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MEAN FIELD LIMIT FOR DISORDERED DIFFUSIONS WITH
SINGULAR INTERACTIONS1
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Technische Universität, Berlin and Bernstein Center
for Computational Neuroscience

Motivated by considerations from neuroscience (macroscopic behavior
of large ensembles of interacting neurons), we consider a population of mean
field interacting diffusions in Rm in the presence of a random environment
and with spatial extension: each diffusion is attached to one site of the lat-
tice Zd , and the interaction between two diffusions is attenuated by a spatial
weight that depends on their positions. For a general class of singular weights
(including the case already considered in the physical literature when inter-
actions obey to a power-law of parameter 0 < α < d), we address the conver-
gence as N → ∞ of the empirical measure of the diffusions to the solution of
a deterministic McKean–Vlasov equation and prove well-posedness of this
equation, even in the degenerate case without noise. We provide also pre-
cise estimates of the speed of this convergence, in terms of an appropriate
weighted Wasserstein distance, exhibiting in particular nontrivial fluctuations
in the power-law case when d

2 ≤ α < d. Our framework covers the case of
polynomially bounded monotone dynamics that are especially encountered
in the main models of neural oscillators.

1. Introduction. The purpose of this paper is to provide a general con-
vergence result for the empirical distribution of spatially extended networks of
mean field coupled diffusions in a random environment. The main novelty of
the paper is to consider a family of interacting diffusions indexed by the box
�N := [[−N, . . . ,N]]d of volume |�N | := (2N + 1)d in the d-dimensional lat-
tice Zd (d ≥ 1) where the interaction between two diffusions in �N depends on
their relative positions. We are in particular interested in diffusions modeling the
spiking activity of neurons in a noisy environment. To motivate the mathematical
model we want to work with, let us consider, as a particular example, a family
of stochastic FitzHugh–Nagumo neurons (see [2, 15] and references therein for
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further neurophysiological insights on the model)⎧⎪⎨
⎪⎩dVi(t) =

(
Vi(t) − Vi(t)

3

3
− wi(t) + I

)
dt + σV dBV

i (t),

dwi(t) = (
ai

(
biVi(t) − wi(t)

))
dt + σw dBw

i (t)

(1.1)

for i ∈ �N , with exterior input current I . The variable Vi(t) denotes the voltage ac-
tivity of the neuron, and wi(t) plays the role of a recovery variable. (BV

i (t),Bw
i (t))

are independent Brownian motions modeling exterior stochastic forces. Depend-
ing on the parameters (ai, bi) ∈ R2, the neurons exhibit an oscillatory, excitable or
inhibitory behavior. Suppose that the precise values of ωi = (ai, bi) are unknown,
which will always be the case in real-world applications, but rather are given as
independent and identically distributed random variables. From a point of view
from statistical physics, this additional randomness in (1.1) may be considered as
a disorder. For simplicity we suppose that the ωi are independent of the time t .
Equation (1.1) can be written as

dθi(t) = c(θi,ωi)dt + σ · dBi(t), t ≥ 0, i ∈ �N,(1.2)

using the shorthand notation θ = (V ,w), ω = (a, b), c(θ,ω) = (V − V 3

3 − w +
I, a(bV − w)), B = (BV ,Bw) and σ = (σV

0
0

σw

)
. We suppose that the individual

neurons are coupled with the help of a possibly nonlinear and random coupling
term �(θi,ωi, θj ,ωj ) (i, j ∈ �N ) modeling electrical synapses between the neu-
rons. The coupling intensity between neurons i and j will depend additionally on
some weight �N(i, j) (�N may be thought as a function of the distance, but not
necessarily), so that the resulting system gets the following type:

dθi(t) = c
(
θi(t),ωi

)
dt

+ 1

|�N |
∑

j∈�N

�
(
θi(t),ωi, θj (t),ωj

)
�N(i, j)dt + σ · dBi(t),(1.3)

t ≥ 0, i ∈ �N.

The purpose of the paper is to address the behavior of system (1.3) in large pop-
ulations (N → ∞), under general assumptions on the dynamics c, the coupling �

and the spatial constraint �N .

1.1. Empirical measure and mean-field limit. All the statistical information of
the neural ensemble is contained in its empirical distribution of the diffusions θj

(with disorder ωj and with renormalized position xj := 1
2N

∈ [−1
2 , 1

2 ]d )

ν
(N)
t (dθ,dω,dx) := 1

|�N |
∑

j∈�N

δ(θi(t),ωi,xj )(dθ,dω,dx), t ≥ 0(1.4)

that can be seen as a random probability measure.
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REMARK 1.1. The renormalization of the positions by 1
2N

maps �N =
[[−N, . . . ,N]]d to a discrete subset of [−1

2 , 1
2 ]d . The necessity of this renormal-

ization will become clear in the discussion on the spatial constraints below in this
Introduction.

Since we are interested in the collective behavior of a large numbers of neurons,
as it is the case for neural ensembles in the brain, understanding the asymptotic
behavior of ν

(N)
t as N → ∞ is important.

Under the assumption that

�N(i, j) = �

(
i

2N
,

j

2N

)
(1.5)

for a general class of functions � defined on [−1
2 , 1

2 ]d × [−1
2 , 1

2 ]d , we prove, as

part of our main results in this paper (see Theorems 2.13 and 2.18), that ν
(N)
t con-

verges to a deterministic measure νt (dθ,dω,dx) = qt (θ,ω, x)dθμ(dω)dx where
qt is a weak solution of the McKean–Vlasov equation

∂tqt = 1

2
divθ

(
σσT ∇θqt

)
− divθ

(
qt

{
c(θ,ω)(1.6)

+
∫

�(θ,ω, θ̄, ω̄)�(x, x̄)qt (θ̄ , ω̄, x̄)dθ̄ dμ(ω̄)dx̄

})
.

For a formal derivation of this equation, we refer to the end of Section 2.4 below.
The measure νt is called the mean field limit of the system (1.3). Through The-
orems 2.13 and 2.18, we not only prove the convergence ν

(N)
t toward νt , but we

also provide some explicit estimates on the speed of convergence in terms of an
appropriate weighted Wasserstein distance.

1.2. Existing literature and motivations.

1.2.1. The nonspatial case: �N ≡ 1. Of course, since there is no spatial in-
teraction in this case, indexing the diffusions by a subset of Zd is not relevant.
Systems of type (1.3) are called mean field models (or weakly interacting diffu-
sions) in statistical physics and have attracted much attention in the past years
(see, e.g., [10, 16, 27, 29, 35]), since they are capable of modeling complex dy-
namical behavior of various types of real-world models from physics to biology,
like, for example, synchronization of large populations of individuals, collective
behavior of social insects, emergence of synchrony in neural networks [2, 12, 37,
38] and providing particle approximations for various nonlinear PDEs appearing
in physics [4–7, 25].
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The most prominent example of such models is the Kuramoto model, which has
been widely considered in the literature as the main prototype for synchronization
phenomena (see, e.g., [1, 3, 19, 24, 34]),

dθi(t) = ωi dt + K

N

N∑
j=1

sin(θj − θi)dt + σ dBi(t),

(1.7)
t ≥ 0, i = 1, . . . ,N,

where K ≥ 0 is the intensity of interaction and θi ∈ S := R/2π .
In the context of weighted interactions, a notable attempt to go beyond pure

mean field interactions has been to consider moderately interacting diffusions; see
[22, 28, 30].

1.2.2. The spatial case. The motivation of going beyond pure mean-field in-
teraction comes from the biological observation that neurons do not interact in a
mean-field way (see, e.g., [40] and references therein), and a vast literature exists
in physics about synchronization on general networks. In particular, several papers
have already considered model (1.3) (in dimension d = 1) for different choices
of spatial weight � defined in (1.5). In this paper, we will be more particularly
interested in two classes of spatial weights:

(1) The P -nearest-neighbor model: this model (see [31, 32]) concerns the case
where each diffusion θi ∈ �N only interacts with its neighbors within a box �P ⊆
�N , where P is smaller than N ,

dθi(t) = c(θi,ωi)dt + 1

|�P |
∑

j∈�P

j 
=i

�(θi,ωi, θj ,ωj )dt + σ · dBi(t),

(1.8)
i ∈ �N.

We are concerned in this work with the case where P is proportional to N , that is,

P = RN(1.9)

for a fixed proportion R ∈ (0,1].
REMARK 1.2. The case of R = 1 corresponds to the mean field case. Under-

standing the behavior of system (1.8) in the case of a pure local interaction (i.e.,
when P � N ) does not enter into the scope of this work. In particular, we will
not address the question of P of order smaller than N (e.g., P = RNα for some
α < 1), whose behavior as N → ∞ seems to be quite different.

Under assumption (1.9), the P -nearest-neighbor model (1.8) enters into the
framework of (1.3) for the following choice of � in (1.5):

∀x, y ∈
[
−1

2
,

1

2

]d

�(x, y) := χR(x−y) := 1

(2R)d
1[−R,R]d (x−y).(1.10)
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(2) The power-law model: this model also considered in the physical literature
(see [9, 20, 26, 33]) corresponds to the case where � in (1.5) is given by

∀x, y ∈
[
−1

2
,

1

2

]d

�(x, y) := 1

‖x − y‖α
(1.11)

for some parameter α ≥ 0, that is,

dθi(t) = c(θi,ωi)dt

+ 1

|�N |
∑

j∈�N

j 
=i

�(θi,ωi, θj ,ωj )

∥∥∥∥ i − j

2N

∥∥∥∥−α

dt + σ · dBi(t),(1.12)

i ∈ �N.

Note that the pure mean field case corresponds again to α = 0. As observed in
the articles mentioned above on the basis of numerical simulations, it appears that
the behavior of the system is strongly dependent on the value of the parameter α.
The situation which is considered in this paper corresponds to the subcritical case
where the parameter is smaller than the dimension

α < d.(1.13)

The case of α ≥ d is much more delicate and will be the object of future work. We
refer to Remark 2.7 below for further explanations on this case.

It is easy to see that in the case of (1.13) the renormalization of the positions
by a factor 1

2N
in (1.12) is necessary: by standard arguments, the diverging series∑

j∈�N,j 
=i ‖i − j‖−α is of order Nd−α . Consequently, 1
|�N |

∑
j∈�N,j 
=i ‖ i−j

2N
‖−α

is of order Nα

|�N |N
d−α = O(1), so that we should expect a nontrivial limit in (1.12),

as N → ∞.

1.3. Main lines of proof and organization of the paper. The strategy usually
used in the literature on mean-field models (see [16, 22, 24, 29]) for the con-
vergence of the empirical measure (1.4) is the following: first prove tightness of
(ν(N))N≥1 in the set of measure-valued continuous processes and second, prove
uniqueness of any possible limit points, that is, uniqueness in the McKean–Vlasov
equation (1.6).

In our context, a priori uniqueness in (1.6) appears unclear, due the fact that
our model includes singular spatial weights [discontinuous in (1.10) and singu-
lar in (1.11)] and also a class of dynamics with no global-Lipschitz continuity
and polynomial growth; recall the FitzHugh–Nagumo case (1.1). Note that we are
also concerned with the case where σ is degenerate (even equally zero) for which
uniqueness in (1.6) is also not clear.

To bypass this difficulty, we adopt a converse strategy: we first prove existence
of a solution to the mean-field limit (1.6) (through an ad-hoc fixed point argument,
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using ideas from Sznitman [36]). Second, via a propagator method (see [13] for re-
lated ideas), we prove the convergence (with respect to a Wasserstein-like distance
adapted to the singularities of the interaction) of the empirical measure to any so-
lution to (1.6). In particular, easy byproducts of this method are uniqueness of any
solution to (1.6) as well as explicit rates of convergence to the McKean–Vlasov
limit. In that sense, one of the main conclusions of the paper is to exhibit a phase
transition in the size of the fluctuations in the power-law case; see Theorem 2.18.
An actual central limit theorem in this case is of course a natural perspective and
is currently under investigation.

The paper is organized as follows: we give in Section 2 the main assumptions
on the model and we state the main results (Theorems 2.13 and 2.18). Section 3
contains the proof of Proposition 2.9 concerning the existence of a solution to the
McKean–Vlasov equation (1.6). Section 4 summarizes the main ideas and results
concerning the propagator method. The proofs of the laws of large numbers are
provided in Section 5 for the P -nearest case and in Section 6 for the power-law
case. An additional assumption of regularity is made from Section 4 to 6, with is
discarded in Section 7.

2. Mathematical set-up and main results.

2.1. The model. Fix N ≥ 1, T > 0, and let �N be the hypercube [[−N, . . . ,

N ]]d ⊂ Zd and |�N | = (2N + 1)d be its volume. We consider |�N | diffusions on
[0, T ] with values in the state space2 X := Rm for a certain m ≥ 1.

Each diffusion θi is attached to the site i of �N . The local dynamics of θi is
governed by the following stochastic differential equation which is perturbed by a
random environment represented by a vector ωi ∈ E := Rn (n ≥ 1):

dθi(t) = c(θi,ωi)dt + σ · dBi(t), 0 ≤ t ≤ T , i ∈ �N,(2.1)

where σ ∈ Rm×m is the covariance matrix, c(·, ·) is a function from X × E to X ,
and (Bi) is a given sequence of independent Brownian motions in X .

The vectors (ωi)i∈�N
are supposed to be i.i.d. realizations of a law μ and are

hence seen as a random environment for the diffusions.
When connected to the others, the diffusions interact in a mean field way with

spatial extension,

dθi(t) = c(θi,ωi)dt

+ 1

|�N |
∑

j∈�N

j 
=i

�(θi,ωi, θj ,ωj )�

(
i

2N
,

j

2N

)
dt + σ · dBi(t),(2.2)

0 ≤ t ≤ T , i ∈ �N,

2Note that it is also possible to choose X as the circle S := R/2πZ in the case of the Kuramoto
model, but we will stick to X := Rm for simplicity.
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where � is a function from (X × E)2 to X , and (x, y) �→ �(x, y) is a function
from [−1

2 , 1
2 ]d ×[−1

2 , 1
2 ]d to [0,∞). The required assumptions for the function �

will be made precise in Assumption 2.5 below. One should notice at this point that
�(x, y) does not need to depend on the difference x − y.

We suppose that, at time t = 0, the variables (θi(0))1≤i≤N are independent and
identically distributed according to a probability distribution ζ(dθ) on X .

REMARK 2.1. Instead of considering diffusions on �N , we can also suppose
periodic boundary conditions, that is, when �N is replaced by �N,per := T

d
N ,

where TN is the discrete N -torus, that is, [[−N, . . . ,N]] with −N and N iden-
tified. The only thing that changes in what follows in the continuous model is that
one should replace [−1

2 , 1
2 ]d by T

d where T := [−1
2 , 1

2 ]/(−1/2)∼1/2. Since the cor-
responding changes in the proofs of this paper remain marginal, we will restrict to
the non periodic case and let the interested reader make the appropriate modifica-
tions in the periodic case.

2.2. Notation and assumptions. From now on, we will suppose that the fol-
lowing assumptions (Assumptions 2.2, 2.4 and 2.5) are satisfied throughout the
paper. In particular, saying that Assumption 2.5 is true means that we are either
in the P -nearest-neighbor case or in the power-law case; see hypotheses (H1) and
(H2) below.

ASSUMPTION 2.2 (Hypothesis on � and c). We make the following assump-
tions:

• The function (θ,ω) �→ c(θ,ω) is supposed to be locally Lipschitz-continuous
in θ (for fixed ω) and satisfy a one-sided Lipschitz condition w.r.t. the two vari-
ables (θ,ω),

∀(θ,ω), (θ̄ , ω̄)
〈
θ − θ̄ , c(θ,ω)−c(θ̄ , ω̄)

〉 ≤ L
(‖θ − θ̄‖2 +‖ω− ω̄‖2)(2.3)

for some constant L (not necessarily positive). We suppose also some polyno-
mial bound about the function c,

∀(θ,ω)
∥∥C(θ,ω)

∥∥ ≤ |||c|||(1 + ‖θ‖κ + ‖ω‖ι)(2.4)

for some constant |||c||| > 0 and where κ ≥ 2 and ι ≥ 1.
• The interaction term � is supposed to be bounded by ‖�‖∞ and globally

Lipschitz-continuous on (X × E)2, with a Lipschitz constant ‖�‖Lip.

We also assume that for fixed θ̄ , ω, ω̄, the functions θ �→ c(θ,ω) and θ �→
�(θ,ω, θ̄, ω̄) are twice differentiable with continuous derivatives.

REMARK 2.3. Assumption 2.2 is in particular satisfied for the FitzHugh–
Nagumo case. One technical difficulty is the dynamics is not globally Lispchitz
continuous. This will entail some technical complications in the following. Note
also that the constant |||c||| mentioned in (2.3) does not take part in the estimates of
Sections 4 to 6. It only enters into account in Section 3.
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ASSUMPTION 2.4 (Assumptions on μ and ζ ). We suppose that the initial dis-
tribution ζ of θ satisfies the following moment condition:∫

X
‖θ‖κζ(dθ) < ∞,(2.5)

and that the law of the disorder μ satisfies the moment condition∫
E
‖ω‖ιμ(dω) < ∞,(2.6)

where the constants κ and ι are given by (2.4) in Assumption 2.2.

ASSUMPTION 2.5 (Assumptions on the weight �). In order to cover the case
of both the P -nearest model and the power-law interaction introduced in Sec-
tion 1.2.2, we suppose that either hypotheses (H1) or (H2) is true:

(H1) P -nearest-neighbor:

∀x, y ∈ [−1
2 , 1

2

]d
�(x, y) := χR(x, y),(2.7)

where χR is defined in (1.10).
(H2) Power-law: the function � is supposed to be a nonnegative function on

[−1
2 , 1

2 ]d × [−1
2 , 1

2 ]d such that the following properties are satisfied:

I1(�) := sup
a,x∈[−1/2,1/2]d

‖x − a‖α�(x, a) < ∞,(2.8)

I2(�) := sup
x,y∈[−1/2,1/2]d

∫ |�(x, x̄) − �(y, x̄)|dx̄

‖x − y‖(d−α)∧1 < ∞,(2.9)

I3(�) := sup
a,x,y∈[−1/2,1/2]d

|‖x − a‖2γ �(x, a) − ‖y − a‖2γ �(y, a)|
‖x − y‖(2γ−α)∧1

(2.10)
< ∞

for some parameters α ∈ [0, d) and γ chosen to be⎧⎪⎪⎨
⎪⎪⎩

γ ∈
[
α,

d

2

)
, if α ∈

[
0,

d

2

)
,

γ = d

2
, otherwise.

(2.11)

REMARK 2.6. Note that we could have chosen simply γ = d
2 in any case. But

this would have led to worse convergence rates than the ones that we obtain below
in Theorem 2.18.

Of course, the main prototype for hypothesis (H2) is when �(x, y) = ‖x −
y‖−α , for α < d [recall (1.11)]. But, the assumptions made in (H2) cover a
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larger class of examples: the reader may think of the general case of �(x, y) :=
ψ(x, y)‖x − y‖−α , for a bounded Lipschitz-continuous function ψ . Note also that
the case of bounded Lispchitz interactions is also captured (take α = 0).

REMARK 2.7 (About the supercritical case). The case of a power-law inter-
action with α ≥ d is more delicate and requires more attention. Note that, to our
knowledge, no proposition for any continuous limit has been made in the literature
in this case. We are only aware of [9], where system (2.12) below is considered for
finite N .

One trivial observation is that the series
∑

j∈�N,j 
=i ‖i − j‖−α is in this

case already convergent. Consequently, an interaction term of the form 1
|�N | ×∑

j∈�N,j 
=i �(θi,ωi, θj ,ωj )‖i − j‖−α simply vanishes to 0 as N → ∞. Hence,

the correct model in this case is where the factor 1
|�N | is absent,

dθi(t) = c(θi,ωi)dt

+ ∑
j∈�N

j 
=i

�(θi,ωi, θj ,ωj )‖i − j‖−α dt + σ · dBi(t),(2.12)

i ∈ �N.

The main difficulty for the derivation of the correct continuous limit in the case
of (2.12) lies in the fact that the interaction term

∑
j∈�N,j 
=i �(θi,ωi, θj ,ωj )‖i −

j‖−α is not sufficiently mixing: if it exists, the McKean–Vlasov limit in this case
should be random. We believe that the correct continuous limit should be governed
by a stochastic partial differential equation instead of a deterministic PDE. This
case is currently under investigation and will be the object of a future work.

2.3. The empirical measure. Let us consider for fixed horizon T and time t ∈
[0, T ], the empirical measure ν

(N)
t [introduced in (1.4)],

ν
(N)
t (dθ,dω,dx) := 1

|�N |
∑
j

δ(θj (t),ωj ,xj )(dθ,dω,dx)(2.13)

as a probability measure on X × E × [−1
2 , 1

2 ]d . Here

xj := j

2N
∈

[
−1

2
,

1

2

]d

, j ∈ �N.(2.14)

2.4. The McKean–Vlasov equation. The convergence of the empirical mea-
sure at t = 0 is clear: since (θi(0),ωi)1≤i≤N are i.i.d. random variables sampled
according to ζ ⊗ μ, the initial empirical measure ν

(N)
0 converges, as N → ∞, to

ν0(dθ,dω,dx) := ζ(dθ)μ(dω)dx.(2.15)
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An application of Itô’s formula to (2.2) [for any (θ,ω, x) �→ f (θ,ω, x) bounded
function of class C2 w.r.t. θ with bounded derivatives] leads to the following mar-
tingale representation for ν(N):

〈
ν

(N)
t , f

〉 = 〈
ν

(N)
0 , f

〉 + ∫ t

0

〈
ν(N)
s ,

1

2
divθ

(
σσT ∇θf

) + ∇θf · c(·, ·)
〉

ds

+
∫ t

0

〈
ν(N)
s ,∇θf ·

∫
�(·, ·, θ̄ , ω̄)�(·, x̄)ν(N)

s (dθ̄ ,dω̄,dx̄)

〉
ds(2.16)

+ M
(N)
t (f ),

where M
(N)
t (f ) := 1

|�N |
∑

j

∫ t
0 ∇θf (θj (s),ωj , xj ) ·σ dBj(s) is a martingale. Note

that we use here the usual duality notation 〈ν,f 〉 = ∫
f dν for the integral of a test

function f against a measure ν.
Taking formally N → ∞ in (2.16) shows that any limit point of ν(N) should

satisfy the following nonlinear McKean–Vlasov equation:

∂t 〈νt , f 〉 =
〈
νt ,

1

2
divθ

(
σσT ∇θf

) + ∇θf · c(·, ·)
〉

(2.17)

+
〈
νt ,∇θf ·

∫
�(·, ·, θ̄ , ω̄)�(·, x̄)νt (dθ̄ ,dω̄,dx̄)

〉
,

where �(·, ·) is the weight function introduced either in hypotheses (H1) or
in (H2).

REMARK 2.8. An important remark about a priori properties of (2.17) is
the following: taking a test function f in (2.17) that does not depend on θ im-
plies

〈ν0, f 〉 = 〈νt , f 〉 ∀t ∈ [0, T ].
In particular, the marginal distribution of (ω, x) w.r.t. the measure νt is inde-
pendent of t and equal to dμ ⊗ dx. This implies that, for the class of singu-
lar weight we consider here, � is always integrable against νt , for all t , since
the function y �→ ‖x − y‖−α is integrable w.r.t. to the Lebesgue measure on
[−1

2 , 1
2 ]d .

Moreover, since the function c is supposed to have a polynomial growth
[recall (2.4)], one has to justify in particular the term 〈νt ,∇θf · c(·, ·)〉 in
(2.17) (the others are easily integrable). Thus, one should look for solutions
t �→ νt having finite moment: for all t ∈ [0, T ], ∫

X×E ‖θ‖κ‖ω‖ινt (dθ,dω,dx) <

∞.
In particular, well-posedness in (2.17) will be addressed within the class of all

measure-valued processes satisfying the properties mentioned above.
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Formally integrating by parts in equation (2.17) and assuming the existence of
a density νt (dθ,dω,dx) = qt (θ,ω, x)dθμ(dω)dx, qt satisfies

∂tqt = 1

2
divθ

(
σσT ∇θqt

) − divθ

(
qt (θ,ω, x)c(θ,ω)

)
− divθ

(
qt (θ,ω, x)

∫
�(θ,ω, θ̄, ω̄)�(x, x̄)qt (θ̄ , ω̄, x̄)dθ̄μ(dω̄)dx̄

)
,(2.18)

t > 0.

In the case where σ is nondegenerate, one can make this integration by parts rigor-
ous: using the same arguments as in [18], Appendix A, one can show that for any
measure-valued initial condition in (2.17), by the regularizing properties of the
heat kernel, the solution of (2.17) has a regular density qt for all positive time that
solves (2.18). We refer to [18], Proposition A.1, for further details. But of course,
if σ is degenerate, the strong formulation (2.18) does not necessarily make sense,
and one has to restrict to the weak formulation (2.17) in that case.

2.5. Results. The first result of this paper, whose proof is given in Section 3,
concerns the existence of a weak solution to the McKean–Vlasov equation (2.17):

PROPOSITION 2.9. Under Assumptions 2.2, 2.4 and 2.5, for any initial con-
dition ν0(dθ,dω,dx) = ζ(dθ)μ(dω)dx, there exists a solution t �→ νt to (2.17).

Having proven the existence of at least one such solution in the general case,
we turn to the issue of the convergence of the empirical measure to any of such
solution. From now on, we specify the problem to the case of hypothesis (H1)
(Section 2.5.1) and of hypothesis (H2) (Section 2.5.2). For each case, in order to
state the convergence result, one needs to define an appropriate distance between
two random measures that is basically the supremum over evaluations against a
set of test functions. Such a space of test functions must incorporate the kind of
singularities that are present either in hypotheses (H1) or (H2).

2.5.1. The P -nearest-neighbor case. Suppose that the weight function � sat-
isfies hypothesis (H1) of Assumption 2.5.

DEFINITION 2.10 (Test functions for P -nearest-neighbor). For fixed R ∈
(0,1] and a ∈ [−1

2 , 1
2 ]d , let CR,a be the set of functions f on X × E × [−1

2 , 1
2 ]d of

the form

f : (θ,ω, x) �→ g(θ,ω) · χR(x − a),

where χR is given in (1.10) and g is globally Lipschitz-continuous w.r.t. (θ,ω)

∃C > 0,∀(θ,ω, θ̄, ω̄)
(2.19) ∥∥g(θ,ω) − g(θ̄ , ω̄)

∥∥ ≤ C
(‖θ − θ̄‖ + ‖ω − ω̄‖).
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Let

‖f ‖R,a := sup
θ,θ̄ ,ω,ω̄

‖g(θ,ω) − g(θ̄, ω̄)‖
‖θ − θ̄‖ + ‖ω − ω̄‖

be the corresponding seminorm.

REMARK 2.11. Note that for any f ∈ CR,a that is C1 in the variable θ , the
following estimate holds:

∀θ,ω, x
∥∥∇θf (θ,ω, x)

∥∥ ≤ ‖f ‖R,aχR(x − a).(2.20)

We now turn to the appropriate distance between two random measures:

DEFINITION 2.12 (Distance for P -nearest-neighbor). For random probability
measures λ and ν on X × E × [−1

2 , 1
2 ]d , let

dR(λ, ν) := sup
f

(
E
∥∥〈f,λ〉 − 〈f, ν〉∥∥2)1/2

,

where the supremum is taken over all functions f ∈ ⋃
a∈[−1,1]d CR,a , such that

‖f ‖R,a ≤ 1, ‖f ‖∞ ≤ 1.

Our convergence result is given in the following:

THEOREM 2.13 (Law of large numbers). Under Assumptions 2.2, 2.4 and
hypothesis (H1) of Assumption 2.5, for all R ∈ (0,1], for any arbitrary solution ν

to the mean-field equation (2.17), we have

sup
0≤t≤T

dR

(
ν

(N)
t , νt

) ≤ C

N1∧d/2 ,(2.21)

where the constant C > 0 only depends on T , �, R and c.

2.5.2. The case of the power-law interaction. Assume that the weight function
� satisfies hypothesis (H2). In view of the form of � in this case (recall Assump-
tion 2.5), the main idea is to consider test functions (θ,ω, x) �→ f (θ,ω, x) that
become regular when renormalized by ‖x − a‖α . The seminorm ‖ · ‖a introduced
in (2.25) below should therefore be thought of as a weighted Hölder seminorm.

DEFINITION 2.14 (Test functions for power-law interaction). For fixed α and
γ as in Assumption 2.5 and for fixed a ∈ [−1

2 , 1
2 ]d , let Ca be the set of functions

(θ,ω, x) �→ f (θ,ω, x) on X × E × [−1
2 , 1

2 ]d satisfying:
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• regularity w.r.t. (θ,ω): (θ,ω) �→ ‖x − a‖αf (θ,ω, x) is globally Lipschitz-
continuous on X × E , uniformly in x, that is,

∃C > 0,∀(θ,ω, θ̄, ω̄)
(2.22)

‖x − a‖α
∥∥f (θ,ω, x) − f (θ̄ , ω̄, x)

∥∥ ≤ C
(‖θ − θ̄‖ + ‖ω − ω̄‖);

• regularity w.r.t. x: x �→ ‖x − a‖αf (θ,ω, x) is uniformly bounded

∃C > 0 ‖x − a‖α
∥∥f (θ,ω, x)

∥∥ ≤ C,(2.23)

and x �→ |x − a|2γ f (θ,ω, x) is globally (2γ − α) ∧ 1-Hölder, uniformly in
(θ,ω)

∃C > 0
(2.24) ∥∥‖x − a‖2γ f (θ,ω, x) − ‖y − a‖2γ f (θ,ω, y)

∥∥ ≤ C‖x − y‖(2γ−α)∧1.

Denote by

‖f ‖a := sup
θ,θ̄ ,ω,ω̄,x

‖x − a‖α‖f (θ,ω, x) − f (θ̄ , ω̄, x)‖
‖θ − θ̄‖ + ‖ω − ω̄‖

+ sup
θ,ω,x

‖x − a‖α
∥∥f (θ,ω, x)

∥∥(2.25)

+ sup
θ,ω,x,y

‖‖x − a‖2γ f (θ,ω, x) − ‖y − a‖2γ f (θ,ω, y)‖
‖x − y‖(2γ−α)∧1

the corresponding seminorm.

REMARK 2.15. Note that for any f ∈ Ca that is C1 in the variable θ , the
following holds:

∀θ,ω, x
∥∥∇θf (θ,ω, x)

∥∥ ≤ ‖f ‖a

‖x − a‖α
.(2.26)

The corresponding definition of the distance between two random measures is
similar to Definition 2.12 given in the P -nearest-neighbor case. The main differ-
ence here is that one needs to take care of test functions with singularities. Since
those singularities happen at points of the form i

2N
(for some i and N ) that are

regularly distributed on [−1
2 , 1

2 ]d , we first need to introduce some further notation:
for all integers K ≥ 1, we denote by DK the regular discretization of [−1

2 , 1
2 ]d

with mesh of length 1
2K

DK :=
{(

j1

2K
, . . . ,

jd

2K

)
;−K ≤ j1 ≤ K, . . . ,−K ≤ jd ≤ K

}
(2.27)

⊂
[
−1

2
,

1

2

]d

.

The appropriate distance between two random measures is then:
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DEFINITION 2.16 (Distance for power-law interaction). Let α < d and p ≥ 2
be defined by

p :=

⎧⎪⎪⎨
⎪⎪⎩

2, if α ∈
[
0,

d

2

)
,⌈

d

d − α

⌉
, if α ∈

[
d

2
, d

)
,

(2.28)

where �x� stands for the smallest integer strictly larger than x. On the set of ran-
dom probability measures on X × E × [−1

2 , 1
2 ]d , let us define a sequence of dis-

tances (d
(p)
K (·, ·))K≥1 indexed by K ≥ 1, between two elements λ and ν by

d
(p)
K (λ, ν) = sup

f

(
E
∥∥〈f,λ〉 − 〈f, ν〉∥∥p)1/p

,

where the supremum is taken over all the functions f ∈ ⋃
a∈DK′ ,1≤K ′≤K Ca , such

that ‖f ‖a ≤ 1. Let us then define the distance d
(p)∞ (·, ·) by

d(p)∞ (λ, ν) := ∑
K≥1

1

2K

e−CKdp/q

K2d

(
d

(p)
K (λ, ν) ∧ 1

)
(2.29)

for a sufficiently large constant C (that depends on the parameters of our model)
and where q is the conjugate of p: 1

p
+ 1

q
= 1. For a precise estimate on C, we

refer to Proposition 6.5 below.

Apart from the weight e−CKdp/q

K2d (which is precisely here to compensate the es-

timate that we find in Proposition 6.5 below), the definition of d
(p)∞ (·, ·) exactly

follows the usual Fréchet construction; see, for example, [17].

REMARK 2.17. The choice of the integer p in (2.28) is made for integrability
reasons that will become clear in the proof of Theorem 2.18. One only has to
notice here that p has been precisely defined so that its conjugate q always satisfies
qα < d .

The main result of this work is the following:

THEOREM 2.18 (Law of large numbers in the power-law case). Under As-
sumptions 2.2, 2.4 and hypothesis (H2) of Assumption 2.5, for any arbitrary solu-
tion ν to the mean-field equation (2.17), we have

sup
0≤t≤T

d(p)∞
(
ν

(N)
t , νt

) ≤ C

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

Nγ∧1 , if α ∈
[
0,

d

2

)
,

lnN

Nd/2∧1 , if α = d

2
,

lnN

N(d−α)∧1 , if α ∈
(

d

2
, d

)
,

(2.30)
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where the constant C > 0 only depends on T , �, � , α and c.

Note that the speed of convergence found in Theorem 2.18 is never smaller than
N−d/2 which is the optimal speed for the case without spatial extension; recall
the CLT results in the mean field case in [24]. Note also that, in the case where
0 ≤ α < d

2 , we have obtained a speed of convergence which is arbitrarily close
to N−(d/2∧1) (since in that case γ is arbitrarily close to d

2 ). We believe that the
optimal speed in this case should be exactly N−(d/2∧1), but the proof we propose
in this work does not seem to reach this optimal result.

Nevertheless, in the case where we only consider a bounded Lispchitz-
continuous weight function � (i.e., with no singularity at all), the proof of Theo-
rem 2.18 can be considerably simplified and one obtains a speed that is N−d/2.

Note also that the fluctuations when α ∈ [d
2 , d) appear to be nontrivial. A natural

perspective of this work would be to prove a precise central limit theorem in this
case and to study the limiting fluctuation process in details.

2.6. Well-posedness of the McKean–Vlasov equation. A straightforward
corollary of Theorems 2.13 and 2.18 is that uniqueness holds for the McKean–
Vlasov equation (2.17):

PROPOSITION 2.19 (Well-posedness of the McKean–Vlasov equation). Un-
der Assumptions 2.2, 2.4 and 2.5, for every initial condition ν0(dθ,dω,dx) =
ζ(dθ)μ(dω)dx, there exists a unique solution t �→ νt ∈ M1(C([0, T ],X ) × E ×
[−1

2 , 1
2 ]d) to the McKean–Vlasov equation (2.17).

3. The nonlinear process and the existence of a continuous-limit. The pur-
pose of this paragraph is to prove Proposition 2.9 concerning the existence of a so-
lution to the McKean–Vlasov equation (2.17). This part is reminiscent of the tech-
niques used by Sznitman [36] in order to prove propagation of chaos for nondisor-
dered models.

3.1. Distance on probability measures. Let us first consider the set MX of
probability measures on C([0, T ],X ) with finite moments of order κ [where κ ≥ 2
is given in (2.4)] and endow this set with the Wasserstein metric

δ
(T )
X (p1,p2) := inf

{
E
(

sup
s≤T

∥∥ϑ(1)
s − ϑ(2)

s

∥∥κ
)1/κ}

,(3.1)

where the infimum in (3.1) is considered over all couplings (ϑ(1), ϑ(2)) with re-
spective marginals p1 and p2. Here, the ϑ(i) are understood as random variables
on a certain probability space (�,P). Note, however, that the definition of (3.1)
does not depend on its particular choice. Equation (3.1) defines a complete metric
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on MX encoding the topology of convergence in law with convergence of mo-
ments up to order κ ; see [39], Theorem 6.9, page 96. We endow MX with the
corresponding Borel σ -field.

Fix some probability measure m on C([0, T ],X )×E ×[−1
2 , 1

2 ]d (endowed with
its Borel σ -field) such that its marginal on E × [−1

2 , 1
2 ]d is absolutely continuous

w.r.t. μ(dω) ⊗ dx. Thanks to a usual disintegration result (see, e.g., [14], Theo-
rem 10.2.2) one can write m as

m(dθ,dω,dx) = mω,x(dθ)μ(dω)dx,

where (ω, x) �→ mω,x(dθ) is a measurable map from E ×[−1
2 , 1

2 ]d (endowed with
its Borel σ -field) into MX . We consider the set M of such measures m such that
for all (ω, x), mω,x belongs to MX , endowed with the following metric:

DEFINITION 3.1. Fix p to be equal to 2 in the case of hypothesis (H1) or as
in (2.28) in the case of hypothesis (H2). Then define

∀m1,m2 ∈ M
(3.2)

δT (m1,m2) :=
[∫

E×[−1/2,1/2]d
(
δ
(T )
X

(
m

ω,x
1 ,m

ω,x
2

))p
μ(dω)dx

]1/p

.

The space M endowed with δT is a complete metric space; see [36], page 173.

Note that, by construction [see (2.15)], the initial condition dν0(θ,ω, x) =
ζ(dθ)μ(dω)dx belongs to M.

3.2. The nonlinear process. The proof of Proposition 2.9 is based on a Picard
iteration in the space M endowed with the metric introduced in Definition 3.1. For
fixed ω ∈ E and Brownian motion B in X , independent of the sequence (Bk)k≥1,
and for a fixed m ∈ M, consider the following stochastic differential equation
in X :

dθ(t) = c
(
θ(t),ω

)
dt

(3.3)
+

∫
�
(
θ(t),ω, θ̄, ω̄

)
�(x, x̄)mt(dθ̄ ,dω̄,dx̄)dt + σ · dB(t),

with initial condition θ(0) ∼ ζ . Note here that for all t ≥ 0, mt(dθ,dω,dx), prob-
ability measure on X × E ×[−1

2 , 1
2 ]d , stands for the projection of m at time t . The

integral term in (3.3) is well defined since∫ ∥∥�(
θ(t),ω, θ̄, ω̄

)∥∥�(x, x̄)mt (dθ̄ ,dω̄,dx̄)

≤ ‖�‖∞
∫
[−1/2,1/2]d

�(x, x̄)

∫
X×E

m
ω̄,x̄
t (dθ̄ )μ(dω̄)︸ ︷︷ ︸

=1

dx̄ ≤ ‖�‖∞S(�),



1962 E. LUÇON AND W. STANNAT

where the quantity

S(�) := sup
x

∫
[−1/2,1/2]d

�(x, x̄)dx̄(3.4)

is smaller than 1 in case of hypothesis (H1) and smaller that I1(�) [using (2.8)]
in the case of hypothesis (H2). Moreover, thanks to the regularity properties of �

and c, equation (3.3) has a unique (strong) solution.
Let us denote by � :M → M the functional which maps any measure

m(dθ,dω,dx) ∈ M to the law �(m) of (θ,ω, x) where (θt )0≤t≤T is the unique
solution to (3.3). Note that the functional � effectively preserves the set M. Propo-
sition 2.9 is a direct consequence of the following lemma:

LEMMA 3.2. The functional � admits a fixed point ν̄ in M.

PROOF. As in [36], we prove the following:

∀m1,m2 ∈ M,∀t ≤ T
(3.5)

δt

(
�(m1),�(m2)

)κ ≤ CT

∫ t

0
δu(m1,m2)

κ du.

If (3.5) is proved, the proof of Proposition 2.9 will be finished since in that case,
one can iterate this inequality and find

∀k ≥ 1 δT

(
�k+1(ν0),�

k(ν0)
)κ ≤ Ck

T

T k

k! δT

(
�(ν0), ν0

)κ
,

which gives that (�k(ν0))k≥1 is a Cauchy sequence, and thus converges to some
fixed-point ν̄ of �. Let us now prove (3.5). The key calculation is the following:
there exists a constant C > 0 such that for all θ1, θ2 ∈ X , ω ∈ E , x ∈ [−1

2 , 1
2 ]d , for

all m1,m2 ∈ M,

δ� :=
∥∥∥∥
∫

�(θ1,ω, ·, ·)�(x, ·)dm1,t −
∫

�(θ2,ω, ·, ·)�(x, ·)dm2,t

∥∥∥∥
(3.6)

≤ C
(‖θ2 − θ1‖ ∧ 1 + δt (m1,m2)

)
.

Indeed,

δ� ≤
∥∥∥∥
∫

�(θ1,ω, ·, ·)�(x, ·)dm1,t −
∫

�(θ2,ω, ·, ·)�(x, ·)dm1,t

∥∥∥∥
+

∥∥∥∥
∫

�(θ2,ω, ·, ·)�(x, ·)dm1,t −
∫

�(θ2,ω, ·, ·)�(x, ·)dm2,t

∥∥∥∥(3.7)

:= δ�1 + δ�2.



DIFFUSIONS WITH SINGULAR INTERACTIONS 1963

The first term δ�1 in (3.7) is easily bounded by ‖�‖LipS(�)‖θ2 −θ1‖, where S(�)

is defined by (3.4). The second term δ�2 in (3.7) can be successively bounded
by

δ�2 =
∥∥∥∥
∫
[−1/2,1/2]d×E

�(x, x̄)

(∫
�(θ2,ω, θ̄ , ω̄)m

ω̄,x̄
1,t (dθ̄ )

−
∫

�(θ2,ω, θ̄ , ω̄)m
ω̄,x̄
2,t (dθ̄ )

)
dx̄μ(dω̄)

∥∥∥∥
≤

(∫
[−1/2,1/2]d

�(x, x̄)q dx̄

)1/q

×
(∫

[−1/2,1/2]d×E

∥∥∥∥
∫

�(θ2,ω, θ̄ , ω̄)m
ω̄,x̄
1,t (dθ̄ )

−
∫

�(θ2,ω, θ̄ , ω̄)m
ω̄,x̄
2,t (dθ̄ )

∥∥∥∥p

dx̄μ(dω̄)

)1/p

.

Note that the first term in the last inequality is always bounded: it is straightfor-
ward in the P -nearest-neighbor case and comes from Remark 2.17 in the power-
law case. Indeed, q has been precisely chosen so that qα < d , so that �(x, ·)q is
integrable.

Using the Lipschitz-continuity of �, we see that, for any coupling mω,x(dϑ1,

dϑ2) of m
ω,x
1 and m

ω,x
2 ,

δ�2 ≤ C‖�‖Lip

(∫
[−1/2,1/2]d×E

(
Emω,x

∥∥ϑ1(t) − ϑ2(t)
∥∥)p dx̄μ(dω̄)

)1/p

≤ C‖�‖Lip

(∫
[−1/2,1/2]d×E

([
Emω,x

∥∥ϑ1(t) − ϑ2(t)
∥∥κ ]1/κ)p dx̄μ(dω̄)

)1/p

.

By Definition 3.1, this gives δ�2 ≤ C‖�‖Lipδt (m1,m2), which proves (3.6). We
are now in position to prove (3.5). Let us consider (θ1,ω, x) and (θ2,ω, x) so-
lutions to (3.3) for two different measures m1 and m2 in M driven by the
same Brownian motion, with the same initial condition. We have for all 0 ≤ t ≤
T , ∥∥θ1(t) − θ2(t)

∥∥2

= 2
∫ t

0

〈
θ1(s) − θ2(s), c

(
θ1(s),ω

) − c
(
θ2(s),ω

)〉
ds

+ 2
∫ t

0

〈
θ1(s) − θ2(s),

∫
�
(
θ1(s),ω, ·, ·)�(x, ·)dm1

−
∫

�
(
θ2(s),ω, ·, ·)�(x, ·)dm2

〉
ds.
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Using the one-sided Lipschitz condition (2.3) and (3.6), we obtain∥∥θ1(t) − θ2(t)
∥∥2

≤ C

∫ t

0

∥∥θ1(s) − θ2(s)
∥∥2 ds + C

∫ t

0

∥∥θ1(s) − θ2(s)
∥∥δs(m1,m2)ds

≤ C

∫ t

0

∥∥θ1(s) − θ2(s)
∥∥2 ds + C

∫ t

0
δs(m1,m2)

2 ds.

Consequently, using Gronwall’s lemma,

sup
s≤t

∥∥θ1(s) − θ2(s)
∥∥2 ≤ CeCT

∫ t

0
δs(m1,m2)

2 ds.

Elevating this inequality to the power κ
2 ≥ 1 gives

sup
s≤t

∥∥θ1(s) − θ2(s)
∥∥κ ≤ (

CeCT )κ/2
(∫ t

0
δs(m1,m2)

2 ds

)κ/2

≤ (
CeCT )κ/2

T (κ−2)/2
∫ t

0
δs(m1,m2)

κ ds,

which gives

δ
(t)
X

(
�(m1)

ω,x,�(m2)
ω,x) ≤ (

CeCT )1/2
T (κ−2)/2κ

(∫ t

0
δs(m1,m2)

κ ds

)1/κ

.

Elevating this inequality to the power p and integrating over ω and x leads to the
desired result (3.5). Lemma 3.2 is proved. �

We are now in position to prove Proposition 2.9.

PROOF OF PROPOSITION 2.9. It remains to prove that if ν̄ is a fixed point
of �, then ν̄ is a solution to the weak formulation of the continuous limit (2.17).
Indeed if ν̄ = �(ν̄), one can write ν̄(dθ,dω,dx) = ν̄ω,x(dθ)μ(dω)dx where, for
fixed ω,x, ν̄ω,x(dθ) is the law of the process solution to (3.3). Applying Itô’s
formula, one obtains for all f (θ,ω, x), C2 w.r.t. θ with bounded derivatives,

f
(
θ(t),ω, x

) = f (θ0,ω, x) + 1

2

∫ t

0
divθ

(
σσT ∇θf

)(
θ(s),ω, x

)
ds

+
∫ t

0
∇θf · c(θ(s),ω

)
ds

(3.8)

+
∫ t

0
∇θf ·

∫
�
(
θ(t),ω, θ̄, ω̄

)
�(x, x̄)ν̄

ω̄,x̄
t (dθ̄ )μ(dω̄)dx̄ ds

+
∫ t

0
∇θf

(
θ(s),ω, x

) · (σ dBs).
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Taking the expectation in (3.8) leads to (2.17). But in order to do so, we need
to know that the term ∇θf (θ,ω, x) · c(θ,ω) is integrable w.r.t. the measure
ν̄ω,x(dθ)μ(dω)dx (the other terms are integrable, by assumptions on f ). This is
ensured by (2.5), the fact that (by construction) ν̄ω,x(dθ) has finite moments up to
order κ , and the fact that μ has finite moment of order ι; recall (2.6). �

The rest of the document is devoted to provide a proof for Theorems 2.13
and 2.18.

4. Definition and properties of the propagator. For reasons that will be
made clear in Remark 4.2 below, we make in this section, as well as in Sections 5
and 6, some supplementary assumption on the regularity on the dynamics c:

ASSUMPTION 4.1 (Additional regularity on c). We assume that for all ω, the
function θ �→ c(θ,ω) is globally Lispchitz continuous.

Of course, the FitzHugh–Nagumo case does not enter into the framework of
Assumption 4.1. Assumption 4.1 is made in order to ensure the existence of a
backward Kolmogorov equation; see Remark 4.2. The purpose of Section 7 will
be to discard this assumption.

In this section, the function � is either defined as in hypotheses (H1) or as
in (H2). We know from Proposition 2.9 that there exists at least one measure-
valued solution t �→ νt to the continuous equation (2.17). We fix once and for all
one such solution. We can then consider the stochastic differential equation

dθ(t) = c
(
θ(t),ω

)
dt

+
∫

�
(
θ(t),ω, θ̄, ω̄

)
�(x, x̄)νt (dθ̄ ,dω̄,dx̄)dt + σ · dB(t)(4.1)

=: c(θ(t),ω
)
dt + v

(
t, θ(t),ω, x

)
dt + σ · dB(t),

where θ(0) ∼ ζ . Thanks to the regularity properties of � and c and to the inte-
grability of � , (4.1) has a unique solution. Define the propagator corresponding
to (4.1)

∀s, t ∈ [0, T ] Ps,tf (θ,ω, x) := EBf
(
�t

s(θ;ω,x),ω, x
)
,(4.2)

where EB is the expectation w.r.t. the Brownian motion B , f is a bounded measur-
able function on X × E × [−1

2 , 1
2 ]d , 0 ≤ s ≤ t and t �→ �t

s(θ;ω,x) is the unique
solution to (4.1) such that �s

s(θ;ω,x) = θ .

REMARK 4.2. If f is C2 w.r.t. the variable θ , under Assumptions 2.2 and 4.1
made about c and �, it is standard to see that the function Ps,tf is of class C2
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in θ and C1 in s and satisfies the backward Kolmogorov equation (see, e.g., [11],
Remark 2.3)

∀(θ,ω, x, s, t) ∂sPs,tf (θ,ω, x) + 1
2divθ

(
σσT ∇θPs,t

)
(θ,ω, x)

+ ([
c(θ,ω) + v(t, θ,ω, x)

] · ∇θ

)
Ps,tf (θ,ω, x)(4.3)

= 0.

The main problem which motivates the work of Section 7 at the end of this paper is
that proving similar Kolmogorov when Assumption 4.1 is discarded appears to be
difficult; see, in particular, the recent work in this direction [21]. Nevertheless, we
work in this section under this additional hypothesis, and we provide in Section 7
a way to bypass this technical difficulty.

The key calculation of this work is the object of Lemma 4.3:

LEMMA 4.3. Let f :X × E × [−1
2 , 1

2 ]d → R be C2 w.r.t. the variable θ . Then〈
f, ν

(N)
T − νT

〉 = 〈
P0,T f, ν

(N)
0 − ν0

〉
+ 1

|�N |
∑
k

∫ T

0
∇θ (Pt,T f )

(
θk(t),ωk, xk

) · σ dBk(t)

(4.4)

+ 1

|�N |
∑
k

∫ T

0
∇θ (Pt,T f )

(
θk(t),ωk, xk

)

× [〈
�(θk,ωk, ·, ·)�(xk, ·), ν(N)

t − νt

〉]
dt.

PROOF. An application of Itô’s formula gives the following: for all k and 0 <

t < T ,

Pt,T f
(
θk(t),ωk, xk

) = P0,T f
(
θk(0),ωk, xk

) +
∫ t

0
∂sPs,T f

(
θk(s),ωk, xk

)
ds

+
∫ t

0
∇θPs,T f

(
θk(s),ωk, xk

) · dθk(s)

+ 1

2

∫ t

0
divθ

(
σσT ∇θPs,T f

)(
θk(s),ωk, xk

)
ds.

Using the definition of θk [recall (2.2)] and (4.3) we obtain

Pt,T f
(
θk(t),ωk, xk

)
= P0,T f

(
θk(0),ωk, xk

)
−

∫ t

0
v
(
s, θk(s),ωk, xk

) · ∇θPs,T f
(
θk(s),ωk, xk

)
ds
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+
∫ t

0
∇θPs,T f

(
θk(s),ωk, xk

) · 〈�(θk,ωk, ·, ·)�(xk, ·), ν(N)
s

〉
ds

+
∫ t

0
∇θPs,tf

(
θk(s),ωk, xk

) · (σ dBk(s)
)
.

Then, using the definition of v(·) [recall (4.1)] and summing over k lead to

〈
Pt,T f, ν

(N)
t

〉 = 〈
P0,T f, ν

(N)
0

〉 + 1

|�N |
∑
k

∫ t

0
∇θPs,tf

(
θk(s),ωk, xk

) · (σ dBk(s)
)

+ 1

|�N |
∑
k

∫ t

0
∇θPs,T f

(
θk(s),ωk, xk

)
× 〈

�(θk,ωk, ·, ·)�(xk, ·), ν(N)
s − νs

〉
ds.

A straightforward calculation using (4.3) shows that ∂t 〈Pt,T f, νt 〉 = 0. Using this
and the previous equality, one obtains the desired result (choose t = T and recall
that PT,T f = f ). Lemma 4.3 is proved. �

The purpose of the following lemma is to establish regularity properties of the
propagator Pt,T :

LEMMA 4.4 (Estimates on the propagator Pt,T ). Fix T > 0, 0 < t < T and
a ∈ [−1

2 , 1
2 ]d .

(1) Assume � satisfies hypothesis (H1). For any R ∈ (0,1] and any f in CR,a ,
Pt,T f is also in CR,a , and one has the following estimate:

‖Pt,T f ‖R,a ≤ √
2e|||P |||(T −t)‖f ‖R,a(4.5)

for some constant |||P ||| [that can be chosen equal to L + 3/2‖�‖Lip; recall (2.3)].
(2) Assume � satisfies hypothesis (H2). For every a ∈ [−1

2 , 1
2 ]d , for any f in

Ca , Pt,T f is also in Ca , and one has the following estimate:

‖Pt,T f ‖a ≤ |||P |||e|||P |||(T −t)‖f ‖a(4.6)

for some constant |||P ||| (that only depends on �, � and c).

PROOF. Note that, by a usual density argument, one only needs to prove (4.5)
and (4.6) for test functions f that are C2 w.r.t. θ . Fix T > 0, 0 < t < T , a ∈
[−1

2 , 1
2 ]d and consider two different flows for (4.1) �t

s(θi;ωi, x), for i = 1,2, with
different initial condition and parameter but at the same site x, with the same Brow-
nian motion. For simplicity, we write �t

s(i) instead of �t
s(θi;ωi, x). Then, using
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the one-sided Lipschitz condition (2.3) on c, we obtain∥∥�t
s(2) − �t

s(1)
∥∥2

= ‖θ2 − θ1‖2 + 2
∫ t

s

〈
�u

s (2) − �u
s (1), c

(
�u

s (2),ω2
) − c

(
�u

s (1),ω1
)〉

du

+ 2
∫ t

s

〈
�u

s (2) − �u
s (1), v

(
u,�u

s (2),ω2, x
) − v

(
u,�u

s (1),ω1, x
)〉

du

≤ ‖θ2 − θ1‖2 + 2L

∫ t

s

(∥∥�u
s (2) − �u

s (1)
∥∥2 + ‖ω2 − ω1‖2)du

+ 2
∫ t

s

∥∥�u
s (2) − �u

s (1)
∥∥∥∥v(u,�u

s (2),ω2, x
) − v

(
u,�u

s (1),ω1, x
)∥∥︸ ︷︷ ︸

:=δv(u)

du,

where the definition of v(·) is given in (4.1). The Lipschitz-continuity of � implies

δv(u) ≤
∫ ∥∥�(

�u
s (2),ω2, θ̄ , ω̄

) − �
(
�u

s (1),ω1, θ̄ , ω̄
)∥∥�(x, x̄)νω̄,x̄

u (dθ̄ )μ(dω̄)dx̄

≤ ‖�‖LipS(�)
(∥∥�u

s (2) − �u
s (1)

∥∥ + ‖ω2 − ω1‖),
where S(�) has already been defined in (3.4). Putting things together we see that,
for C = 2L + 3‖�‖LipS(�),∥∥�t

s(2) − �t
s(1)

∥∥2 ≤ ‖θ2 − θ1‖2

(4.7)

+ C

∫ t

s

(∥∥�u
s (2) − �u

s (1)
∥∥2 + ‖ω2 − ω1‖2)du.

An application of Gronwall’s lemma leads to∥∥�t
s(θ2,ω2, x) − �t

s(θ1,ω1, x)
∥∥2 + ‖ω2 − ω1‖2

(4.8)
≤ eC(t−s)(‖θ2 − θ1‖2 + ‖ω2 − ω1‖2).

Then, in the case where � satisfies hypothesis (H1), we have Pt,T f (θ,ω, x) =
χR(x − a)g(�T

t (θ;ω,x),ω), when f (θ,ω, x) = χR(x − a)g(θ,ω). But then,∥∥g(�T
t (θ2;ω2, x),ω2

) − g
(
�T

t (θ1;ω1, x),ω1
)∥∥2

≤ ‖f ‖2
R,a

(∥∥�T
t (2) − �T

t (1)
∥∥ + ∥∥ω2 − ω1

∥∥)2

≤ 2‖f ‖2
R,a

(∥∥�T
t (2) − �T

t (1)
∥∥2 + ‖ω2 − ω1‖2)

≤ 2‖f ‖2
R,ae

C(T −t)(‖θ2 − θ1‖2 + ‖ω2 − ω1‖2),
so that ∥∥g(�T

t (θ2;ω2, x),ω2
) − g

(
�T

t (θ1;ω1, x),ω1
)∥∥

≤ √
2‖f ‖R,ae

(C/2)(T −t)(‖θ2 − θ1‖ + ‖ω2 − ω1‖),
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which is the desired estimate (2.19) and gives (4.5). The same kind of calculation
in the case of hypothesis (H2) leads to the estimate (2.22) for Pt,T f .

Thus, it remains to prove estimates (2.23) and (2.24) for Pt,T f in the case of hy-
pothesis (H2). The case of (2.23) is straightforward. As far as (2.24) is concerned,
the same kind of calculation with two different flows �t

s(x) := �t
s(θ;ω,x) and

�t
s(y) := �t

s(θ;ω,y), with the same θ and ω but at different sites x and y leads
to ∥∥�t

s(x) − �t
s(y)

∥∥2

≤ 2L

∫ t

s

∥∥�u
s (x) − �u

s (y)
∥∥2 du

+ 2
∫ t

s

∥∥�u
s (x) − �u

s (y)
∥∥∥∥v(u,�u

s (x),ω, x
) − v

(
u,�u

s (y),ω, y
)∥∥︸ ︷︷ ︸

:=δv(u,x,y)

du,

with

δv(u, x, y)

≤
∫ ∥∥�(

�u
s (x),ω, θ̄, ω̄

)
�(x, x̄)

− �
(
�u

s (y),ω, θ̄ , ω̄
)
�(y, x̄)

∥∥νω̄,x̄
u (dθ̄ )μ(dω̄)dx̄

≤
∫ ∥∥�(

�u
s (x),ω, θ̄, ω̄

) − �
(
�u

s (y),ω, θ̄, ω̄
)∥∥�(x, x̄)νω̄,x̄

u (dθ̄ )μ(dω̄)dx̄

+
∫ ∥∥�(

�u
s (y),ω, θ̄, ω̄

)∥∥∣∣�(x, x̄) − �(y, x̄)
∣∣νω̄,x̄

u (dθ̄ )μ(dω̄)dx̄

≤ ‖�‖LipS(�)
(∥∥�u

s (x) − �u
s (y)

∥∥)
+ ‖�‖∞

∫
[−1,1]d

∣∣�(x, x̄) − �(y, x̄)
∣∣ ∫

X×E
νω̄,x̄
u (dθ̄ )μ(dω̄)︸ ︷︷ ︸

=1

dx̄

≤ ‖�‖LipS(�)
∥∥�u

s (x) − �u
s (y)

∥∥ + I2(�)‖�‖∞‖x − y‖(d−α)∧1,

where S(�) is defined in (3.4) and where we used assumption (2.9). This gives,
for C = 2L + 2‖�‖LipS(�) + I2(�)‖�‖∞,∥∥�t

s(x) − �t
s(y)

∥∥2

≤ C

∫ t

s

∥∥�u
s (x) − �u

s (y)
∥∥2 du + I2(�)‖�‖∞(t − s)‖x − y‖2((d−α)∧1).

Consequently, by Gronwall’s lemma,∥∥�t
s(θ;ω,x) − �t

s(θ;ω,y)
∥∥2

(4.9)
≤ I2(�)‖�‖∞(t − s)eC(t−s)‖x − y‖2((d−α)∧1).
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Then, for any 0 < t ≤ T , we have

‖δPt,T f ‖2 := ∥∥‖x − a‖2γ Pt,T f (θ,ω, x) − ‖y − a‖2γ Pt,T f (θ,ω, y)
∥∥2

= ∥∥‖x − a‖2γ f
(
�T

t (θ;ω,x),ω, x
)

− ‖y − a‖2γ f
(
�T

t (θ;ω,y),ω, y
)∥∥2

≤ (‖x − a‖2γ
∥∥f (

�T
t (θ;ω,x),ω, x

) − f
(
�T

t (θ;ω,y),ω, x
)∥∥

+ ∥∥‖x − a‖2γ f
(
�T

t (θ;ω,y),ω, x
)

− ‖y − a‖2γ f
(
�T

t (θ;ω,y),ω, y
)∥∥)2

≤ ‖f ‖2
a

(∥∥�T
t (x) − �T

t (y)
∥∥ + ‖x − y‖(2γ−α)∧1)2(4.10)

≤ 2‖f ‖2
a

(∥∥�T
t (x) − �T

t (y)
∥∥2 + ‖x − y‖2((2γ−α)∧1))

≤ 2‖f ‖2
a

(
I2(�)‖�‖∞(T − t) ∨ 1

)
eC(T −t)

(4.11)
× (‖x − y‖2((d−α)∧1) + ‖x − y‖2((2γ−α)∧1)),

where we used assumptions (2.23) and (2.24) in (4.10) and estimation (4.9)
in (4.11). Using the definition of γ [recall (2.11)], it is always true that d − α ≥
2γ − α. Consequently,∥∥‖x − a‖2γ Pt,T f (θ,ω, x) − ‖y − a‖2γ Pt,T f (θ,ω, y)

∥∥
≤ 2

(
T I2(�)‖�‖∞ ∨ 1

)1/2
e(C/2)(T −t)‖f ‖a‖x − y‖(2γ−α)∧1,

which leads to (2.24). Lemma 4.4 is proved. �

REMARK 4.5. One could wonder why we have not simply used in the cal-
culation above the global Lipschitz assumption about c (recall Assumption 4.1),
instead of the more involved one-sided Lipschitz inequality used here. The crucial
reason for this is that in order to be able to discard Assumption 4.1 in Section 7
below, we need to ensure that the estimates of Lemma 4.4 do not depend on the
modulus of continuity of c, but only on its one-sided Lipschitz constant L.

Using (4.5) [resp., (4.6)] in (4.4), we easily see that for every a ∈ [−1
2 , 1

2 ]d , for
any given f ∈ CR,a with ‖f ‖R,a ≤ 1 (resp., f ∈ Ca with ‖f ‖a ≤ 1), we have∥∥〈f, ν

(N)
T

〉 − 〈f, νT 〉∥∥
≤ ∥∥〈P0,T f, ν

(N)
0

〉 − 〈P0,T f, ν0〉
∥∥

(4.12)

+
∥∥∥∥ 1

|�N |
∑
k

∫ T

0
∇θ (Pt,T f )

(
θk(t),ωk, xk

) · (σ dBk(t)
)∥∥∥∥

+ 1

|�N |
∑
k

∫ T

0
‖∇θPt,T f ‖∥∥〈�(θk,ωk, ·, ·)�(xk, ·), ν(N)

t − νt

〉∥∥dt.
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Using (2.20) and (4.5) [resp., (2.26) and (4.6)], the term ‖∇θPt,T f ‖(θk(t),ωk, xk)

in the third summand of (4.12) can be bounded by
√

2e|||P |||(T −t)‖χR‖∞ in case of
hypothesis (H1) and by ‖xk − a‖−α|||P |||e|||P |||(T −t) in case of hypothesis (H2). In
both cases, the bound that we find can be written in the form

‖∇θPt,T f ‖(θk(t),ωk, xk

) ≤ e|||P |||(T −t)ρ(xk)(4.13)

(ρ is a constant in the first case and proportional to ‖xk − a‖−α in the second). In
particular, it is uniform in f and (θk,ωk). Let us now fix the integer p equal to 2 in
the case of hypothesis (H1) or defined as in (2.28) in the case of hypothesis (H2).
Elevating inequality (4.12) to the power p and taking the expectation lead to

1

3p−1 E
∥∥〈f, ν

(N)
T − νT

〉∥∥p

≤ E
∥∥〈P0,T f, ν

(N)
0 − ν0

〉∥∥p

(4.14)
+ E

∥∥∥∥ 1

|�N |
∑
k

∫ T

0
∇θ (Pt,T f )

(
θk(t),ωk, xk

) · (σ dBk(t)
)∥∥∥∥p

+ E
∣∣∣∣ 1

|�N |
∑
k

∫ T

0
e|||P |||(T −t)ρ(xk)

∥∥〈�(θk,ωk, ·, ·)�(xk, ·), ν(N)
t − νt

〉∥∥dt

∣∣∣∣p.

Let us concentrate on the third term of the last inequality that we denote by DN .
By successive use of Hölder’s inequality (recall that 1

p
+ 1

q
= 1), one has

DN ≤
(∫ T

0
eq|||P |||(T −t) dt

)p/q

× E
∫ T

0

∣∣∣∣ 1

|�N |
∑
k

ρ(xk)
∥∥〈�(θk,ωk, ·, ·)�(xk, ·), ν(N)

t − νt

〉∥∥∣∣∣∣p dt

(4.15)

≤
(

eq|||P |||T − 1

q|||P |||
)p/q( 1

|�N |
∑
k

ρ(xk)
q

)p/q

×
∫ T

0

1

|�N |
∑
k

E
∥∥〈�(θk,ωk, ·, ·)�(xk, ·), ν(N)

t − νt

〉∥∥p dt.

At this point, here are the main steps of proof that we will follow in the re-
mainder of this paper: we have built the spaces of test functions (recall Defi-
nitions 2.10 and 2.14) in such a way that they precisely include the functions
(θ,ω, x) �→ �(θk,ωk, θ,ω)�(xk, x) for all k (in this case, a is equal to xk).
Since the distances between two random measures introduced in Definitions 2.12
and 2.16 are exactly the suprema of evaluations over all such test functions, we are
thus able to bound the term within the integral in (4.15) in terms of the distance
between ν(N) and ν.
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The second point of the proof is to obtain an estimate (uniform in f ) of the
speed of convergence to 0 of the two first terms in (4.14). Taking the supremum
over all test functions f and applying Gronwall’s lemma lead to the conclusion.

Those steps are somehow easy to follow in the P -nearest-neighbor case (see
Section 5) but are more technically demanding in the power-law case; see Sec-
tion 6.

5. Law of large numbers in the P -nearest-neighbor case. The purpose of
this section is to prove Theorem 2.13. Thus throughout this section, we suppose
that � satisfies hypothesis (H1) for some R ∈ (0,1]. In this case, the integer p

introduced in (4.14) is equal to 2, and the function ρ in (4.13) is bounded (equal
to

√
2‖χR‖∞). In particular, the two terms in front of the integral in (4.15) are

trivially bounded by a constant, equal to e2|||P |||T −1
2|||P ||| ‖χR‖2∞.

The following proposition proves the convergence to 0 of the first term in (4.14)
together with explicit rates:

PROPOSITION 5.1 (Convergence of the initial condition). There exists a nu-
merical constant C1 > 0 (independent of R) such that for all f ∈⋃

a∈[−1/2,1/2]d CR,a with ‖f ‖R,a ≤ 1 and ‖f ‖∞ ≤ 1,

E
∥∥〈P0,T f, ν

(N)
0

〉 − 〈P0,T f, ν0〉
∥∥2 ≤ C1

Nd∧2 .(5.1)

PROOF. Recall that the couples (θi(0),ωi)1≤i≤N are supposed to be i.i.d. sam-
ples of the law ζ(dθ)⊗μ(dω) on X ×E . Let f ∈ CR,a : by definition, f (θ,ω, x) =
g(θ,ω)χR(x − a) so that P0,T f = χ(x − a)P0,T g. We write ϕ := P0,T g for sim-
plicity. Then

δN(f ) := E
∥∥〈P0,T f, ν

(N)
0

〉 − 〈P0,T f, ν0〉
∥∥2

= E
∥∥∥∥ 1

|�N |
∑
j

ϕ(θj ,ωj )χR(xj − a)

−
∫

ϕ(θ,ω)χR(x − a)ζ(dθ)μ(dω)dx

∥∥∥∥2

≤ 2E
∥∥∥∥χR(xj − a)

1

|�N |
∑
j

(
ϕ(θj ,ωj ) −

∫
ϕ(θ,ω)ζ(dθ)μ(dω)

)∥∥∥∥2

+ 2
∥∥∥∥
∫

ϕ(θ,ω)ζ(dθ)μ(dω)

(
1

|�N |
∑
j

χR(xj − a)

−
∫

χR(x − a)dx

)∥∥∥∥2

(5.2)
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≤ 2

(2R)2d
E
∥∥∥∥ 1

|�N |
∑
j

(
ϕ(θj ,ωj ) −

∫
ϕ(θ,ω)ζ(dθ)μ(dω)

)∥∥∥∥2

+ 2‖ϕ‖2∞
∣∣∣∣ 1

|�N |
∑
j

χR(xj − a) −
∫

χR(x − a)dx

∣∣∣∣2

:= AN + BN.

Since the (θi,ωi) are i.i.d. random variables (with law ζ ⊗ μ), a standard calcula-
tion shows

AN = 2

|�N |2(2R)2d

∑
j

E
∥∥∥∥ϕ(θj ,ωj ) −

∫
ϕ(θ,ω)ζ(dθ)μ(dω)

∥∥∥∥2

≤ 8‖f ‖2∞
2dNd

,

since ‖ϕ‖∞ = ‖P0,T g‖∞ = (2R)d‖f ‖∞ and |�N | = (2N + 1)d ≥ (2N)d .
Let us now turn to the case of the term BN in (5.2). We place ourselves in the

case of nonperiodic boundary condition; recall Remark 2.1. The periodic case is
simpler and left to the reader. Let a = (a1, . . . , ad). One has∫

[−1/2,1/2]d
χR(x − a)dx =

d∏
l=1

(
1

2R

∫ 1/2

−1/2
1|x−al |≤R dx

)
:=

d∏
l=1

I(al).(5.3)

In the same way,

1

|�N |
∑
j

χR(xj − a) =
d∏

l=1

(
1

2R(2N + 1)

N∑
j=−N

1|xj−al |≤R

)
:=

d∏
l=1

IN(al).

Then, from the obvious equality,
d∏

l=1

IN(al) −
d∏

l=1

I(al)

=
d∑

k=1

IN(a1) · · ·IN(ak−1)
(
IN(ak) − I(ak)

)
I(ak+1) · · ·I(ad)

and a recursion argument, one only needs to consider the case d = 1 in order to
prove (5.1). An easy calculation shows the following: for all a ∈ [−1

2 , 1
2 ], for all

R ∈ (0,1],
I(a) = 1

2R

∫ 1/2

−1/2
1|x−a|≤R dx

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

2R

(
R + 1

2
+ a

)
, if − 1

2
≤ a ≤ −1

2
+ R,

1, if − 1

2
+ R ≤ a ≤ 1

2
− R,

1

2R

(
R + 1

2
− a

)
, if

1

2
− R ≤ a ≤ 1

2
.
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Thus, in the one-dimensional case, we need to distinguish three cases, depending
on the position of a ∈ [−1

2 , 1
2 ] w.r.t. R; we only treat the case −1

2 ≤ a ≤ −1
2 + R,

the two others being similar and left to the reader. In this case, one has successively

∣∣IN(a) − I(a)
∣∣2 = 1

4R2

∣∣∣∣∣ 1

2N + 1

N∑
j=−N

1|j−2aN |≤2RN −
(
R + 1

2
+ a

)∣∣∣∣∣
2

= 1

4R2

∣∣∣∣ 1

2N + 1

(⌊
2N(R + a)

⌋ + N
) −

(
R + 1

2
+ a

)∣∣∣∣2

≤ (R + a)2

4R2(1 + 2N)2 ≤ (2R − 1/2)2

16R2N2 ≤ 1

4N2 .

Proposition 5.1 is proved. �

We are now in position to prove Theorem 2.13:

PROOF OF THEOREM 2.13. Fix some a ∈ [−1
2 , 1

2 ]d and some f ∈ CR,a such
that ‖f ‖R,a ≤ 1 and ‖f ‖∞ ≤ 1. Let us first give an estimate of the second term
in (4.12). Recall that Bk is a Brownian motion in X = Rm so that Bk may be
written as m i.i.d. Brownian motions (B

(1)
k , . . . ,B

(m)
k ). Then, using (2.20) (recall

Remark 2.11) in (5.4) and using (4.5) (recall Lemma 4.4) in (5.5)

E
∥∥∥∥ 1

|�N |
∑
k

∫ T

0
∇θ (Pt,T f )

(
θk(t),ωk, xk

) · dBk(t)

∥∥∥∥2

= 1

|�N |2
∑
k

m∑
l=1

E
∫ T

0
∂θ(l) (Pt,T f )2 dt

≤ m‖χR‖2∞
|�N |

∫ T

0
‖Pt,T f ‖2

R,a dt(5.4)

≤ m‖χR‖2∞
|�N | 2

∫ T

0
e2|||P |||(T −t) dt(5.5)

= m(e2|||P |||T − 1)

(2R)2d |�N | ≤ C2

Nd
,(5.6)

where C2 = m(e2|||P |||T −1)

8dR2d and where |||P ||| is defined by (4.5).
Let us now give an estimate of the term DN in (4.15): by Definition 2.10,

due to the assumptions made on �, it is easy to see that for fixed k the func-
tion fk := �(θk,ωk, ·, ·)�(xk, ·) belongs to CR,xk

with norm ‖fk‖R,xk
= ‖�‖Lip.

Consequently, by construction of the distance dR (recall Definition 2.12), one has
the following:

∀t > 0 E
∥∥〈�(θk,ωk, ·, ·)�(xk, ·), ν(N)

t − νt

〉∥∥2 ≤ ‖�‖2
LipdR

(
ν

(N)
t , νt

)2
.
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Putting together (4.14), (5.1) and (5.6), we obtain finally

E
∥∥〈f, ν

(N)
T − νT

〉∥∥2 ≤ 3
C1

N2∧d
+ 3

C2

Nd
+ 3

e2|||P |||T − 1

(2R)2d |||P |||‖�‖2
Lip

∫ T

0
dR

(
ν

(N)
t , νt

)2 dt.

Taking the supremum over all functions f in
⋃

a∈[−1,1]d CR,a and applying Gron-
wall’s lemma leads to the result. Theorem 2.13 is proved. �

6. Law of large numbers in the power-law case. We suppose in this section
that the weight � satisfies hypothesis (H2).

Let us begin with a technical lemma that will be of constant use throughout this
part:

LEMMA 6.1. There exists a constant C0 > 0 (that only depends on β), such
that for all N,K ≥ 1, for all a ∈DK :

(1) for all 0 < β < d , one has

∑
j ;j/N 
=a

∥∥∥∥ j

2N
− a

∥∥∥∥−β

≤ C0

{
NdKd, if a /∈ DN,

Nd, if a ∈ DN ;
(6.1)

(2) for β = d , one has

∑
j ;j/N 
=a

∥∥∥∥ j

2N
− a

∥∥∥∥−d

≤ C0

{
KdNd lnN, if a /∈ DN,

Nd lnN, if a ∈ DN ;
(6.2)

(3) for all β > d , one has

∑
j ;j/N 
=a

∥∥∥∥ j

2N
− a

∥∥∥∥−β

≤ C0

{
NβKβ, if a /∈ DN,

Nβ, if a ∈ DN .
(6.3)

REMARK 6.2. The estimates given in Lemma 6.1 in the case a ∈ DN are
standard and optimal. The main technical problem of Lemma 6.1 lies in the case
of a /∈ DN : in this case, the point a of the discretization DK can be arbitrarily
close to one point j

2N
in the above sum. Those points belong to the discretization

DN . The minimal distance between a and the discretization DN depends on K

(actually it depends on the greatest common divisor of K and N ; see the proof of
Lemma 6.1). This explains the dependence in K of the estimations of Lemma 6.1.

The proof of Lemma 6.1 is postponed to the Appendix. Lemma 6.1 will be at
the basis of most of the estimations in this section.

Theorem 2.18 is a consequence of the two following propositions:
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PROPOSITION 6.3. Let fix α ∈ [0, d), γ and p defined in (2.11) and (2.28),
respectively. There exists a constant C1 > 0 (that only depends on p and C0 defined
in Lemma 6.1) such that for all K ≥ 1, N ≥ 1, a ∈DK and f ∈ Ca with ‖f ‖a ≤ 1,

E
∥∥〈P0,T f, ν

(N)
0

〉 − 〈P0,T f, ν0〉
∥∥p

(6.4)

≤ C1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Kd

Nγ∧1

)p

, if α ∈
[
0,

d

2

)
,(

Kd lnN

Nd/2∧1

)p

, if α = d

2
,(

K3d/2 lnN

N(d−α)∧1

)p

, if α ∈
(

d

2
, d

)
.

Moreover, in the case where a ∈ DN , the previous estimates are true for K = 1.

PROPOSITION 6.4. Let fix α ∈ [0, d), γ and p defined in (2.11) and (2.28),
respectively. There exists a constant C2 > 0 such that for all K ≥ 1, for all a ∈ DK ,
for all f ∈ Ca such that ‖f ‖a ≤ 1

E
∥∥∥∥ 1

|�N |
∑
k

∫ T

0
∇θ (Pt,T f )

(
θk(t),ωk, xk

) · dBk(t)

∥∥∥∥p

(6.5)

≤ C2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Kd

Nd

)p/2

, if α ∈
[
0,

d

2

)
,(

Kd lnN

Nd

)p/2

, if α = d

2
,(

Kd

Nd−α

)p

, if α ∈
(

d

2
, d

)
.

Moreover, in the particular case where a ∈ DN , the previous estimates are true for
K = 1.

Let us admit for a moment Propositions 6.3 and 6.4. Then the result of Theo-
rem 2.18 is a straightforward consequence of the following proposition:

PROPOSITION 6.5. Under the assumptions made above, there exist constants
C3 and C4 such that for all K,N ≥ 1, one has

sup
0≤t≤T

dK

(
ν

(N)
t , νt

) ≤ C3

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

Nγ∧1 KdeC4K
d

, if α ∈
[
0,

d

2

)
,

lnN

Nd/2∧1 KdeC4K
2d

, if α = d

2
,

lnN

N(d−α)∧1 K3d/2eC4K
dp/q

, if α ∈
(

d

2
, d

)
,

(6.6)



DIFFUSIONS WITH SINGULAR INTERACTIONS 1977

where q in (6.6) is the conjugate of p and where C3 and C4 are large enough
constants that depend only on p, T , �, � , c and on the constants C1 and C2
defined in Propositions 6.3 and 6.4.

PROOF. Let us fix K ≥ 1, a ∈ DK and f ∈ Ca with ‖f ‖a ≤ 1. Let us recall
the estimate obtained in (4.14) and (4.15),

E
∥∥〈f, ν

(N)
T − νT

〉∥∥p

≤ 3p−1E
∥∥〈P0,T f, ν

(N)
0 − ν0

〉∥∥p

+ 3p−1E
∥∥∥∥ 1

|�N |
∑
k

∫ T

0
∇θ (Pt,T f )

(
θk(t),ωk, xk

) · (σ dBk(t)
)∥∥∥∥p

(6.7)

+ 3p−1
(

eq|||P |||T − 1

q|||P |||
)p/q( 1

|�N |
∑
k

1

|xk − a|qα

)p/q

×
∫ T

0

1

|�N |
∑
k

E
∥∥〈�(θk,ωk, ·, ·)�(xk, ·), ν(N)

t − νt

〉∥∥p dt.

We understand here the necessity of choosing p (and its conjugate q) different
from 2. Indeed, the integer q (recall Remark 2.17) has been precisely chosen such
that qα < d which ensures that the term ( 1

|�N |
∑

k
1

‖xk−a‖qα )p/q is finite: more pre-
cisely, an application of Lemma 6.1, (6.1) shows that this quantity is smaller than
Kdp/q whenever a ∈ DK and smaller than 1 in the particular case where a ∈ DN .

Let us now prove (6.6) in the case where K > N . Notice first that, thanks to the
assumptions made on � and � in Section 2.2, for all k the function fk : (θ,ω, x) �→
�(θk,ωk, θ,ω)�(xk, x) belongs to the space Cxk

where xk ∈ DN . Indeed [recall
the definition of I1(�) (2.8)], for all k and (θ,ω, θ̄, ω̄, x),

‖x − xk‖α�(xk, x)
∥∥�(θk,ωk, θ,ω) − �(θk,ωk, θ̄ , ω̄)

∥∥
≤ I1(�)‖�‖Lip

(‖θ̄ − θ‖ + ‖ω̄ − ω‖)
and

‖x − xk‖α�(xk, x)
∥∥�(θk,ωk, θ,ω)

∥∥ ≤ I1(�)‖�‖∞.

As far as condition (2.24) is concerned, we have [using (2.10)]∥∥‖x − xk‖2γ fk(θ,ω, x) − ‖y − xk‖2γ fk(θ,ω, y)
∥∥

≤ ‖�‖∞
∣∣‖x − xk‖2γ �(xk, x) − ‖y − xk‖2γ �(xk, y)

∣∣
≤ I3(�)‖�‖∞|x − y|(2γ−α)∧1.

Therefore, since K > N , by definition of the distance d
(p)
K (·, ·) (recall Defini-

tion 2.16), for all k, the following holds:

E
∥∥〈�(θk,ωk, ·, ·)�(xk, ·), ν(N)

t − νt

〉∥∥p ≤ η1d
(p)
K

(
ν

(N)
t , νt

)p
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for the constant η1 := max(I1(�)‖�‖Lip,I1(�),I3(�)‖�‖∞)p . Using this esti-
mate in (6.7) and taking the supremum over all functions f in

⋃
a∈DL,1≤L≤K Ca ,

one obtains

d
(p)
K

(
ν

(N)
T , νT

)p
≤ 3p−1 sup

f

E
∥∥〈P0,T f, ν

(N)
0

〉 − 〈P0,T f, ν0〉
∥∥p

+ 3p−1 sup
f

E
∥∥∥∥ 1

|�N |
∑
k

∫ T

0
∇θ (Pt,T f )

(
θk(t),ωk, xk

) · (σ dBk(t)
)∥∥∥∥p

+ 3p−1η2K
dp/q

∫ T

0
d

(p)
K

(
ν

(N)
t , νt

)p dt

for η2 := η1(
eq|||P |||T −1

q|||P ||| )p/q . The results of Propositions 6.3 and 6.4 together
with an application of Gronwall’s lemma leads to the estimate (6.6) in the
case where K > N . Note that one can choose in this case the constants C3 :=
3(p−1)/p(2 max(C1,C2))

1/p (where C1 and C2 come from Propositions 6.3
and 6.4) and C4 := 3p−1

p
T η2.

Let us now turn to the case where K ≤ N . In this situation, we cannot use
Gronwall’s inequality in order to obtain an analogous estimate on d

(p)
K (ν(N), ν),

since the function fk (k ∈ �N ) defined at the beginning of this proof has not
the sufficient regularity (fk belongs to Cxk

where xk ∈ DN and hence may not
belong to

⋃
a∈DK′ ,1≤K ′≤K Ca for K < N ). Nonetheless, one can bound the term

1
η1

E‖〈�(θk,ωk, ·, ·)�(xk, ·), ν(N)
t − νt 〉‖p by supf E‖〈f, ν

(N)
t 〉 − 〈f, νt 〉‖p , where

the supremum is taken over functions f in
⋃

a∈DN
Ca with ‖f ‖a ≤ 1. Using this

estimate in (6.7) and a calculation similar to the previous one gives the following
estimate:

sup
0≤t≤T

sup
f ∈⋃

a∈DN
Ca

(
E
∥∥〈f, ν

(N)
t

〉 − 〈f, νt 〉
∥∥p)

(6.8)

≤ (
C3e

C4
)p

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
1

Nγ∧1

)p

, if α ∈
[
0,

d

2

)
,(

lnN

Nd/2∧1

)p

, if α = d

2
,(

1

N(d−α)∧1

)p

, if α ∈
(

d

2
, d

)
.

But then, for instance in the case α ∈ [0, d
2 ) (we let the two other cases to the

reader), for all K ≤ N , for all f ∈ ⋃
a∈DK′ Ca for K ′ ≤ K , inserting directly (6.8)
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into (6.7) and using again Propositions 6.3 and 6.4 leads to

E
∥∥〈f, ν

(N)
t

〉 − 〈f, νT 〉∥∥p ≤ 3p−1C1

(
Kd

Nγ∧1

)p

+ 3p−1C2

(
Kd/2

Nd/2

)p

+ 3p−1
(

eq|||P |||T − 1

q|||P |||
)p/q

T
(
C3e

C4
)p( Kd/q

Nγ∧1

)p

.

Up to a change in the constant C3, this term is anyway smaller than (
C3

Nγ∧1 Kd ×
eC4K

d
)p . Taking the supremum over all f in

⋃
a∈DK′ ,K ′≤K Ca , one obtains the

result. �

The rest of this part is devoted to the proofs of Propositions 6.3 and 6.4:

PROOF OF PROPOSITION 6.3. Recall that the couples (θi(0),ωi)1≤i≤N are
supposed to be chosen i.i.d. according to the law ζ(dθ) ⊗ μ(dω) on X × E . Fix
a = l

K
∈ DK , f ∈ Ca with ‖f ‖a ≤ 1 as well as α ∈ (0, d) and the integer p ≥ 2

defined in (2.28). Write again ϕ := P0,T f for simplicity. Then

δN(f ) := E
∥∥〈P0,T f, ν

(N)
0

〉 − 〈P0,T f, ν0〉
∥∥p

= E
∥∥∥∥ 1

|�N |
∑
j

ϕ(θj ,ωj , xj ) −
∫

ϕ(θ,ω, x)ζ(dθ)μ(dω)dx

∥∥∥∥p

≤ 2p−1E
∥∥∥∥ 1

|�N |
∑
j

ϕ(θj ,ωj , xj ) − 1

|�N |
∑
j

∫
ϕ(θ,ω, xj )ζ(dθ)μ(dω)

∥∥∥∥p

+ 2p−1
∥∥∥∥ 1

|�N |
∑
j

∫
ϕ(θ,ω, xj )ζ(dθ)μ(dω)

−
∫

ϕ(θ,ω, x)ζ(dθ)μ(dω)dx

∥∥∥∥p

:= AN + BN.

For simplicity, let us write Xj := ϕ(θj ,ωj , xj ) − ∫
ϕ(θ,ω, xj )ζ(dθ)μ(dω); note

that EXj = 0 for all j . Since the (θi,ωi) are i.i.d. random variables with law ζ ⊗μ,
the first term AN becomes

AN = 1

|�N |p
�p/2�∑
l=1

∑
(k1+···+kl=�p/2�)

∑
j1,...,jl

E
(
X

2k1
j1

· · ·X2kl

jl

)
(6.9)

≤ 22�p/2�

|�N |p
�p/2�∑
l=1

∑
(k1+···+kl=�p/2�)

∑
j1,...,jl

1

‖xj1 − a‖2αk1
· · · 1

‖xjl
− a‖2αkl

,
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where we used ‖f ‖a ≤ 1 and assumption (2.23) in (6.9). Let us concentrate on the
contribution of l = 1 to the sum in (6.9), that we call ÃN (where p̃ = 2�p/2�)

ÃN = 2p̃

|�N |p
∑
j

1

‖xj − a‖2p̃α
.

Here, one has to distinguish two cases, depending on the value of α ∈ [0, d):

(1) If 0 ≤ α < d
2 , then by definition p = 2 and pα < d so that an application of

Lemma 6.1, (6.1) leads to

ÃN ≤ 1

N2d
C0 · KdNd = C0

Kd

Nd
.(6.10)

(2) If α ≥ d
2 , then p is chosen such that p > d

d−α
so that pα > d . Then

Lemma 6.1, (6.3) leads to

ÃN ≤ 1

Npd
C0 · KpαNpα = C0

Kpα

Np(d−α)
.(6.11)

It is also easy to see that the other terms in (6.9) are negligible w.r.t. ÃN as N →
∞.

Let us now turn to the second term BN : (BN)1/p is the difference between the Rie-
mann sum of the function � := x �→ ∫

ϕ(θ,ω, x)ζ(dθ)μ(dω) and its integral, so
that it should be small with N . But one has to be careful since ϕ as a discontinuity
(ϕ belongs to some Ca for some a) and since we want to have a result uniformly
in the function ϕ,

1

2p−1 BN =
∥∥∥∥ 1

|�N |
∑
j

�(xj ) −
∫

�(x)dx

∥∥∥∥p

(6.12)

≤
∣∣∣∣∑

j

∫
�j

∥∥�(xj ) − �(x)
∥∥dx

∣∣∣∣p,

where �j := {z ∈ [−1
2 , 1

2 ]d; ∀k = 1, . . . , d, jk ≤ zk < jk + 1
2N

} is the infinitesi-
mal subdomain of �N of size 1

2N
of corner j . Let us begin with the following

straightforward inequality:∥∥�(x) − �(y)
∥∥

≤ ∥∥‖x − a‖−γ − ‖y − a‖−γ
∥∥∥∥‖x − a‖γ �(x) + ‖y − a‖γ �(y)

∥∥(6.13)

+ 1

‖x − a‖γ ‖y − a‖γ

∥∥�(x)‖x − a‖2γ − �(y)‖y − a‖2γ
∥∥.

Using the assumptions made on f , we deduce in particular from (2.23) and ‖f ‖a ≤
1 that ‖x − a‖γ �(x) is bounded by ‖x − a‖γ−α . Using also (2.24), it is then
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immediate to see that

∥∥�(x) − �(y)
∥∥ ≤ ‖x − y‖γ

‖x − a‖γ ‖y − a‖γ

(‖x − a‖γ−α + ‖y − a‖γ−α)

+ ‖x − y‖(2γ−α)∧1

‖x − a‖γ ‖y − a‖γ

(6.14)

= ‖x − y‖γ

‖x − a‖α‖y − a‖γ
+ ‖x − y‖γ

‖x − a‖γ ‖y − a‖α

+ ‖x − y‖(2γ−α)∧1

‖x − a‖γ ‖y − a‖γ
.

Using (6.14) in (6.12), one obtains that

BN ≤ 2p−1
(∑

j

∫
�j

‖x − xj‖γ

‖x − a‖α‖xj − a‖γ
dx

+ ∑
j

∫
�j

‖x − xj‖γ

‖x − a‖γ ‖xj − a‖α
dx

(6.15)

+ ∑
j

∫
�j

‖x − xj‖(2γ−α)∧1

‖x − a‖γ ‖xj − a‖γ
dx

)p

:= 2p−1(S(1)
N + S

(2)
N + S

(3)
N

)p
.

The first of the three sums in (6.15) can be bounded by the following quantity:

S
(1)
N ≤ ∑

j

1

min(‖xj−1 − a‖α,‖xj − a‖α)‖xj − a‖γ

∫
�j

‖x − xj‖γ dx

= 1

Nd+γ

∑
j

1

min(‖xj−1 − a‖α,‖xj − a‖α)‖xj − a‖γ
.

Let us once again distinguish three cases, depending on the value of α:

(1) if α ∈ [0, d
2 ), then α + γ < d [recall (2.11)], so that an application of

Lemma 6.1, (6.1) leads to

S
(1)
N ≤ C0

Kd

Nγ
;(6.16)

(2) if α = d
2 , then α + γ = d [recall (2.11)], so that Lemma 6.1, (6.2) gives

S
(1)
N ≤ C0

Kd lnN

Nd/2 ;(6.17)
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(3) if α ∈ (d
2 , d), then α + γ > d , so that Lemma 6.1, (6.3) gives

S
(1)
N ≤ C0

Kα+γ

Nd−α
≤ C0

K3d/2

Nd−α
.(6.18)

The same calculation leads to the same estimates for the second term S
(2)
N in (6.15).

A very similar calculation also leads to the following estimate for the last term S
(3)
N :

S
(3)
N ≤ C0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Kd

N(2γ−α)∧1 , if α ∈
[
0,

d

2

)
,

Kd lnN

N(d−α)∧1 , if α ∈
[
d

2
, d

)
.

(6.19)

Combining estimations (6.19) and (6.10) [resp., (6.11)] and (6.16) [resp., (6.17)
or (6.18)] leads to the desired estimation (6.4). The proof of the case where a ∈DN

is analogous and uses the estimates for a ∈ DN in Lemma 6.1. Proposition 6.3 is
proved. �

It remains to prove Proposition 6.4, whose purpose is to control the martingale
term in (4.12):

PROOF OF PROPOSITION 6.4. Fix some K ≥ 1, a ∈ DK and f ∈ Ca such that
‖f ‖a ≤ 1. The martingale MN

t := 1
|�N |

∑
k

∫ T
0 ∇θ (Pt,T f )(θk(t),ωk, xk) · dBk(t)

may be written as MN
t = 1

|�N |
∑

k

∑m
l=1

∫ T
0 ∂θ(l)(Pt,T f )(θk(t),ωk, xk)dB

(l)
k (t),

where for all k, Bk = (B
(1)
k , . . . ,B

(m)
k ). Consequently, its quadratic variation pro-

cess is given by

〈
MN 〉

t = 1

|�N |2
∑
k

m∑
l=1

∫ T

0

∥∥∂θ(l)Pt,T f
(
θk(t),ωk, xk

)∥∥2 dt.

Applying Remark 2.15 and Lemma 4.4, we have almost surely that

〈
MN 〉

t ≤ m|||P |||2
|�N |2

∑
k

1

|xk − a|2α

∫ T

0
e2|||P |||(T −t) dt.

An argument repeatedly used in this work shows that one can bound the quadratic

variation by C Kd

Nd (resp., C Kd lnN
Nd and C K2α

N2(d−α) ) when α < d
2 (resp., α = d

2 and

α > d
2 ), for some constant C > 0. Then the Burkholder–Davis–Gundy inequality

E(‖MN
t ‖p) ≤ CpE(〈MN 〉p/2

t ) gives the result. Proposition 6.4 is proved. �

7. The case of a locally Lipschitz dynamics c(·). One of the key arguments
of the proofs of Theorems 2.13 and 2.18 is the fact that one can derive a Kol-
mogorov equation [recall (4.3)] for the propagator Ps,tf defined in (4.2). Under
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Assumption 2.2 on the dynamics c(·) (one-sided Lipschitz condition and absence
of global Lispchitz continuity), deriving such a Kolmogorov equation appears to
be problematic; see, in particular, [21, 23]. Even if such a result existed, we could
not find a proper reference in the literature.

One can bypass this technical difficulty and prove nevertheless Theorems 2.13
and 2.18 by an approximation argument. We will suppose throughout this section
that c satisfies only Assumption 2.2.

7.1. Yosida approximation. Let us denote for all (θ,ω), c̃(θ,ω) := c(θ,ω) −
Lθ , where we recall that L is the constant appearing in the one-sided Lipschitz
continuity assumption (2.3). In terms of c̃, (2.3) reads

∀(θ,ω), (θ̄ , ω̄)
〈
θ − θ̄ , c̃(θ,ω) − c̃(θ̄ , ω̄)

〉 ≤ 0,(7.1)

and, for example, the mean field evolution (4.1) reads

dθ(t) = c̃
(
θ(t),ω

)
dt + ṽ

(
t, θ(t),ω, x

)
dt + σ · dB(t),(7.2)

where ṽ(t, θ(t),ω, x) := v(t, θ(t),ω, x) + Lθ(t).
For all λ > 0, consider c̃λ the Yosida approximation of c̃ (see [8], Appendix A,

for a review of the basic properties of Yosida approximations),

∀(θ,ω) c̃λ(θ,ω) := c̃
(
Rλ(λθ),ω

)
(7.3)

for

∀(θ,ω) Rλ(θ,ω) := (
λ − c̃(·,ω)

)−1
(θ).(7.4)

Consider now the solution θλ of the following SDE [with the same initial condition
and driven by the same Brownian motion B as in (7.2)]:

dθλ(t) = c̃λ

(
θλ(t),ω

)
dt + ṽ

(
t, θλ(t),ω, x

)
dt + σ · dB(t),(7.5)

that is, the analog of (7.2) where c̃ has been replaced by its Yosida approximation.
Note that one can proceed exactly in the same way for microscopic system (2.2).
From now on, whatever X may be, the subscript notation Xλ will refer to the
analog of X when the dynamics has been replaced by its Yosida approximation.
Note that we will, most of the time, drop the dependencies of the functions in ω,
for simplicity of notation.

It is easy to see that c̃ and c̃λ have the same regularity in θ ; see, for example, [8],
page 304. Moreover, c̃λ has the supplementary property to be uniformly Lipschitz
continuous. In other words, c̃λ satisfies Assumption 2.2 as well as Assumption 4.1,
so that everything that has been done before is applicable: Theorems 2.13 and 2.18
are true in the case of an interaction ruled by c̃λ

sup
t∈[0,T ]

d
(
ν

(N)
t,λ , νt,λ

) ≤ CN−β(7.6)
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for d either equal to dR(·, ·) or d
(p)∞ (·, ·) and β one of the appropriate exponent

appearing in the formulation of Theorems 2.13 and 2.18. Note that the constant
C in (7.6) does not depend on λ. Indeed, the assumption made in Section 4 about
the global Lipschitz continuity of c was made only to ensure the existence of the
Kolmogorov equation. In particular, the modulus of continuity of c did not enter
into the calculation made in Section 4: the only dependence in the dynamics c

was in its one-sided Lipschitz constant L (recall Lemma 4.4), which is conserved
by the Yosida approximation. In other words, every constant estimates made upon
evolution (7.5) is independent on λ.

Now, Theorems 2.13 and 2.18 in our general framework are an easy conse-
quence of the triangular inequality and the following proposition:

PROPOSITION 7.1. For all N ≥ 1,

sup
t∈[0,T ]

d
(
ν

(N)
t,λ , ν

(N)
t

) λ→∞−→ 0,(7.7)

sup
t∈[0,T ]

d(νt,λ, νt )
λ→∞−→ 0.(7.8)

The rest of this section is devoted to prove Proposition 7.1. Let us begin with
some a priori estimates:

LEMMA 7.2. We have the following a priori estimates:

sup
λ>0

E
(

sup
t∈[0,T ]

∥∥θλ(t)
∥∥2

)
< ∞(7.9)

and

P
(

sup
λ>0

∫ T

0

∥∥c̃λ

(
θλ(s)

)∥∥2 ds < ∞
)

= 1.(7.10)

PROOF. Let us first prove the first estimate (7.9): applying Itô’s formula,

∥∥θλ(t)
∥∥2 = ∥∥θλ(0)

∥∥2 + 2
∫ t

0

〈
θλ(s), c̃λ

(
θλ(s)

) + ṽ
(
s, θλ(s),ω, x

)〉
ds

+ 2
∫ t

0

〈
θλ(s),dB(s)

〉 + tr
(
σσT )

t

≤ ∥∥θλ(0)
∥∥2 + 2

(∥∥c̃(0)
∥∥ + L + ‖�‖∞S(�)

) ∫ t

0

∥∥θλ(s)
∥∥2 ds

+ 2
∫ t

0

〈
θλ(s), dB(s)

〉 + tr
(
σσT )

T .
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Taking expectations and using the Burkholder–Davis–Gundy inequality, we obtain
that for some constant C > 0 (independent of λ),

E
(
sup
s≤t

∥∥θλ(s)
∥∥2

)
≤ E

(∥∥θ(0)
∥∥2) + tr

(
σσT )

T + 2C

∫ t

0
E
(
sup
u≤s

∥∥θλ(u)
∥∥2

)
ds

+ 6 tr
(
σσT )1/2E

((∫ t

0

∥∥θλ(u)
∥∥2 du

)1/2)

≤ E
(∥∥θ(0)

∥∥2) + tr
(
σσT )

T + 2C

∫ t

0
E
(
sup
u≤s

∥∥θλ(u)
∥∥2

)
ds

+ 18 tr
(
σσT )

T + 1

2
E
(
sup
u≤t

∥∥θλ(u)
∥∥2

)
,

which implies

E
(
sup
s≤t

∥∥θλ(s)
∥∥2

)
≤ 2

(
E
(∥∥θ(0)

∥∥2) + 19 tr
(
σσT )

T
) + 4C

∫ t

0
E
(
sup
u≤s

∥∥θλ(u)
∥∥2

)
ds,

and Gronwall’s lemma leads to the result.
Let us now turn to the second estimate (7.10): define Yλ(t) := θλ(t) − σ · B(t).

Then Yλ satisfies

dYλ(t) = (
c̃λ

(
Yλ(t) + B(t),ω

) + ṽ
(
t, Yλ(t) + B(t),ω, x

))
dt.(7.11)

Clearly,∥∥Yλ(t)
∥∥2

= ∥∥Yλ(0)
∥∥2 + 2

∫ t

0

〈
Yλ(s), c̃λ

(
Yλ(s) + σ · B(s)

)〉
ds

+ 2
∫ t

0

〈
Yλ(s), ṽ

(
s, Yλ(s) + σ · B(s)

)
,ω, x

〉
ds

≤ ∥∥Yλ(0)
∥∥2 + 2

(∥∥c̃(0)
∥∥ + L + ‖�‖∞S(�)

) ∫ t

0

∥∥Yλ(s)
∥∥2 ds

+ 2
∫ t

0

〈
Yλ(s), c̃λ

(
σ · B(s)

)〉
ds

≤ ∥∥Yλ(0)
∥∥2

+ 2
(∥∥c̃(0)

∥∥ + L + ‖�‖∞S(�) +
∫ t

0

∥∥c̃λ

(
σ · B(s)

)∥∥2 ds

)∫ t

0

∥∥Yλ(s)
∥∥2 ds,

taking the supremum in λ and using Yλ(0) = θλ(0) = θ(0), we have

sup
λ

∥∥Yλ(t)
∥∥2 ≤ ∥∥θ(0)

∥∥2 + 2
(
C +

∫ t

0

∥∥c̃λ

(
σ · B(s)

)∥∥2 ds

)∫ t

0
sup
λ

∥∥Yλ(s)
∥∥2 ds

≤ ∥∥θ(0)
∥∥2 + 2

(
C +

∫ t

0

∥∥c̃(σ · B(s)
)∥∥2 ds

)∫ t

0
sup
λ

∥∥Yλ(s)
∥∥2 ds,
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where we used the pointwise estimate ‖c̃λ(θ)‖ ≤ ‖c̃(θ)‖. Gronwall’s lemma gives

sup
λ

∥∥Yλ(t)
∥∥2 ≤ ∥∥θ(0)

∥∥2 exp
(

2
(
C +

∫ T

0

∥∥c̃(σ · B(s)
)∥∥2 ds

)
T

)

that is almost surely finite, since c̃ is locally bounded, and the trajectories of B are
almost surely bounded. Consequently,

sup
λ

sup
t≤T

∥∥θλ(t)
∥∥2 ≤ sup

λ

sup
t≤T

∥∥Yλ(t)
∥∥2 + sup

t≤T

∥∥B(t)
∥∥2

< ∞ a.s.

Since c̃ is polynomially bounded, this implies now that

sup
λ

∫ T

0

∥∥c̃λ

(
θλ(t)

)∥∥2 dt < ∞ a.s.,

which is the result. �

The key estimate of this section is the following:

PROPOSITION 7.3. Almost surely, the following holds:

lim sup
λ→∞

sup
t∈[0,T ]

∥∥θ(t) − θλ(t)
∥∥ = 0.(7.12)

PROOF. Let us fix λ < μ. Since the Brownian motion is the same, one has
successively [for a constant C = L + ‖�‖LipS(�)]

d

dt
e−2Ct

∥∥θμ(t) − θλ(t)
∥∥2

= −2Ce−2Ct
∥∥θμ(t) − θλ(t)

∥∥2

+ 2e−2Ct 〈θμ(t) − θλ(t), c̃μ

(
θμ(t)

) − c̃λ

(
θλ(t)

)〉
+ 2e−2Ct 〈θμ(t) − θλ(t), ṽ

(
t, θμ(t),ω, x

) − ṽ
(
t, θλ(t),ω, x

)〉
≤ −2Ce−2Ct

∥∥θμ(t) − θλ(t)
∥∥2

+ 2e−2Ct 〈θμ(t) − θλ(t), c̃μ

(
θμ(t)

) − c̃λ

(
θλ(t)

)〉
+ 2e−2Ct (L + ‖�‖LipS(�)

)∥∥θμ(t) − θλ(t)
∥∥2

≤ 2e−2Ct 〈θμ(t) − θλ(t), c̃μ

(
θμ(t)

) − c̃λ

(
θλ(t)

)〉
= 2e−2Ct

〈(
Rμ

(
μθμ(t)

) − 1

μ
c̃
(
Rμ

(
μθμ(t)

)))

−
(
Rλ

(
λθλ(t)

) − 1

λ
c̃
(
Rλ

(
λθλ(t)

)))
,
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c̃
(
Rμ

(
μθμ(t)

)) − c̃
(
Rλ

(
λθλ(t)

))〉

≤ −2e−2Ct

〈
1

μ
c̃μ

(
θμ(t)

) − 1

λ
c̃λ

(
θλ(t)

)
, c̃μ

(
θμ(t)

) − c̃λ

(
θλ(t)

)〉
.

Integrating this inequality gives (since the initial condition is the same)

1

2
e−2CT

∥∥(θμ − θλ)(T )
∥∥2

≤ −
∫ T

0
e−2Ct

〈
1

μ
c̃μ

(
θμ(t)

) − 1

λ
c̃λ

(
θλ(t)

)
, c̃μ

(
θμ(t)

) − c̃λ

(
θλ(t)

)〉
dt.

This gives in particular that∫ T

0
e−2Ct

〈
1

μ
c̃μ

(
θμ(t)

) − 1

λ
c̃λ

(
θλ(t)

)
, c̃μ

(
θμ(t)

) − c̃λ

(
θλ(t)

)〉
dt ≤ 0.

Let us denote as ‖ · ‖H the Hilbert norm in H := L2([0, T ], e−2Cs ds;X ). Then,
from the identity

2
〈
c̃μ(θμ) − c̃λ(θλ),

1

μ
c̃μ(θμ) − 1

λ
c̃λ(θλ)

〉
H

=
(

1

μ
+ 1

λ

)∥∥c̃μ(θμ) − c̃λ(θλ)
∥∥2
H

+
(

1

μ
− 1

λ

)(∥∥c̃μ(θμ)
∥∥2
H − ∥∥c̃λ(θλ)

∥∥2
H

)
,

one obtains that(
1

μ
+ 1

λ

)∥∥c̃μ(θμ) − c̃λ(θλ)
∥∥2
H ≤

(
1

λ
− 1

μ

)(∥∥c̃μ(θμ)
∥∥2
H − ∥∥c̃λ(θλ)

∥∥2
H

)
,(7.13)

which gives in particular that λ �→ ‖c̃λ(θλ)‖2
H is increasing and by (7.10)

is bounded and thus convergent. The same inequality (7.13) shows also that
‖c̃μ(θμ) − c̃λ(θλ)‖2

H →λ,μ→∞ 0, so that (c̃λ(θλ)(t)) converges in H to some
c∞(t).

Going back to the first inequality of the proof, one has

1

2
sup

t∈[0,T ]
e−2Ct

∥∥θμ(t) − θλ(t)
∥∥2

≤
∫ T

0
e−2Ct 〈θμ(t) − θλ(t), c̃μ

(
θμ(t)

) − c̃λ

(
θλ(t)

)〉
dt

≤ 1

4T

∫ T

0
e−2Ct

∥∥θμ(t) − θλ(t)
∥∥2 dt
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+ T

∫ T

0
e−2Ct

∥∥c̃μ

(
θμ(t)

) − c̃λ

(
θλ(t)

)∥∥2 dt

≤ 1

4
sup

t∈[0,T ]
e−2Ct

∥∥θμ(t) − θλ(t)
∥∥2

+ T

∫ T

0
e−2Ct

∥∥c̃μ

(
θμ(t)

) − c̃λ

(
θλ(t)

)∥∥2 dt.

Hence

sup
t∈[0,T ]

e−2Ct
∥∥θμ(t) − θλ(t)

∥∥2 ≤ 4T

∫ T

0
e−2Ct

∥∥c̃μ

(
θμ(t)

) − c̃λ

(
θλ(t)

)∥∥2 dt,

which goes to 0 as λ,μ → ∞. This implies that there exists an adapted pro-
cess θ̄ with continuous trajectories such that limλ→∞ θλ = θ̄ , uniformly and al-
most surely. Clearly, for all t , the strong continuity limλ→∞ Rλ(λθ̄(t)) = θ̄ (t) of
the resolvent and the uniform Lipschitz continuity ‖Rλ(λθλ(t)) − Rλ(λθ̄(t))‖ ≤
‖θλ(t) − θ(t)‖ implies that limλ Rλ(λθλ(t)) = θ̄ (t). Finally, continuity of c̃ gives
limλ→∞ c̃λ(θλ(t)) = c̃(Rλ(λθλ(t))) = c̃(θ̄ (t)). Consequently, we have that, almost
surely c̃(θ̄t ) = c∞(t), so that θ̄ solves equation (7.2), so that by uniqueness θ̄ = θ

almost surely. �

We are now in position to prove Proposition 7.1:

PROOF OF PROPOSITION 7.1. We only prove (7.8), the proof of (7.7) follows
from analogous estimates with the microscopic equation (2.2). We only treat the
(more complicated) case of the power-law interaction. Fix any f in Ca for some a

with ‖f ‖a ≤ 1. Then, by Lispchitz continuity of f in the variable θ∣∣〈f, νt,λ〉 − 〈f, νt 〉
∣∣ ≤ S(�)EB

∥∥θλ(t) − θ(t)
∥∥.

Taking the supremum in f and in t leads to

sup
t∈[0,T ]

d(νt,λ, νt ) ≤ S(�)EB sup
t∈[0,T ]

∥∥θλ(t) − θ(t)
∥∥.

By (7.12) we have the almost sure convergence to 0 of supt∈[0,T ] ‖θλ(t) − θ(t)‖
and (7.9) gives the boundedness in L2 implying uniform integrability. The result
follows. �

APPENDIX: PROOF OF A TECHNICAL LEMMA

PROOF OF LEMMA 6.1. Let us proceed by induction on the dimension d . Let
us fix d = 1:
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• Let us begin with the case where a /∈ DN : let J be the integer such that J
2N

<

a < J+1
2N

. Then an easy comparison with integrals shows the following:

∑
j

∣∣∣∣ j

2N
− a

∣∣∣∣−β

≤ 2βNβ

(∫ J

0
|2aN − t |−β dt + |2aN − J |−β

+ ∣∣2aN − (J + 1)
∣∣−β +

∫ N

J+1
|t − 2aN |−β dt

)

= 2βNβ
∫ J

0
|2aN − t |−β dt + 2βNβ

∫ N

J+1
|t − aN |−β dt

+
∣∣∣∣a − J

2N

∣∣∣∣−β

+
∣∣∣∣a − J + 1

2N

∣∣∣∣−β

.

It is straightforward to see that the two first integral terms are smaller than
N

d−β
whereas each of the two remaining terms is smaller than ρ(N,K)−β ,

where ρ(N,K) := inf|j |≤N,|l|≤K,j/N 
=l/K | j
2N

− l
2K

| = gcd(K,N)
2KN

≥ 1
2KN

. Con-
sequently, since K ≥ 1 and β < 1,

∑
j

∣∣∣∣ j

N
− a

∣∣∣∣−β

≤ 2N

d − β
+ 2KβNβ ≤ C0NK.

• The case where a ∈ DN is easier: in this case, a = k
2N

for some k. Then, once
again by comparison with integrals,

∑
j ;j/N 
=a

∣∣∣∣ j

2N
− a

∣∣∣∣−β

= 2βNβ
∑
j 
=k

|j − k|−β

≤ Nβ

1 − β

(
(N + k)1−β + (N − k)1−β)

≤ 22−βN

1 − β
.

The other cases (β = 1 and β > 1) are similar and left to the reader. Lemma 6.1 is
proved in the particular case of d = 1.

The case of higher dimension is nothing but a technical complication of the
previous case d = 1. Let us fix d > 1, a = (a1, . . . , ad) ∈ DK and denote by j =
(j1, . . . , jd) any element of Zd .

Let us begin with the case where a /∈ DK . Let (J1, . . . , Jd) the d integers be-
tween −N and N such that for all l = 1, . . . , d , Jl ≤ 2alN ≤ Jl + 1, with at least
one inequality that is strict. The coordinates Jl and Jl + 1 are by construction the
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closest integers to 2alN in −N, . . . ,N . For the rest of this proof, we will refer to
them as critical coordinates. Then one can decompose the sum

∑
j ‖ j

2N
− a‖−β

according to the number p of critical coordinates among (j1, . . . , jd) = j , where
j is a typical index,

∑
j

∥∥∥∥ j

2N
− a

∥∥∥∥−β

=
d∑

p=0

∑
(i1,...,ip)

∑
j∈J(i1,...,ip)

∥∥∥∥ j

2N
− a

∥∥∥∥−β

,(A.1)

where the second sum is taken over all the vectors (i1, . . . , ip) with strictly increas-
ing indices taken among 1, . . . , d and where J (i1, . . . , ip) is a notation for the set
of vectors j = (j1, . . . , jd) such that jil is critical for every l = 1, . . . , p.

In the sum (A.1), let us treat the cases p = 0 and p > 0 separately. Let us first
focus on the case p = 0: it corresponds to vectors j without critical coordinates,
which means that we restrict ourselves to j such that for every k = 1, . . . , d , either
jk < Jk (in such case |jk − 2akN | = 2akN − jk) or either jk > Jk + 1 (in such
case |jk −2akN | = jk −2akN ). In particular, this sum can be divided into 2d sums∑

j∈D ‖ j
2N

− a‖−β where D is a connected subdomain of [−1/2,1/2]d , which is
defined by this binary choice for each jk . For simplicity, we only treat the case
of D0 := {j = (j1, . . . , jd); ∀k = 1, . . . , d, jk < Jk}. The case of the other 2d − 1
subdomains can be treated in a similar way.

We have successively,

∑
j∈D0

∥∥∥∥ j

2N
− a

∥∥∥∥−β

= 2βNβ
∑

jk<Jk−1

∣∣∣∣∣
d∑

l=1

(2alN − jl)
2

∣∣∣∣∣
−β/2

(A.2)

≤ 2βNβ
∫ J1

−N
· · ·

∫ Jd

−N

∣∣∣∣∣
d∑

l=1

(2alN − tl)
2

∣∣∣∣∣
−β/2

dt1 · · ·dtd(A.3)

= 2βNβ
∫ N+2a1N

2a1N−J1

· · ·
∫ N+2adN

2adN−Jd

∣∣∣∣∣
d∑

l=1

u2
l

∣∣∣∣∣
−β/2

du1 · · · dud(A.4)

≤ CNβ
∫ 2N

wN

1

rβ
rd−1 dr,(A.5)

where wN > 0 is the distance to 0 of the point of coordinates (2a1N −
J1, . . . ,2ad − Jd). The estimates found in Lemma 6.1 are then straightfor-
ward: for example, in the case β < d , an upper bound for the last quantity is
CNβNd−β = CNd . The other cases are treated in the same manner and lead to
the same desired estimate.

As far as the case 0 < p ≤ d is concerned, the particular case p = d is a bit
special: it corresponds to vectors j with only critical coordinates. Since in this
case, each | jk

2N
−ak| is either equal to | Jk

2N
−ak| or |Jk+1

2N
−ak| and is anyway larger

than ρN,K ≥ 1
2NK

(where the quantity ρN,K has been defined in the beginning of
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this proof), the contribution of this case to the whole sum can be bounded by
2d · 1

(dρ2
N,K)β/2 ≤ 2d2β

dβ/2 NβKβ = CNβKβ .

Let us now concentrate on the case 0 < p < d: Then for a fixed choice of indices
(i1, . . . , ip), we have

∑
j∈J(i1,...,ip)

∥∥∥∥ j

2N
− a

∥∥∥∥−β

= ∑
j∈J(i1,...,ip)

∣∣∣∣ ∑
i=i1,...,ip

(
ji

2N
− ai

)2

+ ∑
i 
=i1,...,ip

(
ji

2N
− ai

)2∣∣∣∣−β/2

≤ ∑
j∈J(i1,...,ip)

∣∣∣∣ ∑
i 
=i1,...,ip

(
ji

2N
− ai

)2∣∣∣∣−β/2

.

But this last sum is nothing else than
∑

j̄ ‖ j̄
2N

− ā‖−β , where ā (resp., j̄ ) is the

vector in [−1,1]d−p , built upon the vector a (resp., j ) with all its coordinates of
index in {i1, . . . , ip} removed. Since p > 0, we see that, by induction hypothesis,
that the previous sum can be bounded by{

CNd−pKd−p lnN, if β ≤ d − p,

CNβ, if β > d − p.

In particular, if β ≥ d , then the contribution to (A.1) of the sum over 0 < p < d

can be bounded by CNd−pKd−p lnN ≤ min(CKdNd lnN,CNβ). If β < d , it is
also straightforward to see that this contribution is also smaller than CNdKd . The
proof of Lemma 6.1 follows, by induction. �
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