Abstract
For a supercritical configuration model random graph, it is well known that, subject to mild conditions, there exists a unique giant component, whose size $R_{n}$ is $O(n)$, where $n$ is the total number of vertices in the random graph. Moreover, there exists $0<\rho \leq 1$ such that $R_{n}/n\stackrel{p}{\longrightarrow}\rho$ as $n\rightarrow \infty$. We show that for a sequence of well behaved configuration model random graphs with a deterministic degree sequence satisfying $0<\rho <1$; there exists $\sigma^{2}>0$, such that $\operatorname{var}(\sqrt{n}(R_{n}/n-\rho))\rightarrow \sigma^{2}$ as $n\rightarrow \infty$. Moreover, an explicit, easy to compute, formula is given for $\sigma^{2}$. This provides a key stepping stone for computing the asymptotic variance of the size of the giant component for more general random graphs.
Citation
Frank Ball. Peter Neal. "The asymptotic variance of the giant component of configuration model random graphs." Ann. Appl. Probab. 27 (2) 1057 - 1092, April 2017. https://doi.org/10.1214/16-AAP1225
Information