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We consider the problem of reconstructing sparse symmetric block mod-
els with two blocks and connection probabilities a/n and b/n for inter- and
intra-block edge probabilities, respectively. It was recently shown that one
can do better than a random guess if and only if (a − b)2 > 2(a + b). Using
a variant of belief propagation, we give a reconstruction algorithm that is op-
timal in the sense that if (a − b)2 > C(a + b) for some constant C then our
algorithm maximizes the fraction of the nodes labeled correctly. Ours is the
only algorithm proven to achieve the optimal fraction of nodes labeled cor-
rectly. Along the way, we prove some results of independent interest regard-
ing robust reconstruction for the Ising model on regular and Poisson trees.

1. Introduction.

1.1. Sparse stochastic block models. Stochastic block models were introduced
more than 30 years ago [13] in order to study the problem of community detec-
tion in random graphs. In these models, the nodes in a graph are divided into two
or more communities, and then the edges of the graph are drawn independently
at random, with probabilities depending on which communities the edge lies be-
tween. In its simplest incarnation—which we will study here—the model has n

vertices divided into two classes of approximately equal size, and two parameters:
a/n is the probability that each within-class edge will appear, and b/n is the prob-
ability that each between-class edge will appear. Since their Introduction, a large
body of literature has been written about stochastic block models, and a multi-
tude of efficient algorithms have been developed for the problem of inferring the
underlying communities from the graph structure. To name a few, we now have
algorithms based on maximum-likelihood methods [27], belief propagation [10],
spectral methods [21], modularity maximization [2] and a number of combinato-
rial methods [7, 9, 11, 15].
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Early work on the stochastic block model mainly focused on fairly dense
graphs: Dyer and Frieze [11]; Snijders and Nowicki [27]; and Condon and Karp [9]
all gave algorithms that will correctly recover the exact communities in a graph
from the stochastic block model, but only when a and b are polynomial in n.
In a substantial improvement, McSherry [21] gave a spectral algorithm that suc-
ceeds when a and b are logarithmic in n; this had been anticipated previously by
Boppana [5], but his proof was incomplete. McSherry’s parameter range was later
equalled by Bickel and Chen [2] using an algorithm based on modularity maxi-
mization.

We also note that related but different problems of planted coloring were studied
in Blum and Spencer [4] in the dense case, and Alon and Kahale [1] in the sparse
case.

The O(logn) barrier is important because if the average degree of a block model
is logarithmic or larger, it is possible to exactly recover the communities with high
probability as n → ∞. On the other hand, if the average degree is less than loga-
rithmic then some fairly straightforward probabilistic arguments show that it is not
possible to completely recover the communities. When the average degree is con-
stant, as it will be in this work, then one cannot get more than a constant fraction
of the labels correct.

Despite these apparent difficulties, there are important practical reasons for con-
sidering block models with constant average degree. Indeed, many real networks
are very sparse. For example, Leskovec et al. [18] and Strogatz [28] collected and
studied a vast collection of large network datasets, many of which had millions of
nodes, but most of which had an average degree of no more than 20; for instance,
the LinkedIn network studied by Leskovec et al. had approximately seven million
nodes, but only 30 million edges. Moreover, the very fact that sparse block models
are impossible to infer exactly may be taken as an argument for studying them: in
real networks one does not expect to recover the communities with perfect accu-
racy, and so it makes sense to study models in which this is not possible either.

Although sparse graphs are immensely important, there is not yet much known
about very sparse stochastic block models. In particular, there is a gap between
what is known for block models with a constant average degree and those with an
average degree that grows with the size of the graph. Until recently, there was only
one algorithm—due to [8], and based on spectral methods—which was guaranteed
to do anything at all in the constant-degree regime, in the sense that it produced
communities which have a better-than-50% overlap with the true communities.

Despite the lack of rigorous results, a beautiful conjectural picture has recently
emerged, supported by simulations and deep but nonrigorous physical intuition.
We are referring specifically to work of Decelle et al. [10], who conjectured the
existence of a threshold, below which is it not possible to find the communities bet-
ter than by guessing randomly. In the case of two communities of equal size, they
pinpointed the location of the conjectured threshold. This threshold has since been
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rigorously confirmed; a sharp lower bound on its location was given by the au-
thors [25], while sharp upper bounds were given independently by Massoulié [20]
and by the authors [24].

1.2. Our results: Optimal reconstruction. Given that it is not possible to com-
pletely recover the communities in a sparse block model, it is natural to ask how
accurately one may recover them. In [25], we gave an upper bound on the recovery
accuracy; here, we will show that that bound is tight—at least, when the signal to
noise ratio is sufficiently high—by giving an algorithm which performs as well as
the upper bound. Our main result may be stated informally as follows.3

THEOREM 1.1. Let pG(a, b) be the highest asymptotic accuracy that any al-
gorithm can achieve in reconstructing communities of the block model with param-
eters a and b. We provide an algorithm that achieves accuracy of pG(a, b) with
probability tending to 1 as n → ∞, provided that (a − b)2/(a + b) is sufficiently
large.

To put Theorem 1.1 into the context of earlier work [20, 24, 25] by the au-
thors and Massoulié, those works showed that pG(a, b) > 1/2 if and only if
(a − b)2 > 2(a + b); in the case that pG(a, b) > 1/2, they also provided algo-
rithms whose accuracy was bounded away from 1/2. However, those algorithms
were not guaranteed (and are not expected) to have optimal accuracy, only nontriv-
ial accuracy. In other words, previous results have shown that for every value of
a, b such that (a−b)2 > 2(a+b) there exists an algorithm that recovers (with high
probability) a fraction q(a, b) > 1/2 of the nodes correctly. Our results provide an
algorithm that [when (a − b)2 > C(a + b) for a large constant C] recovers the
optimal fraction of nodes pG(a, b) in the sense that it is information theoretically
impossible for any other algorithms to recover a bigger fraction.

Our new algorithm, which is based on belief propagation, is essentially an al-
gorithm for locally improving an initial guess at the communities. In our current
analysis, the initial guess is provided by a previous algorithm of the authors [24],
which we use as a black box. We should mention that standard belief propaga-
tion with random uniform initial messages and without our modifications and also
without a good initial guess, is also conjectured to have optimal accuracy [10].
However, at the moment, we do not know of any approach to analyze the vanilla
version of BP for this problem.

As a major part of our analysis, we prove a result about broadcast processes on
trees that may be of independent interest. Specifically, we prove that if the signal-
to-noise ratio of the broadcast process is sufficiently high, then adding extra noise

3An extended abstract stating the results of the current paper [23] appeared in the proceedings of
COLT 2014 (where it won the best paper award).
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at the leaves of a large tree does not hurt our ability to guess the label of the root
given the labels of the leaves. In other words, we show that for a certain model on
trees, belief propagation initialized with arbitrarily noisy messages converges to
the optimal solution as the height of the tree tends to infinity. We prove our result
for regular trees and Galton–Watson trees with Poisson offspring, but we conjec-
ture that it also holds for general trees, and even if the signal-to-noise ratio is low.

We should point out that spectral algorithms—which, due to their efficiency, are
very popular algorithms for this model—empirically do not perform as well as BP
on very sparse graphs (see, e.g., [17]). This is despite the recent appearance of two
new spectral algorithms, due to [17] and [20], which were specifically designed for
clustering sparse block models. The algorithm of [17] is particularly relevant here,
because it was derived by linearizing belief propagation; empirically, it performs
well all the way to the impossibility threshold, although not quite as well as BP.
Intuitively, the linear aspects of spectral algorithms (i.e., the fact that they can
be implemented—via the power method—using local linear updates) explain why
they cannot achieve optimal performance. Indeed, since the optimal local updates
(those given by BP) are nonlinear, any method based on linear updates will be
suboptimal.

1.3. Dramatis personae. Before defining everything carefully, we briefly in-
troduce the three main objects and their relationships.

• The block model detection problem is the problem of detecting communities in
a sparse stochastic block model.

• In the tree reconstruction problem, there is a two-color branching process in
which every node has some children of its own color and some children of the
other color. We observe the family tree of this process and also all of the colors
in some generation; the goal is to guess the color of the original node.

• The robust tree reconstruction problem is like the tree reconstruction problem,
except that instead of observing exactly the colors in some generation, our ob-
servations contain some noise.

The two tree problems are related to the block model problem because a neigh-
borhood in the stochastic block model looks like a random tree from one of the
tree problems. This connection was proved in [25], who also showed that tree re-
construction is “easier” than the block model detection (in a sense that we will
make precise later). The current work has two main steps: we show that block
model detection is “easier” than robust tree reconstruction, and we show that—for
a certain range of parameters—robust tree reconstruction is exactly as hard as tree
reconstruction.

2. Definitions and main results.

2.1. The block model. In this article, we restrict the stochastic block model to
the case of two classes with roughly equal size.
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DEFINITION 2.1 (Stochastic block model). The block model on n nodes is
constructed by first labeling each node + or − with equal probability indepen-
dently. Then each edge is included in the graph independently, with probability
a/n if its endpoints have the same label and b/n otherwise. Here, a and b are
two positive parameters. We write G(n, a/n, b/n) for this distribution of (labeled)
graphs.

For us, a and b will be fixed, while n tends to infinity. More generally, one may
consider the case where a and b may be allowed to grow with n. As conjectured
by [10], the relationship between (a − b)2 and (a + b) turns out to be of critical
importance for the reconstructability of the block model.

THEOREM 2.2 (Threshold for nontrivial detection [20, 24, 25]). For the block
model with parameters a and b, it holds that:

• If (a−b)2 < 2(a+b) then the node labels cannot be inferred from the unlabeled
graph with better than 50% accuracy (which could also be done just by random
guessing).

• If (a − b)2 > 2(a + b) then it is possible to infer the labels with better than 50%
accuracy.

2.2. Broadcasting on trees. Our study of optimal reconstruction accuracy is
based on the local structure of G(n, a/n, b/n), which requires the notion of the
broadcast process on a tree.

Consider an infinite, rooted tree. We will identify such a tree T with a subset
of N∗, the set of finite strings of natural numbers, with the property that if v ∈ T

then any prefix of v is also in T . In this way, the root of the tree is naturally
identified with the empty string, which we will denote by ρ. We will write uv for
the concatenation of the strings u and v, and Lk(u) for the kth-level descendents
of u; that is, Lk(u) = {uv ∈ T : |v| = k}. Also, we will write C(u) ⊂ N for the
indices of u’s children relative to itself, that is, i ∈ C(u) if and only if ui ∈ L1(u).

DEFINITION 2.3 (Broadcast process on a tree). Given a parameter η �= 1/2
in [0,1] and a tree T , the broadcast process on T is a two-state Markov process
{σu : u ∈ T } defined as follows: let σρ be + or − with probability 1

2 . Then, for
each u such that σu is defined, independently for every v ∈ L1(u) let σv = σu with
probability 1 − η and σv = −σρ otherwise.

This broadcast process has been extensively studied, where the major question
is whether the labels of vertices far from the root of the tree give any information
on the label of the root. For general trees, this question was answered definitively
by Evans et al. [12], after many other contributions including [3, 16]. The com-
plete statement of the theorem requires the notion of branching number, which we
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would prefer not to define here (see [12]). For our purposes, it suffices to know
that a d-ary tree has branching number d and that a Poisson branching process
tree with mean d > 1 has branching number d (almost surely, and conditioned on
nonextinction).

THEOREM 2.4 (Tree reconstruction threshold [12]). Let θ = 1 − 2η and d be
the branching number of T . Then

E
[
σρ | σu : u ∈ Lk(ρ)

]→ 0

in probability as k → ∞ if and only if dθ2 ≤ 1.

The theorem implies in particular that if dθ2 > 1 then for every k there is an
algorithm which guesses σρ given σLk(ρ), and which succeeds with probability
bounded away from 1/2. If dθ2 ≤ 1 there is no such algorithm.

2.3. Robust reconstruction on trees. Janson and Mossel [14] considered a ver-
sion of the tree broadcast process that has extra noise at the leaves.

DEFINITION 2.5 (Noisy broadcast process on a tree). Given a broadcast pro-
cess σ on a tree T and a parameter δ ∈ [0,1/2), the noisy broadcast process on T

is the process {τu : u ∈ T } defined by independently taking τu = −σu with proba-
bility δ and τu = σu otherwise.

We observe that the noise present in σ and the noise present in τ have qualita-
tively different roles, since the noise present in σ propagates down the tree while
the noise present in τ does not. Janson and Mossel [14] showed that the range of
parameters for which σρ may be nontrivially reconstructed from σLk

is the same as
the range for which σρ may be nontrivially reconstructed from τLk

. In other words,
additional noise at the leaves has no effect on whether the root’s signal propagates
arbitrarily far. One of our main results is a quantitative version of this statement
(Theorem 2.11): we show that for a certain range of parameters, the presence of
noise at the leaves does not even affect the accuracy with which the root can be
reconstructed.

2.4. The block model and broadcasting on trees. The connection between the
community reconstruction problem on a graph and the root reconstruction problem
on a tree was first pointed out in [10] and made rigorous in [25]. The basic idea is
the following:

• A neighborhood in G looks like a Galton–Watson tree with offspring distribu-
tion Pois((a+b)/2) [which almost surely has branching number d = (a+b)/2].

• The labels on the neighborhood look as though they came from a broadcast
process with parameter η = b

a+b
.
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• With these parameters, θ2d = (a−b)2

2(a+b)
, and so the conjectured threshold for com-

munity reconstruction is the same as the proven threshold for tree reconstruc-
tion.

This local approximation can be formalized as convergence locally on average,
a type of local weak convergence defined in [22]. We should mention that in the
case of more than two communities (i.e., in the case that the broadcast process has
more than two states) then the picture becomes rather more complicated, and much
less is known; see [10, 25] for some conjectures.

2.5. Reconstruction probabilities on trees and graphs. Note that Theorem 2.4
only answers the question of whether one can achieve asymptotic reconstruction
accuracy better than 1/2. Here, we will be interested in more detailed information
about the actual accuracy of reconstruction, both on trees and on graphs.

Note that in the tree reconstruction problem, the optimal estimator of σρ

given σLk(ρ) is easy to write down: it is simply the sign of Xρ,k := 2 Pr(σρ =
+ | σLk(ρ)) − 1. Compared to the trivial procedure of guessing σρ completely at
random, this estimator has an expected gain of

E
∣∣Pr(σρ = + | σLk(ρ)) − 1

2

∣∣= 1
2E
[∣∣E[σρ | σLk(ρ)]

∣∣].
It is now natural to define:

DEFINITION 2.6 (Tree reconstruction accuracy). Let T be an infinite Galton–
Watson tree with Pois((a + b)/2) offspring distribution, and η = b

a+b
. Consider

the broadcast process on the tree with parameter η and define

pT (a, b) = 1

2
+ lim

k→∞E

∣∣∣∣Pr(σρ = + | σLk(ρ)) − 1

2

∣∣∣∣.(2.1)

In words, pT (a, b) is the probability of correctly inferring σρ given the “labels at
infinity”.

Note that by Theorem 2.4, pT (a, b) > 1/2 if and only if (a − b)2 > 2(a + b).
We remark that the limit in Definition 2.6 always exists because the right-hand

side is nonincreasing in k. To see this, it helps to write pT (a, b) in a different way:
let μ+

k be the distribution of σLk(ρ) given σρ = + and let μ−
k be the distribution of

σLk(ρ) given σρ = −. Then

E
∣∣Pr(σρ = + | σLk(ρ)) − 1

2

∣∣= 1
2dTV

(
μ+

k ,μ−
k

)
,

where dTV denotes the total variation distance. Next, note that since labels at levels
k′ > k are independent of σρ given σLk(ρ),

Pr(σρ = + | σLk(ρ)) = Pr(σρ = + | σLk(ρ), σLk+1(ρ), σLk+2(ρ), . . .).
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Hence, if we set ν+
k to be the distribution of {σLk′ (ρ) : k′ ≥ k} and similarly for ν−

k ,
we have

E
∣∣Pr(σρ = + | σLk(ρ)) − 1

2

∣∣= 1
2dTV

(
ν+
k , ν−

k

)
.

Now the right-hand side is clearly nonincreasing in k, because ν+
k+1 can be ob-

tained from νk by marginalization.
One of the main results of [25] is that the graph reconstruction problem is at least

as hard as the tree reconstruction problem in the sense that for any community-
detection algorithm, the asymptotic accuracy of that algorithm is bounded by
pT (a, b).

DEFINITION 2.7 (Graph reconstruction accuracy). Let (G,σ) be a labeled
graph on n nodes. If f is a function that takes a graph and returns a labeling of it,
we write

acc(f,G,σ) = 1

2
+
∣∣∣∣1n∑v 1

((
f (G)

)
v = σv

)− 1

2

∣∣∣∣
for the accuracy of f in recovering the labels σ . For ε > 0, let

pG,n,ε(a, b) = sup
f

sup
{
p : Pr

(
acc(f,G,σ) ≥ p

)≥ ε
}
,

where the first supremum ranges over all functions f , and the probability is taken
over (G,σ) ∼ G(n, a/n, b/n). Let

pG(a, b) = lim
ε→0

lim sup
n→∞

pG,n,ε(a, b),

where the limit exists because pG,n,ε(a, b) is monotonic in ε.

One should think of pG(a, b) as the optimal fraction of nodes that can be recon-
structed correctly by any algorithm (not necessarily efficient) that only gets to ob-
serve an unlabeled graph. More precisely, for any algorithm and any p > pG(a, b),
the algorithm’s probability of achieving accuracy p or higher converges to zero as
n grows. Note that the symmetry between the + and − is reflected in the definition
of acc (e.g., in the appearance of the constant 1/2), and also that acc is defined to
be large if f gets most labels incorrect (because there is no way for an algorithm
to break the symmetry between + and −).

An immediate corollary of the analysis of [25] implies that graph reconstruction
is always at most as accurate as tree reconstruction.

THEOREM 2.8 (Graph detection is harder than tree reconstruction [25]).

pG(a, b) ≤ pT (a, b).
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We remark that Theorem 2.8 is not stated explicitly in [25]; because the authors
were only interested in the case (a − b)2 ≤ 2(a + b), the claimed result was that
(a − b)2 ≤ 2(a + b) implies pG(a, b) = 1

2 . However, a cursory examination of the
proof of [25], Theorem 1, reveals that the claim was proven in two stages: first,
they prove via a coupling argument that pG(a, b) ≤ pT (a, b) and then they apply
Theorem 2.4 to show that (a − b)2 ≤ 2(a + b) implies pT (a, b) = 1

2 .

2.6. Our results. In this paper, we consider the high signal-to-noise case,
namely the case that (a − b)2 is significantly larger than 2(a + b). In this regime,
we give an algorithm (Algorithm 1) which achieves an accuracy of pT (a, b).

THEOREM 2.9. There exists a constant C such that if (a − b)2 ≥ C(a + b)

then

pG(a, b) = pT (a, b).

Moreover, there is a polynomial time algorithm such that for all such a, b and
every ε > 0, with probability tending to one as n → ∞, the algorithm reconstructs
the labels with accuracy pG(a, b) − ε.

We will assume for simplicity that our algorithm is given the parameters a and b.
This is a minor assumption because a and b can be estimated from the data to
arbitrary accuracy [25], Theorem 3.

A key ingredient of Theorem 2.9’s proof is a procedure for amplifying a clus-
tering that is a slightly better than a random guess to obtain optimal clustering. In
order to discuss this procedure, we define the problem of “robust reconstruction”
on trees.

DEFINITION 2.10 (Robust tree reconstruction accuracy). Consider the noisy
tree broadcast process with parameters η = a

a+b
and δ ∈ [0,1/2) on a Galton–

Watson tree with offspring distribution Pois((a + b)/2). We define the robust re-
construction accuracy as

p̃T (a, b) = 1

2
+ lim inf

δ→1/2
lim inf
k→∞ E

∣∣∣∣Pr(σρ = + | τLk(ρ)) − 1

2

∣∣∣∣.
Our main technical result is that when a − b is large enough then in fact the

extra noise does not have any effect on the reconstruction probability.

THEOREM 2.11. There exists a constant C such that if (a − b)2 ≥ C(a + b)

then

p̃T (a, b) = pT (a, b).

We conjecture that the robust reconstruction accuracy is independent of δ for
any parameters, and also for more general trees; however, our proof does not nat-
urally extend to cover these cases.
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2.7. Algorithmic amplification and robust reconstruction. The second main
ingredient in Theorem 2.9 connects the community detection problem to the robust
tree reconstruction problem: we show that given a suitable algorithm for providing
a better-than-random initial guess at the communities, the community detection
problem is easier than the robust reconstruction problem, in the sense that one can
achieve an accuracy of p̃T (a, b).

THEOREM 2.12. For all a and b, pG(a, b) ≥ p̃T (a, b). Moreover, there is
a polynomial time algorithm such that for all such a, b and every ε > 0, with
probability tending to one as n → ∞, the algorithm reconstructs the labels with
accuracy p̃T (a, b) − ε.

Combining Theorem 2.12 with Theorems 2.8 and 2.11 proves Theorem 2.9. We
remark that Theorem 2.12 easily extends to other versions of the block model (i.e.,
models with more clusters or unbalanced classes); however, Theorem 2.11 does
not. In particular, Theorem 2.9 may not hold for general block models. In fact, one
fascinating conjecture of [10] says that for general block models, computational
hardness enters the picture (whereas it does not play any role in our current work).

2.8. Algorithm outline. Before getting into the technical details, let us give
an outline of our algorithm: for every node u, we remove a neighborhood (whose
radius r is slowly increasing with n) of u from the graph G. We then run a black-
box community-detection algorithm on what remains of G. This is guaranteed to
produce some communities which are correlated with the true ones, but they may
not be optimally accurate. Then we return the neighborhood of u to G, and we
consider the inferred communities on the boundary of that neighborhood. Now, the
neighborhood of u is like a tree, and the true labels on its boundary are distributed
like σLr(u). The inferred labels on the boundary are hence distributed like τLr(u)

for some 0 ≤ δ < 1
2 , and so we can guess the label of u from them using robust tree

reconstruction. (In the previous sentence, we are implicitly claiming that the errors
made by the black-box algorithm are independent of the neighborhood of u. This
is because the edges in the neighborhood of u are independent of the edges in the
rest of the graph, a fact that we will justify more carefully later.) Since robust tree
reconstruction succeeds with probability pT regardless of δ, our algorithm attains
this optimal accuracy even if the black-box algorithm does not.

To see the connection between our algorithm and belief propagation, note that
finding the optimal estimator for the tree reconstruction problem requires comput-
ing Pr(σu | τLr(u)). On a tree, the standard algorithm for solving this is exactly
belief propagation. In other words, our algorithm consists of multiple local appli-
cations of belief propagation. Although we believe that a single global run of belief
propagation would attain the same performance, these local instances are easier to
analyze.
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Finally, a word about notation. Throughout this article, we will use the letters
C and c to denote positive constants whose value may change from line to line.
We will also write statements like “for all k ≥ K(θ, δ) . . .” as abbreviations for
statements like “for every θ and δ there exists K such that for all k ≥ K . . . .”

3. Robust reconstruction on regular trees. Our main effort is devoted to
proving Theorem 2.11. Since the proof is quite involved, we begin with a some-
what easier case of regular trees which already contains the main ideas of the proof.
The adaptation to the case of Poisson random trees will be carried in Section 4.

First, we need to define the reconstruction and robust reconstruction probabili-
ties for regular trees. Their definitions are analogous to Definitions 2.6 and 2.10.

DEFINITION 3.1. Let σ be distributed according to the broadcast process with
parameter η on an infinite d-ary tree. Let τ be distributed according to the noisy
broadcast process with parameters η and δ on the same tree. We define

preg(d, η) = 1

2
+ lim

k→∞E

∣∣∣∣Pr(σρ = + | σLk(ρ)) − 1

2

∣∣∣∣,
p̃reg(d, η) = 1

2
+ lim inf

δ→1/2
lim inf
k→∞ E

∣∣∣∣Pr(σρ = + | τLk(ρ)) − 1

2

∣∣∣∣.
THEOREM 3.2. Consider the broadcast process on the infinite d-ary tree

where if u ∈ L1(v) then Pr(σu = σv) = 1
2(1+θ) (equivalently E[σuσv] = θ ). There

exists a constant C such that if dθ2 > C then

p̃reg(d, η) = preg(d, η).

3.1. Magnetization. Define

Xu,k = Pr(σu = + | σLk(u)) − Pr(σu = − | σLk(u)),

xk = E(Xu,k | σu = +).

Here, we say that Xu,k is the magnetization of u given σLk(u). Note that by the
homogeneity of the tree, the definition of xk is independent of u. A simple ap-
plication of Bayes’ rule (see Lemma 1 of [6]) shows that (1 + E|Xρ,k|)/2 is the
probability of estimating σρ correctly given σLk(ρ).

We may also define the noisy magnetization Y :

Yu,k = Pr(σu = + | τLk(u)) − Pr(σu = − | τLk(u)),
(3.1)

yk = E(Yu,k | σu = +).

As above, (1+E|Yρ,k|)/2 is the probability of estimating σρ correctly given τLk(ρ).
In particular, the analogue of Theorem 2.11 for d-ary trees may be written as fol-
lows.
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THEOREM 3.3. There exists a constant C such that if θ2d > C and δ < 1
2 then

lim
k→∞E|Xρ,k| = lim

k→∞E|Yρ,k|.

Our main method for proving Theorem 3.3 (and also Theorem 2.11) is by study-
ing certain recursions. Indeed, Bayes’ rule implies the following recurrence for X

(see, e.g., [26]):

Xu,k =
∏

i∈C(u)(1 + θXui,k−1) −∏
i∈C(u)(1 − θXui,k−1)∏

i∈C(u)(1 + θXui,k−1) +∏
i∈C(u)(1 − θXui,k−1)

.(3.2)

The same reasoning that gives (3.2) also shows that (3.2) also holds when every
instance of X is replaced by Y . Since our entire analysis is based on the recur-
rence (3.2), the only meaningful (for us) difference between X and Y is that their
initial conditions are different: Xu,0 = ±1 while Yu,0 = ±(1 − 2δ). In fact, we will
see later that Theorem 3.3 also holds for some more general estimators Y satisfy-
ing (3.2).

3.2. The simple majority method. Our first step in proving Theorem 3.3 is
to show that when θ2d is large, then both the exact reconstruction and the noisy
reconstruction do quite well. While it is possible to do so by studying the recur-
sion (3.2), such an analysis is actually quite delicate. Instead, we will show this by
studying a completely different estimator: the one which is equal to the most com-
mon label among σLk(ρ). This estimator is easy to analyze, and it performs quite
well; since the estimator based on the sign of Xρ,k is optimal, it performs even
better. The study of the simple majority estimator is quite old, having essentially
appeared in the paper of Kesten and Stigum [16]; however, we include most of the
details for the sake of completeness.

Suppose dθ2 > 1. Define Su,k = ∑
v∈Lk(u) σv and set S̃u,k = ∑

v∈Lk(u) τv . We
will attempt to estimate σρ by sgn(Sρ,k) or sgn(S̃ρ,k); when θ2d is large enough,
these estimators turn out to perform quite well. We will show this by calculating
the first two moments of Su,k and S̃u,k ; we write E

+ and Var+ for the conditional
expectation and conditional variance given σρ = +. The first moments are trivial,
and we omit the proof.

LEMMA 3.4.

E
+Sρ,k = θkdk,

E
+S̃ρ,k = (1 − 2δ)θkdk.

The second moment calculation uses the recursive structure of the tree. The
argument is not new, but we include it for completeness.
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LEMMA 3.5.

Var+ Sρ,k = 4η(1 − η)dk (θ2d)k − 1

θ2d − 1
,

Var+ S̃ρ,k = 4dkδ(1 − δ) + 4(1 − 2δ)2η(1 − η)dk (θ2d)k − 1

θ2d − 1
.

PROOF. We decompose the variance of Sk by conditioning on the first level of
the tree:

Var+ Sρ,k = EVar+(Sρ,k | σ1, . . . , σd) + Var+E(Sρ,k | σ1, . . . , σd).(3.3)

Now, Sρ,k = ∑
u∈L1

Su,k−1, and Su,k−1 are i.i.d. under Pr+. Thus, the first term
of (3.3) decomposes into a sum of variances:

EVar+(Sρ,k | σ1, . . . , σd) = ∑
u∈L1

EVar+(Su,k−1 | σu) = d Var+(Sρ,k−1).

For the second term of (3.3), note that (by Lemma 3.4), E(Su,k−1 | σu) is (θd)k−1

with probability 1 − η and −(θd)k−1 otherwise. Since E(Su,k−1 | σu) are indepen-
dent as u varies, we have

Var+E(Sρ,k | σ1, . . . , σd) = 4dη(1 − η)(θd)2k−2.

Plugging this back into (3.3), we get the recursion

Var+ Sρ,k = d Var+ Sρ,k−1 + 4dη(1 − η)(θd)2k−2.

Since Var+ Sρ,0 = 0, we solve this recursion to obtain

Var+ Sρ,k = d

k∑

=1

4η(1 − η)(θd)2
−2dk−


(3.4)

= 4η(1 − η)dk
k−1∑

=0

(
θ2d

)
 = 4η(1 − η)dk (θ2d)k − 1

θ2d − 1
.

To compute Var+ S̃ρ,k , we condition on Sρ,k : conditioned on Sρ,k , S̃ρ,k is a sum
of dk i.i.d. terms, of which (dk + Sρ,k)/2 have mean 1 − 2δ, (dk − Sρ,k)/2 have
mean 2δ − 1, and all have variance 4δ(1 − δ). Hence, E(S̃k | Sk) = (1 − 2δ)Sk and
Var(S̃k | Sk) = 4dkδ(1 − δ). By the decomposition of variance,

Var+(S̃k) = E
+(4dkδ(1 − δ)

)+ Var+
(
(1 − 2δ)Sk

)
= 4dkδ(1 − δ) + 4(1 − 2δ)2η(1 − η)dk (θ2d)k − 1

θ2d − 1
,

where the last equality follows from (3.4) and the fact that Var(aX) = a2 Var(X).
�
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Taking k → ∞ in Lemmas 3.4 and 3.5, we see that if θ2d > 1 then

Var+ Sk

(E+Sk)2

Var+ S̃k

(E+S̃k)2

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
k→∞→ 4η(1 − η)

θ2d
.

By Chebyshev’s inequality,

lim inf
k→∞ Pr+(Sk > 0) ≥ 1 − 4η(1 − η)

θ2d
.

In other words, the estimators sgn(Sk) and sgn(S̃k) succeed with probability at
least 1 − 4η(1−η)

θ2d2 as k → ∞. Now, sgn(Yρ,k) is the optimal estimator of σρ

given τLk
, and its success probability is exactly (1 +E|Yρ,k|)/2. Hence, this quan-

tity must be larger than the success probability of sgn(S̃k) [and similarly for X and
sgn(Sk)]. Putting this together, we arrive at the following estimates: if θ2d > 1 and
k ≥ K(δ) then

E|Xρ,k| ≥ 1 − 10η(1 − η)

θ2d
,(3.5)

E|Yρ,k| ≥ 1 − 10η(1 − η)

θ2d
.(3.6)

Now, given that σρ = +, the optimal estimator makes a mistake whenever
Xρ,k < 0; hence, Pr+(Xρ,k < 0) ≤ (1−E|Xρ,k|)/2. Since Xu,k ≥ −1, this implies

E
+Xρ,k ≥ E

+|Xρ,k| − 2 Pr+(Xρ,k < 0) ≥ 1 − Cη(1 − η)

θ2d
.

We will use this fact repeatedly, so let us summarize in a lemma.

LEMMA 3.6. There is a constant C such that if θ2d > 1 and k ≥ K(δ) then

E
+Xρ,k ≥ 1 − Cη(1 − η)

θ2d
,

E
+Yρ,k ≥ 1 − Cη(1 − η)

θ2d
.

By Markov’s inequality, we find that Xu,k is large with high probability:

LEMMA 3.7. There is a constant C such that for all k ≥ K(δ) and all t > 0

Pr
(
Xu,k ≥ 1 − t

η

θ2d

∣∣∣ σu = +
)

≥ 1 − Ct−1,

Pr
(
Yu,k ≥ 1 − t

η

θ2d

∣∣∣ σu = +
)

≥ 1 − Ct−1.
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As we will see, Lemma 3.6 and the recursion (3.2) are really the only properties
of Y that we will use. Hence, from now on Yu,k need not be defined by (3.1).
Rather, we will make the following assumptions on Yu,k .

ASSUMPTION 3.1. There is a K = K(δ) such that for all k ≥ K , the following
hold:

1. Yu,k+1 =
∏

i∈C(u)(1+θYui,k)−∏i∈C(u)(1−θYui,k)∏
i∈C(u)(1+θYui,k)+∏i∈C(u)(1−θYui,k)

.

2. The distribution of Yu,k given σu = + is equal to the distribution of −Yu,k

given σu = −.
3. E

+Yρ,k ≥ 1 − Cη(1−η)

θ2d
for some constant C.

We will prove Theorem 3.3 under Assumption 3.1. Note that part 2 above im-
mediately implies

E(Yui,k | σu = +) = θE(Yui,k | σui = +).

Also, part 3 implies that Lemma 3.7 holds for Y .

3.3. The recursion for small θ . Our proof of Theorem 3.3 proceeds in two
cases, with two different analyses. In the first case, we suppose that θ is small (i.e.,
smaller than a fixed, small constant). In this case, we proceed by Taylor-expanding
the recursion (3.2) in θ . For the rest of this section, we will assume that X and Y

satisfy parts 1 and 2 of Assumption 3.1, and that xk, yk ≥ 5/6 for k ≥ K(δ). This
restriction will allow us to reuse most of the argument in the Galton–Watson case
(where part 3 of Assumption 3.1 fails to hold, but we nevertheless have xk, yk ≥
5/6).

PROPOSITION 3.8. There are absolute constants C and θ∗ > 0 such that if
dθ2 ≥ C and θ ≤ θ∗ then for all k ≥ K(θ, d, δ),

E(Xρ,k+1 − Yρ,k+1)
2 ≤ 1

2E(Xρ,k − Yρ,k)
2.

Note that Proposition 3.8 immediately implies that if dθ2 ≥ C and θ ≤ θ∗ then
E(Xρ,k − Yρ,k)

2 → 0 as k → ∞, which implies Theorem 3.3 in the case that
θ ≤ θ∗.

In proving Proposition 3.8, the first step is to replace the right-hand side of (3.2)
with something easier to work with; in particular, we would like to have something
without X in the denominator. For this, we note that

a − b

a + b
= 1 − b/a

1 + b/a
= 2

1 + b/a
− 1.

Hence, if a = ∏
i (1 + θXui,k), b = ∏

i (1 − θXui,k), and a′ and b′ are the same
quantities with Y replacing X, then

|Xu,k+1 − Yu,k+1| =
∣∣∣∣a − b

a + b
− a′ − b′

a′ + b′
∣∣∣∣= 2

∣∣∣∣ 1

1 + b/a
− 1

1 + b′/a′
∣∣∣∣.(3.7)
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Using Taylor’s theorem, the right-hand side can be bounded in terms of |(b/a)p −
(b′/a′)p| for some 0 < p < 1 of our choice.

LEMMA 3.9. For any 0 < p < 1 and any x, y ≥ 0,∣∣∣∣ 1

1 + x
− 1

1 + y

∣∣∣∣≤ 1

p

∣∣xp − yp
∣∣.

PROOF. Let f (x) = 1
1+x

and g(x) = xp . By the fundamental theorem of
calculus, the proof would follow from the inequality |f ′(x)| ≤ p−1g′(x). Now,
|f ′(x)| = 1

(1+x)2 and g′(x) = pxp−1. When x ≥ 1, we have |f ′(x)| ≤ x−2 ≤ xp−1,

while if x ≤ 1 then |f ′(x)| ≤ 1 ≤ xp−1. �

As an immediate consequence of Lemma 3.9 (for p = 1/4) and (3.7),

|Xu,k+1 − Yu,k+1| ≤ 8
∣∣∣∣(∏

i

1 − θXui,k

1 + θXui,k

)1/4

−
(∏

i

1 − θYui,k

1 + θYui,k

)1/4∣∣∣∣.(3.8)

Next, we present a general bound on the second moment of differences of prod-
ucts. Of course, we have in mind the example Ai = (

1−θXui,k

1+θXui,k
)1/4 and similarly for

Bi and Yi .

LEMMA 3.10. Let (A1,B1), . . . , (Ad,Bd) be i.i.d. copies of (A,B). Then

E

(
d∏

i=1

Ai −
d∏

i=1

Bi

)2

≤ dmd−1(
EA2 −EB2)2 + 2dmd−1

E(A − B)2,

where m = max{EA2,EB2}.
PROOF. Let ε = E(Ai − Bi)

2, so that EAiBi = 1
2(EA2

i +EB2
i − ε). Then

E

(
d∏

i=1

Ai −
d∏

i=1

Bi

)2

= E

d∏
i=1

A2
i +E

d∏
i=1

B2
i − 2E

d∏
i=1

AiBi

= (
EA2)d + (

EB2)d − 2
d∏

i=1

EA2
i +EB2

i − ε

2
(3.9)

= (
EA2)d + (

EB2)d − 2
(
EA2 +EB2 − ε

2

)d

.

By a second-order Taylor expansion, any twice differentiable f satisfies f (x) +
f (y) ≤ 2f ((x + y)/2) + 1

4(x − y)2 maxz f ′′(z), where the maximum ranges over
z between x and y. Applying this for f (x) = xd yields(

EA2)d + (
EB2)d ≤ d2md−2(

EA2 −EB2)2 + 2
(
EA2 +EB2

2

)d

.
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Hence,

(3.9) ≤ d2md−2(
EA2 −EB2)2 + 2

(
EA2 +EB2

2

)d

− 2
(
EA2 +EB2 − ε

2

)d

≤ d2md−2(
EA2 −EB2)2 + 2dmd−1ε,

where the second inequality follows from a first-order Taylor expansion of the
function f (x) = xd around x = (EA2 +EB2)/2. �

As we said before, we will apply Lemma 3.10 with Ai = (
1−θXui,k

1+θXui,k
)1/4 and

Bi = (
1−θYui,k

1+θYui,k
)1/4. To make the lemma useful, we will need to bound EA2

i , EB2
i ,

and their difference. First, we will bound EA2
i and EB2

i . In other words, we will
bound

E

√
1 − θXui,k

1 + θXui,k

and the same expression with Y instead of X.

LEMMA 3.11. There is a constant θ∗ > 0 such that if xk, yk ≥ 5/6 then

E
(
A2

i | σu = +)≤ 1 − θ2xk

4
,

E
(
B2

i | σu = +)≤ 1 − θ2yk

4
.

PROOF. First, note that for sufficiently small x,

(1 + x)
(
1 − x + 5

8x2)2 = (1 + x)
(
1 − 2x + 18

8 x2 + O
(
x3))

= 1 − x + 1
4x2 + O

(
x3)≥ 1 − x,

which may be rearranged to read√
1 − x

1 + x
≤ 1 − x + 5

8
x2.

Now, if θ∗ is sufficiently small then we may apply this with x = θXui,k , obtaining

E
(
A2

i | σu = +)≤ 1 −E(θXui,k | σu = +) + 5
8E
(
θ2X2

ui,k | σu = +).
Recalling the assumption that xk ≥ 5/6, we have

1 −E(θXui,k | σu = +) + 5

8
E
(
θ2X2

ui,k | σu = +) ≤ 1 − θ2xk + 3θ2

4
xk

= 1 − θ2

4
xk.

The same argument applies to Bi , but using Yi instead of Xi . �
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3.4. The EA2 − EB2 term. In this section, we will bound the |EA2 − EB2|
term in Lemma 3.10, bearing in mind that the bound has to be at most of order θ4

in order for d2(EA2 − EB2)2 to be a function of dθ2. Note that the distribution
of Ai conditioned on σv = + is equal to the distribution of 1/Ai conditioned on
σv = −. Hence,

E
(
A2

i | σu = +)= (1 − η)E
(
A2

i | σui = +)+ ηE
(
A2

i | σui = −)
(3.10)

= E
(
(1 − η)A2

i + ηA−2
i | σui = +).

Now,

(1 − η)A2
i + ηA−2

i = (1 − η)

(
1 − θXui,k

1 + θXui,k

)1/2

+ η

(
1 + θXui,k

1 − θXui,k

)1/2

= (1 − η)(1 − θXui,k) + η(1 + θXui,k)√
(1 + θXui,k)(1 − θXui,k)

(3.11)

= 1 − θ2Xui,k√
1 − θ2X2

ui,k

(recalling in the last line that θ = 1 − 2η).

LEMMA 3.12. There is a θ∗ > 0 such that if θ < θ∗ then∣∣∣∣ d

dx

1 − θ2x√
1 − θ2x2

∣∣∣∣≤ 3θ2

for all x ∈ [−1,1].

PROOF. By a direct computation,

d

dx

1 − θ2x√
1 − θ2x2

= θ2x(1 − θ2x2)−1/2(1 − θ2x) − θ2
√

1 − θ2x2

1 − θ2x2 .

Since |x| ≤ 1, we have∣∣∣∣ d

dx

1 − θ2x√
1 − θ2x2

∣∣∣∣ ≤ θ2(1 − θ2)−1/2(1 + θ2) + θ2

1 − θ2

= θ2 (1 − θ2)−1/2(1 + θ2) + 1

1 − θ2 .

The result follows because 1 − θ2 and 1 + θ2 can be made arbitrarily close to 1 by
taking θ∗ small enough. �

Now we apply (3.11) with Lemma 3.12 to obtain the promised bound on
EA2

i −EB2
i .
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LEMMA 3.13. There is a θ∗ > 0 such that for all θ < θ∗,

E
(
A2

i − B2
i | σu = +)≤ 3θ2

√
E
(
(Xui,k − Yui,k)2 | σu = +).

PROOF. By (3.10) and (3.11) (and analogously with A replaced by B), we
have

E
(
A2

i − B2
i | σu = +)= E

(
1 − θ2Xui,k√
1 − θ2X2

ui,k

− 1 − θ2Yui,k√
1 − θ2Y 2

ui,k

∣∣∣ σui = +
)
.

For a general function f we have E|f (X) − f (Y )| ≤ E|X − Y |maxx |df
dx

|. Apply-

ing this fact with the function f (x) = 1−θ2x√
1−θ2x2

and the bound of Lemma 3.12,

E
(
A2

i − B2
i | σu = +)≤ 3θ2

E
(|Xui,k − Yui,k| | σui = +)

≤ 3θ2
√
E
(
(Xui,k − Yui,k)2 | σui = +).

Finally, note that

E
(
(Xui,k − Yui,k)

2 | σui = +)= E
(
(Xui,k − Yui,k)

2 | σu = +). �

3.5. Combining the estimates to complete the proof. Next, we combine
Lemma 3.10 with the estimates provided in Lemmas 3.11 and 3.13.

LEMMA 3.14. There is some constant θ∗ > 0 such that the following holds.
Suppose that X and Y satisfy parts 1 and 2 of Assumption 3.1 and that xk, yk ≥ 5/6
for k ≥ K(δ). If u has d ≥ 4 children and θ ≤ θ∗ then for k ≥ K(δ),

E((Xu,k+1 − Yu,k+1)
2 | σu = +)

E((Xu1,k − Yu1,k)2 | σu1 = +)
≤ C

(
d2θ4 + dθ2)e−θ2d/5,

for a universal constant C.

PROOF. Taking the square of (3.8) and taking the expectation on both sides,
we have

E
(
(Xu,k+1 − Yu,k+1)

2 | σu = +)≤ 64E

((
d∏

i=1

Ai −
d∏

i=1

Bi

)2 ∣∣∣∣ σu = +
)
.

Conditioned on σu, the pairs (Ai,Bi) are i.i.d. and so Lemma 3.10 implies that

E
(
(Xu,k+1 − Yu,k+1)

2 | σu = +)
(3.12)

≤ 64d2md−2(a − b)2 + 128dmd−1
E
(
(Ai − Bi)

2 | σu = +),
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where

a = E
(
A2

i | σu = +),
b = E

(
B2

i | σu = +),
m = max{a, b}.

Now, if θ∗ is sufficiently small then the function x 
→ (1−θx
1+θx

)1/4 has derivative
at most θ for x ∈ [−1,1]. Hence,

E
(
(Ai − Bi)

2 | σu = +) ≤ θ2
E
(
(Xu1,k − Yu1,k)

2 | σu = +)
(3.13)

= θ2
E
(
(Xu1,k − Yu1,k)

2 | σu1
)

provided that θ∗ is sufficiently small. Define

z = E
(
(Xu1,k − Yu1,k)

2 | σu1
)= E

(
(Xu1,k − Yu1,k)

2 | σu1 = +).
By Lemma 3.11 and the assumption that xk, yk ≥ 5/6, if θ∗ is sufficiently small,

then m ≤ 1− θ2/5 ≤ exp(−θ2/5). Moreover, Lemma 3.13 implies that (a −b)2 ≤
9θ4z. Plugging these and (3.13) back into (3.12), we have

E
(
(Xu,k+1 − Yu,k+1)

2 | σu = +)≤ 64
(
9d2θ4e−θ2(d−2)/5 + 2dθ2e−θ2(d−1)/5)z,

which proves the claim. �

PROOF OF PROPOSITION 3.8. If θ2d is sufficiently large, then Lemma 3.6
implies that xk, yk ≥ 5/6 for k ≥ K(δ); hence, the conditions of Lemma 3.14 are
satisfied. Finally, if dθ2 is large enough then the right-hand side in Lemma 3.14 is
at most 1

2 . �

3.6. The recursion for large θ . To handle the case in which θ is not small, we
require a different argument. In this case, we study the derivatives of the recur-
rence, obtaining the following result.

PROPOSITION 3.15. For any 0 < θ∗ < 1, there is some d∗ = d∗(θ∗) such that
for all θ ≥ θ∗, d ≥ d∗, and k ≥ K(θ, d, δ),

E

√
|Xρ,k+1 − Yρ,k+1| ≤ 1

2E
√

|Xρ,k − Yρ,k|.

Combined with Proposition 3.8, this proves Theorem 3.3. Indeed, to complete
the choices of parameters we first take θ∗ to be the universal constant in Proposi-
tion 3.8. Then let d∗ = d∗(θ∗) be given by Proposition 3.15 (note that d∗ is also
a universal constant). Finally, choose C to be the maximum of d∗ and the C from
Proposition 3.8. Now, if θ2d ≥ C then either θ ≤ θ∗ in which case Proposition 3.8
applies, or θ ≥ θ∗ in which case θ ≤ 1 implies that d ≥ C ≥ d∗ and so Proposi-
tion 3.15 applies. In either case, we deduce Theorem 3.3.
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Let g : Rd →R denote the function

g(x) =
∏d

i=1(1 + θxi) −∏d
i=1(1 − θxi)∏d

i=1(1 + θxi) +∏d
i=1(1 − θxi)

.(3.14)

Then the recurrence (3.2) may be written as Xu,k+1 = g(Xu1,k, . . . ,Xud,k). We
will also abbreviate (Xu1,k, . . . ,Xud,k) by XL1(u),k , so that we may write Xu,k+1 =
g(XL1(u),k).

Define g1(x) = ∏d
i=1(1 + θxi) and g2(x) = ∏d

i=1(1 − θxi) so that g can be
written as g = g1−g2

g1+g2
. Since ∂g1

∂xi
= θ

g1
1+θxi

and ∂g2
∂xi

= −θ
g2

1−θxi
, we have

∂g

∂xi

= ∂

∂xi

g1 − g2

g1 + g2

= 2
g2

∂g1
∂xi

− g1
∂g2
∂xi

(g1 + g2)2(3.15)

= 4θ
g1g2

(g1 + g2)2(1 − θ2x2
i )

.

If |xi | ≤ 1, then g1 and g2 are both positive, so g1g2
(g1+g2)

2 ≤ g1g2

g2
1

= g2
g1

; of course, we

also have the symmetric bound g1g2
(g1+g2)

2 ≤ g1
g2

. Define

h+
i (x) = 4

g2

(1 − θ2x2
i )g1

= 4

(1 + θxi)2

∏
j �=i

1 − θxj

1 + θxj

,

h−
i (x) = 4

g1

(1 − θ2x2
i )g2

= 4

(1 − θxi)2

∏
j �=i

1 + θxj

1 − θxj

,

hi(x) = min
{
h+

i (x), h−
i (x)

}
.

By (3.15) and since |θ | ≤ 1, ∣∣∣∣ ∂g

∂xi

∣∣∣∣≤ hi(x).(3.16)

The point is that if σu = + then for most v ∈ L1(u), Xv,k will be close to 1 and so
h+

i (XL1(u),k) will be small. On the other hand, if σu = − then for most v ∈ L1(u),
Xv,k will be close to −1 and so h−

i (XL1(u),k) will be small.
Note that h+

i is convex on [−1,1]d because it is the tensor product of nonnega-
tive, convex functions. Hence, for any x, y ∈ [−1,1]d and any 0 < λ < 1,∣∣∣∣ ∂g

∂xi

(
λx + (1 − λ)y

)∣∣∣∣≤ h+
i

(
λx + (1 − λ)y

)≤ max
{
h+

i (x), h+
i (y)

}
.

Then the mean value theorem implies that∣∣g(x) − g(y)
∣∣≤∑

i

|xi − yi |max
{
h+

i (x), h+
i (y)

}
.
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Applied for x = XL1(u),k = (Xu1,k, . . . ,Xud,k) and y = YL1(u),k = (Yu1,k, . . . ,

Yud,k), this yields

|Xu,k+1 − Yu,k+1|
(3.17)

≤∑
i

|Xui,k − Yui,k|max
{
h+

i (XL1(u),k), h
+
i (YL1(u),k)

}
.

Note that the two terms on the right-hand side of (3.17) are dependent on one
another. Hence, it will be convenient to bound h+

i (XL1(u),k) by something that
does not depend on Xui . To that end, note that for |xi | ≤ 1, we have 1 + θxi ≥
1 − θ = 2η, and so

h+
i (x) = 4

(1 + θxi)2

∏
j �=i

1 − θxj

1 + θxj

≤ 1

η2

∏
j �=i

1 − θxj

1 + θxj

=: mi(x).(3.18)

Since mi(x) does not depend on xi , it follows that mi(XL1(u),k) is independent of
Xui,k given σu (and similarly with Y instead of X). Hence, (3.17) implies that

E
(√|Xu,k+1 − Yu,k+1| | σu = +)

≤∑
i

E
(√|Xui,k − Yui,k| | σu = +)(3.19)

×E
(√

max
{
mi(XL1(u),k),mi(YL1(u),k)

} | σu = +).
To prove Proposition 3.15, it therefore suffices to show that E(

√
mi(XL1(u),k) |

σu = +) and E(
√

mi(YL1(u),k) | σu = +) are both small. Since mi(XL1(u),k) is
a product of independent (when conditioned on σu) terms, it is enough to show
that each of these terms has small expectation. The following lemma will help
bounding these terms.

LEMMA 3.16. For any 0 < θ∗ < 1, there is some d∗ = d∗(θ∗) and some λ =
λ(θ∗) < 1 such that for all θ ≥ θ∗, d ≥ d∗ and k ≥ K(θ, d, δ),

E

(√
1 − θXui,k

1 + θXui,k

∣∣∣ σu = +
)

≤ min
{
λ,4η1/4}.

The proof of Lemma 3.16 is straightforward but tedious, and we postpone it
until the Appendix. Instead, we will now prove Proposition 3.15.

PROOF OF PROPOSITION 3.15. By Lemma 3.16, and the definition (3.18) of
mi , it follows that

E
(√

mi(Xui,k) | σu = +)≤ η−1 min
{
λ,η1/4}d−1

(3.20)
≤ min

{
λ,η1/4}d−5 ≤ λd−5.
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In particular, if d∗(θ∗) is sufficiently large then dλd−5 ≤ 1/4 for all d ≥ d∗. The
same argument applies with Y replacing X, and hence

E
(√

max{mi(XL1(u),k),mi(YL1(u),k) | σu = +)≤ 1

2d
.(3.21)

By (3.19), we have

E
(√|Xu,k+1 − Yu,k+1| | σu = +)≤ 1

2E
(√|Xu,k − Yu,k| | σu = +),

and so we have proved Proposition 3.15. �

4. Reconstruction accuracy on Galton–Watson trees. In this section, we
will adapt the proof of the d-ary case (Theorem 3.3) to the Galton–Watson case
(Theorem 2.11). Let T ⊂ N

∗ be a Galton–Watson tree with offspring distribution
Pois(d). Recall that such a tree may be constructed by taking, for each u ∈ N

∗,
an independent Pois(d) random variable Du. Then define T ⊂ N

∗ recursively by
starting with ∅ ∈ T and then taking ui ∈ T for i ∈ N if u ∈ T and i ≤ Du.

As in Section 3, we let {σu : u ∈ T } be distributed as the two-state broadcast
process on T with parameter η, and let {τu : u ∈ T } be the noisy version, with
parameter δ. We recall the magnetization

Xu,k = Pr(σu = + | σLk(u)) − Pr(σu = − | σLk(u)),

xk = E(Xu,k | σu = +).

Note that unlike in Section 3, Xu,k now depends on both the randomness of the
tree and the randomness of σ . Hence, xk now averages over both the randomness
of the tree and the randomness of σ .

We recall that X satisfies the recursion (3.2). As in Section 3, we will let {Yu,k}
be any collection of random variables which satisfies the same recursion (for large
enough k), and for which Yu,k is a good estimator of σu given σLk(u).

ASSUMPTION 4.1. There is a K = K(δ) and a constant C such that for all
k ≥ K , the following hold:

1. Yu,k+1 =
∏

i∈C(u)(1+θYui,k)−∏i∈C(u)(1−θYui,k)∏
i∈C(u)(1+θYui,k)+∏i∈C(u)(1−θYui,k)

.

2. The distribution of Yu,k given σu = + is equal to the distribution of −Yu,k

given σu = −.
3. With probability at least 1 − e−cd over T ,

E(Yu,k | σu = +, T ) ≥ 1 − Cη

θ2d
.

Note that Assumption 4.1 is the same as Assumption 3.1 except for part 3.
Indeed, the change in part 3 between Assumption 3.1 and Assumption 4.1 points
to the main change, and biggest challenge, in extending our previous argument to
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Galton–Watson trees: unlike for a regular tree, there is always some chance that a
Galton–Watson tree will go extinct, or that it will be thinner and more spindly than
expected. In this case, we will not be able to reconstruct the broadcast process as
well as we might want, even as η → 0.

In any case, in order to prove Theorem 2.11 it suffices to prove that Y satisfies
part 3 of Assumption 4.1 as well as the following theorem.

THEOREM 4.1. Under Assumption 4.1, there is a universal constant C such
that if θ2d ≥ C then limk→∞E|Xρ,k| = limk→∞E|Yρ,k|.

Recall that pT (a, b) is equal to limk→∞(1 + E|Xρ,k|)/2 in the case d = (a +
b)/2 and η = b/(a + b), and that p̃T (a, b) is equal to limk→∞(1 + E|Yρ,k|)/2 in
the same case. In particular, Theorem 4.1 immediately implies Theorem 2.11.

4.1. Large expected magnetization. The first step toward extending Theo-
rem 3.3 to the Galton–Watson case is to show that the magnetization of each node
tends to be large.

PROPOSITION 4.2. There is a universal constant c > 0 such that for all k ≥
K(θ, d, δ),

Pr
(
E(Xρ,k | σρ = +, T ) ≥ 1 − 16η

θ2d

)
≥ 1 − e−cd

and similarly for Yρ,k . Hence, xk, yk ≥ 1 − 8η

θ2d
− 2e−cd .

Note that the proposition implies that Y satisfies part 3 of Assumption 4.1.
In the regular case, the proof of Lemma 3.6 was based on the fact that a sim-

ple majority vote at the leaves estimates the root well. Here, we will follow Evans
et al. [12] by using a weighted majority vote. For this, we will need to use the ter-
minology of electrical networks, in particular the notion of effective conductance
and effective resistance. An Introduction to these concepts may be found in [19];
the essential properties that we will need are that conductances add over parallel
paths, while resistances add over consecutive paths.

Put a resistance of (1 − θ2)θ−2k on each edge e in T whose child is in gener-
ation k (where ρ is generation zero). We write Ceff(k) for the effective conduc-
tance between ρ and level k and Reff(k) for 1/Ceff(k). Also, attach an additional
“noisy” node to each node at level k, with resistance 4δ(1 − δ)(1 − 2δ)−2θ−2k ;
then let C ′

eff(k) be the effective conductance between the root and these nodes and
let R ′

eff(k) = 1/C ′
eff(k). Note that Ceff(k) and C ′

eff(k) are random quantities which
depend on the Galton–Watson tree. The importance of Ceff and C ′

eff for estimating
σρ was shown by [12] (Lemma 5.1).
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THEOREM 4.3. There exist weights w(u) such that if Rk =∑
v∈Lk(ρ) w(v)σv

and Sk = (1 − 2δ)−1∑
v∈Lk(ρ) w(v)τv then

E(Rk | σρ) = σρ,

E(Sk | σρ) = σρ,

Var(Rk | σρ) = Reff(k),

Var(Sk | σρ) = R ′
eff(k).

We mention that w(v) in Theorem 4.3 is proportional to the unit current flow
from ρ to v; for our work, however, we only need to know that it exists and that it
can be easily computed.

Consider the estimators sgn(Rk) and sgn(Sk) for σρ . By Chebyshev’s inequality,

Pr(Sk ≤ 0 | σρ = +) ≤ Var(Sk) = Reff(k) = 1

Ceff(k)

and similarly Pr(Rk ≤ 0 | σρ = +) ≤ 1/C ′
eff(k). In particular, if we can show that

Ceff(k) and C ′
eff(k) are large, we will have shown that sgn(Sk) and sgn(Rk) are

good estimators of σρ . Since sgn(Xk,ρ) and sgn(Yk,ρ) are the optimal estimators
of σρ given, respectively, σLk(ρ) and τLk(ρ), this will prove that xk and yk are large.
Note that this is exactly the same method that we used to show that xk and yk

are large in the d-regular case; the difference here is that we need to consider a
weighted linear estimator instead of an unweighted one.

LEMMA 4.4. There is a universal constant c > 0 such that for all k ≥
K(θ, d, δ),

Pr
(
Ceff(k) ≥ θ2d

16η

)
≥ e−cd ,

Pr
(
C ′

eff(k) ≥ θ2d

16η

)
≥ e−cd .

PROOF. The proof is by a recursive argument. Note that Ceff(0) = ∞ and
C ′

eff(0) = (4δ(1 − δ))−1(1 − 2δ)−2 > 0. We will write the rest of the proof only
for Ceff, but the same argument holds with C ′

eff replacing Ceff everywhere. Let
αk−1 = min{(4η)−1,M} where M is the largest median of Ceff(k − 1) [in the case
of Ceff(0), M is any positive value]. Now fix k and let Z1,Z2, . . . be independent
copies of Ceff(k − 1). Then Pr(Zi ≥ αk−1) ≥ 1/2 for all i.

Now, the first k levels of a Galton–Watson tree consist of a root with Pois(d) in-
dependent subtrees of k −1 levels each. For each child i, the conductance between
i and Lk−1(i) is distributed like θ2Zi (the factor θ2 arises because at each level of
the tree the conductances are multiplied by an extra factor of θ2). Since the edge
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between ρ and i has conductance θ2(1 − θ2)−1, the conductance between ρ and
Lk−1(i) is distributed like

1

θ−2Z−1
i + θ−2(1 − θ2)

= θ2Zi

(1 − θ2)Zi + 1
.

Summing over the children of ρ, we see that Ceff(k) has the same distribution as

Pois(d)∑
i=1

θ2Zi

(1 − θ2)Zi + 1
≥ θ2

Pois(d)∑
i=1

Zi

4ηZi + 1
.

Recall that Pr(Zi ≥ αk−1) ≥ 1/2 and αk−1 ≤ (4η)−1. Hence, αk−1/(4ηαk−1 +
1) ≥ αk−1/2, and so

Ceff(k) ≥ θ2
Pois(d)∑

i=1

1{Zi≥αk−1}
αk−1

4ηαk−1 + 1

≥ θ2

2

Pois(d)∑
i=1

1{Zi≥αk−1}αk−1

≥ θ2αk−1

2
Pois(d/2).

Now, there is a universal constant c > 0 such that Pr(Pois(d/2) ≤ d/4) ≤ e−cd ;
hence

Pr
(
Ceff(k) ≤ θ2dαk−1/4

)≤ e−cd .(4.1)

In particular, if d is sufficiently large then e−cd < 1/2, and hence every median
of Ceff(k) is larger than θ2dαk−1/4. In particular, αk ≥ min{(4η)−1, θ2dαk−1/4}.
Hence, if θ2d > 4 and k is sufficiently large then αk ≥ (4η)−1. Applying this
to (4.1) completes the proof for Ceff(k), and an identical argument applies to
C ′

eff(k). �

Now Proposition 4.2 follows directly from Theorem 4.3 and Lemma 4.4.

4.2. The small-θ case. The proof of Proposition 3.8 extends fairly easily to
the Galton–Watson case. The weakening of Lemma 3.6 to Proposition 4.2 makes
hardly any difference because the proof of Proposition 3.8 only needed xk ≥ 1/2.

PROPOSITION 4.5. Consider the broadcast process on a Poisson Galton–
Watson tree. Then there are absolute constants C and θ∗ > 0 such that if dθ2 ≥ C

and θ ≤ θ∗ then for all k ≥ K(θ, d, δ),

E(Xρ,k+1 − Yρ,k+1)
2 ≤ 1

2E(Xρ,k − Yρ,k)
2.
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PROOF. Let D be the number of children of u, so that D ∼ Pois(d). If θ2d

is sufficiently large then Proposition 4.2 implies that xk, yk ≥ 5/6 and so applying
Lemma 3.14 conditioned on D yields

E
(
(Xu,k+1 − Yu,k+1)

2 | D,σu = +)≤ C
(
D2θ4 + Dθ2)e−θ2D/5z

≤ C′e−θ2D/10z,

where z = E((Xu1,k − Yu1,k)
2 | σu1 = +). Now we integrate out D. Since D ∼

Pois(d), its moment generating function is EetD = ed(et−1). Setting t = −θ2/10,
we have et ≤ 1 + t/2 for all θ ∈ [0,1]; hence,

EetD ≤ etd/2 = e−θ2d/20.

That is,

E
(
(Xu,k+1 − Yu,k+1)

2 | σu = +)≤ CzEe−θ2D/10 ≤ Cze−θ2d/20.

In particular, the right-hand side is smaller than z/2 if θ2d is sufficiently large. �

4.3. The large-θ case. We now give an analogue of Proposition 3.15 in the
Galton–Watson case.

PROPOSITION 4.6. For any 0 < θ∗ < 1, there is some d∗ = d∗(θ∗) such that
for the broadcast process on the Poisson mean d tree it holds that for all θ ≥ θ∗,
d ≥ d∗, and k ≥ K(θ, d, δ),

E

√
|Xρ,k+1 − Yρ,k+1| ≤ 1

2E
√

|Xρ,k − Yρ,k|.

This completes the proof of Theorem 4.1 (by the same argument that followed
Proposition 3.15).

4.3.1. The case where one child has large error. Our eventual goal is to prove
Proposition 3.15 by a similar analysis of the partial derivatives of g that led to
the proof of Proposition 3.15. In this section, however, we will deal with one case
where the derivatives of g cannot be controlled well. First, we introduce a param-
eter ε = ε(d) > 0 that will be specified later. Next, fix a vertex u and let � be
the event that all children i of u satisfy |Xui,k − Yui,k| ≤ ε. On �, we will ana-
lyze derivatives of g; off � we have the following lemma (recalling that D is the
number of children of u).

LEMMA 4.7. For any 0 < θ∗ < 1, there exist c,C > 0 such that if η < c,
θ ∈ [θ∗,1), and θ2d > C then for any ε > 0 and k ≥ K(θ, d, δ)

E
(√|Xu,k+1 − Yu,k+1|1�c | D)≤ C√

ε
De−cD

E

√
|Xui,k − Yui,k|1{|Xui,k−Yui,k |>ε}.
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PROOF. First, we condition on D; we may then write

1�c ≤
D∑

i=1

1{|Xui,k−Yui,k |>ε}.

Hence,

E
(√|Xu,k+1 − Yu,k+1|1�c | D)

≤ E

(
D∑

i=1

√
|Xu,k+1 − Yu,k+1|1{|Xui,k−Yui,k |>ε}

∣∣∣D)

= DE
(√|Xu,k+1 − Yu,k+1|1{|Xui,k−Yui,k |>ε} | D),

where the equality follows because all the terms in the sum have the same distri-
bution. Now we will condition on Xui,k and Yui,k , and we will show that on the
event {|Xui,kYui,k| ≥ ε} we have

DE
(√|Xu,k+1 − Yu,k+1| | D,Xui,k, Yui,k

)≤ CDe−cD.(4.2)

After bounding 1 ≤ ε−1/2√|Xui,k − Yui,k| on the event {|Xui,kYui,k| ≥ ε} and then
integrating out Xui,k and Yui,k , the proof will be complete.

Now we prove (4.2). Condition on σu, and suppose without loss of generality
that σu = +. If θ2d is sufficiently large then Proposition 4.2 implies that (condi-
tioned on σu = +) every child j �= i of u independently satisfies

Pr(Xuj,k ≥ 1 − η | σu = +) ≥ 7/8.

If we condition also on D, Hoeffding’s inequality implies that there is a constant
c > 0 such that with probability at least e−cD2

, at least 3/4 of u’s children j satisfy
Xuj,k ≥ 1 − η. The remaining children (which possibly include i) satisfy Xuj,k ≥
−1, and so on this event

A :=
D∏

j=1

1 − θXuj,k

1 + θXuj,k

≤
(

1 − θ(1 − η)

1 + θ(1 − η)

)3D/4(1 + θ

1 − θ

)D/4

≤ (3η)3D/4η−D/4.

Now, Xu,k+1 = 1−A
1+A

≥ 1 − 2A, and so we conclude that

Pr
(
Xu,k+1 ≥ 1 − 2 · 33D/4ηD/2 | Xui,k, Yui,k, σu = +,D

)≥ 1 − e−cD2
.

The previous argument applies equally well with X replaced by Y ; hence, the
union bound implies

Pr
(|Xu,k+1 − Yu,k+1| ≥ 4 · 33D/4ηD/2 | Xui,k, Yui,k, σu = +,D

)≥ 1 − 2e−cD2
.

On the other hand, we always have the bound |Xu,k+1 − Yu,k+1| ≤ 2, and so

E
(√|Xu,k+1 − Yu,k+1| | Xui,k, Yui,k, σu = +,D

)≤ 2 · 33D/8ηD/4 + 2
√

2e−cD2
.
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Now, if η < c for c sufficiently small, the right-hand side is bounded by Ce−cD .
This proves (4.2) in the case that σu = +. To complete the proof, we apply the
symmetric argument conditioned on σu = −. �

4.3.2. An analogue of Lemma 3.16. The proof of Proposition 4.6 proceeds by
analysing the derivatives of the recurrence (3.14). Recalling that these derivatives
involve a large product, an important ingredient in the analysis is a bound on the
expectation of each term. The following lemma is analogous to Lemma 3.16 in the
regular case; an important difference is that Lemma 4.8 does not improve as η → 0.
In fact, as we remarked after Assumption 4.1, we cannot expect such behavior
because of the possibility of extinction.

LEMMA 4.8. For any 0 < θ∗ < 1, there are some λ = λ(θ∗) < 1 and d∗ =
d∗(θ∗) such that for all θ ≥ θ∗, d ≥ d∗ and k ≥ K(θ, d, δ),

E

(√
1 − θXui,k

1 + θXui,k

∣∣∣ σu = +
)

≤ λ.

The same holds with Y replacing X.

We postpone the details of Taylor expansion and approximation to the Ap-
pendix, but we will include here one of the main ingredients of the proof of
Lemma 4.8. The point is that in the Galton–Watson case (unlike the d-ary case) if
d is fixed and η → 0 then we cannot expect Xρ,k to be large (i.e., close to 1) with
probability converging to 1. It turns out to be enough, however, to show that Xρ,k

is nonnegative with probability converging to 1.

LEMMA 4.9. There is a constant C such that if θ2d ≥ C then for any k ≥
K(θ, d, δ),

Pr(Xu,k < 0 | σu = +) ≤ η,(4.3)

and similarly for Y .

PROOF. We will give the argument for X only (the argument for Y is iden-
tical). First, note that if η ≥ 1/12 then (4.3) follows directly from Proposi-
tion 4.2 if d∗ is sufficiently large. Hence, we may assume that η < 1/12. Let
pk = Pr+(Xρ,k < 0). Then by Proposition 4.2, if C is sufficiently large then
pk ≤ 1/12 for k ≥ K(δ).

Let Z− be the number of children i of the root with Xi,k < 0 and Z+ be the
number with Xi,k ≥ 1 − η. Consider the quantity

Z :=
D∏

i=1

1 − θXui,k

1 + θXui,k

,
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and note that Xu,k < 0 if and only if Z > 1. Now, Z is increasing in each Xui,k ,
and Z only increases if we drop some terms i with Xui,k ≥ 0. Hence,

Z ≤
(

1 − θ(1 − η)

1 + θ(1 − η)

)Z+(1 + θ

1 − θ

)Z−
≤ (3η)Z+η−Z− .(4.4)

Now, by the definition of pk ,

Pr+(X1,k < 0)
(4.5)

≤ Pr(X1,k < 0 | σ1 = +) + Pr(σ1 = − | σρ = +) = pk + η.

Conditioned on σρ and D, Z+ − Z− is a sum of i.i.d. variables with values 1,−1,
and 0. Moreover, Proposition 4.2 with d sufficiently large implies that the prob-
ability of Xi,k ≥ 1 − η is at least 5/6, while (4.5) implies that the probability of
Xi,k < 0 is at most pk + η ≤ 1/6. Hence, Hoeffding’s inequality implies that

Pr+(Z+ − Z− ≤ D/3 + 1 | D) ≤ Ce−cD2
,

for universal constants c,C > 0. Note also that if Z− = 0 then Z ≥ 1 and that
in order to have Z− > 0, there must be some i with Xi,k < 0. Note also that if
Z+−Z− ≥ D/3 then Z ≤ 3DηD/3 ≤ (3/4)D/3 < 1. Thus, applying a union bound,
Hoeffding’s inequality, and (4.5),

Pr+(Z > 1 | D) ≤ Pr+(Z+ − Z− ≤ D/3,Z− > 0 | D)

≤ D Pr+(Z+ − Z− ≤ D/3,X1,k < 0 | D)
(4.6)

= D Pr+(Z+ − Z− ≤ D/3 | D,X1,k < 0)Pr+(X1,k < 0 | D)

≤ CDe−cD2
(η + pk).

Now, if d is large enough (which can be enforced by taking C large) then
EDe−cD2 ≤ 1

4 , which implies that

pk+1 = Pr+(Xρ,k+1 < 0) = Pr+(Z > 1) ≤ η + pk

4
≤ max{η/2,pk/2}.

Recursing with k, we see that limk→∞ Pr+(Xρ,k < 0) ≤ η/2, which implies that
Pr+(Xρ,k < 0) ≤ η for sufficiently large k. �

4.3.3. Analysis of the derivatives of g. Our goal in this section is the following
lemma, for which we recall that � is the event that all children i of u satisfy
|Xui,k − Yui,k| ≤ ε. Let �i be the event that |Xui,k − Yui,k| ≤ ε.

LEMMA 4.10. For any 0 < θ∗ < 1, there are constants c,C > 0 such that for
all 0 < ε < 1/4, all d ≥ d∗(θ∗), and for any k ≥ K(θ, d, δ),

E
(
1�

√
|Xu,k+1 − Yu,k+1| | D)≤ CD

(
ε−1e−cD + √

ε
)
E1�i

√
|Xui,k − Yui,k|.
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We begin with an slightly improved version of (3.17): since |Xu,k+1 −Yu,k+1| ≤
2, we can trivially improve (3.17) to

|Xu,k+1 − Yu,k+1|
(4.7)

≤
D∑

i=1

min
{
2, |Xui,k − Yui,k|max

{
hi(XL1(u),k), hi(YL1(u),k)

}}
.

Note that 1� ≤ 1�i
for any i (recall that �i = {|Xui,k − Yui,k| ≤ ε}), and so

|Xu,k+1 − Yu,k+1|1�

≤
D∑

i=1

1�i
min

{
2, |Xui,k − Yui,k|max

{
hi(XL1(u),k), hi(YL1(u),k)

}}
.

Now, the terms on the right-hand side have identical distributions; hence, taking
conditional expectations gives

E
(√|Xu,k+1 − Yu,k+1|1� | D)

≤ DE
(
1�i

min
{
2,

√
|Xui,k − Yui,k|max

{
hi(XL1(u),k), hi(YL1(u),k)

}} | D).
Defining

ZX = min
{
1,
√

|Xui,k − Yui,k|hi(XL1(u),k)
}

and similarly for ZY , we see that to prove Lemma 4.10 it suffices to show that

E(1�i
ZX | D) ≤ C

(
ε−1e−cD + √

ε
)
E1�i

√
|Xui,k − Yui,k|,

and similarly for ZY . We will show this by conditioning on Xui,k and Yui,k ; that is,
we will show the stronger statement that on the event �i ,

E(ZX | D,Xui,k, Yui,k) ≤ C
(
ε−1e−cD + √

ε
)√|Xui,k − Yui,k|(4.8)

(and similarly for ZY ).
We split the analysis of ZX and ZY into two cases. The first case is the easy case:

if η is bounded away from zero or |Xui,k| and |Yui,k| are bounded away from 1 then
the denominator in hi is bounded above.

LEMMA 4.11. For any 0 < θ∗ < 1, there are constants c,C > 0 such that for
all ε ≥ 0, all d ≥ d∗(θ∗), and for any k ≥ K(θ, d, δ), if max{|Xui,k|, |Yui,k|} ≤
1 − ε then

E(ZX | D,Xui,k, Yui,k) ≤ CλD−1

max{√η, ε}
√

|Xui,k − Yui,k|,

and similarly for ZY .
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PROOF. By the definition of hi , and because |Xui,k| ≤ 1 − ε,

hi(Xui,k) ≤ 4

max{η, ε2} min
{∏

j �=i

1 − θXuj,k

1 + θXuj,k

,
∏
j �=i

1 + θXuj,k

1 − θXuj,k

}
.

Conditioning on σu = + and considering the first term in the minimum, Lemma 4.8
implies that

E
(√|Xui,k − Yui,k|hi(XL1(u),k) | D,Xui,k, Yui,k, σu = +)

≤ 2λD−1

max{√η, ε}
√

|Xui,k − Yui,k|.

By symmetry, the same bound holds if we condition on σu = −. Recalling that
ZX ≤ √|Xui,k − Yui,k|hi(XL1(u),k), this completes the proof for ZX . The exact
same argument applies to ZY also. �

If Xui,k and Yui,k are allowed to be arbitrarily close to 1 and η is allowed to be
arbitrarily close to zero, then the argument is somewhat more tricky. The basic idea
is that if Xui,k is close to 1 then σu is very likely to be +, in which case the denom-
inator in h+

i is at least 1 and so h+
i is small. Bad things happen if σu = − because

then we need to consider h−
i , which has a small denominator. However, this event

is very unlikely conditioned on Xui,k being close to 1, and so its contribution can
be controlled.

LEMMA 4.12. For any 0 < θ∗ < 1, there are constants c,C > 0 such that for
all 0 < ε < 1/4, all d ≥ d∗(θ∗), and for any k ≥ K(θ, d, δ), if |Xui,k − Yui,k| ≤ ε

and max{|Xui,k|, |Yui,k|} ≥ 1 − ε then

E(ZX | D,Xui,k, Yui,k) ≤ C
(
λD−1 + √

ε
)√|Xui,k − Yui,k|,

and similarly for ZY .

Before proving Lemma 4.12, note that together with Lemma 4.11 it proves (4.8),
and hence Lemma 4.10.

PROOF OF LEMMA 4.12. Fix θ∗ ∈ (0,1) and take λ < 1 satisfying Lemma 4.8.
Since ε ≤ 1/4, it follows that Xui,k and Yui,k have the same sign. Without loss of
generality, they are both positive; hence, if A = (1 − min{Xui,k, Yui,k})/2 and
B = (1 − max{Xui,k, Yui,k})/2 then 0 ≤ B ≤ A ≤ ε. Note that |Xui,k − Yui,k| =
2|A − B|. Now,

Pr(σui = + | Xui,k, Yui,k) = 1 + Xui,k

2
≥ 1 − A,
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and so

Pr(σu = + | Xui,k, Yui,k) ≥ 1 − A − η.

Since Xui,k is positive,

h+
i (XL1(u),k) = 4

(1 + θXui,k)2

∏
j �=i

1 − θXuj,k

1 + θXuj,k

≤ 4
∏
j �=i

1 − θXuj,k

1 + θXuj,k

and similarly for Y . By Lemma 4.8, if d∗ is sufficiently large then

E

(√
|Xui,k − Yui,k|h+

i (XL1(u),k) | D,Xui,k, Yui,k, σu = +
)

≤ 4E
(√√√√|Xui,k − Yui,k|

∏
j �=i

1 − θXuj,k

1 + θXuj,k

∣∣∣D,Xui,k, Yui,k, σu = +
)

(4.9)

≤ 4λD−1
√

|Xui,k − Yui,k|,
since the Xuj,k are independent conditioned on σu. On the other hand, since
ZX ≥ 0 we have

E(ZX | D,Xui,k, Yui,k)

≤ E(ZX | D,Xui,k, Yui,k, σu = +)

+ Pr(σu = − | Xui,k, Yui,k)E(Z | D,Xui,k, Yui,k, σu = −)(4.10)

≤ E(ZX | D,Xui,k, Yui,k, σu = +)

+ (A + η)E(ZX | D,Xui,k, Yui,k, σu = −).

By (4.9), the first term of (4.10) is bounded by 4λD−1√|Xui,k − Yui,k|.
Next, we consider the second term of (4.10); we will consider the coefficients

A and η separately. Now, ZX ≤
√

|Xui,k − Yui,k|h−
i (XL1(u),k) and

h−
i (XL1(u),k)) = 4

(1 − θXui,k)2

∏
j �=i

1 + θXuj,k

1 − θXuj,k

≤ 1

max{η,B}2

∏
j �=i

1 + θXuj,k

1 − θXuj,k

.

Then Lemma 4.8 implies that for d∗ sufficiently large,

E

(√
h−

i (XL1(u),k) | D,Xui,k, Yui,k, σu = −
)

≤ 1

max{η,B}
∏
j �=i

E

(√
1 + θXuj,k

1 − θXuj,k

∣∣∣D,σu = −
)

(4.11)

≤ λD−1

max{η,B} .
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In particular, we have

ηE(Z | D,Xui,k, Yui,k, σu = −)

≤ η
√

|Xui,k − Yui,k|E
(√

h−
i (XL1(u),k) | D,Xui,k, Yui,k, σi

)
(4.12)

≤ λD−1
√

|Xui,k − Yui,k|,
which handles the term in (4.10) involving η.

Next, we consider the term involving A. If A ≤ 2B then we may use (4.11) for
the bound

E

(√
h−

i (XL1(u),k) | D,Xui,k, Yui,k, σu = −
)

≤ λD−1

B
≤ 2λD−1

A
.(4.13)

Alternatively, if A ≥ 2B then |Xui,k − Yui,k| = 2|A − B| ≥ A; since Z ≤ 1, we
have

AE(Z | Xui,k, Yui,k, σu = −) ≤ A ≤
√

A|Xui,k − Yui,k| ≤
√

ε|Xui,k − Yui,k|.
Combining this with (4.13), we have

AE(Z | Xui,k, Yui,k, σu = −) ≤ max
{
2λD−1,

√
ε
}√|Xui,k − Yui,k|

in either case. Combining this with (4.12) and going back to (4.10), we have

E(Z | D,Xui,k, Yui,k) ≤ (
CλD−1 + √

ε
)√|Xui,k − Yui,k|,

which completes the proof. �

4.3.4. Putting it together. Finally, we put together the various cases and prove
Proposition 4.6. First, fix θ∗ and put ε = d−4. The easy case is when η ≥ c, where
c is the constant from Lemma 4.7. In this case, Lemma 4.11 with ε = 0 implies
that

E(ZX | D,Xui,k, Yui,k) ≤ Ce−cD
√

|Xui,k − Yui,k|
and similarly for ZY . Taking the expectation over Xui,k and applying (4.7) implies
that

E
(√|Xu,k+1 − Yu,k+1| | D)≤ CDe−cD

E

√
|Xui,k − Yui,k|.(4.14)

Now consider the case where η ≤ c. By Lemma 4.7 (recalling that ε = d−4), we
have

E
(√|Xu,k+1 − Yu,k+1|1�c | D)≤ Cd2De−cD

E1�c
i

√
|Xui,k − Yui,k|.

By Lemma 4.10, we have

E
(√|Xu,k+1 − Yu,k+1|1� | D)≤ C

(
d4De−cD + d−2D

)
E1�i

√
|Xui,k − Yui,k|.
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Putting these together, we have

E
(√|Xu,k+1 − Yu,k+1| | D)

(4.15)
≤ C

(
d4De−cD + d−2D

)
E

√
|Xui,k − Yui,k|.

Noting that the right-hand side of (4.15) is larger than the right-hand side of (4.14),
we see that (4.15) holds without extra conditions on η. Finally, we integrate out D

in (4.15). Since D ∼ Pois(d), we have ED = d and EDe−cD ≤ e−c′d for some
constant c′ depending on c. In particular, if d is sufficiently large (depending on C

and c, which depend in turn on θ∗) then

CE
(
d4De−cD + d−2D

)≤ 1
2 ,

which proves Proposition 4.6.

5. From trees to graphs. In this section, we will give our reconstruction
algorithm and prove that it performs optimally. It will be convenient for us to
work with block models on fixed vertex sets instead of random ones; therefore, let
G(V +,V −,p, q) denote the random graph on the vertices V + ∪ V − where pairs
of vertices within V + or V − are connected with probability p and pairs of vertices
spanning V + and V − are included with probability q . Note that if V − and V + are
chosen to be a uniformly random partition of [n] then G(V +,V −, a

n
, b

n
) is simply

G(n, a
n
, b

n
).

Let BBPartition denote the algorithm of [24], which satisfies the following
guarantee, where V i denotes {v ∈ V (G) : σv = i}.

THEOREM 5.1. Suppose that G ∼ G(V +,V −, a
n
, b

n
), where |V +| + |V −| =

n + o(n), |V +| − |V −| = O(
√

n) and (a − b)2 > 2(a + b). There exists some
0 ≤ δ < 1

2 such that as n → ∞, BBPartition a.a.s. produces a partition W+ ∪
W− = V (G) such that |W+| = |W−| + o(n) = n

2 + o(n) and |W+�V i | ≤ δn for
some i ∈ {+,−}.

Moreover, BBPartition runs in time O(n1+o(1)).

REMARK 5.2. We should point out that [24] only claims Theorem 5.1 when
V + and V − are uniformly random partitions of [n]; however, one easily de-
duces the result for almost-balanced partitions from the result for uniformly

random partitions: choose ε > 0 so that (a−b)2

2(a+b)
> 1

1−ε
. Given a graph G from

G(V +,V −, a
n
, b

n
), let H be the graph obtained by deleting all but �(1 − ε)n� ver-

tices at random from G. If (W+,W−) is the partition of H according to its vertex
labels then one can check that the sizes of W+ and W− are contiguous with the
sizes of a uniformly random partition of �(1−ε)n�. Hence, the distribution of H is
contiguous with G(�(1 − ε)n�, a

n
, b

n
). The results of [24] then imply that the labels

of H can be recovered adequately (i.e., as claimed in Theorem 5.1); by randomly
labeling the vertices of G that were deleted, we recover Theorem 5.1 as stated.
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Note that by symmetry, Theorem 5.1 also implies that |W−�V j | ≤ δn for j �=
i ∈ {+,−}. In other words, BBPartition recovers the correct partition up to a
relabeling of the classes and an error bounded away from 1

2 . Note that |W+�V i | =
|W−�V j |. Let δ(G) be the (random) fraction of vertices that are mislabeled.

For v ∈ G and R ∈ N, define B(v,R) = {u ∈ G : d(u, v) ≤ R} and S(v,R) =
{u ∈ G : d(u, v) = R}. If B(v,R) is a tree (which it is a.a.s.), and τ is a labeling
τ on its leaves, we consider the following estimator of v’s label: first, take K

large enough so that Proposition 4.2 holds for k = K . For u ∈ S(v,R − K), define
Yu,K(τ ) as the sign of S′

k(τ ), where S′
k is given as in the proof of Proposition 4.2.

That is, Yu,K(τ ) is the sign of a weighted sum of the labeling τ on S(v,R). For
k > K and u ∈ B(v,R − k), define Yu,k(τ ) recursively by Yu,k = g(YL1(u),k−1),
where g is given by (3.14). Then Y satisfies Assumption 4.1.

We remark that the reason for taking this two-stage definition of Y is because
we do not necessarily know how much noise there is on the leaves (i.e., δ), and
so we cannot define Y by (3.1). Defining Y as we have done avoids the need to
know δ, while still satisfying the required assumptions.

Before presenting the algorithm, we will mention one issue that we glossed over
in our earlier sketch: since we will run the black-box algorithm several times, and
since the labels + and − are symmetric, we need some way to break the symmetry
between the various runs of the algorithm. We do this by holding out a single vertex
of high degree (that we call u∗) and breaking symmetry according to the sign of
most of its neighbors.

REMARK 5.3. Our analysis of Algorithm 1 will assume that we can com-
pute with arbitrary precision numbers in constant time. However, Propositions 4.5
and 4.6 can also be used to analyze an implementation of Algorithm 1 with finite-
precision arithmetic. Indeed, the only part of Algorithm 1 where continuous quan-
tities appear is in the computation of Yv,R , and the main question in the compu-
tation of Yv,R is whether the numerical errors accumulate as we repeatedly apply
the recursion g(x) defined in (3.14).

Consider the following finite-precision implementation of the recursion: first,
compute Ŷui,k to the desired precision for all children i of u. Then compute
g(Ŷu,L1(k)) to arbitrary precision, and finally define Ŷu,k to be g(Ŷu,L1(k)) trun-
cated to the desired precision. Let us see what Proposition 4.5 has to say about this
procedure (Proposition 4.6 has similar consequences for the other range of param-
eters): if X denotes the true magnetizations and the rounding error is bounded by
ε then

E(Xu,k+1 − Ŷu,k+1)
2 ≤ E

(
Xu,k+1 − g(ŶL1(u),k) + ε

)2
≤ O(ε) +E

(
Xu,k+1 − g(ŶL1(u),k)

)2
≤ O(ε) + 1

2E(Xu,k − Ŷu,k)
2,
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Algorithm 1 Optimal graph reconstruction algorithm

1: R ← � 1
20(a+b)

logn�
2: Take U ⊂ V to be a random subset of size �√n�
3: Let u∗ ∈ U be a random vertex in U with at least

√
logn neighbors in V \ U

4: W+∗ ,W−∗ ←∅

5: for v ∈ V \ U do
6: W+

v ,W−
v ← BBPartition(G \ B(v,R − 1) \ U)

7: if a > b then
8: relabel W+

v ,W−
v so that u∗ has more neighbors in W+

v than W−
v

9: else
10: relabel W+

v ,W−
v so that u∗ has more neighbors in W−

v than W+
v

11: end if
12: Define ξ ∈ {+,−}S(v,R) by ξu = i if u ∈ Wi

v

13: Add v to W
sgn(Yv,R(ξ))
∗

14: end for
15: for v ∈ U do
16: Assign v to W+∗ or W−∗ uniformly at random
17: end for

which implies that the asymptotic accuracy of our finite-precision scheme is within
O(

√
ε) of optimal.

As presented, our algorithm is not particularly efficient (although it does run
in polynomial time) because we need to re-run BBPartition for almost every
vertex in V . However, one can modify Algorithm 1 to run in O(n1+o(1)) time by
processing o(n) vertices in each iteration (a similar idea is used in [24]). Since
vanilla belief propagation is much more efficient than Algorithm 1 and recon-
structs (in practice) just as well, we have chosen not to present the faster version
of Algorithm 1.

THEOREM 5.4. Algorithm 1 produces a partition W+∗ ∪ W−∗ = V (G) such
that a.a.s. |W+∗ �V i | ≤ (1 + o(1))n(1 − pT (a, b)) for some i ∈ {+,−}.

Theorem 2.8 implies that for any algorithm, |W+∗ �V i | ≥ (1 − o(1))n(1 −
pT (a, b)) a.a.s. Hence, it is enough to show that E|W+∗ �V i | ≤ (1 + o(1))n(1 −
pT (a, b)). Since Algorithm 1 treats every node equally, it is enough to show that
there is some i such that for every v ∈ V i ,

Pr
(
v ∈ W+∗

)→ pT (a, b).(5.1)

Moreover, since Pr(v ∈ U) → 0, it is enough to show (5.1) for every v ∈ V i \ U .
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The proof of (5.1) will take the remainder of this section. First, we will deal with
a technicality: in line 6, we are applying BBPartition to the subgraph of G

induced by V \B(v,R −1)\U ; call this graph Gv . We need to justify the fact that
Gv satisfies the requirements of Theorem 5.1. Now, if W+ = V + \B(v,R−1)\U

and W− = V − \ B(v,R − 1) \ U then Gv ∼ G(W+,W−, a
n
, b

n
). Since∣∣W+∣∣+ ∣∣W−∣∣= n − ∣∣B(v,R − 1)

∣∣− �√n�
and ∣∣∣∣W+∣∣− ∣∣W−∣∣∣∣≤ ∣∣∣∣V +∣∣− ∣∣V −∣∣∣∣+ ∣∣B(v,R − 1)

∣∣+ �√n�
≤ O(

√
n) + ∣∣B(v,R − 1)

∣∣,
we see that the hypothesis of Theorem 5.1 is satisfied as long as |B(v,R − 1)| =
O(

√
n). This is indeed the case; Lemma 4.4 of [25] shows that |B(v,R)| =

O(n1/8) for the value of R that we have chosen.

LEMMA 5.5. |B(v,R)| = O(n1/8) a.a.s.

We conclude, therefore, that Theorem 5.1 applies in line 6 of Algorithm 1.

LEMMA 5.6. There is some 0 ≤ δ < 1
2 such that for any v ∈ V \U , there a.a.s.

exists some i ∈ {+,−} such that |W+
v �V i | ≤ δn, with W+

v defined as in line 6.

5.1. Aligning the calls to BBPartition. Next, let us discuss in more detail
the purpose of u∗ and line 8. Recall that Algorithm 1 relies on multiple applications
of BBPartition, each of which is only guaranteed to give a good labeling up
to swapping + and −. In order to get a consistent labeling at the end, we need to
“align” these multiple applications of BBPartition.

We will break the symmetry between + and − by assuming, from now on, that
u∗ is labeled +. Next, let us note some properties of u∗.

LEMMA 5.7. In line 3, there a.a.s. exists at least one u ∈ U with more than√
logn neighbors in V \ U ; hence, u∗ is well defined. Moreover, there is some

η > 0 such that a.a.s. at least a (1 + η)/2-fraction of u∗’s neighbors in V \ U

either are labeled + (if a > b) or − (if a < b). Finally, for any v ∈ V \U , u∗ a.a.s.
has no neighbors in B(v,R − 1).

PROOF. For the first claim, note that every u ∈ U independently has more than
Binom(�n(1 − ε/2)�, min{a,b}

n
) neighbors in V \ U , and the maximum of

√
n such

variables is of order �(logn/ log logn) � √
logn.

For the second claim, let d be the number of neighbors that u∗ has in V \U and
note that d = O(logn) a.a.s., because the maximum degree of any vertex in G is
O(logn). Conditioned on d , the number of u∗’s +-labeled neighbors in V \ U is
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dominated by Binom(d, a
a+b

· |V +|−d
|V −| ); this is because the neighborhood of u∗ may

be generated by sequentially choosing d neighbors without replacement from V \
U , where a +-labeled neighbor is chosen with probability a

a+b
times the fraction

of +-labeled vertices remaining. Since |V +| = n/2 ± O(n1/2) and d = o(n), we
see that u∗ a.a.s. has at least d( a

a+b
−o(1)) +-labeled neighbors. If a > b, then this

verifies the second claim; if a < b, then we repeat the argument with + replaced
by −.

For the final claim, note that if u∗ has a neighbor in B(v,R − 1) then u∗ ∈
B(v,R). But (by Lemma 5.5) |B(v,R)| = O(n1/8) a.a.s., and so with probability
tending to 1, B(v,R) does not intersect U at all; in particular, it does not con-
tains u∗. �

From now on, suppose without loss of generality that σu∗ = +. Thanks to the
previous paragraph and Theorem 5.1, we see that the relabeling in lines 8 and 10
correctly aligns W+

v with V +.

LEMMA 5.8. There is some 0 ≤ δ < 1
2 such that for any v ∈ V \ U ,

|W+
v �V +| ≤ δn a.a.s., with W+

v defined as in line 8 or line 10.

PROOF. Assume for now that a > b. Just for the duration of this proof, let W+
v

and W−
v denote the partition as defined in line 6 of Algorithm 1, while W̃+

v and
W̃−

v denote the partition defined by line 8 or line 10.
Recall from Lemma 5.7 that u∗ has at least

√
logn neighbors in V \ B(v,R −

1) \ U , of which at least a (1 + η)/2-fraction are labeled +; let d ≥ √
logn be the

number of neighbors that u∗ has in V \ B(v,R − 1) \ U , and let p ≥ (1 + η)/2 be
the fraction that are actually labeled +. Note that the labeling W+

v ,W−
v produced

in line 6 is independent of the set of u∗’s neighbors in V \B(v,R−1)\U , because
W+

v and W−
v depend only on edges within V \ B(v,R − 1) \ U and these are

independent of the edges adjoining u∗. That is, conditioned on d , p, W+
v and

W−
v , the neighbors of u∗ can be generated by taking u∗’s +-labeled neighbors

to be a uniformly random set of pd +-labeled vertices and then taking u∗’s −-
labeled neighbors to be a uniformly random set of (1 − p)d −-labeled vertices.
Hence, if Nij (for i, j ∈ {+,−}) is the number of u∗’s neighbors in V i ∩ W

j
v

then conditioned on d , p and W+
v , N++ is distributed as HyperGeom(dp, |W+

v ∩
V +|, |V +|) and N−+ is distributed as HyperGeom(d(1 − p), |W+

v ∩ V −|, |V −|).
Since d = o(|V +|) = o(|V −|) and d → ∞ a.a.s., we have

N++ ≥ (
1 − o(1)

)
dp

|W+
v ∩ V +|
|V +| = (

1 − o(1)
)2dp|W+

v ∩ V +|
n

,

N−+ ≥ (
1 − o(1)

)
d(1 − p)

|W+
v ∩ V −|
|V −| = (

1 − o(1)
)2d(1 − p)|W+

v ∩ V −|
n

.
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Adding these together, we have

N++ + N−+ = (
1 − o(1)

)d
n

(
α + β + (2p − 1)(α − β)

)
,(5.2)

where α = |W+
v ∩ V +| and β = |W+

v ∩ V −|.
Now, Lemma 5.6 admits two cases: if i = + then

δn ≥ ∣∣W+
v �V +∣∣= ∣∣W+

v ∩ V −∣∣+ ∣∣W−
v ∩ V +∣∣

= ∣∣W+
v ∩ V −∣∣+ n

2
+ o(n) − ∣∣W+

v ∩ V +∣∣,
and we conclude that α − β ≥ (1

2 − δ − o(1)))n. A similar argument when i = −
in Lemma 5.6 shows that in that case α − β ≤ −(1

2 − δ − o(1))n. In either case,
α + β = (1 + o(1))n/2.

If i = + in Lemma 5.6, then since p − 1/2 ≥ η/2, (5.2) implies

N++ + N−+ = (
1 − o(1)

)
d

(
1

2
+ (1/2 − δ)η

2

)
a.a.s. Since N++ +N−+ +N+− +N−− = d , we have in particular N++ +N−+ >

N+− + N−− a.a.s., and so u∗ has most of its neighbors in W+
v . Hence, W̃+

v =
W+

v and so Lemma 5.6 with i = + implies the conclusion of Lemma 5.8 holds.
On the other hand, if i = − in Lemma 5.6 then α − β < −(1

2 − δ)n; by (5.2),
N+− + N−− > N++ + N−+. Then u∗ has most of its neighbors in W−

v and so
W̃+

v = W−
v . By Lemma 5.6 with i = −, the conclusion of Lemma 5.8 holds.

Finally, we mention the case a < b: essentially the same argument holds except
that instead of p ≥ (1 + η)/2 we have p ≤ (1 − η)/2. Then i = + implies that
u∗ has most of its neighbors in W−

v , while i = − implies that u∗ has most of its
neighbors in W+

v . �

5.2. Calculating v’s label. To complete the proof of (5.1) (and hence The-
orem 5.4), we need to discuss the coupling between graphs and trees. We will
invoke a lemma from [25] which says that a neighborhood in G can be coupled
with a multi-type branching process of the sort that we considered in Section 4.
Indeed, let T be the Galton–Watson tree of Section 4 [with d = (a + b)/2] and
let σ ′ be a labeling on it, given by running the two-state broadcast process with
parameter η = b/(a + b). We write TR for T ∩N

R; that is, the part of T which has
depth at most R.

LEMMA 5.9. For any fixed v ∈ G, there is a coupling between (G,σ) and
(T , σ ′) such that (B(v,R), σB(v,R)) = (TR,σ ′

TR
) a.a.s.

Armed with Lemma 5.9, we will consider a slightly different method of gener-
ating G, which is nevertheless equivalent to the original model in the sense that
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the new method and the old method may be coupled a.a.s. In the new construc-
tion, we begin by assigning labels to V (G) uniformly at random. Beginning with
a fixed vertex v, we construct B(v,R − 1) by drawing a Galton–Watson tree of
depth R − 1 rooted at v, with labels distributed according to the broadcast pro-
cess. On the vertices that remain [i.e., those that were not used in B(v,R − 1)],
we construct a graph G′ according to the stochastic block model with parameters
a/n and b/n. Finally, we join B(v,R − 1) to the rest of the graph: for every vertex
u ∈ S(v,R−1), we draw Pois(a/(a+b)) vertices at random from G′ with label σu

and Pois(b/(a +b)) vertices from G′ with label −σu; we connect all these vertices
to u. It follows from Lemma 5.9 that this construction is equivalent to the original
construction. It also follows from Lemma 5.5 that |G′| ≥ n − O(n1/8) a.a.s.

The advantage of the construction above is that it becomes obvious that the
edges of G′ = G \ B(v,R − 1) \ U are independent of both B(v,R − 1) and the
edges joining B(v,R − 1) to G′. Since W+

v and W−
v are both functions of G′ only,

it follows that B(v,R−1) and its edges to G′ are also independent of W+
v and W−

v .
Using this observation, we can improve Lemma 5.9 to include the noisy labels. In
particular, we claim that the labeling ξ produced in line 12 of Algorithm 1 has the
same distribution as the noisy labeling τ of the noisy broadcast process.

In view of Lemma 5.9, it suffices to condition on σ , B(v,R − 1) and G′, and to
show that the conditional distribution of ξ is essentially the same as the conditional
distribution of τ given T and σ ′ in the noisy broadcast process. Since the edges
joining B(v,R−1) to G′ are independent of W+

v and W−
v , for any u ∈ S(v,R−1)

with σu = + we have

#
{
w ∼ u : w ∈ G′, σw = +, ξw = +}∼ Binom

(∣∣V + ∩ W+
v

∣∣, a

n

)
,

#
{
w ∼ u : w ∈ G′, σw = +, ξw = −}∼ Binom

(∣∣V + ∩ W−
v

∣∣, a

n

)
,

#
{
w ∼ u : w ∈ G′, σw = −, ξw = −}∼ Binom

(∣∣V − ∩ W−
v

∣∣, b

n

)
,

#
{
w ∼ u : w ∈ G′, σw = −, ξw = +}∼ Binom

(∣∣V − ∩ W+
v

∣∣, b

n

)
.

Moreover, the random variables above are independent as u ranges over S(v,R −
1). Now, if we define δ = 1

n
|V +�W+

v | then Binom(|V + ∩ W+
v |, a/n) and

Pois(a(1 − δ)/2) are at total variation distance at most O(n−1/2); here, we are
using the fact that |V + ∩ W+

v | = (1 − δ)n/2 ± O(n1/2), which follows because
V +,V − are an equipartition of V (G) and W+

v ,W−
v are an equipartition of V (G′),

which contains all but at most O(
√

n) vertices of G. Similarly, we have

#
{
w ∼ u : w ∈ G′, σw = +, ξw = +} d≈ Pois

(
a(1 − δ)/2

)
,

#
{
w ∼ u : w ∈ G′, σw = +, ξw = −} d≈ Pois(aδ/2),
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#
{
w ∼ u : w ∈ G′, σw = −, ξw = −} d≈ Pois

(
b(1 − δ)/2

)
,

#
{
w ∼ u : w ∈ G′, σw = −, ξw = +} d≈ Pois(bδ/2),

where “
d≈” means that the distributions are at total variation distance at most

O(n−1/2). Note that the distributions on the right-hand side are exactly the dis-
tributions of the noisy labels τ under the noisy broadcast process. By a similar
argument for σu = −, and a union bound over the O(n1/8) choices for u, we see
that the joint distribution of B(v,R) and {ξu : u ∈ S(v,R)} a.a.s. the same as the
joint distribution of TR and {τu : u ∈ ∂TR}. Hence, by Theorem 4.1,

lim
n→∞ Pr

(
Yv,R(ξ) = σv

)= pT (a, b).

By line 13 of Algorithm 1, this completes the proof of (5.1).

APPENDIX: BOUNDS ON E

√
1−θX
1+θX

Because of the form of the recursion (3.14), at various points in our analysis

we require bounds on quantities of the form E

√
1−θX
1+θX

, under various assumptions
on X. These estimates are elementary but tedious to check, and so we have col-
lected them here.

PROOF OF LEMMA 3.16. By Lemma 3.7, we have

Pr(Xui,k ≥ 1 − ηαt | σu = +) ≥ Pr(Xui,k ≥ 1 − ηαt | σui = +) − η

≥ 1 − t−1 − η,

where α = C/(θ2d) can be taken arbitrarily small if we require θ2d to be large.
Fix some ε = ε(θ∗) > 0 to be determined later. Take t = ε−1η−3/4 so that

Pr
(
X ≥ 1 − αη1/4

ε

)
≥ 1 − εη3/4 − η.

Now, suppose that α is small enough so that αε−1 ≤ ε. Then

Pr
(
X ≥ 1 − εη1/4)≥ 1 − εη3/4 − η.(A.1)

Now consider the function

f (x) :=
√

1 − θx

1 + θx
.

Note that f (x) is decreasing in x, and hence

Ef (X) ≤ f (s)Pr(X ≥ s) + f (−1)Pr(X ≤ s),
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for any random variable X supported on [−1,1] and for any s ∈ [−1,1]. Applying
this for s = 1 − εη1/4, we have [by (A.1)]

Ef (X) ≤ f
(
1 − εη1/4)(1 − εη3/4 − η

)+ f (−1)
(
εη3/4 + η

)
.(A.2)

We will now check that if η ≤ 1−θ∗
2 < 1/2 then each term on the right-hand side

of (A.2) can be made strictly smaller than 1/2, and also smaller than 2η1/4, by
taking ε = ε(θ∗) small enough. This will complete the proof of the lemma.

We consider the term involving f (−1) first:

f (−1)
(
εη3/4 + η

)= εη1/4
√

1 − η +
√

η(1 − η).(A.3)

On the interval η ∈ [0, 1−θ∗
2 ], √

η(1 − η) is bounded away from 1/2, and
η1/4√1 − η is bounded above. Hence, (A.3) is bounded away from 1/2 as long
as ε(θ∗) is small enough. On the other hand, (A.3) is also bounded by 2η1/4 as
long as ε ≤ 1.

Next, we consider the f (1 − εη1/4) term of (A.2). Note that θ(1 − εη1/4) ≥
1 − 2η − εη1/4 and so

f
(
1 − εη1/4)≤

√
2η + εη1/4

2 − (2η + εη1/4)
≤
√

η

1 − η
+ Cεη1/4,

where the second inequality follows from applying a first-order Taylor expansion
to the function

√
x/(1 − x) near x = η. Here, C is a universal constant because

the assumptions η ≤ 1/2 and ε ≤ 1 ensure that the derivative of
√

x/(1 − x) is
universally bounded on the interval of interest. Thus,

f
(
1 − εη1/4)(1 − εη1/4 − η

)≤ f
(
1 − εη1/4)(1 − η)

(A.4)
≤
√

η(1 − η) + Cεη1/4(1 − η).

As before, on the interval η ∈ [0, 1−θ∗
2 ], √

η(1 − η) is bounded away from 1/2,
and η1/4(1 − η) is bounded above. Hence, (A.4) is bounded away from 1/2 as
long as ε(θ∗) is small enough. On the other hand, (A.4) is also smaller than 2η1/4

as long as ε is small enough compared to C. �

PROOF OF LEMMA 4.8. Fix some ε = ε(θ∗) > 0 to be determined. If θ2d is
sufficiently large compared to ε, Proposition 4.2 implies that

Pr(Xui,k ≥ 1 − ε | σu = +) ≥ 1 − ε − Pr(σui = − | σu = +) ≥ 1 − ε − η.

Now, if f is any decreasing function then

Ef (X) ≤ f (1 − ε)Pr(X ≥ 1 − ε)

+ f (0)Pr(0 ≤ X < 1 − ε)(A.5)

+ f (−1)Pr(X < 0).
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We will apply this with f (x) =
√

1−θx
1+θx

; note that f (0) = 1 and f (−1) =√
(1 − η)/η, where η = 1−θ

2 .
Now, we consider two regimes. If

√
η ≥ θ∗/10, we bound

E
(
f (Xui,k) | σu = +)≤ Pr(Xui,k ≥ 1 − ε | σu = +)f (1 − ε)

+ Pr(Xui,k < 1 − ε | σu = +)f (−1)
(A.6)

≤ (1 − ε − η)f (1 − ε) + ε + η√
η

≤ (1 − η)f (1 − ε) +
√

η(1 − η) + 10ε

θ∗ .

Now, f (1 − ε) = η
1−η

+ O(ε), and so

E
(
f (Xui,k) | σu = +)≤ 2

√
η(1 − η) + O(ε),

where the constants in O(ε) depend on θ∗. Since 2
√

η(1 − η) is bounded away
from 1 while η is bounded away from 1/2, it follows that for small enough ε

(depending on θ∗), E(f (Xui,k) | σu = +) is bounded away from 1.
On the other hand, if

√
η ≤ θ∗/10 then we use (A.5) and the fact (from

Lemma 4.9) that Pr(Xui,k < 0 | σu = +) ≤ 2η to bound

Ef (X) ≤ (1 − ε)f (1 − ε) + εf (0) + 2ηf (−1)

≤ f (1 − ε) + ε + 2
√

η.

Now, if ε ≤ 1
2 then f (1 − ε) ≤ √

1 − θ∗/2 ≤ 1 − θ∗/4, so

Ef (X) ≤ 1 − θ∗/4 + ε + 2
√

η ≤ 1 − θ∗

20
+ ε,

which is bounded away from 1 if ε is small enough. �
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