Abstract
In the present paper, we prove that the Wasserstein distance on the space of continuous sample-paths equipped with the supremum norm between the laws of a uniformly elliptic one-dimensional diffusion process and its Euler discretization with $N$ steps is smaller than $O(N^{-2/3+\varepsilon})$ where $\varepsilon$ is an arbitrary positive constant. This rate is intermediate between the strong error estimation in $O(N^{-1/2})$ obtained when coupling the stochastic differential equation and the Euler scheme with the same Brownian motion and the weak error estimation $O(N^{-1})$ obtained when comparing the expectations of the same function of the diffusion and of the Euler scheme at the terminal time $T$. We also check that the supremum over $t\in[0,T]$ of the Wasserstein distance on the space of probability measures on the real line between the laws of the diffusion at time $t$ and the Euler scheme at time $t$ behaves like $O(\sqrt{\log(N)}N^{-1})$.
Citation
A. Alfonsi. B. Jourdain. A. Kohatsu-Higa. "Pathwise optimal transport bounds between a one-dimensional diffusion and its Euler scheme." Ann. Appl. Probab. 24 (3) 1049 - 1080, June 2014. https://doi.org/10.1214/13-AAP941
Information