the entries of the intensity matrix of

the Markov chain, β is the diffusion parameter of the surplus and αi , i = 1, . . . , d ,
is the drift of the surplus, if the Markov chain is in state ei .

The application of filtering theory leads to an equivalent optimization problem:

(13) sup
u

Ex,π1,...,πd−1

(∫ τ

0
e−δsus ds

)

with discount rate δ > 0. This is studied in [20] and the candidate for the optimal
dividend policy is of the form u∗

t = ū1[b(ᾱt ),∞)(Rt ) with threshold level b, leading
to a discontinuous drift of the surplus process from which the dividends are paid.
Due to the application of filtering theory, the diffusion coefficient is not uniformly
elliptic. In order to verify the admissibility of the candidate for the optimal control
policy, existence and uniqueness of the underlying state process has to be proven.
This can be done by applying the result presented herein and we can also simulate
the optimally controlled surplus (e.g., to calculate the expected time of ruin).

And our results are even further applicable: in [20] the optimization problem
(13) is solved for d = 2 by policy iteration in combination with solving an as-
sociated partial differential equation. Doing the same for dimension 4 or higher
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FIG. 5. The estimated L2-error for the example of dividend maximization.

would not be numerically tractable. So, in higher dimension, one needs to solve
the problem by combining policy iteration with simulation.

Figure 5 shows the estimated L2-error of the approximation of the solution of
(12) in dimension 5 with a linear initial threshold level. In [20] for d = 2, a thresh-
old level which is a linear interpolation of the constant optimal threshold levels of
the problem under full-information was used as an initial policy for policy itera-
tion. However, we need not restrict ourselves to linear threshold levels.

Note that for our example checking whether the nonparallelity condition, As-
sumption 3.3 holds (in dependence on the parameter choice) is straight-forward.

We see that in this practical example the convergence order is again roughly
1/2.

Further examples from stochastic control theory, where SDEs with discontin-
uous (and unbounded) drift and degenerate diffusion coefficient appear are, for
example, [14, 18, 19]. The SDEs appearing there can now be shown to have a
unique global strong solution under conditions significantly weaker than known so
far, and this solution can be approximated with a numerical method that converges
with strong order 1/2. As elaborated above our method can be used for approx-
imating solutions to these optimization problems in dimensions greater than 4,
where PDE methods become practically infeasible.

Concluding remarks. In this paper, we have presented an existence and
uniqueness result of strong solutions for a very general class of SDEs with discon-
tinuous drift and degenerate diffusion coefficient; a class of SDEs that frequently
appears in applications when studying stochastic optimal control problems. This is
the most general result for such SDEs. Furthermore, we have derived a numerical
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algorithm that – under the same conditions as for the existence and uniqueness
result – is proven to converge and we have established a strong convergence order
of 1/2. We have applied our algorithm to two examples: one of theoretical interest
and one coming from a concrete optimal control problem in actuarial mathematics.

APPENDIX: SUPPLEMENTARY PROOFS

Proof of Lemma 3.10. Let ξ ∈ �. W.l.o.g. ξ = 0 and n(ξ) = ed , where ed is
the dth canonical basis vector of the R

d . Thus, � can locally be parametrized by
ψ : R −→ R

d of the form ψ(y1, . . . , yd−1) = (y1, . . . , yd−1, φ(y1, . . . , yd−1))
�,

where φ : R −→ R is a C3-function with φ(0) = 0 and φ′(0) = 0. Hence, for all
y ∈ R,

λ(y)n
(
ψ(y)

) = ∂ψ

∂y1
(y) × · · · × ∂ψ

∂yd−1
(y)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
...

0
∂φ

∂y1
(y)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

× · · · ×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...

1
∂φ

∂yd−1
(y)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− ∂φ

∂y1
(y)

− ∂φ

∂y2
(y)

...

− ∂φ

∂yd−1
(y)

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with λ(y) = ‖ ∂ψ
∂y1

(y) × · · · × ∂ψ
∂yd−1

(y)‖. Note that λ is a C2-function satisfying
λ′(0) = 0 and w.l.o.g. the parametrization is chosen such that λ(0) = 1. Hence,

(λn ◦ ψ)′(y) = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2φ

∂y2
1

(y)
∂2φ

∂y2 ∂y1
(y) · · · ∂2φ

∂yd−1 ∂y1
(y)

∂2φ

∂y1 ∂y2
(y)

∂2φ

∂y2
2

(y) · · · ∂2φ

∂yd−1 ∂y2
(y)

...
...

...

∂2φ

∂y1 ∂yd−1
(y)

∂2φ

∂y2 ∂yd−1
(y) · · · ∂2φ

∂y2
d−1

(y)

0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= −
(
Hφ(y)

0

)
,

where Hφ(y) denotes the Hessian of φ in y ∈ R. On the other hand, (λn ◦ ψ)′ =
n ◦ ψλ′ + λ(n ◦ ψ)′. In particular, (n ◦ ψ)′(0) = −(Hφ(0),0)�.

Now choose any ε > 0 that is smaller than the reach of �. Then ψ(0) is the
unique closest point on � both to ψ(0) + εed and ψ(0) − εed . In other words,
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the open balls with centers ψ(0) + εed and ψ(0) − εed contain no point of �.
Therefore,

−ε
(
1 −

√
1 − (‖y‖/ε)2) ≤ φ(y) ≤ ε

(
1 −

√
1 − (‖y‖/ε)2)

for all y ∈ R with ‖y‖ ≤ ε, from which we conclude that −‖y‖2

ε
≤ φ(y) ≤ ‖y‖2

ε
,

for ‖y‖ sufficiently small. In particular, we have for j �= k and sufficiently small
|h| that

−2

ε
≤ φ(h(ej + ek)) − φ(h(ej − ek))

2h2 ≤ 2

ε
.

By letting h → 0 and applying de l’Hospital’s rule twice, we see that

−2

ε
≤ ∂2φ

∂yj ∂yk

(0) ≤ 2

ε
.

In the same way, we conclude from

−1

ε
≤ φ(hej ) − φ(0) + φ(−hej )

2h2 ≤ 1

ε

that −1
ε

≤ ∂2φ

∂y2
j

(0) ≤ 1
ε
. Thus,

∥∥n′(ξ)
∥∥2 = ∥∥Hφ(0)

∥∥2 ≤
d−1∑
j=1

d−1∑
k=1

∣∣∣∣ ∂2φ

∂yj ∂yk

(0)

∣∣∣∣2 ≤
d−1∑
j=1

d−1∑
k=1

4

ε2 = 4
(

d − 1

ε

)2
,

that is, ‖n′‖ is bounded by 2d−1
ε

. Since this holds for all 0 < ε < reach(�), we
have ‖n′‖ ≤ 2 d−1

reach(�)
.

Proof of Lemma 3.11. We prove the claim that a hypersurface that satisfies
Assumption 3.2 has the property that every line segment from x to y can be re-
placed by a continuous curve γ from x to y with 
(γ ) < ‖x − y‖ + η where η > 0
is a given constant.

Let from now on ε < ε0, where ε0 is as in Assumption 3.2, so that in particular
for every x ∈ R

d with d(x,�) ≤ ε there is a unique closest point p(x) on �.
Denote by s the line segment from x to y and identify it with it’s parameter

representation s(t) = x + t (y − x)‖y − x‖−1. Let A := {t ∈ [0,‖y − x‖] : s(t) ∈
�}. For any set S ⊆ R, denote by H(S) the set of accumulation points of S.

PROPOSITION A.1. Let t ∈ H(A). Then n(s(t)) ⊥ s ′(t).

PROOF. Suppose this was not the case, that is, n(s(t)) · s′(t) �= 0. W.l.o.g.
n(s(t)) · s ′(t) = C > 0. Let (tj )j∈N be a sequence in A with tj �= t , limj tj = t .
W.l.o.g, tj > t for all j , or tj < t for all j .
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By Assumption 3.2, we have (Bε(s(t)− εn(s(t)))∪Bε(s(t)+ εn(s(t))))∩� =
∅, where Br(z) denotes the open ball with midpoint z and radius r .

Suppose tj > t for all j . Then∥∥s(t) + εn
(
s(t)

) − s(tj )
∥∥2

= ∥∥s(t) − s(tj )
∥∥2 + 2ε

(
s(t) − s(tj )

) · n(
s(t)

) + ε2∥∥n(
s(t)

)∥∥2

= ∥∥s(t) − s(tj )
∥∥2 + 2ε(t − tj )s

′(t) · n(
s(t)

) + ε2

= |t − tj |2 − 2ε|t − tj |C + ε2

= |t − tj |(|t − tj | − 2εC
) + ε2,

and the last expression is smaller than ε2 for j large enough. Thus, we have found
a point ξ on �, namely ξ = s(tj ), with ‖ξ − (s(t) + εn(s(t)))‖ < ‖s(t) − (s(t) +
εn(s(t)))‖ = ε. But this contradicts the fact that s(t) is the point on � closest to
s(t) + εn(s(t)).

If tj < t for all j , then the same argument carries through with s(t) + εn(s(t))

replaced by s(t) − εn(s(t)). �

Denote the tangent hyperplane on � in the point ξ by ϑ(ξ), that is, ϑ(ξ) =
ξ + τ(ξ) = {ξ + b : b ∈ τ(ξ)}.

PROPOSITION A.2. For any ξ ∈ �, we can find r > 0 such that for any x ∈
ϑ(ξ) with ‖x − ξ‖ < r we have that the line segment x − εn(ξ), x + εn(ξ) has
precisely one intersection with �.

PROOF. We can locally parametrize � by a function on an open environment
V of ξ in the tangent hyperplane ϑ(ξ). That is, there is an open interval I ⊆ R and
a C2-function ψ̂ : V −→ I such that every point z ∈ {ξ + b + yn(ξ) : b ∈ V,y ∈
I } can be uniquely written as z = ξ + b + ψ̂(b)n(ξ). Since ξ ∈ ϑ(ξ), and thus
ψ̂(ξ) = 0, we may assume that I = (−ζ, ζ ) for some 0 < ζ < ε. Choose some r

such that 0 < r <

√
ε2 − (ε − ζ )2 and such that for all x ∈ ϑ(ξ) we have x ∈ V

whenever ‖x − ξ‖ < r .
Now if x ∈ ϑ(ξ) with ‖x − ξ‖ < r , then precisely one point of � lies on

the line segment x − ζn(ξ), x + ζn(ξ). But there is no point of � on the line
segment x + ζn(ξ), x + εn(ξ), since this is entirely contained in the open ball
Bε(ξ + εn(ξ)), which by the unique closest point property for ξ + εn(ξ) does not
contain any point of �.

By the same reasoning, x − ζn(ξ), x − εn(ξ) ∩ � = ∅. �

PROPOSITION A.3. Let ε1 < ε. Then for any y ∈ R
d there exists a point ŷ ∈

R
d with d(ŷ,�) ≥ ε1 and ‖y − ŷ‖ ≤ ε1.
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PROOF. If d(y,�) ≥ ε1, then set ŷ = y. Otherwise, there is a unique closest
point p(y) ∈ �. Set

ŷ =
{
p(y) + ε1n

(
p(y)

)
, if n

(
p(y)

) · (
y − p(y)

)
> 0,

p(y) − ε1n
(
p(y)

)
, if n

(
p(y)

) · (
y − p(y)

)
< 0.

Then ‖y − ŷ‖ ≤ ε1 is obvious, and d(ŷ,�) ≥ ε1 by the unique closest point prop-
erty. �

We can now modify the straight line from x to y to get a continuous curve,
which is not much longer than ‖y − x‖, but has only finitely many intersections
with �.

For what follows, let α ∈ (0,1) and for 0 < δ < ε set ε1 = ε − √
ε2 − δ2.

We construct a sequence (γk)k∈N0 of continuous curves of finite length which
becomes stationary after finitely many steps, that is, there exists k0 such that γk =
γk0 for all k ≥ k0.

Furthermore, γk0 will have only finitely many intersections with � and it will
be only slightly longer than ‖x − y‖; see (14).

Set γ0 = s.
Step 1: If H(s ∩ �) =∅, then set γ1 = γ0.
Otherwise, proceed as follows: According to Proposition A.3 there exists a point

ŷ with d(ŷ,�) ≥ ε1 and ‖y − ŷ‖ ≤ ε1. Define γ1 as the concatenation of the lines
x, ŷ and ŷ, y. We have 
(γ1) ≤ ‖y −x‖+2ε1, and there is at most one intersection
of ŷ, y, the second line segment, with �, due to Assumption 3.2. Set x1 = x.

After step 1, we have constructed a polygonal curve γ1 such that 
(γ1) ≤ ‖y −
x‖ + 2ε1. If γ1 has infinitely many intersections with �, then all but finitely many
are contained in a single line segment, s1 = x1, ŷ, which satisfies 
(s1) = ‖ŷ −
x1‖ = ‖ŷ − x‖ = ‖(y − x) + (ŷ − y)‖ ≤ ‖y − x‖ + ε1.

Now we enter an iteration procedure. Suppose that after k ≥ 1 steps we have
constructed a polygonal curve γk , with the properties that 
(γk) ≤ ‖y −x‖+ 2kε1,
and such that either γk has finitely many intersections with �, or all intersections
are contained in a single line segment, sk = xk, ŷ, which satisfies 
(sk) ≤ ‖y −
x‖ − (k − 1)(αδ − ε1) + ε1.

We construct γk+1 from γk as follows:
Step k + 1: If H(γk ∩ �) = ∅, then set γk+1 = γk .
Otherwise, H(γk ∩ �) is contained in the line segment xk, ŷ. Parametrize this

segment by sk(t) = xk + t‖ŷ − xk‖−1(ŷ − xk), t ∈ [0,‖ŷ − xk‖] and let Hk =
H({t : sk(t) ∈ �}).

Set tk = minHk , and let nk = n(sk(tk)). If tk is isolated from the left, or if tk = 0,
then set rk = 0. Now consider the case where tk is not isolated from the left. By
Proposition A.1, sk lies in the tangent hyperplane ϑ(sk(tk)) = sk(tk) + τ(sk(tk))

and we can find a small ball with radius rk > 0 such that, for any t with |t − tk| < rk ,
the line segment sk(t) − ε1nk, sk(t) + ε1nk has at most one intersection with �, by
Proposition A.2.
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Consider the line segment sk(tk − rk) + ε1nk, sk(tk + αδ) + ε1nk .
If the intersection of this with the plane through ŷ, which is orthogonal to the

line segment, is nonempty, denote the unique intersection point by zk .
Then we construct γk+1 as the concatenation of the following line segments:

• sk(0), sk(tk − rk), which by definition of tk and rk has only finitely many inter-
sections with �;

• sk(tk − rk), sk(tk − rk) + ε1nk , which has at most one intersection with � by the
construction of rk and Proposition A.2;

• sk(tk − rk) + ε1nk, zk , which is completely contained in Bε(sk(tk)+εnk), which
does not contain any point of � by the unique closest point property for sk(tk)+
εnk ;

• zk, ŷ, which has no intersection with �, because as ‖zk − ŷ‖ = ε1, there is no
intersection strictly between zk and ŷ, and zk lies in the closure of Bε1(ŷ) (this
is where we need Step 1);

• ŷ, y.

In this case, the curve γk+1 has only finitely many intersections with � and

(γk+1) = 
(γk) + 2ε1 ≤ ‖y − x‖ + 2(k + 1)ε1.

Otherwise, set xk+1 = sk(tk + αδ) + ε1nk , and construct γk+1 as the concatena-
tion of the following line segments:

• sk(0), sk(tk − rk), which by definition of tk and rk has only finitely intersections
with �;

• sk(tk − rk), sk(tk − rk) + ε1nk , which has at most one intersection with � by the
construction of rk and Proposition A.2;

• sk(tk − rk) + ε1nk, xk+1, which is completely contained in Bε(sk(tk) + εnk),
which does not contain any point of � by the unique closest point property
for sk(tk) + εnk ;

• sk+1 := xk+1, ŷ, which still may have infinitely many intersections with �;
• ŷ, y.

Again we have that 
(γk+1) ≤ 
(γk) + 2ε1 ≤ ‖y − x‖ + 2(k + 1)ε1. Note that


(sk+1)
2 = ‖xk+1 − ŷ‖2 = ∥∥sk(tk + αδ) + ε1nk − ŷ

∥∥2

= ∥∥sk(tk + αδ) − ŷ
∥∥2 + ε2

1 = (∥∥sk(tk) − ŷ
∥∥ − αδ

)2 + ε2
1.

In particular, ‖xk+1 − ŷ‖ ≤ |‖sk(tk) − ŷ‖ − αδ| + ε1 = ‖sk(tk) − ŷ‖ − αδ + ε1.
Note that ‖sk(tk) − ŷ‖ − αδ ≥ 0, since otherwise the line segment

sk(tk − rk) + ε1nk, sk(tk + αδ) + ε1nk

would intersect the hyperplane orthogonal to sk and passing through ŷ.
Thus, ‖xk+1 − ŷ‖ ≤ ‖xk − ŷ‖ − αδ + ε1 ≤ ‖x − y‖ − k(αδ − ε1) + ε1.
After step k + 1, we have constructed a polygonal curve γk+1 such that


(γk+1) ≤ ‖y − x‖ + 2(k + 1)ε1. If γk+1 has infinitely many intersections with �,
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then all but finitely many are contained in a single line segment, sk+1 = xk+1, ŷ,
and 
(sk+1) ≤ ‖x − y‖ − k(αδ − ε1) + ε1.

So finally we have constructed a sequence (γk)k∈N0 with:

– 
(γk) ≤ ‖x − y‖ + 2kε1;
– γk either has only finitely many intersections with �, or all but finitely many

intersections are contained in a segment of length at most ‖x−y‖−(k−1)(αδ−
ε1) + ε1.

Since δ < ε, we have that ε1 = ε − √
ε2 − δ2 = ε(1 −

√
1 − ( δ

ε
)2) < δ2

ε
, such

that

αδ − ε1 > δ

(
α − δ

ε

)
> 0.

With this, and since ‖x − y‖ − (k − 1)(αδ − ε1) + ε1 ≥ 
(sk) ≥ 0, the iteration
can have at most

k ≤ 1 + ‖x − y‖ + ε1

2(αδ − ε1)
< 1 + ‖x − y‖ + ε1

2δ(α − δ
ε
)

< 1 + ‖x − y‖ + ε

2δ(α − δ
ε
)

steps before the sequence becomes stationary, and thus there exists a k0 such that
γk0 has at most finitely many intersections with �.

For the length of γk for k ≥ k0, we have

(14) 
(γk) ≤ ‖x − y‖ + 2kε1 ≤ ‖x − y‖ +
(

2δ + ‖x − y‖ + ε

α − δ
ε

)
δ

ε
.

This can be made as close to ‖x − y‖ as we desire by making δ small. Thus, the
proof is complete.
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