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CONNECTIVITY OF SOFT RANDOM GEOMETRIC GRAPHS

BY MATHEW D. PENROSE

University of Bath

Consider a graph on n uniform random points in the unit square, each
pair being connected by an edge with probability p if the inter-point distance
is at most r . We show that as n → ∞ the probability of full connectivity is
governed by that of having no isolated vertices, itself governed by a Pois-
son approximation for the number of isolated vertices, uniformly over all
choices of p, r . We determine the asymptotic probability of connectivity for
all (pn, rn) subject to rn = O(n−ε), some ε > 0. We generalize the first result
to higher dimensions and to a larger class of connection probability functions.

1. Introduction. For certain random graph models, it is known that the main
obstacle to connectivity is the existence of isolated vertices. In particular, for the
Erdős–Rényi random graph G(n,pn) the probability that the graph is disconnected
but free of isolated vertices tends to zero as n → ∞, for any choice of (pn)n≥1;
see [6] or [2], Theorem 7.3. Likewise for the geometric graph (Gilbert graph)
G(Xn, rn) with vertex set Xn given by a set of n independently uniformly dis-
tributed points in [0,1]d with d ≥ 2, and with an edge included between each pair
of vertices at distance at most rn, the probability that the graph is disconnected but
free of isolated vertices tends to zero as n → ∞, for any choice of (rn)n∈N; this
follows, for example, from the results in [14, 15].

Moreover, for both of these types of random graph (denoted G), the number of
isolated vertices [denoted N0(G)] enjoys a Poisson approximation for large n, so
that with K denoting the class of connected graphs, for large n we have

P [G ∈ K] ≈ P
[
N0(G) = 0

] ≈ exp(−EN0).(1.1)

These results have very different proofs for geometric graphs than they do for
Erdős–Rényi graphs. In the present paper we prove results of this kind for a class of
random graph models which generalizes both G(n,p) and G(Xn, r); we connect
each pair of points of Xn with a probability that is a function φ of the distance
(or more generally, the displacement) between them. The function φ is called the
connection function, and we refer to the resulting graph as a soft random geometric
graph.
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We show that the second approximation in (1.1) holds for soft random geometric
graphs for large n, uniformly over connection functions that decay exponentially in
some fixed positive power of distance, while the first approximation in (1.1) holds
uniformly over connection functions that are zero beyond a given distance, with
distance measured on the characteristic length scale of the connection function.
For a more restricted class of connection functions, which amount to retaining
each edge of G(Xn, r) with probability p in d = 2, we determine the limiting
behavior of P [G ∈ K] for any sequence (rn,pn)n≥1 such that there exists ε > 0
with rn = O(n−ε).

We also show for general d that for any (pn)n≥1 with pn � (logn)/n, if we
place the vertices of G(n,pn) at the points of Xn and add the edges in order of
increasing Euclidean length, with high probability the threshold for connectivity
equals the threshold for having no isolated vertices. This was previously known
for pn ≡ 1 [15].

There is substantial interest in these types of results in the engineering and com-
puter science communities. Connectivity of random geometric graphs is of inter-
est because of applications in wireless communications, for example, in obtaining
bounds for the capacity of wireless networks [7, 8]. The “hard” version of the ge-
ometric graph model (with φ the indicator of a ball centred at the origin) is not
always realistic; communication between two nodes may not be guaranteed even
when they are close to each other [5, 7, 10, 18]. Also, in some cases randomness
may be deliberately introduced into the connections between nearby nodes as a
means to make the network secure [9, 17, 18]. Among other things, our results
address a version of a conjecture of Gupta and Kumar [7], as discussed at the end
of Section 2.

2. Main results. Throughout this paper we assume d ∈ N with d ≥ 2. Given
a measurable function φ :Rd → [0,1] that is symmetric [i.e., satisfies φ(x) =
φ(−x) for all x ∈ R

d ], and given a locally finite set X ⊂ R
d , let Gφ(X ) be the

random graph with vertex set X , obtained when each potential edge {x, y} (with
x, y ∈ X and x 
= y) is present in the graph with probability φ(x − y), indepen-
dently of all other possible edges.

Let � := [0,1]d . For λ > 0 let Hλ denote a homogeneous Poisson point process
in R

d of intensity λ, viewed as a random subset of Rd , and let Pλ := Hλ ∩�. Given
φ as above, let Gφ(Xn) and Gφ(Pλ) be the resulting graphs as just described. We
refer to φ as the connection function.

Soft random geometric graphs of this type are finite-space versions of the so-
called random connection model of continuum percolation; for further motivation,
see [11, 13]; see also [11], Section 1.5, for a formal construction.

We consider various classes of connection functions φ. Let | · | denote the Eu-
clidean norm on R

d . Let �d be the class of connection functions φ on R
d that
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satisfy

φ(x) ≥ φ(y) whenever |x| ≤ |y|.(2.1)

In particular, every φ ∈ �d is radially symmetric, that is, satisfies φ(x) = φ(y)

whenever |x| = |y|. Condition (2.1) is physically reasonable and is imposed on the
connection functions considered in [11], for example.

Given a connection function φ on R
d , define the maximum value of φ by

μ(φ) := sup
{
φ(x) :x ∈ R

d}
.

Given also η > 0, let

ρη(φ) := inf
{|x| :x ∈ R

d, φ(x) < ημ(φ)
}

(2.2)

and also

ρ0(φ) := sup
{|x| :x ∈ R

d, φ(x) > 0
}
,

which may be infinite.
Let 	d,η denote the set of connection functions φ on R

d such that first ρη(φ) ∈
(0,∞), second

φ(x) ≤ 3η−1μ(φ) exp
(−η

(|x|/ρη(φ)
)η)

, x ∈ R
d(2.3)

and third, φ ∈ �d if d ≥ 3. Thus 	d,η ⊂ �d for d ≥ 3 but not for d = 2. Let 	0
d,η

be the class of connection functions φ ∈ 	d,η that also satisfy

ρ0(φ) ≤ η−1ρη(φ).(2.4)

For η > η′ > 0 we have 	d,η ⊂ 	d,η′ and 	0
d,η ⊂ 	0

d,η′ . Condition (2.3) states that
if we view ρη(φ) as the characteristic length scale of φ, then the function φ(x)

decays exponentially in the ηth power of the length of x, with length measured in
terms of the characteristic length scale of φ.

Given d , define �step ⊂ 	0
d,1 ∩ �d by

�step := {
φr,p : r > 0,p ∈ (0,1]},

where for r > 0 and 0 < p ≤ 1, we set φr,p(x) := p1[0,r](|x|). The graph
Gφr,p (Xn) may be viewed as the intersection of the (Gilbert) random geometric
graph G(Xn, r) and the Erdős–Rényi random graph G(n,p).

Rayleigh fading functions are another class of connection functions, where
φ(x) = exp(−β(|x|/ρ)γ ) for some fixed positive β,γ,ρ > 0 (typically γ = 2),
which is important in application; see [4, 16]. Such connection functions lie in
	d,η for suitable η > 0, which depends on β and γ but not on the length-scale ρ.

For any graph G let N0(G) denote the number of isolated vertices in G. Also let
K denote the class of connected graphs. Our first two main results are as follows.
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THEOREM 2.1. Let η ∈ (0,1], k ∈N0 := {0,1, . . .}. Then

lim
n→∞ sup

φ∈	d,η

∣∣P [
N0

(
Gφ(Xn)

) = k
] − e−In(φ)In(φ)k/k!∣∣ = 0,

where we put In(φ) := n
∫
� exp(−n

∫
� φ(y − x)dy)dx.

THEOREM 2.2. Let η ∈ (0,1]. Then

lim
n→∞ sup

φ∈	0
d,η

P
[{

N0
(
Gφ(Xn)

) = 0
} \ {

Gφ(Xn) ∈ K
}] = 0.(2.5)

It is an immediate corollary of these two theorems that for any η ∈ (0,1],
lim

n→∞ sup
φ∈	0

d,η

∣∣P [
Gφ(Xn) ∈K

] − exp
(−In(φ)

)∣∣ = 0.(2.6)

An essentially equivalent way to state the preceding results is the following.

THEOREM 2.3. Let α ∈ [0,∞] and η ∈ (0,1], and suppose (φn)n∈N is a se-
quence of connection functions in 	d,η, satisfying

n

∫
�

exp
(
−n

∫
�

φn(y − x)dy

)
dx → α(2.7)

as n → ∞ (possibly just along some subsequence). If α ∈ (0,∞), then as n → ∞
(along the same subsequence if applicable), we have for k ∈ N0 := {0,1, . . .} that

P
[
N0

(
Gφn(Xn)

) = k
] → e−ααk/k!.(2.8)

If α = 0, then P [N0(Gφn(Xn)) = 0] → 1, and if α = ∞, then P [N0(Gφn(Xn)) =
k] → 0 for all k ∈N0. Finally, if φn ∈ 	0

d,η for all n, then

P
[
Gφn(Xn) ∈ K

] → e−α as n → ∞ along the subsequence,(2.9)

with e−α interpreted as 0 for α = ∞.

For an example of functions that are not covered by our results, consider taking
φn(x) = min(1, εn/|x|) with εn some sequence tending to zero. Then there is no
η ∈ (0,1] such that φn ∈ 	d,η for all n. Another example would be if φ was the
indicator of an annulus centered at the origin; this would have ρη(φ) = 0 and thus
not be in 	d,η for any η > 0.

Our definition of 	d,η means we restrict attention to connection functions φ ∈
�d when d ≥ 3. This is because to deal with all kinds of boundary regions of � in
d ≥ 3, we use the radial symmetry of φ; see Lemma 3.1(b) below, and the result
from [15] or [12] used in its proof. When d = 2 the only kinds of boundary regions
are either near the corners of � (a “small” region) or near the 1-dimensional edges
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[which can be dealt with using the condition φ(x) = φ(−x); see Lemma 3.1(a)
below], so we do not require φ ∈ �2 for the results above.

Given r ≥ 0 and p ∈ (0,1] and finite X ⊂ �, write Gr,p(X ) for Gφr,p (X ).
Given p, a natural coupling of all the graphs Gr,p(Xn), r ≥ 0, goes as follows:
let Gr,p(Xn) be the subgraph of G√

d,p(Xn), with vertex set Xn, and edge set con-
sisting of all edges of Euclidean length at most r . With this coupling, Gr,p(Xn)

is a subgraph of Gs,p(Xn) whenever r ≤ s ≤ √
d . Given p, define the thresholds

τn(p) := inf{r :Gr,p(Xn) ∈ K}, and σn(p) := inf{r :N0(Gr,p(Xn)) = 0}, with the
infimum of the empty set interpreted as +∞. Clearly σn(p) ≤ τn(p) almost surely.
Our next result gives an asymptotic equivalence of these two thresholds.

THEOREM 2.4. Given any [0,1]-valued sequence (pn)n∈N with npn/ logn →
∞ as n → ∞, it is the case that

lim
n→∞P

[
τn(pn) = σn(pn)

] = 1.

In the case where d = 2 and φn ∈ �2 ∩ 	2,η for some η ∈ (0,1], we shall
make Theorem 2.3 more explicit, by characterizing those sequences φn which
satisfy (2.7). Setting pn := μ(φn), we find that the main contribution to the in-
tegral in (2.7) comes from x in the interior of � when pn � (1/ logn), while the
main contribution comes from x near the boundary but not the corners of � when
n−1/3(logn)−1 � pn � 1/ logn, and the main contribution comes from x near the
corners of � when pn � n−1/3(logn)−1.

We state this more precisely in Theorem 2.5 below, which requires further
notation. Given real-valued functions f,g, recall that f (n) = ω(g(n)) means
g(n) = o(f (n)) (as n → ∞), f (n) = �(g(n)) means g(n) = O(f (n)) and
f (n) = �(g(n)) means f (n) = O(g(n)) and g(n) = O(f (n)). Finally f (n) ∼
g(n) means f (n) = (1 + o(1))g(n). For any connection function φ we set

I (φ) :=
∫
Rd

φ(x) dx.(2.10)

If η ∈ (0,1] and φ ∈ 	2,η, then set

J1(φ) := J1(φ, η) := μ(φ)−1
∫ ∞

0
φ

((
ρη(φ)t,0

))
dt;(2.11)

J2(φ) := J2(φ, η) := μ(φ)−1
∫ ∞

0
φ

((
ρη(φ)t,0

))
2πt dt.(2.12)

For η ∈ (0,1] and φ ∈ �2 ∩ 	2,η, we have I (φ) = μ(φ)ρη(φ)2J2(φ), and for
φ ∈ �step we have J1(φ) = 1 and J2(φ) = π .

The integrals J1(φ) and J2(φ) may be viewed as measures of the “shape” of φ,
separate from μ(φ) and ρη(φ), which measure the vertical and horizontal “scale”
of φ, respectively. Note that for η ∈ (0,1] and i = 1,2, we have

0 < inf
φ∈�2∩	2,η

Ji(φ, η) ≤ sup
φ∈�2∩	2,η

Ji(φ, η) < ∞.(2.13)
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THEOREM 2.5. . Let η ∈ (0,1], α ∈ (0,∞). Suppose d = 2 and φn ∈ 	2,η ∩
�2 for n ∈ N. Set rn := rη(φn) and pn := μ(φn). Then (2.7) holds under any of the
following conditions as n → ∞:

(1) pn = ω(1/ logn) and nI (φn) − logn → − logα;
(2) pn = o(1/ logn) and pn = ω(n−1/3(logn)−1) and

nI (φn) = log
(

4J2(φn)

α2J1(φn)2

)
+ log

(
n

pn

)
− log log

(
n

pn

)
+ o(1);(2.14)

(3) pn = o(n−1/3(logn)−1) and rn = n−�(1) and

nI (φn) = 4
(
log(1/pn) − log log(1/pn) + log

(
J2(φn)/

(
αJ1(φn)

2))) + o(1).

We also deal with the boundary cases pn = �(1/ logn) and pn =
�(n−1/3(logn)−1); see Theorems 8.1 and 8.2.

We now discuss related work and open problems. Note that (2.8) [but not (2.9)]
of Theorem 2.3 was already proved by Yi et al. [18] in the special case with d = 2
and φn ∈ �step under the condition pn = ω(1/ logn). Here we are considering a
much more general class of sequences of connection functions φn.

For a discussion of these problems from a statistical physics viewpoint via for-
mal series expansions and for further discussion of motivation, see Coon et al. [4].
The methods of Krishnan et al. [9] (see Remark 3 of that paper) could be used to
give some limiting inequalities for the probability of connectivity in the special
case of connection functions in �step [whereas our (2.6) provides a limiting equal-
ity for a more general class of connection functions]. The main concern in [9] is
with a certain nonindependent randomization (random key graphs) to determine
which of the edges (below the threshold radius) are present, which is of interest
from an engineering perspective; see also [17]. It would be interesting to try to
extend our results to these random key graphs.

A related random graph model is the bluetooth graph; this is a subgraph of
the “hard” random geometric graph with edges selected at random according to
a restriction on vertex degrees. See [3] for results on connectivity of bluetooth
graphs.

Another related problem is that of Hamiltonicity. Analogously to (2.5), one
might speculate that for large n, the probability that Gφ(Xn) is non-Hamiltonian
while having minimum degree at least 2, might vanish uniformly over connection
functions in �step (or indeed, connection functions in 	0

d,η). For the more restricted
class of connection functions of “hard” random geometric graphs, this was proved
in [1]. Some of the ideas of proof in the present paper are related to methods used
in [3] and in [1].

Given k ∈ N, and given a graph G, let N<k(G) be the number of vertices of G

of degree less than k, and let Kk be the class of k-connected graphs. In view of the
results from [15], one might expect (2.5) to hold with N0 replaced by N<k and K
replaced by Kk , for any fixed k ∈ N.
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In a much-cited paper, Gupta and Kumar [7] conjectured that if d = 2, Xn con-
sists of n points uniformly distributed in a disk of unit area (rather than the unit
square considered here), and φn = φrn,pn , then P[Gφn(Xn) ∈ K] → 1 if and only if
nπr2

npn − logn → ∞. Our results (Theorems 2.3, 2.5 and 8.1) address the corre-
sponding conjecture for points in the unit square, showing that under the additional
assumption that pn = �(1/ logn), the conjecture is true and also P[Gφn(Xn) ∈
K] → 0 if nπr2

npn − logn → −∞. Our results also show that if pn = ω(1/ logn)

and if nπr2
npn − logn → β ∈ R, then P[Gφn(Xn) ∈K] → exp(−e−β).

However, if one assumes instead that pn = o(1/ logn) and pn =
ω(n−1/3(logn)−1) and (2.14) holds, then it is easily verified that nπr2

npn −
logn → ∞, but our results show that P[Gφn(Xn) ∈ K] tends to a limit strictly
between 0 and 1, so the conjecture fails. Essentially, this is because, in this case,
the mean number of isolated vertices in the interior of � tends to zero, but the
mean number of isolated vertices near the boundary does not. In this regime the
corner effects are not the most important, and we would expect something similar
to hold in the unit disk, as considered in [7]. More generally, it would be of interest
to extend our results to the case of other shaped regions such as smoothly bounded
regions, but this would be a nontrivial task because the boundary effects can be
quite strong [essentially because of the exponential factor in the expression on the
left of (2.7)].

The remaining sections of the paper are organized as follows. In Section 3 we
prove Theorem 3.1, which is a Poissonized version of Theorem 2.1 (i.e., one with
the point process Xn replaced by Pn), of interest in its own right. In Sections 4
and 5, we prove Theorem 5.1, which is (loosely speaking) a Poissonized version
of Theorem 2.2, also of interest in its own right.

In Section 6, we shall de-Poissonize, thereby completing the proof of Theo-
rems 2.1, 2.2 and 2.3. In Section 7 we prove Theorem 2.4. In Section 8, we prove
Theorems 2.5, 8.1 and 8.2.

We conclude this section with some remarks on the proofs. As we have men-
tioned, many of the results presented here might naturally be conjectured in view
of known results for random “hard” geometric graphs [14, 15], for Erdős–Rényi
random graphs [2, 6] and a (slightly weaker) explicit conjecture along these lines
given in [7]. These references date back to the last century, but the conjectures
have not been proved before now, despite the considerable influence of Gupta and
Kumar [7] in the applied literature; see, for example, the discussion in [17].

We believe that there are two reasons for this. One is that different arguments
are used to prove these results depending on whether or not μ(φn) tends to zero
faster than a certain rate. The division between Sections 4 and 5 reflects this, and
Section 3 is also divided along these lines. The balance between geometrical and
combinatorial arguments is different in these different settings.

The other reason is that the proof is not just a matter of reassembling known ar-
guments. For example, a part of the argument is concerned with ruling out the pos-
sibility that there are two large disjoint components. For “hard” geometric graphs
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[14, 15], any two such components are separated by a connected region of empty
space, and one can use discretization, spatial independence and path-counting ar-
guments directly. In the present “soft” case, however, the physical separation of
components is not at all obvious. Instead, we proceed more indirectly via a notion
of local good behavior of our point process (the “blue cubes” of Section 5.2) with
finite-range dependence, after which we can use path-counting arguments to es-
tablish that there is a single giant region of “blue cubes” corresponding to a single
large component of our graph.

3. Poisson approximation. In this section we prove the following Pois-
sonized version of Theorem 2.1 (we shall de-Poissonize in Section 6).

THEOREM 3.1. Let α > 0 and η ∈ (0,1]. Suppose (λ(n))n∈N is an increasing
(0,∞)-valued sequence that tends to ∞ as n → ∞, and (φλ)λ>0 is a collection of
connection functions in 	d,η. Suppose that as λ → ∞ along the sequence (λ(n)),
we have

λ

∫
�

exp
(
−λ

∫
�

φλ(y − x)dy

)
dx → α.(3.1)

Then for k ∈ N0 we have as λ → ∞ along the same sequence, that

P
[
N0

(
Gφλ(Pλ)

) = k
] → e−ααk/k!.(3.2)

Our strategy of proof is as follows. When pλ := μ(φλ) is “small,” we use the
method of moments, the Mecke formula (3.5) and Bonferroni bounds. When pλ is
“big” we shall proceed by the Chen–Stein method for Poisson approximation of
N0(Gφλ(Pλ)), which may be approximated (via discretization of space) by a sum
of “mostly independent” indicator functions.

In proving (3.2), we shall use the following notation. We write with high prob-
ability or w.h.p. to mean with probability tending to 1 as λ → ∞. All asymp-
totic statements are taken to be as λ → ∞ along the sequence λ(n) mentioned
in Theorem 3.1. Also, for A,B ⊂ R

d we write A ⊕ B for {x + y :x ∈ A,y ∈ B}
(Minkowski addition of sets).

For any finite (deterministic) A⊂ R
d , and any φ ∈ 	d,η, set

hφ(A) := P
[
Gφ(A) ∈K

]
,(3.3)

and for any y ∈ R
d with y /∈ A, set

gφ(y,A) := 1 − ∏
x∈A

(
1 − φ(y − x)

)
(3.4)

= P
[
y is nonisolated in Gφ

(
A∪ {y})].

The left-hand side of (3.1) equals EN0(Gφλ). This is a consequence of the fol-
lowing formula, which we shall use repeatedly. Suppose k ∈ N and f is a mea-
surable nonnegative function defined on (Rd)k × Gk where Gk is the space of all
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graphs on vertex set {1, . . . , k}. Then given a connection function φ, for λ > 0 we
have

E


=∑
X1,...,Xk∈Pλ

f
(
X1, . . . ,Xk,Gφ(Pλ)|X1,...,Xk

)
1Dφ(X1,...,Xk;Pλ)

= λk
∫
�

dx1 · · ·
∫
�

dxkE
[
f

(
x1, . . . , xk,Gφ

({x1, . . . , xk}))](3.5)

× exp
(
−λ

∫
�

gφ

(
y; {x1, . . . , xk})dy

)
,

where the sum is over all ordered k-tuples of distinct points of Pλ, and
Gφ(Pλ)|X1,...,Xk

is the subgraph of Gφ(Pλ) induced by vertex set {X1, . . . ,Xk}
with the vertex Xi given the label i for each i, and Dφ(X1, . . . ,Xk;Pλ) is the
event that there is no edge of Gφ(Pλ) between any vertex in {X1, . . . ,Xk} and any
vertex in Pλ \ {X1, . . . ,Xk}.

Formula (3.5) is related to the Slivnyak–Mecke formula in the theory of Poisson
processes; here we just call it the Mecke formula. It can be proved by conditioning
on the number of points of Pλ; see the proofs of [12], Theorem 1.6 and [13],
Proposition 1.

We shall use the following inequality more than once. Given connection func-
tion φ and given x, x1, . . . , xk ∈ �, by the Bonferroni bound

gφ

(
x; {x1, . . . , xk}) ≥

(
k∑

i=1

φ(x − xi) dx

)
− ∑

1≤i<j≤k

φ(x − xi)φ(x − xj ),

so integrating over x ∈ �, we obtain∫
�

gφ

(
x; {x1, . . . , xk})dx ≥

(
k∑

i=1

∫
�

φ(x − xi) dx

)
− k2μ(φ)I (φ).(3.6)

Let H denote the half-space [0,∞) × R
d−1, and let Q denote the orthant

[0,∞)d . For x ∈ Q let Qx := {y ∈ Q :‖x‖1 ≤ ‖y‖1}, where ‖ · ‖1 is the �1 norm.

LEMMA 3.1. Let η ∈ (0,1] and φ ∈ 	d,η. Then: (a) if d = 2, for any x =
(x1, x2) ∈ H and y = (y1, y2) ∈ H with x1 ≤ y1, and r ∈ [ρη(φ),∞], setting
φ(r)(x) := φ(x)1[0,r](|x|) we have∫

H

(
gφ(r)

(
z, {x, y}) − φ(r)(z − x)

)
dz ≥ (η/4)μ(φ)ρη(φ)min

(|y − x|, ρη(φ)
);

(b) if d ≥ 3, and x ∈ Q, y ∈ Qx , then∫
Q

(
gφ

(
z, {x, y}) − φ(z − x)

)
dz

(3.7)
≥ η1μ(φ)ρη(φ)d−1 min

(|y − x|, ρη(φ)
)
,

where η1 > 0 is a constant depending only on d and η.
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PROOF. (a) Let us assume x2 ≤ y2 (the other case may be treated similarly).
For any z ∈ R

2, since gφ(r)(z, {x, y})−φ(r)(z− x) = (1 −φ(r)(z− x))φ(r)(z− y),
we have gφ(r)(z, {x, y})−φ(r)(z − x) ≥ (φ(r)(z − y)−φ(r)(z − x))+. Therefore it
suffices to prove ∫

H

(
φ(r)(z − y) − φ(r)(z − x)

)
+ dz

(3.8)
≥ (η/4)μ(φ)ρη(φ)min

(|y − x|, ρη(φ)
)
.

Now∫
H

(
φ(r)(z − y) − φ(r)(z − x)

)
+ dz ≥

∫
{y}⊕Q

(
φ(r)(z − y) − φ(r)(z − x)

)
dz

=
∫

Q
φ(r)(w)dw −

∫
{y−x}⊕Q

φ(r)(w)dw

=
∫

Q\({y−x}⊕Q)
φ(r)(w)dw.

If |y − x| ≤ ρη(φ), then the region Q \ ({y − x} ⊕ Q) contains either the rectangle
[0, |y − x|/2] × [0, ρη(φ)/2] or the rectangle [0, ρη(φ)/2] × [0, |y − x|/2] (or
both), and the function φ(r) exceeds ημ(φ) on either of these rectangles, so that∫

Q\({y−x}⊕Q) φ
(r)(w)dw ≥ η|y − x|ρη(φ)μ(φ)/4.

If |y − x| ≥ ρη(φ), then the region Q \ ({y − x} ⊕ Q) contains the square
[0, ρη(φ)/2]2, so that

∫
Q\({y−x}⊕Q) φ

(r)(w)dw ≥ ηρη(φ)2μ(φ)/4. This gives
us (3.8).

(b) Now suppose d ≥ 3 (so φ ∈ �d by definition of 	d,η). For x, y ∈ Q, we
have by Fubini’s theorem and (2.2) that∫

Q

(
gφ

(
z, {x, y}) − φ(z − x)

)
dz =

∫ 1

0

∫
Q
(1{gφ(z,{x,y})≥t} − 1{φ(z−x)≥t}) dz dt

≥
∫ ημ(φ)

0

∫
Q
(1{φ(z−y)≥t} − 1{φ(z−x)≥t})+ dzdt(3.9)

=
∫ η

0

∣∣Q ∩ B
(
y;ρu(φ)

) \ B
(
x;ρu(φ)

)∣∣μ(φ)du,

where | · | denotes Lebesgue measure or the Euclidean norm according to context.
For u ≤ η, we have ρu(φ) ≥ ρη(φ). Also, there is a constant η2 > 0 (dependent

on η and d) such that |Q∩B(y;1)\B(x;1)| ≥ η2 min(|y −x|,1) for any x, y ∈ Q
with ‖x‖1 ≤ ‖y‖1; see [12], Proposition 5.16 or [15], Proposition 2.2. Hence for
x ∈ Q, y ∈ Qx and u ∈ (0, η], by scaling

∣∣Q ∩ B
(
y;ρu(φ)

) \ B
(
x;ρu(φ)

)∣∣ ≥ (
ρu(φ)

)d
η2 min

( |y − x|
ρu(φ)

,1
)

≥ η2ρη(φ)d−1 min
(|y − x|, ρη(φ)

)
.
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Putting this into (3.9) gives us result (3.7) with η1 = η2η. �

Given η ∈ (0,1] and given (φλ)λ>0 with each φλ ∈ 	d,η, for λ > 0 we set

pλ := μ(φλ); rλ := ρη(φλ).(3.10)

Recall from (2.10) that I (φ) := ∫
Rd φ(x) dx for any connection function φ. With-

out loss of generality for the purpose of proving Theorem 3.1, we can and do
assume for all λ that ρ0(φλ) ≤ √

d , so that also rλ ≤ √
d . Note that if (3.1) holds,

then

λI (φλ) = �(logλ),(3.11)

and therefore by (3.10),

λpλr
d
λ = �(logλ).(3.12)

Theorem 3.1 follows from the next two lemmas, dealing separately with the
case with pλ = o(1/ logλ) and the case with pλ = ω(1/(logλ)2). In the first case,
we use the method of moments. For m,r ∈ N we write (m)r for the descending
factorial m(m − 1) · · · (m − r + 1).

LEMMA 3.2. Let α ∈ (0,∞), η ∈ (0,1]. Suppose φλ ∈ 	d,η for all λ and
(φλ)λ>0 satisfy (3.1), and that pλ = o(1/ logλ). Then (3.2) holds.

PROOF. Set N0 := N0(Gφλ(Pλ)). Let k ∈ N. For finite A ⊂ R
d , let uλ(A)

denote the probability that Gφλ(A) has no edges. By the Mecke formula (3.5),

E
[
(N0)k

] = λk
∫

· · ·
∫

uλ

({x1, . . . , xk})

× exp
(
−λ

∫
gφλ

(
x, {x1, . . . , xk})dx

)
dx1 · · · dxk,

where all integrals are over �, unless specified otherwise. By the union bound,
uλ({x1, . . . , xk}) ≥ 1 − (k

2

)
pλ, and also gφλ(x, {x1, . . . , xk}) ≤ ∑k

i=1 φλ(x − xi).
Hence

E
[
(N0)k

]

≥ (
1 − k2pλ

)
λk

∫
· · ·

∫
exp

(
−λ

∫ k∑
i=1

φλ(x − xi) dx

)
dx1 · · · dxk(3.13)

= (
1 + o(1)

)
(EN0)

k.

Also, by (3.6), we have

E
[
(N0)k

]

≤ λk
∫

· · ·
∫

exp

(
λk2pλI (φλ) − λ

∫ k∑
i=1

φλ(x − xi) dx

)
dx1 · · · dxk(3.14)

= (
1 + o(1)

)
(EN0)

k,
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where the last line is due to the fact that λpλI (φλ) = O(pλ logλ) → 0, by (3.11)
and our assumption on pλ.

By (3.13), (3.14) and assumption (3.1), we have that E[(N0)k] → αk , and there-
fore by the method of moments (see, e.g., Theorem 1.22 of [2]), we have Poisson
convergence (3.2). �

For the second case with pλ = ω((logλ)−2), we use the Poisson approximation
method from [14]. This method has the potential to provide error bounds, but this
is not our main focus here. For x ∈ R

d and r > 0 set B(x; r) to be the ball {y ∈
R

d : |x − y| ≤ r}. Given η ∈ (0,1], set

K(η) :=
∫
Rd

3η−1 exp
(−η|x|η)

dx.

Note that K(1) ≤ K(η) < ∞, and K(1) = 6π if d = 2, and that by (2.3)
and (2.10),

I (φ) ≤ μ(φ)
(
ρη(φ)

)d
K(η), φ ∈ 	d,η.(3.15)

LEMMA 3.3. Suppose for some η ∈ (0,1] and α ∈ (0,∞) that φλ ∈ 	d,η for
all λ > 0 and φλ satisfy (3.1). Suppose pλ = ω(1/(logλ)2). Then (3.2) holds.

PROOF. Assume rλ ≤ √
d . It follows from (3.1) that (3.11) and (3.12) hold.

Hence by our condition on pλ we have

rd
λ = �

(
(logλ)/(λpλ)

) = o
(
(logλ)3λ−1)

.(3.16)

By (3.12), we can (and do) choose δ > 0 with λpλr
d
λ > δ logλ for all λ. Let ε > 0

be fixed with ε < η/(4K(η)) if d = 2, and with ε < min(2−dπdη/K(η), η1δ)

if d ≥ 3, where η1 is as in Lemma 3.1(b). Truncate φλ by setting φ̃λ(x) :=
φλ(x)1[0,r1−ε

λ ](|x|) for x ∈ R
d . Couple Gφλ(Pλ) and Gφ̃λ

(Pλ) in the following
natural way: starting with Gφλ(Pλ), remove all edges of Euclidean length greater
than r1−ε

λ to obtain Gφ̃λ
(Pλ).

We claim next that (3.1) holds with φλ replaced by φ̃λ, that is,

λ

∫
�

exp
(
−λ

∫
�

φ̃λ(y − x)dy

)
dx → α.(3.17)

Indeed, by the Mecke formula (3.5) the absolute value of the difference between
the left-hand side of (3.17) and that of (3.1) is bounded by the mean number of
vertices having at least one incident edge in Gφλ(Pλ) of length at least r1−ε

λ , and
hence by twice the expected number of such edges. However, by (2.3) the expected
number of such edges is O(λ2 exp(−ηr

−εη
λ )), which is O(λ2 exp(−ηλεη/(2d)))

by (3.16), and therefore tends to zero.
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Let �′
λ be the set of x ∈ � distant more than 4r1−ε

λ in the �∞ norm from the
corners of �. Let Ñ0(λ) be the number of isolated vertices of Gφ̃λ

(Pλ) that are
located in �′

λ. Then we claim that

E
[∣∣N0

(
Gφλ(Pλ)

) − Ñ0(λ)
∣∣] → 0 as λ → ∞.(3.18)

To see this, observe first that E[|N0(Gφλ(Pλ)) − N0(Gφ̃λ
(Pλ))|] is bounded by

twice the expected number of edges in Gφλ(Pλ) of Euclidean length greater than
r1−ε
λ , which tends to zero as discussed above. Second, observe that for all x ∈ �,

by (3.15) we have∫
�

φ̃λ(y − x)dy ≥ 2−dπdrd
λ ηpλ ≥ I (φλ)2

−dπdη/K(η),

and e−λI (φλ) = O(1/λ) by (3.1), so that exp(−λ
∫
� φ̃λ(y − x)dy) =

O(λ−2−dπdη/K(η)), uniformly over x ∈ �. Hence the expected number of isolated
vertices of Gφ̃λ

(Pλ) lying in � \ �′
λ is O(r

d(1−ε)
λ λ1−2−dπdη/K(η)) which tends to

zero by (3.16). Thus E[|N0(Gφ̃λ
(Pλ)) − Ñ0|] → 0, and (3.18) follows. Note that

by (3.18) and Markov’s inequality, P [Ñ0(λ) 
= N0(Gφλ(Pλ))] → 0, so it suffices
to prove (3.2) for Ñ0(λ).

Discretizing space into hypercubes of side 1/m, applying the Chen–Stein
method of Poisson approximation and taking the large-m limit as in (32) and (33)
of [14] (see also [12], Theorem 6.7), we have that

∞∑
i=0

∣∣∣∣P [
Ñ0(λ) = i

] − e−EÑ0(λ)(EÑ0(λ))i

i!
∣∣∣∣ ≤ 6(b1 + b2),(3.19)

with

b1 := λ2
∫
�′

λ

∫
B(x;3r1−ε

λ )∩�′
λ

exp
(
−λ

∫
�

(
φ̃λ(z − x) + φ̃λ(z − y)

)
dz

)
dy dx

and

b2 := λ2
∫
�′

λ

∫
B(x;3r1−ε

λ )∩�′
λ

exp
(
−λ

∫
�

gφ̃λ

(
z, {x, y})dz

)
dy dx

= 2λ2
∫
�′

λ

∫
B(x;3r1−ε

λ )∩�′
λ,x

exp
(
−λ

∫
�

gφ̃λ

(
z, {x, y})dz

)
dy dx,

where for x ∈ �, if d = 2, we let �′
λ,x denote the set of y ∈ �′

λ lying further from
the boundary of � than x does, while if d ≥ 3, we let �′

λ,x denote the set of y ∈ �′
λ

lying closer to the center of � in the �1 norm than x.
By the union bound, gφ̃λ

(z, {x, y}) ≤ φ̃λ(z− x)+ φ̃λ(z− y), and therefore b1 ≤
b2. Hence by (3.19) and (3.18), to prove (3.2) it suffices to prove that b2 → 0.
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We write b2 = b
(1)
2 + b

(2)
2 , where b

(1)
2 denotes the contribution to b2 from inte-

grating over (x, y) with y ∈ B(x; rλ), and b
(2)
2 denotes the contribution to b2 from

integrating over (x, y) with y ∈ B(x;3r1−ε
λ ) \ B(x; rλ).

First suppose d = 2. Using Lemma 3.1, we have that

b
(2)
2 ≤ 9πλ2r

2(1−ε)
λ

∫
�′

λ

exp
((

−λ

∫
�

φ̃λ(z − x)dz

)
− λ(η/4)pλr

2
λ

)
dx.

By (3.17), we have

exp
(−λI (φλ)

) ≤ exp
(−λI (φ̃λ)

) = O
(
λ−1)

.(3.20)

By (3.15), we have exp(−λpλr
2
λ) ≤ exp(−λI (φλ)/K(η)), which is O(λ−1/K(η))

by (3.20). Therefore, using also (3.17) and (3.12), followed by (3.16), yields

b
(2)
2 = O

(
λ1−η/(4K(η))r

2(1−ε)
λ

) = O
(
λε−η/(4K(η))(logλ)3(1−ε)) → 0.

Now consider b
(1)
2 . Recall from (3.12) that λpλr

2
λ = �(logλ). By Lemma 3.1,

then (3.17) and then (3.12),

b
(1)
2 ≤ 2λ2

∫
�′

λ

∫ rλ

0
exp

((
−λ

∫
�

φ̃λ(z − x)dz

)
− λpλ(η/4)rλt

)
2πt dt dx

= O

(
λ2

(
1

λ

)∫ ∞
0

exp
(−(η/4)u

)
(λpλrλ)

−2udu

)
= O

(
1

pλ logλ

)
.

Therefore, if pλ > 1/2, then b
(1)
2 → 0. Conversely, if pλ ≤ 1/2, then since

gφ̃λ
(z, {x, y}) ≥ φ̃λ(z − x) + (1 − pλ)φ̃λ(z − y), and φλ ∈ 	d,η, we have

b
(1)
2 ≤ 2λ2

∫
�′

λ

(
πr2

λ

)
exp

((
−λ

∫
�

φ̃λ(z − x)dz

)
− λ(1 − pλ)ηpλ

(
πr2

λ/2
))

dx

= O
(
λr2

λ exp
(−π(η/4)λpλr

2
λ

))
so that by (3.16), (3.15) and (3.20) we have b

(1)
2 = O((logλ)3λ−πη/(4K(η))) =

o(1). Hence b
(1)
2 → 0, so that b2 → 0 as required when d = 2.

Now suppose d ≥ 3. Let �̃ := {x ∈ � :‖x‖∞ ≤ 1/2}. Then by Lemma 3.1(b),

b
(1)
2 ≤ 2d+1λ2

∫
�̃

∫
B(x;rλ)∩�′

λ,x

exp
(
−λ

[∫
�

φ̃λ(z − x)dz

+ η1pλr
d−1
λ |y − x|

])
dy dx

≤ 2d+1λ2
∫
�̃

exp
(
−λ

∫
�

φ̃λ(z − x)dz

)∫
Rd

exp
(−η1λpλr

d
λ |w|)rd

λ dw dx,

and hence using (3.17) followed by (3.12), we obtain that

b
(1)
2 = O

(
λrd

λ

(
λpλr

d
λ

)−d) = O
(
p−1

λ (logλ)1−d)
,
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which tends to zero by our assumption on pλ. By Lemma 3.1(b) again,

b
(2)
2 ≤ 2d+1λ2πdr

d(1−ε)
λ

∫
�̃

exp
(
−λ

∫
�

φ̃λ(z − x)dz

)
× exp

(−η1λpλr
d
λ

)
dx,

and hence using (3.17), (3.16) and (3.12), with δ as given at the start of this proof,
we obtain that b

(2)
2 = O(λε(logλ)3(1−ε) exp(−η1δ logλ)). By our choice of ε, this

shows that b
(2)
2 tends to zero, completing the proof. �

4. Connectivity: The case of small pλ. For any graph G, let L2(G) denote
the order of its second-largest component, that is, the second largest of the orders of
its components: if G is connected, set L2(G) = 0. Given the connection functions
(φλ)λ>0, let pλ and rλ be given by (3.10). In this section we prove the following
result:

PROPOSITION 4.1. Suppose (λ(n))n∈N is an increasing (0,∞)-valued se-
quence that tends to ∞ as n → ∞, and for some η ∈ (0,1] and α ∈ (0,∞),
(φλ)λ>0 is a collection of connection functions in 	d,η such that as λ → ∞ along
the sequence (λ(n)) we have (3.1). Assume for some ε > 0 that pλ = O(λ−ε).
Then as λ → ∞ along the same sequence,

P
[
L2

(
Gφλ(Pλ)

)
> 1

] → 0.

It is immediate from Theorem 3.1 and Proposition 4.1 that under the hypotheses
of Proposition 4.1, we have a Poissonized version of (2.9), namely P [Gφλ(Pλ) ∈
K] → e−α . Our strategy of proof of Proposition 4.1 is as follows. First we shall
rule out “small components” of order between 2 and nε/2 using the Mecke formula.
Then we shall rule out the possibility of more than one “large component” by a
“sprinkling” argument. That is, we add the edges in two stages, and even though
we make the number of edges added in the second stage rather small, with high
probability there are enough of them to connect together any two distinct large
components arising from the first stage.

Given n ∈ N and p ∈ [0,1], let G(n,p) denote the Erdős–Rényi random graph
on n vertices, that is, the random subgraph of the complete graph on n vertices,
obtained by including each possible edge independently with probability p. Our
proof of Proposition 4.1 uses a lemma on large deviations for the giant component
of G(n,p).

LEMMA 4.1. Suppose p = p(n) is such that np → ∞ as n → ∞. Let En

be the event that G(n,p) has no component of order greater than 3n/4. Then
lim supn→∞ n−1 logP [En] < 0.

PROOF. Suppose En occurs. Then by starting with the empty set and adding
components of G(n,p) in arbitrary order until we have at least n/8 vertices, we
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can find a set of between n/8 and 7n/8 vertices that is disconnected from the rest
of the vertices of G(n,p). Hence by the union bound and the fact that ek ≥ kk/k!
for any k,

P [En] ≤ ∑
n/8≤k≤7n/8

(
n

k

)
(1 − p)k(n−k) ≤ ∑

n/8≤k≤7n/8

nkek

kk
exp

(−p(7/64)n2)

≤ n(8e)n exp
(−n2p/10

)
,

and the result follows. �

For any graph G any k ∈ N, let Tk(G) denote the number of components of G

of order k.

LEMMA 4.2. Under the hypotheses of Proposition 4.1,

P

[ ⋃
2≤k≤λε/3

{
Tk

(
Gφλ(Pλ)

)
> 0

}] → 0.(4.1)

PROOF. We may assume rλ ≤ √
d . By the Mecke formula (3.5), Cayley’s

formula (which says there are kk−2 trees on k vertices) and the union bound,
ETk(Gφλ(Pλ)) is bounded by

λk

k! k
k−2pk−1

λ

∫
· · ·

∫
exp

(
−λ

∫
gφλ

(
x; {x1, . . . , xk})dx

)
dx1 · · · dxk,

where all integrals are over � in this proof. By (3.6), this is bounded by

(eλpλ)
k

k2pλ

∫
· · ·

∫
dx1 · · · dxk

(4.2)

× exp

(
−λ

∫ k∑
i=1

φλ(x − xi) dx

)
exp

(
λk2pλI (φλ)

)
.

By (3.11) the exponent in the last factor of (4.2) is O(k2pλ logλ). If k ≤ λε/3, this
exponent is O(1), so the last factor in (4.2) is O(1), uniformly over such k. Thus

E
∑

2≤k≤λε/3

Tk

(
Gφλ(Pλ)

) = O

(
p−1

λ

∞∑
k=2

(
epλEN0

(
Gφλ(Pλ)

))k)
,

which tends to zero. Then (4.1) follows by Markov’s inequality. �

PROOF OF PROPOSITION 4.1. Assume that rλ ≤ √
d . Set φ′

λ(x) = φλ(x)(1 −
λ−ε/6) for x ∈R

d . Note that (3.1) still holds using φ′
λ instead of φλ, since changing

φλ to φ′
λ gives an extra term in the exponent of O(λ1−ε/6I (φλ)), which tends to

zero by (3.11). Also, φ′
λ ∈ 	d,η.



1002 M. D. PENROSE

Consider generating Gφλ(Pλ) in two stages. In the first stage, generate Gφ′
λ
(Pλ).

In the second stage, for each pair of vertices X,Y not already connected by an edge
in the first stage, add an edge between them with probability (φλ(Y −X)−φ′

λ(Y −
X))/(1 − φ′

λ(Y − X)).
By (3.12), λrd

λ = �(λε) and rλ = �(λ(ε−1)/d). We now show that after the first
stage, there is a giant component with high probability. Partition � into cubes of
side 1/�8d/rλ�. The number of cubes in the partition is O(r−d

λ ) = O(λ).
By a Chernoff bound (e.g., Lemma 1.2 of [12]), with high probability each

cube in the partition contains at least (9d)−dλrd
λ vertices of Pλ. Since we assume

rλ ≤ √
d , it is easily verified that 1/�8d/rλ� ≤ rλ/7d . By (3.12), for each cube

in the partition, the restriction of Gφλ(Pλ) to the vertices within that cube domi-
nates the Erdős–Rényi random graph G(n,p) with np = �(λrd

λ (logλ)/(λrd
λ )) =

�(logλ), so by Lemma 4.1, there is a giant component containing a proportion
of at least (3/4) of the vertices in that cube, except on an event of probability
exp(−�(λrd

λ )) = exp(−�(λε)). Hence by the union bound, with high probability
the restricted graph within each of these cubes contains a giant component.

Also by the same argument, with high probability, it is the case that for each
pair of neighboring cubes in the partition, the restriction of Gφλ(Pλ) to vertices
in that pair of cubes has a giant component with a proportion of at least 3/4 of
the vertices in that pair of cubes, and therefore the two giant components within
these neighboring cubes are connected together. Note that for any δ > 0, with high
probability, by the Chernoff bound, for each pair of cubes the ratio of the number
of vertices in one cube and the number of vertices in the other lies between 1 − δ

and 1 + δ.
Hence, after the first stage there is w.h.p. a giant component containing a pro-

portion at least 3/4 of all the vertices in each of the cubes in the partition. By
Lemma 4.2, also w.h.p. there is no component of order greater than 1 but less than
λε/3. There may also be some isolated vertices and some medium-size components
of order between λε/3 and λ/2. Now we rule out existence of components of order
greater than λε/3 besides the giant component, after the second stage.

After the first stage, w.h.p. the giant component contains more than
�(9d)−dλrd

λ /2� vertices in each of the cubes in the partition. Therefore each ver-
tex not in the giant component has at least (9d)−dλrd

λ /2 vertices from the giant
component within the distance of rλ (viz., those which are in the same cube of the
partition as itself).

Now for each medium-sized component from the first stage, the probability that
it fails to get attached to the giant component in the second stage is bounded by(

1 − λ−ε/6ηpλ/2
)λε/3×(9d)−dλrd

λ /2 ≤ exp
(−(9d)−dηλε/6λrd

λpλ/4
)

≤ exp
(−λε/6)

,

where the last inequality holds for all large enough λ, by (3.12). The number of
medium-sized components from the first stage is bounded by 2λ w.h.p., so by the
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union bound, the probability that one or more of them fails to get attached to the
giant component tends to zero.

Also the number of isolated vertices from the first stage is asymptotically Pois-
son by Lemma 3.2, and the probability that any two of these get connected together
in the second stage is O(λ−ε/6pλ) and thus tends to zero. Hence w.h.p., after the
second stage there is no component of order greater than 1, besides the giant com-
ponent. �

5. Connectivity: The case of large pλ. In this section we prove the following
result, which extends Proposition 4.1 by relaxing the restriction on pλ that was
imposed there, subject to φλ ∈ 	0

d,η.

THEOREM 5.1. Let α ∈ (0,∞). Suppose that for some increasing sequence
(λ(n))n∈N that tends to ∞ as n → ∞, (φλ)λ>0 satisfies (3.1) as λ → ∞ along the
sequence (λ(n))n∈N, and that there exists η ∈ (0,1] such that φλ ∈ 	0

d,η for all λ.
Then as λ → ∞ along the sequence (λ(n))n∈N,

P
[
L2

(
Gφλ(Pλ)

)
> 1

] → 0.(5.1)

Throughout this section, we arbitrarily fix η ∈ (0,1] and assume φλ ∈ 	0
d,η for

all λ > 0, and (φλ)λ>0 satisfy (3.1) for some α ∈ (0,∞) [all asymptotics being as
λ → ∞ along the sequence (λ(n))n∈N]. Define pλ := μ(φλ) and rλ := ρη(φλ) as
in (3.10), and assume rλ = O(1).

In view of Proposition 4.1, it suffices to prove the result in the case where
pλ = �(λ−ε) for some suitably chosen ε > 0. Since the argument is long, we split
the section further by first showing there are no “small” components (other than
isolated vertices) and then showing there is not more than one “large” component.

5.1. Small components. This subsection contains several lemmas because we
sometimes need to distinguish the case with d = 2 (where we do not assume φλ ∈
�2), and we also sometimes distinguish the case with p = O(1) from p = o(1).
Moreover, we distinguish “very small” components of (spatial) diameter at most
δrλ and “moderately small” components of diameter between δrλ and (1/δ)rλ,
where δ is a small (but fixed) constant.

To deal with “very small” components (in Lemmas 5.1, 5.2, 5.3 and 5.6) we use
the Mecke formula directly and sum over all possible cardinalities of the compo-
nent. To deal with “moderately small components” (in Lemmas 5.4, 5.5 and 5.7),
we discretize space into cubes (or strips) of side εrλ for suitably small fixed ε. For
x ∈ � and for each possible “moderately small” discretized region (i.e., union of
some of these cubes) containing x, we estimate the probability that the component
of Gφλ(Pλ ∪ {x}) containing x is moderately small and corresponds to that partic-
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ular region. To do this we show that there is enough “unexplored space” outside
the region but inside �, for the probability of there being no Poisson points in
the unexplored space connected to the cluster within the explored region, is small
compared to the probability of x being isolated.

We need some preliminaries. First we give a similar lemma to Lemma 6 of [14].
As before, let H denote the half-space [0,∞)×R

d−1, and let Q denote the orthant
[0,∞)d . For λ > 0 let HH

λ := Hλ ∩ H, and let HQ
λ := Hλ ∩ Q. Define

ψλ(x) := φλ(rλx), x ∈ R
d .

For any locally finite set X in R
d , and any x ∈ R

d , and connection function
φ, let Cφ(x,X ) be the vertex set of the component of Gφ(X ∪ {x}) containing x.
Let Dφ(x,X ) := diam(Cφ(x,X )) := supy,z∈Cφ(x,X ) |y − z|. For A a countable set

in R
2 and x ∈ A, let Lφ(x,A) denote the event that x is the left-most vertex of

Cφ(x,A) (i.e., the first vertex in the lexicographic ordering). Also, let L′
φ(x,A)

denote the event that x is the vertex of Cφ(x,A) lying closest to the boundary of
the quadrant Q.

LEMMA 5.1. Suppose d = 2 and pλ ≥ 1/2 for all λ. Then for 0 < δ ≤ η/(8π)

we have

lim
λ→∞ sup

x∈H

P [0 < Dψλ(x,HH
λr2

λ

) < δ;Lψλ(x,HH
λr2

λ

)]
P [Dψλ(x,HH

λr2
λ

) = 0] = 0.

PROOF. Given x ∈ H and δ > 0, let Aδ denote the right half of the disk of
radius δ centered at x. Let qδ

k (x, λ) be the probability that Cψλ(x,HH
λr2

λ

) has pre-

cisely k elements and is contained in Aδ . Clearly

P
[
0 < Dψλ

(
x,HH

λr2
λ

)
< δ;Lψλ

(
x,HH

λr2
λ

)] ≤
∞∑

k=2

qδ
k (x, λ).

By the Mecke formula, similarly to [13], Proposition 1, with hφ and gφ defined
at (3.3) and (3.4), we have

qδ
k (x, λ)

= (λr2
λ)k−1

(k − 1)!
(5.2)

×
∫
Aδ

· · ·
∫
Aδ

hψλ

({x, x1, . . . , xk−1})

× exp
(
−λr2

λ

∫
H

gψλ

(
y, {x, x1, . . . , xk−1})dy

)
dx1 · · · dxk−1.
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Similarly qδ
1(x, λ) = exp(−λr2

λ

∫
H ψλ(y − x)dy). Since hψλ(A) ≤ 1 for any A we

have
qδ
k (x, λ)

qδ
1(x, λ)

≤ (λr2
λ)k−1

(k − 1)!
(5.3)

×
∫
Aδ

· · ·
∫
Aδ

exp
(
−λr2

λ

∫
H

[
gψλ

(
y, {x, x1, . . . , xk−1})

− ψλ(y − x)
]
dy

)
dx1 · · · dxk−1.

If we restrict the integral in (5.3) to those (x1, . . . , xk−1) with |xi − x| ≤ |x1 − x|
for 2 ≤ i ≤ k − 1, we reduce it by a factor of k − 1. Therefore

qδ
k (x, λ)

qδ
1(x, λ)

≤ λr2
λ(λr2

λπ/2)k−2

(k − 2)!
×

∫
Aδ

|x1 − x|2(k−2)

× exp
(
−λr2

λ

∫
H

[
gψλ

(
y, {x, x1}) − ψλ(y − x)

]
dy

)
dx1.

By Lemma 3.1 and the fact that ρη(ψλ) = 1, for x1 ∈ A1 we have∫
H

[
gψλ

(
y, {x, x1}) − ψλ(y − x)

]
dy ≥ |x1 − x|ηpλ/4,

so that for δ ≤ 1 we have

qδ
k (x, λ)

qδ
1(x, λ)

≤ λr2
λ(λr2

λπ/2)k−2

(k − 2)!
∫
Aδ

|x1 − x|2(k−2) exp
(−λr2

λ(η/4)pλ|x1 − x|)dx1.

Summing over k ≥ 2 and using the assumptions pλ ≥ 1/2 and δ ≤ η/(8π), yields
∞∑

k=2

qδ
k (x, λ)

qδ
1(x, λ)

≤ λr2
λ

∫
Aδ

exp
(
λr2

λ

[
(π/2)|x1 − x|2 − (η/4)pλ|x1 − x|])dx1

≤ λr2
λ

∫
Aδ

exp
(−λr2

λ |x1 − x|η/16
)
dx1 = O

((
λr2

λ

)−1)
,

which tends to zero by (3.12). �

In the case with pλ ≤ 1/2, we give a similar result to the last one, but for general
d ≥ 2. Let πd denote the volume of the unit ball in d dimensions. Let Q̃ denote the
orthant Q if d ≥ 3, but denote the half-space H if d = 2.
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LEMMA 5.2. Suppose φλ and ψλ are as before (now for general d , d ≥ 2).
Let 0 < δ < η/8. If pλ ≤ 1/2 for all λ but pλ = �(λ−1/2d+3

), then

lim
λ→∞ sup

x∈Q̃

(P [0 < Dψλ(x,HQ̃
λrd

λ

) < δ]
P [Dψλ(x,HQ̃

λrd
λ

) = 0]

)
= 0.

PROOF. For δ > 0, x ∈ Q̃ and k ∈N, define

wλ(k, δ) :=
P [0 < Dψλ(x,HQ̃

λrd
λ

) < δ; card(Cψλ(x,HQ̃
λrd

λ

)) = k + 1]
P [Dψλ(x,HQ̃

λrd
λ

) = 0]
,

where card(·) denotes the number of elements in a set. For k ∈N we have, similarly
to (5.2), that

wλ(k, δ) ≤ (λrd
λ )k

k!
×

∫
B(x;δ)∩Q̃

· · ·
∫
B(x;δ)∩Q̃

(5.4)

× exp
(
−

∫
Q̃

λrd
λ

[
gψλ

(
y, {x, x1, . . . , xk})

− ψλ(y − x)
]
dy

)
dx1 · · · dxk.

Now,

gψλ

(
y, {x, x1, x2, . . . , xk}) − ψλ(y − x)

≥ (1 − pλ)

(
1 −

k∏
i=1

(
1 − ψλ(y − xi)

))
(5.5)

≥ (1 − pλ)

(
1 − exp

(
−

k∑
i=1

ψλ(y − xi)

))
.

First consider k ≤ 1/pλ. Since 1 − e−x ≥ x/2 for 0 ≤ x ≤ 1, and we assume pλ ≤
1/2, for such k we have

gψλ

(
y, {x, x1, x2, . . . , xk}) − ψλ(y − x) ≥ (1/4)

k∑
i=1

ψλ(y − xi).

Now
∫

Q̃ ψλ(y−xi) dy ≥ I (ψλ)/2d for each λ and each xi because for d ≥ 3 we as-

sume φλ ∈ �d , and for d = 2 we assume Q̃ = H, and φλ satisfies φλ(x) = φλ(−x)
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for all x. Therefore by (5.4), for k ≤ 1/pλ we have

wλ(k, δ) ≤ (λrd
λ )k

k!
∫
(B(x;δ)∩Q̃)d

exp

(
−1

4

∫
Q̃

λrd
λ

k∑
i=1

ψλ(y − xi) dy

)
d(x1, . . . , xk)

≤ (δdπdλrd
λ )k

k! exp
(−λkI (φλ)/2d+2)

.

Hence
�1/pλ�∑
k=1

wλ(k, δ) ≤ exp
[
δdπdλrd

λ e−λI (φλ)/2d+2] − 1.(5.6)

Since we assume (3.1) we have e−λI (φλ) = O(λ−1), and using (3.12) we have that

λrd
λ e−λI (φλ)/2d+2 = O

(
logλ

pλλ1/2d+2

)
,

which tends to zero, by our condition on pλ. Therefore the expression in (5.6)
tends to zero.

Now consider k > 1/pλ. For x1, . . . , xk ∈ B(x; δ) and y ∈ B(x;1/2) we have
|y − xi | < 1 and hence ψλ(y − xi) ≥ ηpλ for 1 ≤ i ≤ k, so by (5.5) we have that

gψλ

(
y, {x, x1, x2, . . . , xk}) − ψλ(y − x) ≥ (1 − pλ)

(
1 − exp(−ηkpλ)

)
≥ (

1 − e−η)
/2.

Therefore using (5.4) and the fact that 1 − e−η ≥ η/2, we have∑
k>1/pλ

wλ(k, δ) ≤ exp
(
δdπdλrd

λ

)
exp

(−πdλrd
λ η/2d+2)

,

and by the choice of δ, this tends to zero. Combining these estimates gives the
result. �

Combining Lemma 5.1 and the case d = 2 of Lemma 5.2 immediately gives us
the following.

LEMMA 5.3. Suppose d = 2 and η, φλ and ψλ are as before. Suppose also
that pλ = �(λ−1/32). Let 0 < δ < η/(8π). Then

lim
λ→∞ sup

x∈H

(P [0 < Dψλ(x,HH
λr2

λ

) < δ;Lψλ(x;HH
λr2

λ

)]
P [Dψλ(x,HH

λr2
λ

) = 0]
)

= 0.

LEMMA 5.4. Given 0 < δ < ρ < ∞, it is the case (for general d ≥ 2) that

lim
λ→∞ sup

x∈H

P [δ < Dψλ(x,HH
λr2

λ

) < ρ;Lψλ(x,HH
λr2

λ

)]
P [Dψλ(x,HH

λr2
λ

) = 0] = 0.
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PROOF. This can be proved along the lines of [13], Lemma 3; the argument
still works in the case with pλ → 0, provided λr2

λpλ → ∞, which is always the
case by (3.12). �

Similarly to [14], Lemma 7 (which is missing a factor of π in the exponent) we
have the following:

LEMMA 5.5. Suppose d = 2. For any ρ > 0, as λ → ∞ we have

sup
x∈Q

P
[
Dψλ

(
x;HQ

λr2
λ

)
< ρ

] = o
(
exp

{−ληI (φλ)/
(
3K(η)

)})
.(5.7)

PROOF. Fix ρ > 0. Divide Q into vertical strips of width 1/9, denoted Si, i ∈
N, where Si := [(i − 1)/9, i/9) × [0,∞). Let x ∈ Q, and let i0 = i0(x) be the
choice of i such that x ∈ Si . Also let i1 = i0 + 9�ρ�.

Given λ, for i ∈ N ∩ [i0, i1] let E′
i be the event that the right-most point of

Cψλ(x,HQ
λr2

λ

) lies in Si . If Dψλ(x;HQ
λr2

λ

) < ρ, then one of the events Ei0, . . . ,Ei1

occurs.
Now fix i ∈N∩ [i0, i1]. Set Ai := ⋃

j≤i Sj and Ac
i := ⋃

j>i Sj . Consider gener-

ating Gψλ({x}∪HQ
λr2

λ

) in two stages. In the first stage, generate the Poisson process

Hλr2
λ
∩ Ai , and add edges between points of {x} ∪ (Hλr2

λ
∩ Ai) with probabilities

determined by the connection function ψλ. Then in the second stage, add the points
of Hλr2

λ
∩ Ac

i , and add edges between these added points, and between the added
points and the points from the first stage, again using the connection function ψλ.

The first stage generates a realization of the graph Gψλ({x} ∪ (Hλr2
λ
∩ Ai)): let

Ei,1 be the event that the resulting realization of Cψλ(x,Hλr2
λ

∩ Ai) includes at
least one vertex in Si . Let Ei,2 be the event that the second stage does not generate
any new Poisson points that are connected to vertices of Cψλ(x,Hλr2

λ
∩Ai) arising

from the first stage. Then E′
i = Ei,1 ∩ Ei,2.

Suppose Ei,1 occurs. Let z be the right-most vertex of Cψλ(x,Hλr2
λ
∩ Ai); then

z ∈ Si by definition. Then in stage 2, a necessary condition for Ei,2 to occur is that
there is no point of Hλr2

λ
∩Ac

i connected by an edge z. Since B(z;1)∩Ac
i has area

of at least (π/4) − 1/9,

P
[
E′

i |Ei,1
] ≤ exp

(−λr2
ληpλ

(
(π/4) − 1/9

)) ≤ exp
(−ηλI (φλ)/

(
2K(η)

))
,

where the last inequality comes from (3.15). This gives us (5.7). �

For x ∈ �, let �x be the set of y ∈ � such that y is closer to the center of �

in the �1 norm than x. For ρ > 0 and x ∈ �, let Eλ,ρ,x be the event that there is
a nonempty set U of points of Pλ contained in B(x;ρ) ∩ �x , such that no other
point of Pλ \ U is connected to any point of {x} ∪ U in Gφλ({x} ∪Pλ).
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LEMMA 5.6. Suppose d ≥ 3 and pλ = �(1). Then there exists δ > 0 such that

lim
λ→∞ sup

x∈�

P [Eλ,δrλ,x]
/

exp
(
−λ

∫
�

φλ(y − x)dy

)
= 0.

PROOF. The proof resembles that of [15], Lemma 5.2 or [12], Lemma 13.15.
For j ∈ N let μx(j, λ) be the number of subsets U of Pλ with j elements, such
that U ⊂ �x ∩ B(x; δrλ), and no element of U ∪ {x} is connected to any element
of Pλ \ U in Gφλ({x} ∪Pλ). Then by the Mecke formula (3.5),

Eμj(x,λ) = λj

(j − 1)!
∫
�x∩B(x;δrλ)

∫
(�x∩B(x;|y−x|))j−1

× exp
(
−λ

∫
gφλ

(
z, {x, y, x1, . . . , xj−1})dz

)
d(x1, . . . , xj−1) dy

≤ λ(λπd)j−1

(j − 1)!
∫
�x∩B(x;δrλ)

|y − x|d(j−1)

× exp
(
−λ

∫
gφλ

(
z, {x, y})dz

)
dy.

Assume δ ≤ 1. By Lemma 3.1(b), the integrand in the last exponent is bounded
below by φλ(z − x) + η1pλρ

d−1
λ |y − x|, and therefore

Eμj(x,λ)

exp(−λ
∫

φλ(z − x)dz)

≤ λ(λπd)j−1

(j − 1)!
∫
B(x;δrλ)

|y − x|d(j−1) exp
(−η1λpλr

d−1
λ |y − x|)dy.

Summing over j and changing variable to w = (y − x)/rλ, we obtain

P [Eλ,δrλ,x]
exp(−λ

∫
� φλ(z − x)dz)

≤ λ

∫
B(x;δrλ)

exp
(
λπd |y − x|d − η1λpλr

d−1
λ |y − x|)dy

= λ

∫
B(0;δ)

exp
(
λπdrd

λ |w|d − η1λpλr
d
λ |w|)rd

λ dw.

Using our assumption on pλ, we may choose δ small enough so that πdδd ≤
(η1/2)pλδ for all λ, and then there is a constant δ′ so the last bound is at most
λrd

λ

∫
exp(−δ′λrd

λ |w|) dw, which is O((λrd
λ )1−d), and therefore tends to zero

by (3.12). �

In the next lemma we do not need to assume pλ = �(1).

LEMMA 5.7. Suppose d ≥ 3. Then for 0 < δ < ρ < ∞ we have

lim
λ→∞ sup

x∈�

P [Eλ,ρrλ,x \ Eλ,δrλ,x]
/

exp
(
−λ

∫
�

φλ(y − x)dy

)
= 0.
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PROOF. Fix δ and ρ, and assume δ ≤ 1. Let ε > 0 be a small constant to
be chosen later. Given λ, divide R

d into boxes [i.e., hypercubes of the form∏d
i=1[ai, ai + h)] of side h = εrλ. Let �′

λ be the set of centers of these boxes.
For z ∈ �′

λ let B ′
z be the box centered at z. Let x ∈ �, and let zx be the z ∈ �′

λ

such that x lies in B ′
z. Also, for all z ∈ �′

λ let Bz := B ′
z ∩ �x .

For σ ⊂ �′
λ, let Bσ := ⋃

z∈σ Bz. Let C(λ, x) be the set of σ ⊂ �′
λ such that:

(i) zx ∈ σ , (ii) σ ⊂ B(x; (ρ +dε)rλ), (iii) σ \B(x; (δ−dε)rλ) 
= ∅ and (iv) |Bz| >
0 for each z ∈ σ (where | · | denotes Lebesgue measure). In the sequel, we assume
ε < δ/(2d) so that δ − dε > δ/2.

For σ ∈ C(λ, x), let E′
λ(σ ) be the event that: (i) σ = {z ∈ �′

λ :Cφλ(x,Pλ)∩Bz 
=
∅} and (ii) Cφλ(x,Pλ) ⊂ �x . Then Eλ,ρrλ,x \ Eλ,δrλ,x ⊂ ⋃

σ∈C(λ,x) E
′
λ(σ ).

Let σ ∈ C(λ, x). Consider generating Cφλ(x,Pλ) in two stages, similarly to the
proof of Lemma 5.5. In stage 1, add all points of Pλ in Bσ , all edges involving
these points and x (using the connection function φλ). In stage 2, add the points
of Pλ in � \ Bσ , add connections between these new points and each other and
between the new points and the points from the stage 1, again using connection
function φλ.

In stage 1, we generate a realization of Gφλ({x} ∪ (Pλ ∩ Bσ )), and hence a
realization of Cφλ(x,Pλ ∩ Bσ ). Let E′

λ,1(σ ) be the event that this realization of
Cφλ(x,Pλ ∩ Bσ ) is contained in �x and includes at least one point from each
Bz, z ∈ σ . Let E′

λ,2 be the event that none of the new points created in stage 2 are
joined to any points of the realization of Cφλ(x,Pλ ∩ Bσ ) generated in stage 1.
Then E′

λ(σ ) = E′
λ,1(σ ) ∩ E′

λ,2(σ ). Since the cardinality of C(λ, x) is bounded
independently of x and λ, it suffices to show that

lim sup
λ→∞

sup
x∈�,σ∈C(λ,x)

P [E′
λ,2(σ )|E′

λ,1(σ )]
exp(−λ

∫
φλ(y − x)dy)

= 0.(5.8)

Now,

P
[
E′

λ,2(σ )|E′
λ,1(σ )

] ≤ exp
(
−λ inf

X⊂Bσ ∩�x : X∩Qz 
=∅ ∀z∈σ

∫
�\Bσ

gφλ(y;X ) dy

)
,

and for each X ⊂ Bσ ∩ �x with X ∩ Qz 
=∅ for all z ∈ σ , we have

∫
�\Bσ

gφλ(y;X ) dy = pλ

∫ p−1
λ

0

∫
�\Bσ

1{gφλ
(y;X )≥pλu} dy du

≥ pλ

∫ 1

0

∣∣� ∩ (
σ ⊕ B

(
0;ρu(φλ) − dεrλ

)) \ Bσ

∣∣du,

where the last line arises because if y ∈ σ ⊕B(0;ρu(φλ)−dεrλ), then there exists
v ∈ X with |y − v| ≤ ρu(φλ) and therefore gφλ(y;X ) ≥ φλ(y − v) ≥ upλ by (2.2).

For 0 < u ≤ 1, since φλ ∈ 	0
d,η we have rλ ≤ ρu(φλ) ≤ η−1rλ. Hence ρu(φλ) −

dεrλ ≥ rλ/2. Using [15], Proposition 2.1 or [12], Proposition 5.15 and writing
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Vr(x) for |B(x; r)∩�|, we can find a constant η3 > 0, depending only on d and η,
such that∫

�\Bσ

gφλ(y;X ) dy ≥ pλ

(∫ 1

0
Vρu(φλ)−dεrλ(x) du +

∫ 1

0
η3r

d
λ du

)
.

To estimate the first term in the expression above, note that since ρu(φλ) ≤
η−1rλ, there is a constant K1 (depending on d and η) such that Vρu(φλ)(x) du −
Vρu(φλ)−dεrλ(x) ≤ K1r

d
λ ε. Therefore∫

�\Bσ

gφλ(y;X ) dy ≥ pλ

(∫ 1

0
Vρu(φλ)(x) du − K1r

d
λ ε + η3r

d
λ

)

=
∫
�

φλ(y − x)dy − K1pλr
d
λ ε + η3pλr

d
λ ,

and by choosing ε < η3/(2K1), we have that the ratio on the left-hand side of (5.8)
is bounded below by exp(−η3λpλr

d
λ /2), uniformly over x and σ . Since λrd

λpλ →
∞ by (3.12), this gives us (5.8) as required. �

Given λ > 0, ρ > 0, define the event

E
ρ
λ = {∃x ∈Pλ : 0 < Dφλ(x,Pλ) ≤ ρ

}
.

PROPOSITION 5.1. Let η ∈ (0,1], α ∈ (0,∞) and 0 < ε ≤ min(η/(7K(η)),

2−(d+3)). Suppose φλ ∈ 	0
d,η for all λ, (3.1) holds, and pλ = �(λ−ε). Then for

any ρ > 0, we have limλ→∞ P [Eρrλ
λ ] = 0.

PROOF. First consider the case with d ≥ 3. Assume first that pλ = �(1). Then
by the Mecke formula and the preceding two lemmas,

P
[
E

ρrλ
λ

] ≤
∫
�

P [Eλ,ρrλ,x]λdx = o(1) ×
∫
�

exp
(
−λ

∫
�

φλ(y − x)dy

)
λdx,

which is o(1) by (3.1).
Now suppose instead that pλ → 0 but pλ = �(λ−ε). Then rλ = o(1) by (3.12).

Let �̃ denote the set of points in � lying closer to the origin (in the Euclidean
norm) than to any other corner of �. Choosing δ ∈ (0, η/8) we have by the Mecke
formula and Lemma 5.2 that

P
[
E

δrλ
λ

] ≤ 2dλ

∫
�̃

P
[
0 < Dφλ(x,Pλ) < δrλ

]
dx

= 2dλ

∫
�̃

P
[
0 < Dψλ

(
r−1
λ x,HQ

λrd
λ

)
< δ

]
dx

= o(1) × λ

∫
�̃

P
[
Dψλ

(
r−1
λ x,HQ

λrd
λ

) = 0
]
dx,
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which tends to zero by (3.1). Also for any finite ρ > δ, by the Mecke formula,

P
[
E

ρrλ
λ \ E

δrλ
λ

] ≤ λ

∫
�

P [Eλ,ρrλ,x \ Eλ,δrλ,x]dx,

which tends to zero by Lemma 5.7 and (3.1). This gives us the result for the case
with d ≥ 3.

Now consider the case with d = 2. Then r2
λ = O(λ2ε−1) by (3.12). Let T1 (resp.,

T2, T3, T4) be the set of points of [0,1]2 that lie closer to the left (resp., top, right,
bottom) edge of � than to any of the other edges of � [so T1 is the triangle with
corners at (0,0), (0,1) and (1/2,1/2)].

For x ∈ �, let L̃φλ(x,Pλ) be the event that x is the point of Cφλ(x,Pλ) lying
closest to the boundary of [0,1]2. Let Mλ be the number of x ∈ Pλ such that
(i) Dφλ(x,Pλ) < ρrλ, and (ii) x is the point of Cφλ(x,Pλ) nearest to the boundary
of �. Then by the Mecke equation,

P
[
E

ρrλ
λ

] ≤ EMλ =
4∑

i=1

ai,

where we set

ai := λ

∫
Ti

P
[
0 < Dφλ(x,Pλ) < ρrλ; L̃φλ(x,Pλ)

]
dx.

We consider just a1 (the other terms are treated similarly). Let T1,1 be the part of
T1 away from the corner of �, defined by

T1,1 := T1 \ ([
0,2

(
ρ + η−1)

rλ
] × ([

0,2
(
ρ + η−1)

rλ
] ∪ [

1 − 2
(
ρ + η−1)

rλ,1
]))

.

Let a1,1 be the contribution to a1 from x ∈ T1,1. Using our assumption that φλ ∈
	0

d,η, we have

a1,1 ≤ λ

∫
T1,1

P
[
0 < Dφλ(x,Pλ) < ρrλ;Lφλ(x,Pλ)

]
dx

= λ

∫
T1,1

P
[
0 < Dψλ

(
r−1
λ x,HH

λr2
λ

)
< ρ;Lψλ

(
r−1
λ x,HH

λr2
λ

)]
dx.

Now using Lemmas 5.3 and 5.4 we obtain that

a1,1 = o(1) ×
∫
T1,1

λP
[
Dψλ

(
r−1
λ x,HH

λr2
λ

) = 0
]
dx

= o(1) × λ

∫
T1,1

P
[
Dφλ(x,Pλ) = 0

]
dx,

which tends to zero by (3.1).
Let a1,2 be the contribution to a1 from x ∈ T1 ∩ [0,2(ρ + η−1)rλ]2. By

Lemma 5.5,

a1,2 ≤ λ
(
2η−1rλ

)2 exp
(−ληI (φλ)/

(
3K(η)

)) = O
(
λ2ε−η/(3K(η))),

where for the last estimate we use (3.12) and (3.1). Thus P [Eρrλ
λ ] → 0. �
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5.2. Large components. In this section we implement the strategy mentioned
in the final paragraph of Section 2. In the sequel, given λ > 0 we couple the
graphs Gφλ(Pλ ∩A),A ⊂ R

d in the following, natural way. For A ⊂R
d we define

Gφλ(Pλ ∩ A) to be the subgraph of Gφλ(Pλ) induced by the vertex set Pλ ∩ A.
Given λ, let mλ := �2d/rλ�. Set �λ := {0,1, . . . ,mλ − 1}d . For z ∈ �λ let Qz

denote the cube {m−1
λ z} ⊕ [0,1/mλ)

d , and let Qz denote the closure of Qz. The
cubes Qz, z ∈ �λ form a partition of [0,1)d and have side 1/mλ ∼ rλ/(2d), as-
suming rλ → 0, which holds by (3.12) if pλ = �(λ−ε) for some ε ∈ (0,1).

Given λ, for z ∈ �λ let us say the cube Qz is blue if: (i) Pλ ∩ Qz 
= ∅ and
(ii) all vertices of Pλ ∩ B(m−1

λ z; rλ/η) lie in the same connected component of
Gφλ(Pλ ∩ B(m−1

λ z;2rλ/η)). If a cube is not blue, let us say it is green. If Qz

is blue (resp., green), we shall also say Qz and z are blue (resp., green). More
prosaically we shall put Yλ,z = 1 if z is blue and Yλ,z = 0 if z is green.

LEMMA 5.8. Suppose pλ = �(λ−ε) with 0 < ε < (9d)−dη/K(η). Then

sup
z∈�λ

P [Yλ,z = 0] = O
(
λ−ε).

PROOF. First note that card(Pλ ∩ Qz) is Poisson with mean λ/md
λ ∼

(2d)−dλrd
λ ≥ (2d)−dλI (φλ)/K(η), where the inequality comes from (3.15).

Hence by (3.1) the probability that condition (i) (in the definition of blue) fails
is O(λ−(3d)−d/K(η)), uniformly over z ∈ �λ. We need a similar bound for the
probability that condition (ii) fails.

Let ξλ be Poisson with parameter 2λ/md
λ . We claim that the Erdős–Rényi graph

G(ξλ, ηpλ) satisfies

P
[
G(ξλ, ηpλ) /∈K

] = O
(
λ−ε).(5.9)

Indeed, by the Mecke formula followed by (3.12), (3.15) and (3.1), the expected
number of isolated vertices in G(ξλ, ηpλ) is given by

O
(
λrd

λ exp
(−(3d)−dλrd

λ ηpλ

)) = O
(
λ2ε exp

(−(3d)−dηλI (φλ)/K(η)
))

= O
(
λ2ε−(3d)−dη/K(η)),

which is O(λ−ε) by the condition on ε. Thus the probability that G(ξλ,pλ)

has an isolated vertex is O(λ−ε), and by the proof of [2], Theorem 7.2, we
have (5.9). Hence, for each pair of neighboring sites z′, z′′ ∈ �λ, the graph
Gφλ(Pλ ∩ (Qz′ ∪ Qz′′)) is connected with probability 1 − O(λ−ε). Condition (ii)
holds if Gφλ(Pλ ∩ (Qz′ ∪ Qz′′)) is connected for each pair of neighboring sites
z′, z′′ lying in B(z,2mλrλ/η) ∩ �λ, and the number of such pairs is bounded in-
dependently of z and λ. Therefore by the union bound, condition (ii) holds with
probability 1 − O(λ−ε), as claimed. �
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We say a set S ⊂ �λ is ∗-connected if for any x, y ∈ S, there is a path
(x0, x1, . . . , xk) with x0 = x, xk = y and xi ∈ S and ‖xi −xi−1‖∞ = 1 for 1 ≤ i ≤ k

(so diagonal steps in the path are allowed). For bounded nonempty U ⊂ R
d , we

define the �∞-diameter of U to be supx,y∈U ‖y − x‖∞. Given λ,ρ > 0, let H
ρ
λ

be the event that there is a ∗-connected set of green sites in �λ of �∞-diameter at
least ρ.

LEMMA 5.9. Suppose for some ε ∈ (0, (9d)dη/K(η)) that pλ = �(λ−ε).
Then there exists ρ > 0 such that P [Hρ

λ ] → 0 as λ → ∞.

PROOF. For λ > 0, n ∈ N, let Tλ,n denote the set of ∗-connected sets γ ⊂ �λ

with n elements. Then there exists a constant A such that for all λ and n, we have
card(Tλ,n) ≤ md

λAn; see, for example, [12], Lemma 9.3. Also r−d
λ = �(λpλ/ logλ)

by (3.12), and hence there exists λ0 ∈ (0,∞) such that for λ ≥ λ0 we have that
md

λ ≤ λ so that card(Tλ,n) ≤ λAn for all n ∈ N.
The random field (Yλ,z, z ∈ �λ) has finite range dependency: there exists

λ1 ∈ [λ0,∞) such that the range may be taken to be 11d/η, for all λ ≥ λ1. For
example, if |z − z′| ≥ 11d/η, then |m−1

λ z − m−1
λ z′| ≥ 5rλ/η, and therefore Yλ,z is

independent of Yλ,z′ . Therefore there is a constant M := M(d,η) such that for any
λ ≥ λ1 and any S ⊂ �λ, we can find S′ ⊂ S with card(S′) = �card(S)/M�, such
that the variables (Yλ,z)z∈S′ are mutually independent. Hence by Lemma 5.8 there
is a further constant C such that for all such S we have

P

[⋂
z∈S

{Yλ,z = 0}
]

≤ (
Cλ−ε)(cardS)/M

.

Let ρ ∈ N. If H
ρ
λ occurs, then there exists S ∈ Tλ,ρ such that Yλ,z = 0 for all

z ∈ S. Hence for ρ ∈ N and λ ≥ max(λ1, (CAM)2/ε), we have

P
[
H

ρ
λ

] ≤ P

[ ⋃
S∈Tλ,ρ

⋂
z∈S

{Yλ,z = 0}
]

≤ λAρ(
Cλ−ε)ρ/M ≤ λ1−ερ/(2M).

Taking ρ > 2M/ε, we have the result. �

Given disjoint nonempty connected subsets U and V of �, we define the exte-
rior boundary of U relative to V as follows. Let V ′ be the connected component
of � \ U that contains V , and let U ′ := � \ V ′. Loosely speaking, U ′ is obtained
from U by filling in all the holes in U , except the one containing V . Define the
exterior boundary of U relative to V to be the intersection of the closure of U ′
with that of V ′.

The exterior boundary of U relative to V is a subset of the boundary of U .
Moreover it is a connected set, by a unicoherence argument (see [12]), because the
closures of U ′ and V ′ are connected sets whose union is �.
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We claim that for 0 < a < 1, if both U and V have �∞-diameter greater than a,
then so does the exterior boundary of U relative to V . Indeed, if not, then there ex-
ists a rectilinear cube C of side a that contains the exterior boundary of U relative
to V , but then we could pick u ∈ U \ C and v ∈ V \ C, and a continuous path from
u to v in � avoiding C. Somewhere on this path would lie a point in the exterior
boundary of U relative to V , a contradiction.

LEMMA 5.10. Let λ > 0, ρ ∈ N with ρ < mλ, and suppose H
ρ
λ does not occur.

Then there exists a ∗-connected component of the set of blue sites in �λ of �∞-
diameter mλ − 1. This component is unique, and there is no other ∗-connected
component of the set of blue sites in �λ of �∞-diameter ρ or more.

PROOF. Let Bλ denote the union of all the cubes Qz, z ∈ �λ that are blue,
and let Gλ denote the union of all the cubes Qz, z ∈ �λ that are green. Let U be
the component of Gλ ∪ ({0} × [0,1]d−1) that contains {0} × [0,1]d−1, and let V

be the component of Bλ ∪ ({1} × [0,1]d−1) that contains {1} × [0,1]d−1. Then U

and V are disjoint connected subsets of �. Assuming H
ρ
λ does not occur, U does

not extend to {1} × [0,1]d−1. Hence the union of blue cubes Qz having nonempty
intersection with the exterior boundary of U relative to V is connected and has
�∞-diameter 1, and the first assertion (existence) in the statement of the lemma
follows.

Suppose there were two ∗-connected components of the set of blue sites of
�∞-diameter at least ρ, denoted U and V , say. Let U∗ be the union of the cubes
Qz, z ∈ U , and define V ∗ similarly. Then U∗ and V ∗ are connected disjoint regions
of �, of �∞-diameter at least (ρ + 1)/mλ. The union of green cubes Qy having
nonempty intersection with the exterior boundary of U∗ relative to V ∗ would be
a connected region of �∞-diameter at least (ρ + 1)/mλ, and the corresponding
set of sites in �λ would be a ∗-connected set of green sites of diameter at least
ρ, contradicting the assumed nonoccurrence of event H

ρ
λ . This demonstrates the

second assertion (uniqueness) in the statement of the lemma. �

We shall refer to the unique ∗-connected blue component of �∞-diameter
mλ − 1, identified in Lemma 5.10, as the sea. All vertices of Pλ lying in cubes
Qz with z in the sea lie in the same component of Gφλ(Pλ), which we call the
sea-component.

Given λ > 0, ρ > 0, define the event

F
ρ
λ = {∃x, y ∈ Pλ : min

(
Dφλ(x,Pλ),Dφλ(y,Pλ)

)
> ρ,

Cφλ(x,Pλ) 
= Cφλ(y,Pλ)
}
.

LEMMA 5.11. Let 0 < ε < (9d)−dη/K(η). There exists a constant ρ ∈ N,
such that if for some α > 0, we have (3.1) and also pλ = �(λ−ε), then P [Fρrλ

λ ] →
0 as λ → ∞.
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PROOF. Let ρ ∈ N. Suppose that F
ρrλ
λ occurs and H

ρ
λ does not. Then there

exists U ⊂ Pλ such that U is the vertex-set of a component of Gφλ(Pλ) that is
disjoint from the sea-component, but has diameter greater than ρrλ, and hence has
�∞-diameter greater than ρrλ/

√
d .

Let Ũ denote the union of closed Euclidean balls of radius rλ/(2η) centered
on the vertices of U . This is a connected subset of Rd because ρ0(φλ) ≤ η−1rλ
by (2.4), and therefore for each pair of vertices y, y′ connected by an edge of
Gφλ(Pλ), we have |y − y′| ≤ rλ/η. Also Ũ has �∞-diameter of at least ρrλ/

√
d .

We claim there is no x ∈ U and z in the sea such that |x − m−1
λ z| ≤ η−1rλ. For

if there were such a pair, then by the definition of blue, x would lie in the same
component as the vertices of Pλ in Qz, so U would be part of the sea-component,
a contradiction.

Let S be the union of cubes Qz with z in the sea. The set S is connected, and
disjoint from Ũ by the preceding claim, since the cubes have diameter at most
rλ/(2

√
d); let ∂extŨ denote the exterior boundary of Ũ relative to S. This has �∞-

diameter at least ρrλ/
√

d .
Now let �extŨ be the set of sites z ∈ �λ such that the corresponding cubes Qz

have nonempty intersection with ∂extŨ . Since ∂extŨ is connected, the set �extŨ is
∗-connected. Also card(�extŨ ) ≥ (ρrλ/

√
d)mλ − 1 ≥ ρ.

We claim that none of the squares Qz, z ∈ �extŨ , is blue. This is because by
definition, each such Qz intersects with ∂extŨ , and therefore lies at a distance of at
most rλ/(2η) from some vertex of U (at X, say). Then by the triangle inequality
|X − m−1

λ z| ≤ rλ/(2η) + rλ/(2
√

d) ≤ rλ/η, and if Qz were blue, it would contain
at least one vertex of Pλ, and this would be in the same component of Gφλ(Pλ)

as all the vertices within distance rλ/η of m−1
λ z, including X. Hence Qz would

include a vertex of U , but then it would be contained in the interior of Ũ , and so
would have empty intersection with ∂extŨ , a contradiction.

Thus �extŨ is a ∗-connected set of cardinality at least ρ, all of whose elements
are green. This contradicts the assumed nonoccurrence of H

ρ
λ . Thus F

ρrλ
λ ⊂ H

ρ
λ ,

and the result follows from Lemma 5.9. �

PROOF OF THEOREM 5.1. Set ε = 1
2 min((9d)−dη/K(η),2−d−3). Given ρ >

0, if L2(Gφλ(Pλ)) > 1, then either E
ρrλ
λ or F

ρrλ
λ occurs. If pλ = �(λ−ε), re-

sult (5.1) follows from Proposition 5.1 and Lemma 5.11. If pλ = O(λ−ε), (5.1)
follows from Proposition 4.1. �

6. De-Poissonization. In this section we shall complete the proof of Theo-
rems 2.1, 2.2 and 2.3. We start with the case α ∈ (0,∞) of Theorem 2.3. All
integrals in this section are over � unless specified otherwise.

PROPOSITION 6.1. Suppose α ∈ (0,∞) and (φn) satisfy (2.7) as n → ∞
along some subsequence of N, and for some η ∈ (0,1] we have φn ∈ 	d,η for
all n. Then for k ∈ N0, (2.8) holds as n → ∞ along the same subsequence.
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If also φn ∈ 	0
d,η for all n, then along the same subsequence we have

lim
n→∞P

[
L2

(
Gφn(Xn)

) ≤ 1
] = 1.(6.1)

PROOF. Let λ(n) = n − n3/4 and μ(n) := n + n3/4. Let Pλ(n),Xn,Pμ(n) be
coupled as follows. Let X1,X2, . . . be a sequence of independent random vec-
tors uniformly distributed over �. Independently, let Z and Z′ be Poisson dis-
tributed random variables with parameter λ(n) and μ(n) − λ(n), respectively, in-
dependently of each other and of (X1,X2, . . .); set Pλ(n) := {X1, . . . ,XZ}, and set
Pμ(n) := {X1, . . . ,XZ+Z′ } and Xn := {X1, . . . ,Xn}. By Chebyshev’s inequality,
w.h.p. Pλ(n) ⊂Xn ⊂ Pμ(n).

Without loss of generality, assume ρη(φn) ≤ √
d . By (3.11),

exp
(
n3/4

∫
�

φn(y − x)dy

)
= exp

(
n−1/4 × �(logn)

) = 1 + o(1),

uniformly over x ∈ �, and therefore the sequence (φn)n∈N satisfies

λ(n)

∫
�

exp
(
−λ(n)

∫
�

φn(y − x)dy

)
dx → α.(6.2)

Let An be the union of the event that at least one of the added vertices of Pμ(n) \
Pλ(n) is not connected to any of the vertices of Pλ(n), and the event that at least one
of the added vertices of Pμ(n) \ Pλ(n) is connected to one of the isolated vertices
of Gφn(Pλ(n)).

By the Mecke equation, the expected number of added vertices that are isolated
from all the vertices of Pλ(n) equals 2n3/4 ∫

exp(−λ(n)
∫

φn(y − x)dy)dx, which
tends to zero by (6.2). Also, the expected number of isolated vertices in Gφn(Pλ(n))

that are connected to at least one of the added vertices is bounded by

(
n − n3/4) ∫

�
exp

(
−(

n − n3/4) ∫
�

φn(y − x)dy

)
× 2n3/4I (φn) dx,

and by (6.2) and (3.11) this tends to zero. Hence P [An] = o(1). By Theorem 3.1
we have that

P
[
N0

(
Gφn(Pλ(n))

) = k
] → e−ααk/k!, k ∈N0.

Also P [N0(Gφn(Xn)) 
= N0(Gφn(Pλ(n)))] ≤ P [An] + P [{Z ≤ n ≤ Z + Z′}c],
which tends to 0, and (2.8) follows.

Now suppose φn ∈ 	0
d,η for all n. If L2(Gφn(Xn)) > 1, then either Z > n, or

Z + Z′ < n, L2(Gφn(Pλ(n))) > 1, or An occurs. By Theorem 5.1, all of these
events have vanishing probability, and (6.1) follows. �

Next we consider the case with α ∈ {0,∞}.
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PROPOSITION 6.2. Suppose α ∈ {0,∞}, η ∈ (0,1] and (φn) satisfy (2.7) as
n → ∞ along some subsequence of N, and φn ∈ 	d,η for all n. If α = 0, then
P [N0(Gφn(Xn)) = 0] → 1, and if α = ∞, then for all k ∈ N0, P [N0(Gφn(Xn)) =
k] → 0, as n → ∞ along the same subsequence.

PROOF. (i) Let In(φn) denote the left-hand side of (2.7). Then

EN0
(
Gφn(Xn)

) = n

∫
dx

(
1 −

∫
φn(y − x)dy

)n−1

≤ n

∫
dx

(
exp

(
−(n − 1)

∫
φn(y − x)dy

))
≤ eIn(φn).

Therefore, by Markov’s inequality, if α = 0, we have P [N0(Gφn(Xn)) ≥ 1] → 0.
Now suppose α = ∞. We seek to interpolate a “larger” connection function than

φn that is still in 	d,η. For s > 1 and φ ∈ 	d,η, define φ(s) as follows. Let s0(φ) =
1/μ(φ). For 1 ≤ s ≤ s0(φ), set φ(s)(x) := sφ(x), for x ∈ R

d . Note μ(φ(s0(φ))) = 1.
For s ≥ s0(φ), define

φ(s)(x) :=
{

1, if |x| < s − s0(φ),

φs0(x), if |x| ≥ s − s0(φ).

Let s1(φ) := √
d + s0(φ). If φ ∈ 	d,η, then for each s ∈ [1, s1(φ)] the connection

function φ(s) is also in 	d,η.
For each n ∈ N define the function

f̃n(s) := n

∫
exp

(
−n

∫
φ(s)

n (y − x)dy

)
dx,

which is continuous and nonincreasing on 1 ≤ s ≤ s1(φn). By assumption f̃n(1) →
∞ as n → ∞, while f̃n(s1(φn)) = ne−n. Therefore by the intermediate value the-
orem, given any finite β > 0, for large enough n we can pick s(n) ∈ [1, s1(φn)]
with f̃n(s(n)) = β . Then by Proposition 6.1, for k ∈ N0 we have

P
[
N0

(
G

φ
(s(n))
n

(Xn)
) ≤ k

] → e−β
k∑

j=0

βj/j !.

By an obvious coupling, P [N0(Gφ
(s)
n

(Xn)) ≤ k] is nondecreasing in s, and there-
fore since β > 0 is arbitrary, we have P [N0(Gφn(Xn)) ≤ k] → 0. �

PROOF OF THEOREM 2.2. Let η ∈ (0,1]. To prove (2.5), it suffices to prove
that for any sequence (φn)n∈N of connection functions in 	0

d,η, we have

lim
n→∞P

[{
N0

(
Gφn(Xn)

) = 0
} \ {

Gφn(Xn) ∈K
}] = 0.(6.3)

Define In := In(φn) := n
∫

exp(− ∫
φn(y − x)dy)dx. Consider the three cases

where: (i) In tends to a finite limit as n → ∞ along some infinite subsequence
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of N; (ii) In → ∞ as n → ∞ along some infinite subsequence of N; (iii) In → 0
as n → ∞ along some infinite subsequence of N. At least one of these cases holds,
and it suffices to show that in each case (6.3) holds along the same subsequence.

In case (i), we have (6.3) at once because of (6.1). In case (ii), with In → ∞, by
Proposition 6.2 we have P [N0(Gφn(Xn)) = 0] → 0, and hence (6.3) holds.

Consider case (iii) with In → 0 along a subsequence. For n ∈ N, define

fn(a) := n

∫
exp

(
−an

∫
φn(y − x)dy

)
dx,

which is a continuous and nonincreasing function on 0 ≤ a ≤ 1. For each a ∈ [0,1]
the connection function aφn is in 	d,η.

By assumption fn(1) → 0 as n → ∞, while fn(0) = n. Therefore given ε > 0,
by the intermediate value theorem, for all large enough n in the subsequence we
can choose an ∈ [0,1] such that fn(an) = ε. Then by Proposition 6.1 we have

P
[
N0

(
Ganφn(Xn)

) = 0
] → e−ε; P

[
Ganφn(Xn) ∈ K

] → e−ε.

By an obvious coupling, P [Gaφn(Xn) ∈ K] is nondecreasing in a, and therefore
since ε is arbitrary, we have P [Gφn(Xn) ∈ K] → 1, so (6.3) holds. �

PROOF OF THEOREM 2.3. Equation (2.8) follows from Proposition 6.1, and
the next sentence follows from Proposition 6.2. Then (2.9) follows from Theo-
rem 2.2. �

PROOF OF THEOREM 2.1. The result follows from Theorem 2.3. �

7. Equivalence of thresholds. In this section we prove Theorem 2.4; that is,
we prove that for any [0,1]-valued sequence (pn)n∈N with pn = ω((logn)/n), we
have

lim
n→∞P

[
τn(pn) = σn(pn)

] = 1,

where for p ∈ [0,1], as described in Section 2 we set

τn(p) := inf
{
r :Gr,p(Xn) ∈ K

}; σn(p) := inf
{
r :N0

(
Gr,p(Xn)

) = 0
}
.

Clearly σn(pn) ≤ τn(pn), so we need to show that P [σn(pn) < τn(pn)] tends
to zero. Given pn and given α > 0, define rn(α) by In(φrn(α),pn) = e−α , where
In(φ) := n

∫
� exp(−n

∫
� φ(y − x)dy)dx. For each α we have from (2.5) that

P
[
σn(pn) ≤ rn(α) < τn(pn)

] → 0.(7.1)

Note that rn(α) is nondecreasing in α. Let α < β . Suppose

rn(α) < σn(pn) < τn(pn) ≤ rn(β).
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Assume the inter-point distances are all distinct. Consider adding the edges of
G√

d,p(Xn) one by one (starting from the graph with no edges) in order of increas-
ing Euclidean length.

Then precisely one pair of points of Xn, say X and Y , satisfies |X − Y | =
τn(pn), and by the definition of τn(pn), X and Y lie in different components
just before adding the edge between them, so they lie in different components
of Grn(α),pn(Xn). Assuming L2(Grn(α),pn(Xn)) ≤ 1 [which has high probability
by (6.1)], either X or Y (say X) is isolated in Grn(α),pn(Xn), but X is nonisolated
in Gσn(pn),pn(Xn) by the definition of σn(pn). Therefore since we are assuming
τn(pn) ≤ rn(β), we have that X is connected to at least two points of Xn, at dis-
tances between rn(α) and rn(β). Thus Nα,β(n) > 0, where Nα,β(n) denotes the
number of vertices of Xn having no incident edge in G√

d,pn
(Xn) of (Euclidean)

length at most rn(α) but at least two incident edges of length at most rn(β).
Let λ(n) and μ(n), and the coupling of Pλ(n),Xn, and Pμ(n) be as in the pre-

ceding section. Let N ′
α,β(n) be the number of vertices of Pμ(n) having no inci-

dent edge [in G√
d,pn

(Pμ(n))] of length at most rn(α) with the other endpoint in
Pλ(n), but at least two incident edges of length at most rn(β) (with the other end-
point in Pμ(n)). If Pλ(n) ⊂ Xn ⊂Pμ(n) (which happens with high probability), then
N ′

α,β(n) ≥ Nα,β(n). Thus

lim sup
n→∞

P
[
rn(α) < σn(pn) < τn(pn) ≤ rn(β)

] ≤ lim sup
n→∞

P
[
N ′

α,β(n) > 0
]
.(7.2)

With | · | denoting Lebesgue measure, by the Mecke formula we have

E
[
N ′

α,β

] = (
n + n3/4) ∫

�
e−λ(n)pn|B(x;rn(α))∩�| × (

1 − e−wn(x)(1 + wn(x)
))

dx,

where wn(x) denotes the mean number of edges of length in the range (rn(α),

rn(β)] incident to a point at x. Now, ew − 1 − w ≤ w2ew for any w ≥ 0. Hence

E
[
N ′

α,β

] ≤ (
n + n3/4) ∫

e−λ(n)pn|B(x;rn(α))∩�| × wn(x)2 dx.(7.3)

By (3.12) and the condition pn = ω((logn)/n), we have rn(β) → 0. Writing
Vα(x) for |B(x; rn(α)) ∩ �| we have

e−α = lim
n→∞

(
n

∫
�

exp
(−npnVβ(x) + npn

(
Vβ(x) − Vα(x)

))
dx

)

≥ lim sup
n→∞

(
n

∫
�

exp
(−npnVβ(x) + npnπd

(
rn(β)d − rn(α)d

)
/2d)

dx

)

= e−β exp
(
lim sup
n→∞

[
npnπd

(
rn(β)d − rn(α)d

)
/2d])

so that

lim sup
n→∞

npn

(
rn(β)d − rn(α)d

) ≤ 2d(β − α)/πd.
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Therefore, since

wn(x) ≤ μ(n)pnπd

(
rn(β)d − rn(α)d

)
,

we have lim supn→∞ supx∈� wn(x) ≤ 2d(β − α), so that by (7.3) and a similar
argument to (6.2), lim supn→∞E[N ′

α,β] ≤ 22d(β − α)2e−α , so that by (7.2),

lim sup
λ→∞

P
[
rn(α) < σn(pn) < τn(pn) ≤ rn(β)

] ≤ 22d(β − α)2e−α.(7.4)

Now we argue as in [15], pages 163–164 or [12], pages 304–305. Let ε > 0.
Choose α0 < α1 < · · · < αI such that exp(−e−α0) < ε, and 1 − exp(−e−αI ) < ε,
and also

22d
I∑

i=1

(
rn(αi) − rn(αi−1)

)2
e−αi−1 < ε.

Then by the union bound,

P [σn < τn] ≤ P
[
σn ≤ rn(α0)

] + P
[
σn > rn(αI )

]

+
I∑

i=1

(
P

[
σn ≤ rn(αi) < τn

] + P
[
rn(αi−1) < σn < τn ≤ rn(αi)

])
.

Since σn ≤ r if and only if N0(G(Xn, r)) = 0, it follows from (2.8) of Theorem 2.3,
along with (7.1) and (7.4), that lim supn→∞ P [σn < τn] ≤ 3ε, and since ε > 0 is
arbitrary, this completes the proof.

8. The choice of φ. In this section, we prove Theorem 2.5 (among other
things). That is, we identify conditions for a sequence of connection functions
φn to satisfy (2.7) for some α ∈ (0,∞). We consider only the case with d = 2 and
φn ∈ 	2,η ∩ �2 for some η ∈ (0,1], where �2 is defined by (2.1).

Assume d = 2. Fix η > 0, and choose φn ∈ 	2,η ∩ �2 for each n > 0. Set

rn := ρη(φn); pn := μ(φn); an := nr2
npn.

Since we assume d = 2, it follows from definitions (2.10) and (2.12) that

nI (φn) = anJ2(φn), n ∈N.(8.1)

In this section we assume rn = n−�(1), so in particular rn = o(1).
Set N0(n) := N0(Gφn(Pn)). By the Mecke formula, EN0(Gφn(Pn)) = In(φn),

where we set In(φ) := n
∫
� exp(−n

∫
� φ(y − x)dy)dx, so In(φn) is the left-hand

side of (2.7).
Given ε > 0, truncate φn by setting φ̃n(x) := φn(x)1[0,r1−ε

n ](|x|) for x ∈ R
2.

Couple Gφn(Pn) and Gφ̃n
(Pn) as in the proof of Lemma 3.3. Let Ñ0(n) :=

N0(Gφ̃n
(Pn)). Let N int

0 := N int
0 (n) denote the number of isolated vertices of
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Gφ̃n
(Pn) lying in [r1−ε

n ,1 − r1−ε
n ]2. Let N side

0 := N side
0 (n) denote the number

of isolated vertices of Gφ̃n
(Pn) lying within Euclidean distance r1−ε

n of pre-
cisely one edge of �. Let Ncor

0 := Ncor
0 (n) denote the number of isolated ver-

tices of Gφ̃n
(Pn) lying within �∞ distance r1−ε

n of one of the corners of �. Then

Ñ0(n) = N int
0 + N side

0 + Ncor
0 (with probability 1), so

In(φ̃n) = EN int
0 +EN side

0 +ENcor
0 .

Also, if rn = n−�(1), then

0 ≤ EÑ0(n) −EN0(n) ≤ n2φn

(
r1−ε
n

) ≤ 3n2 exp
(−ηr−εη

n

) → 0(8.2)

and

n
(
I (φn) − I (φ̃n)

) = nr2
n

∫
{x : |x|≥r−ε

n }
φn(rnx) dx

(8.3)
≤ 3nr2

n

∫
{x : |x|>r−ε

n }
η−1 exp

(−η|x|)dx → 0.

As with (3.12), a necessary condition for (2.7) is that

npnr
2
n = �(logn).(8.4)

Recall from (2.11) that J1(φn) := J1(φn, η) := p−1
n

∫ ∞
0 φn((rnt,0)) dt .

LEMMA 8.1. Suppose (8.4) holds, and rn = n−�(1) as n → ∞. Then provided
ε > 0 is chosen sufficiently small (but fixed), as n → ∞ we have

EN side
0 ∼ 2

J1(φn)

(
n

anpn

)1/2

e−nI (φn)/2(8.5)

and

ENcor
0 ∼ 4e−nI (φn)/4

anpnJ1(φn)2 .(8.6)

PROOF. For u > 0, let

fn(u) := p−1
n

∫
[0,∞)×[0,u]

φ̃n(rnx) dx.

Then we claim that for θn = an or θn = 2an,∫ r−ε
n

0
exp

(−θnfn(u)
)
du ∼ 1/

(
θnJ1(φn)

)
as n → ∞.(8.7)

To see this, note first that J1(φ̃n) ∼ J1(φn) as n → ∞, by (2.13). Also, since φ̃n(x)

is nonincreasing in |x| (because φn ∈ 	2,η ∩ �2) we have

fn(u) ≤ uJ1(φ̃n),(8.8)
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so that using (2.13) we have∫ r−ε
n

0
exp

(−θnfn(u)
)
du

≥
∫ r−ε

n

0
exp

(−θnuJ1(φ̃n)
)
du(8.9)

= (
θnJ1(φ̃n)

)−1
∫ θnJ1(φ̃n)r−ε

n

0
e−t dt ∼ (

θnJ1(φ̃n)
)−1

.

Also given δ > 0, for (s, t) ∈ [0,∞) × (0, δrn), we have φn((s, t)) ≥ φn((s +
δrn,0)), and hence∫ δ

0
exp

(−θnfn(u)
)
du

≤
∫ δ

0
exp

(
−θnup

−1
n

∫ ∞
0

φ̃n

((
rn(s + δ),0

))
ds

)
du(8.10)

≤
∫ δ

0
exp

(−θnu
(
J1(φ̃n) − δ

))
du ∼ (

θn

(
J1(φ̃n) − δ

))−1
,

and provided δ ≤ 1/2, we also have for u ≥ δ that

fn(u) ≥ fn(δ) ≥ p−1
n

∫
[0,1/2]×[0,δ]

φn(rnx) dx ≥ δη/2,(8.11)

so that ∫ 1

δ
exp

(−θnfn(u)
)
du ≤ exp(−δηθn/2) = o

(
θ−1
n

)
.(8.12)

For u ≥ 1 we have fn(u) ≥ fn(1/2) ≥ η/4, and for n large enough r−2
n ≤ n by

(8.4), so ∫ r−ε
n

1
e−θnfn(u) du ≤ r−ε

n exp(−ηθn/4) ≤ nε/2 exp(−ηθn/4).

Provided ε is small enough, using (8.4) again we have that the last expression is
less than exp(−ηθn/8), which is o(θ−1

n ). Combining this with (8.9), (8.10) and
(8.12) and using the fact that δ can be arbitrarily small, we have (8.7).

Since φ̃n has range r1−ε
n we have

EN side
0 = (

4 + o(1)
)
n exp

(−nI (φ̃n)/2
) ∫ r−ε

n

0
exp

(−2nr2
npnfn(u)

)
rn du.

By (8.3) and (8.7) we obtain

EN side
0 ∼ 4nrne

−nI (φn)/2

2J1(φn)nr2
npn

= 2

J1(φn)

(
n

anpn

)1/2

e−nI (φn)/2.
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Now consider ENcor
0 . For u, v > 0, set

gn(u, v) := p−1
n

∫
[0,u]×[0,v]

φ̃n

(
rn

(
x − (u, v)

))
dx.

Then since φ̃n has range r1−ε
n ,

ENcor
0 = (

1 + o(1)
)
4r2

nne−nI (φ̃n)/4Ĩn(8.13)

with

Ĩn :=
∫ r−ε

n

0

∫ r−ε
n

0
exp

(−npnr
2
n

[
fn(u) + fn(v) + gn(u, v)

])
dudv.

For u, v ≥ 0 we have 0 ≤ gn(u, v) ≤ uv. Hence by (8.8) we have

Ĩn ≥
∫ r−ε

n

0

∫ r−ε
n

0
exp

(−an

(
uJ1(φ̃n) + vJ1(φ̃n) + uv

))
dudv

∼
∫ r−ε

n

0

(
e−anvJ1(φ̃n)

an(J1(φ̃n) + v)

)
dv ∼ (

anJ1(φ̃n)
)−2

.

On the other hand, given δ ∈ (0, η), similarly to (8.10), the contribution to Ĩn from
max(u, v) ≤ δ is bounded above by∫ δ

0

∫ δ

0
exp

(−an

[
u
(
J1(φn) − δ

) + v
(
J1(φn) − δ

)])
dudv ∼ (

an

(
J1(φn) − δ

))−2
,

while by (8.11) the contribution to Ĩn from 1 ≥ max(u, v) > δ is bounded above
by exp(−anηδ/2), which is o(a−2

n ) by (8.4), and the contribution to Ĩn from
max(u, v) > 1 is bounded above by exp(−anη/4)r−2ε

n , and hence [using (8.4)],
by nε exp(−anη/4), which is o(a−2

n ) provided ε is taken sufficiently small. There-
fore we have Ĩn ∼ (anJ1(φn))

−2. Then by (8.13) we get (8.6). �

LEMMA 8.2. Fix ε ∈ (0,1). Suppose rn = n−�(1). Then EN int
0 ∼ ne−nI (φn) as

n → ∞.

PROOF. The result follows from (8.3). �

PROPOSITION 8.1. Suppose d = 2. Let α ∈ (0,∞). Suppose for some η ∈
(0,1] that φn ∈ 	2,η ∩ �2 for all n, and pn = ω(1/ logn) as n → ∞. Then (2.7)
holds if

nI (φn) − logn → − logα.(8.14)

PROOF. Assume (8.14) holds, which implies a fortiori that (8.4) also holds,
so in particular r2

n = O((logn)2/n). Then by Lemma 8.2 and (8.14) we have
EN int

0 → α.
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Using (8.4), (8.14) and Lemma 8.1, we obtain (for a sufficiently small choice
of ε) that EN side

0 = O((pn logn)−1/2), which tends to zero by the assumption on
pn. Similarly, by (8.6) and (8.14), ENcor

0 = O(n−1/4/(pn logn)) = o(1). Applying
(8.2) completes the proof. �

When pn = O(1/ logn), boundary effects become important in the asymptotics
for the mean number of isolated points.

PROPOSITION 8.2. Suppose d = 2, and for some η ∈ (0,1] we have φn ∈
	2,η ∩ �2 for all n. Suppose pn = o(1/ logn) and also pn = ω((logn)−1n−1/3),
as n → ∞. Fix α ∈ (0,∞), and assume

nI (φn) = log
(

4J2(φn)

α2J1(φn)2

)
+ log

(
n

pn

)
− log log

(
n

pn

)
+ o(1).(8.15)

Then (2.7) holds.

PROOF. Under the assumptions given, using Lemma 8.2 we have

EN int
0 = (

1 + o(1)
)
ne−nI (φn) = O

(
pn log

(
n

pn

))
→ 0.(8.16)

Also by (8.5), (8.15) and (8.1), we have

EN side
0 ∼ α

(
n

J2(φn)anpn

)1/2(
pn

n

)1/2(
log(n/pn)

)1/2 → α.(8.17)

Using (8.5) again along with (2.13), we obtain that e−nI (φn)/4 = �((anpn/

n)1/4) so that (8.6) yields ENcor
0 = O(((anpn)

3n)−1/4), and by (8.4) [which fol-
lows from (8.15)] and the assumption pn = ω(n−1/3(logn)−1), this shows that
ENcor

0 → 0. Combined with (8.16), (8.17) and (8.2), we have the result. �

Consider the intermediate case with pn = �(1/ logn).

THEOREM 8.1. Let α ∈ (0,∞), η ∈ (0,1]. Suppose that φn ∈ 	2,η ∩ �2 for
all n, pn = �(1/ logn) and nI (φn) = logn − 2 logγn + o(1), where γn denotes
the solution in (0,∞) to

γ 2
n + 2γn

(
J2(φn)

1/2/J1(φn)
)
(pn logn)−1/2 = α.(8.18)

Then (2.7) holds.

PROOF. By (2.13) and the assumption on pn, lim supn→∞(γn) < ∞ and
lim infn→∞(γn) > 0. By Lemma 8.2,

EN int
0 = (

1 + o(1)
)
ne−nI (φn) = (

1 + o(1)
)
γ 2
n ,
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while by (8.5) and (8.1),

EN side
0 ∼ 2

J1(φn)

(
n

anpn

)1/2

γnn
−1/2 ∼ 2J2(φn)

1/2γn

J1(φn)(pn logn)1/2 .

Also by (8.6), ENcor
0 = O(n−1/4/(pn logn)) = o(1). Combining these results and

using (8.18) and (8.2) we have (2.7). �

In the case pn = o((logn)−1n−1/3) the main contribution to EN0 comes from
near the corners of �.

PROPOSITION 8.3. Suppose d = 2. Let α ∈ (0,∞), η ∈ (0,1], and suppose
(φn)n>0 are such that φn ∈ 	2,η ∩ �2 for all n and pn = o((logn)−1n−1/3) and

nI (φn) = 4
(
log(1/pn) − log log(1/pn) + log

(
J2(φn)/

(
αJ1(φn)

2)))
(8.19)

+ o(1)

as n → ∞. Assume also that rn = n−�(1). Then (2.7) holds.

PROOF. Note that pn = �((logn)/n) since otherwise (8.19) cannot be sat-
isfied by bounded rn. Then log(1/pn) = �(logn) and (8.4) holds. By (8.6) and
(8.1),

ENcor
0 ∼ 4pn log(1/pn)αJ1(φn)

2/J2(φn)

J1(φn)2anpn

→ α.(8.20)

Also e−nI (φn)/4 = �(pn log(1/pn)) = �(pn logn). Therefore by (8.5) and (8.4),
we obtain that EN side

0 = O(n1/2(pn logn)3/2), which tends to zero since we as-
sume pn = o(n−1/3(logn)−1).

Finally, since pn = �((logn)/n), using Lemma 8.2 and (8.19) we have

EN int
0 = O

(
ne−nI (φn)) = O

(
np4

n(log 1/pn)
4) = O

(
n−2)

,

so EN int
0 → 0, and (3.1) then follows by (8.2). �

PROOF OF THEOREM 2.5. The proof follows immediately from Proposi-
tions 8.1, 8.2 and 8.3. �

Our final result deals with the intermediate case with pn = �(n−1/3(logn)−1).

THEOREM 8.2. Let α ∈ (0,∞), and suppose (φn)n>0 are such that pn =
�(n−1/3(logn)−1) and

nI (φn) = 4
(
log(1/pn) − log log(1/pn) + log

(
J2(φn)/

(
βnJ1(φn)

2)))
(8.21)

+ o(1)
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as n → ∞, with βn denoting the solution in (0,∞) to(
3J2(φn)

)−3/2
J1(φn)

3(
n1/3pn logn

)3/2
β2

n + βn = α.(8.22)

Then (2.7) holds.

PROOF. Note that (8.21) is the same as (8.19) but with α replaced by βn. As
with (8.20) we have ENcor

0 = βn + o(1). Then by (8.5) and (8.21) we have

EN side
0 ∼ (

2/J1(φn)
)
(n/an)

1/2p3/2
n (log 1/pn)

2β2
nJ1(φn)

4J2(φn)
−2.

By (8.1) and (8.21), an = nI (φn)/J2(φn) ∼ (4/J2(φn)) log(1/pn), and our as-
sumption on pn implies log 1/pn ∼ (1/3) logn, so that

EN side
0 ∼ β2

nJ1(φn)
3J2(φn)

−3/2n1/2p3/2
n

(
(logn)/3

)3/2
.

Hence by (8.22), E[N side
0 + Ncor

0 ] → α. Also by Lemma 8.2, EN int
0 =

O(ne−nI (φn)) = O(np4
n(log 1/pn)

4), which tends to zero, and (2.7) follows
by (8.2). �
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