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This paper studies the limiting spectral distribution (LSD) of a sym-
metrized auto-cross covariance matrix. The auto-cross covariance matrix is
defined as Mτ = 1

2T

∑T
j=1(ej e∗

j+τ + ej+τ e∗
j ), where ej is an N dimen-

sional vectors of independent standard complex components with properties
stated in Theorem 1.1, and τ is the lag. M0 is well studied in the literature
whose LSD is the Marčenko–Pastur (MP) Law. The contribution of this paper
is in determining the LSD of Mτ where τ ≥ 1. It should be noted that the LSD
of the Mτ does not depend on τ . This study arose from the investigation of
and plays an key role in the model selection of any large dimensional model
with a lagged time series structure, which is central to large dimensional fac-
tor models and singular spectrum analysis.

1. Introduction. Over the last decade and as a result of new sources of large
data, the analysis of high-dimensional statistical models has received renewed
attention. These models are currently being analyzed within the context of ran-
dom matrix theory (RMT) in many areas such as statistics [Bai and Silverstein
(2010)], economics [Harding (2012), Onatski (2009, 2012)] and engineering [Rao
and Edelman (2008), Tulino and Verdu (2004)]. The asymptotic framework as-
sumes that both the dimension corresponding to the number of individual units,
N and the number of samples T are large.

Suppose An is an n × n random Hermitian matrix with eigenvalues λj , j =
1,2, . . . , n. Define a one-dimensional distribution function of the eigenvalues

F An(x) = 1

n
�{j ≤ n :λj ≤ x},
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and call F An(x) the empirical spectral distribution (ESD) of matrix An. Here �E

denotes the cardinality of the set E. The limit distribution of {F An} for a given se-
quence of random matrices {An} is called the limiting spectral distribution (LSD).
For any function of bounded variation G, the Stieltjes transform of G is defined as
mG(z) ≡ ∫ 1

λ−z
dG(λ) where z ∈ C

+ ≡ {z ∈ C :�z > 0}. For any n × n matrix An

with real eigenvalues λ1, . . . , λn, the Stieltjes transform of F An is

mF An (z) = 1

n

n∑
j=1

1

λj − z
= 1

n
tr(An − zI)−1.

Similar to the Fourier transformation in probability theory, there is also a one-to-
one correspondence between the distributions and their Stieltjes transforms via the
inversion formula: for any continuity points a < b of G,

G
{[a, b]}= 1

π
lim

η→0+

∫ b

a
�mG(ξ + iη) dξ.

Moreover, the continuity theorem holds, that is, a sequence of distributions tends
to a weak limit, if and only if their Stieltjes transforms tends to that of the limiting
distribution. Therefore, to find the limiting distribution, one can work on finding
the limiting Stieltjes transform and use the inversion formula to obtain the limiting
distribution.

Research on the LSD of large dimensional random matrices dates back to
Wigner (1955, 1958). In these studies, he established that the ESD of a large
dimensional Wigner matrix tends to the so-called semicircular law. The LSD of
large dimensional sample covariance matrices was studied by Marčenko and Pas-
tur (1967), and the limiting distribution is referred to as the MP law. Further re-
search efforts were conducted to estimate the LSD of a product of two random
matrices. To this end, pioneering work was done by Wachter (1980), who consid-
ered the LSD of the multivariate F -matrix, the explicit form of which was derived
by Bai, Yin and Krishnaiah (1986) and Silverstein (1995). The existence of the
LSD of the matrix sequence {SnTn} was established by Yin and Krishnaiah (1983)
where Sn is a standard Wishart matrix, and Tn is a positive definite matrix. Bai,
Miao and Jin (2007) proved the existence of the LSD of {SnTn} where Sn is a
sample covariance matrix, and Tn is an arbitrary Hermitian matrix. In particular,
Bai, Miao and Jin (2007) established the explicit form of LSD of {SnTn} where Sn

is a sample covariance matrix, and Tn is Wigner matrix. Random matrices of the
form An + X∗

nTnXn where An is Hermitian matrix, Tn is diagonal and Xn consists
of i.i.d. (independently and identically distributed) entries, was extensively inves-
tigated by many researchers, including Marčenko and Pastur (1967), Grenander
and Silverstein (1977), Wachter (1978), Jonsson (1982) and Silverstein and Bai
(1995). Furthermore, the LSD of a circulant random matrix was derived by Bose
and Mitra (2002) and the LSD of sample correlation matrices was studied by Jiang
(2004). Bai and Zhou (2008) considered the LSD of a large-dimensional sample
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matrix where the assumption of column independence has been relaxed. A large-
dimensional vector autoregressive moving average models (LDVARMA) is a spe-
cial case of the random matrix framework considered by Bai and Zhou (2008). Jin
et al. (2009) established the explicit forms of the LSD of covariance matrices of
LDVAR(1) and LDVMA(1). Wang, Jin and Miao (2011) established the relation-
ship between the power spectral density function and LSD of covariance matrices
of LDVARMA(p, q). A detailed exposition of spectral properties of random ma-
trices is presented in Bai and Silverstein (2004, 2010) and Zheng (2012).

1.1. Motivation and main result. In this paper, we will focus our attention on
the LSD of a symmetrized auto-cross covariance matrix Mτ = ∑T

k=1(γ kγ
∗
k+τ +

γ k+τγ
∗
k), where γ k = 1√

2T
ek , ek = (ε1k, . . . , εNk)

′ and {εit } are independent ran-

dom variables with mean 0 and variance σ 2. Here, τ ≥ 1 denotes the number of
lags. The motivation of this paper comes from any large dimensional model with
a lagged time series structure which are central to large dimensional dynamic fac-
tor models [Forni and Lippi (2001)] and singular spectrum analysis [Vautard, Tiou
and Ghil (1992), Zhigljavsky (2012)].

Consider the framework of a large dimensional dynamic k-factor model with
lag q to understand the underlying motivation of this work. This takes the follow-
ing form:

Rt =
q∑

i=0

�iFt−i + et , t = 1, . . . , T ,

where �i’s are N × k nonrandom matrices with full rank. For t = 1, . . . , T , Ft ’s
are k dimensional vectors of i.i.d. standard complex components with finite fourth
moment and et ’s are N dimensional vectors of i.i.d. standard complex compo-
nents with finite second moment, independent of Ft . This model can be viewed
as a large dimensional information-plus-noise type model [Dozier and Silverstein
(2007a, 2007b), Bai and Silverstein (2012)], with information contained in the
summation part and noise in et ’s. Here “large dimension” refers to N and T , while
the number of factors k and the number of lags q are small and fixed. Under this
high-dimensional setting, an important statistical problem is the estimation of k

and q [Bai and Ng (2002), Harding (2012)]. Let τ be a nonnegative integer. For
j = 1, . . . , T , define

�(τ ) = 1

2T

T∑
j=1

(
Rj R∗

j+τ + Rj+τ R∗
j

)

and

Mτ =
T∑

j=1

(
γ jγ

∗
j+τ + γ j+τγ

∗
j

)
where γ j = 1√

2T
ej .
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Note that essentially, Mτ and �(τ ) are symmetrized auto-cross covariance ma-
trices at lag τ and generalize the usual sample covariance matrices M0 and �(0).
The matrix M0 is well studied in the literature, and it is well known that the lim-
iting spectral distribution (LSD) has an MP law [Marcenko and Pastur (1967)].
Moreover, when τ = 0 and assuming that Cov(Ft ) = �f , the population covari-
ance matrix of Rt has the same eigenvalues as those of

(
σ 2I + �∗�f � 0

0 σ 2I

)

with the two diagonal blocks of size k(q + 1) × k(q + 1) and (N − k(q + 1)) ×
(N − k(q + 1)), respectively. Therefore, we have the spiked population model
framework [Johnstone (2001), Baik and Silverstein (2006), Bai and Yao (2008)].
In fact, under certain conditions, we can estimate k(q +1) by counting the number
of eigenvalues of �(0) that are larger than σ 2(1 + √

c)2, where c is the limiting
ratio of N/T . However, to estimate the values of k and q separately, we need to
study the LSD of Mτ for at least one τ ≥ 1.

It is interesting to note that for τ ≥ 1 (τ being a fixed integer), the LSD of
Mτ does not depend on τ ; see Theorem 1.1 for details. However, the number of
eigenvalues of �(τ ) that lie outside the support of the LSD of Mτ at lags 1 ≤ τ ≤ q

is dependent on the lag τ and is different with those obtained at lags τ > q . This
is mainly because of the contribution of eigenvalues of the terms containing factor
and error components are nonzero for τ ≥ 1. Thus, we can separate the estimates
of k and q by counting the number of eigenvalues of 
(τ) that lie outside the
support of the LSD of Mτ from τ = 0,1,2, . . . , q, q + 1, . . . .

Unlike the case τ = 0, not much is known in the literature for Mτ as
τ ≥ 1. The goal of this paper is to derive the LSD of Mτ denoted as Fτ ,
that is, Fτ (x) = limN→∞F Mτ (x). In our derivation of the LSD of Mτ , a re-
cursive method is created to solve a disturbed difference equations of or-
der 2.

The main result of this paper is the following theorem.

THEOREM 1.1. Assume:

(a) τ ≥ 1 is a fixed integer;
(b) ek = (ε1k, . . . , εNk)

′, k = 1,2, . . . , T + τ , are N dimensional vectors of
independent standard complex components with sup1≤i≤N,1≤t≤T +τ E|εit |2+δ ≤
M < ∞ for some δ ∈ (0,2], and for any η > 0,

1

η2+δNT

N∑
i=1

T +τ∑
t=1

E
(|εit |2+δI

(|εit | ≥ ηT 1/(2+δ)))= o(1);(1.1)
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(c) N/(T + τ) → c > 0 as N,T → ∞;
(d) Mτ =∑T

k=1(γ kγ
∗
k+τ + γ k+τγ

∗
k), where γ k = 1√

2T
ek .

Then as N,T → ∞, F Mτ
D→ Fτ a.s., and Fτ has a density function given by

φc(x) = 1

2cπ

√√√√ y2
0

1 + y0
−
(

1 − c

|x| + 1√
1 + y0

)2

, |x| ≤ a,

where

a =
⎧⎨
⎩

(1 − c)
√

1 + y1

y1 − 1
, c �= 1,

2, c = 1,

y0 is the largest real root of the equation y3 − (1−c)2−x2

x2 y2 − 4
x2 y − 4

x2 = 0, and
y1 is the only real root of the equation

(
(1 − c)2 − 1

)
y3 + y2 + y − 1 = 0(1.2)

such that y1 > 1 if c < 1 and y1 ∈ (0,1) if c > 1. Further, if c > 1, then Fτ has a
point mass 1 − 1/c at the origin.

REMARK 1.1. Notice that as long as τ ≥ 1, Fτ is the same as τ takes different
values other than 0. However, Fτ is different from and cannot be reduced to F0,
the distribution of MP law.

REMARK 1.2. When τ = o(T ), the conclusion still holds; see the remark
after the proof of Lemma B.3 for details. When τ

T
→ d for some d > 0, we

conjecture that the LSD will depend on d as well and leave it as future re-
search.

Figure 1 displays the density functions φc(x) with c = 0.2,0.5 and 0.7.
Figure 2 displays the density functions φc(x) with c = 1.5,2 and 2.5. It is
shown from these two figures that as c increases, the support of φc(x) becomes
wider, and φc(x) has the maximum at x = 0 which is sharper as c gets closer
to 1.

The rest of this paper is organized as follows. The truncation and centralization
steps are provided in Section 2. Section 3 outlines the proof of the main theorem
Theorem 1.1. Justification of variable truncation, centralization and standardiza-
tion is provided in Appendix A and some technical lemmas used for the derivation
of Theorem 1.1 are presented in Appendix B.
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FIG. 1. Density functions φc(x) of the LSD of Mτ with c = 0.2 (the solid line), c = 0.5 (the dashed
line) and c = 0.7 (the dotted line).

FIG. 2. Density functions φc(x) of the LSD of Mτ with c = 1.5 (the solid line), c = 2 (the dashed
line) and c = 2.5 (the dotted line). Note that the area under each density function curve is 1/c.
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2. Truncation, centralization and standardization. First, we can select a
sequence ηN ↓ 0 such that (1.1) remains true when η is replaced by ηN .

After truncation at ηNT 1/(2+δ), centralization and standardization, in what fol-
lows, we may assume that

|εij | ≤ ηNT 1/(2+δ), Eεij = 0, E|εij |2 = 1, E|εij |2+δ < M.

The details of verification is provided in Appendix A.

3. Derivation of the LSD of Mτ . In this section, we will provide the proof
for the derivation of Theorem 1.1. To this end, we start with a section on notation
followed by the proof.

3.1. Notation. Let the Stieltjes transform of Mτ be denoted by mN(z) =
1
N

tr(Mτ − zIN)−1 where z = u + iv, v > 0. We shall prove that mN(z) → m(z)

for some m(z). It follows that the LSD of Mτ exists and has a probability density
function limv→0

1
π
�(m(x + iv)).

Define

A = Mτ − zIN,

Ak = A − γ k(γ k+τ + γ k−τ )
∗ − (γ k+τ + γ k−τ )γ

∗
k,

Ak,k+τ,...,k+nτ = Ak,k+τ,...,k+(n−1)τ − γ k+(n+1)τγ
∗
k+nτ − γ k+nτγ

∗
k+(n+1)τ ,

n ≥ 1

for k ∈ [τ + 1, T ]. Note that Ak,k+τ,...,k+nτ is independent of γ k, . . . ,γ k+nτ . For
k ≤ τ or k > T , we still use the definition of Ak with the convention that γ l = 0
for l ≤ 0 or l > T + τ .

3.2. Derivation. By

A =
T∑

k=1

(
γ kγ

∗
k+τ + γ k+τγ

∗
k

)− zIN

we have

IN =
T∑

k=1

(
A−1γ kγ

∗
k+τ + A−1γ k+τγ

∗
k

)− zA−1.

Taking trace and dividing by N , we obtain

1 + zmN(z) = 1

N

T∑
k=1

(
γ ∗

k+τ A−1γ k + γ ∗
kA−1γ k+τ

)
.(3.1)

Applying the identity

(
B + αγ ∗)−1 = B−1 − B−1αγ ∗B−1

1 + γ ∗B−1α
(3.2)



1206 B. JIN ET AL.

for any nonsingular matrix B, we have

γ ∗
kA−1(γ k+τ + γ k−τ ) = γ ∗

kÃ−1
k (γ k+τ + γ k−τ )

1 + γ ∗
kÃ−1

k (γ k+τ + γ k−τ )

= 1 − 1

1 + γ ∗
kÃ−1

k (γ k+τ + γ k−τ )
,

where Ãk = A− (γ k+τ +γ k−τ )γ
∗
k and we have used the previously made conven-

tion that γ l = 0 for l ≤ 0 or l > T + τ . Note that Ak = Ãk − γ k(γ k+τ + γ k−τ )
∗.

Using (3.2) again, we have

γ ∗
kÃ−1

k (γ k+τ + γ k−τ )

= γ ∗
kA−1

k (γ k+τ + γ k−τ ) − γ ∗
kA−1

k γ k(γ
∗
k+τ + γ ∗

k−τ )A
−1
k (γ k+τ + γ k−τ )

1 + (γ ∗
k+τ + γ ∗

k−τ )A
−1
k γ k

.

By Lemmas B.1 and B.2, we have

γ ∗
kÃ−1

k (γ k+τ + γ k−τ ) = −c

2
mN(z)

(
γ ∗

k+τ + γ ∗
k−τ

)
A−1

k (γ k+τ + γ k−τ ) + oa.s.(1).

Consequently,

γ ∗
kA−1(γ k+τ + γ k−τ )

= 1 − 1

1 − (c/2)mN(z)(γ ∗
k+τ + γ ∗

k−τ )A
−1
k (γ k+τ + γ k−τ )

+ oa.s.(1).

Write Ak,k+τ = Ak − γ k+2τγ
∗
k+τ − γ k+τγ

∗
k+2τ which is independent of γ k+τ .

Then, using (3.2) again, we obtain

γ ∗
k+τ A−1

k γ k+τ

= γ ∗
k+τ (Ak,k+τ + γ k+2τγ

∗
k+τ )

−1γ k+τ

1 + γ ∗
k+2τ (Ak,k+τ + γ k+2τγ

∗
k+τ )

−1γ k+τ

= (
γ ∗

k+τ A−1
k,k+τγ k+τ − (

γ ∗
k+τ A−1

k,k+τγ k+2τγ
∗
k+τ A−1

k,k+τγ k+τ

)
/
(
1 + γ ∗

k+τ A−1
k,k+τγ k+2τ

))
(3.3)

/
(
1 + γ ∗

k+2τ A−1
k,k+τγ k+τ − (

γ ∗
k+2τ A−1

k,k+τγ k+2τγ
∗
k+τ A−1

k,k+τγ k+τ

)
/
(
1 + γ ∗

k+τ A−1
k,k+τγ k+2τ

))
= (c/2)mN(z)

1 − (c/2)mN(z)γ ∗
k+2τ A−1

k,k+τγ k+2τ

+ oa.s.(1).

By the same reasoning,

γ ∗
k−τ A−1

k γ k−τ = (c/2)mN(z)

1 − (c/2)mN(z)γ ∗
k−2τ A−1

k,k−τγ k−2τ

+ oa.s.(1).(3.4)
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Next, we consider the cross terms. We have

γ ∗
k−τ A−1

k γ k+τ

= γ ∗
k−τ (Ak,k+τ + γ k+2τγ

∗
k+τ )

−1γ k+τ

1 + γ ∗
k+2τ (Ak,k+τ + γ k+2τγ

∗
k+τ )

−1γ k+τ

= (
γ ∗

k−τ A−1
k,k+τγ k+τ − (

γ k−τ A−1
k,k+τγ k+2τγ

∗
k+τ A−1

k,k+τγ k+τ

)
/
(
1 + γ ∗

k+τ A−1
k,k+τγ k+2τ

))
(3.5)

/
(
1 + γ ∗

k+2τ A−1
k,k+τγ k+τ − (

γ ∗
k+2τ A−1

k,k+τγ k+2τγ
∗
k+τ A−1

k,k+τγ k+τ

)
/
(
1 + γ ∗

k+τ A−1
k,k+τγ k+2τ

))

= −(c/2)mN(z)γ ∗
k−τ A−1

k,k+τγ k+2τ

1 − (c/2)mN(z)γ ∗
k+2τ A−1

k,k+τγ k+2τ

+ oa.s.(1).

Suppose that mN(z) converges to m(z) along some subsequence N = n′, by
Lemmas B.3 and B.4, (3.1) will converge to

c + czm(z) = 1 − 1

1 − c2m2(z)/(2x1)
,(3.6)

where x1 is the root of the equation x2 = x − c2m2(z)
4 with the larger absolute value.

Substituting the expression of x1, we obtain(
1 − c2m2(z)

)(
c + czm(z) − 1

)2 = 1.(3.7)

This can be further simplified to

(
cm(z)

)4 − 2(1 − c)

z

(
cm(z)

)3 + (1 − c)2 − z2

z2

(
cm(z)

)2
(3.8)

+ 2(1 − c)

z
cm(z) + 1 − (1 − c)2

z2 = 0.

Now, we shall employ the method developed in Bai, Miao and Jin (2007) to solve
the 4th degree polynomial equation and identify the unique solution of the limiting
spectral distribution. Rewrite equation (3.8) as((

cm(z)
)2 − (1 − c)

z
cm(z) + y

2

)2

(3.9)

= (1 + y)
(
cm(z)

)2 − (1 − c)

z
(y + 2)cm(z) + y2

4
− 1 − (1 − c)2

z2 .

Let y0 be the root with largest real part of the equation

y3 − (1 − c)2 − z2

z2 y2 − 4

z2 y − 4

z2 = 0.
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Let f (y) = y3 − (1−c)2−z2

z2 y2 − 4
z2 y − 4

z2 . For f (+∞) > 0, f (0) < 0, we have

y0 > 0. Further if z → 0, then y0 → ∞ and z2y0 → (1 − c)2. If we replace y by
y0 in equation (3.9), the solutions to (3.8) will be those to equations

(
cm(z)

)2 − 1 − c

z
cm(z) + 1

2
y0

= ±
√

1 + y0

(
cm(z) − (y0 + 2)(1 − c)

2z(1 + y0)

)
,

from which we get the following four roots:

m1(z) = ((1 − c)/z + √
1 + y0) +

√
((1 − c)/z − 1/

√
1 + y0)2 − y2

0/(1 + y0)

2c
,

m2(z) = ((1 − c)/z + √
1 + y0) −

√
((1 − c)/z − 1/

√
1 + y0)2 − y2

0/(1 + y0)

2c
,

m3(z) = ((1 − c)/z − √
1 + y0) +

√
((1 − c)/z + 1/

√
1 + y0)2 − y2

0/(1 + y0)

2c
,

m4(z) = ((1 − c)/z − √
1 + y0) −

√
((1 − c)/z + 1/

√
1 + y0)2 − y2

0/(1 + y0)

2c
.

Now, we claim that the point mass of Fτ at the origin limz→0 −zm(z) satisfies

lim
z→0

−zm(z) =
{

1 − 1/c, c > 1,

0, c ≤ 1.
(3.10)

To show our claim, first by equation (3.7), we have(
z2 − c2z2m2(z)

)(
czm(z) − (1 − c)

)2 = z2.

This means zm(z) must be bounded as z → 0. Otherwise, the LHS of the equation
above is unbounded while the RHS tends to 0, which is a contradiction. Hence, the
equation above can be simplified as(

czm(z)
)2(

czm(z) − (1 − c)
)2 = 0.

This means there exists a convergent subsequence {zkm(zk)} such that its limit
limzk→0 −zkm(zk) can only be either 0 or 1 − 1

c
. Notice that limz→0 −zm(z)

is the point mass of Fτ at 0, which is nonnegative. Therefore, as c < 1,
limzk→0 −zkm(zk) �= 1 − 1

c
. Hence limzk→0 −zkm(zk) = 0 and the second part

of our claim is proved. When c > 1, assume limzk→0 −zkm(zk) �= 1 − 1
c
, that is,

limzk→0 −zkm(zk) = 0, and then (3.6) becomes

c = 1 − 1

1 − c2m2(z)/(2x1)
.



SPECTRAL ANALYSIS OF AUTO-CROSS COVARIANCE MATRICES 1209

Solve this for x1, and we have

x1 = c2m2(z)(c − 1)

2c
= c − 2

2(c − 1)
.

Here the last equality is due to the fact 1 − c2m2(z) = 1
(1−c)2 which can be de-

rived from (3.7) and our assumption that limz→0 −zm(z) = 0. However, solve the

equation x2 = x − c2m2(z)
4 , and use the fact 1 − c2m2(z) = 1

(1−c)2 again, and we
have

x1 = 1

2

(
1 + 1

c − 1

)
= c

2(c − 1)
,

which contradicts our last expression of x1. Hence the first part of the claim is
proved.

By (3.10), limz→0+ z
√

y → |1 − c|, limz→0− z
√

y → −|1 − c| and φc(x) =
limv→0

1
π
�(m(x + iv)) > 0, and we get

m(z) =
{

m1(z), z < 0,

m3(z), z > 0.

Therefore, we have

φc(x) = lim
v→0

1

π
�(m(x + iv)

)= 1

2cπ

√√√√ y2
0

1 + y0
−
(

1 − c

|x| + 1√
1 + y0

)2

,

|x| ≤ a,

where y0 is the largest real root of the equation y3 − (1−c)2−x2

x2 y2 − 4
x2 y − 4

x2 = 0,
and a satisfies equations⎧⎪⎪⎪⎨

⎪⎪⎪⎩
y2

1 + y
−
(

1 − c

a
+ 1√

1 + y

)2

= 0,

y3 − (1 − c)2 − a2

a2 y2 − 4

a2 y − 4

a2 = 0.

Solving these equations under the condition a > 0, we have

a =
⎧⎨
⎩

(1 − c)
√

1 + y1

y1 − 1
, c �= 1,

2, c = 1,

where y1 can be chosen as a real root of the equation(
(1 − c)2 − 1

)
y3 + y2 + y − 1 = 0(3.11)

such that y1 > 1 if c < 1 and y1 ∈ (0,1) if c > 1.
To show the unique existence of y1, let f (y) = ((1 − c)2 − 1)y3 + y2 + y − 1.

If c < 1, by f (−∞) > 0, f (0) < 0, f (1) > 0 and f (∞) < 0, there are three real
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roots y1 > 1, y2 ∈ (0,1) and y3 < 0 of (3.11). Similarly, if 1 < c < 2, there are
three real roots y1 ∈ (0,1), y2 > 1 and y3 < 0 of (3.11). If c = 2, it is easy to see
that there are two real roots of (3.11): y1 = (

√
5 − 1)/2 ∈ (0,1) and y2 = (−√

5 −
1)/2 < 0. If c > 2, by f (0) < 0 and f (1) > 0, there is a real root y1 ∈ (0,1).
If there is more than one real root in the interval (0,1) when c > 2, then by the
continuity of f (y), the three roots y1, y2, y3 of f (y) are all in the interval (0,1),
that would contradict y1 + y2 + y3 = −1/((1 − c)2 − 1) < 0. Thus there is only
one real root y1 ∈ (0,1) if c > 2. The proof of Theorem 1.1 is complete.

APPENDIX A: JUSTIFICATION OF TRUNCATION, CENTRALIZATION
AND STANDARDIZATION

Note that rank(AB − CD) ≤ rank(A − C) + rank(B − D) because

AB − CD = (A − C)B + C(B − D).

Let ε̃it = εit I (|εit | < ηNT 1/(2+δ)), γ̃ k = 1√
2T

(ε̃1k, . . . , ε̃Nk)
′ and M̃τ =∑T

k=1(γ̃ k γ̃
∗
k+τ + γ̃ k+τ γ̃

∗
k).

By Theorem A.43 of Bai and Silverstein (2010),

∥∥F Mτ − F M̃τ
∥∥≤ 1

N
rank(Mτ − M̃τ )

≤ 2

N
rank

(
T∑

k=1

(
γ kγ

∗
k+τ

)− T∑
k=1

(
γ̃ k γ̃

∗
k+τ

))

≤ 4

N

N∑
i=1

T +τ∑
t=1

I
(|εit | ≥ ηNT 1/(2+δ)).

By (1.1) we have

E

(
1

N

N∑
i=1

T +τ∑
t=1

I
(|εit | ≥ ηT 1/(2+δ)))

(A.1)

≤ 1

η2+δNT

N∑
i=1

T +τ∑
t=1

E
(|εit |(2+δ)I

(|εit | ≥ ηT 1/(2+δ)))= o(1)

and

Var

(
1

N

N∑
i=1

T +τ∑
t=1

I
(|εit | ≥ ηT 1/(2+δ)))

≤ 1

η2+δN2T

N∑
i=1

T +τ∑
t=1

E
(|εit |2+δI

(|εit | ≥ ηT 1/(2+δ)))= o(1/N).
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Applying Bernstein’s inequality, for all small ε > 0 and large N , we have

P

(
1

N

N∑
i=1

T +τ∑
t=1

I
(|εit | ≥ ηT 1/(2+δ))≥ ε

)
≤ 2e−(1/2)ε2N.

By the Borel–Cantelli lemma, with probability 1, we have

∥∥F Mτ − F M̃τ
∥∥→ 0.

Let ε̂it = ε̃it − Eε̃it , γ̂ k = 1√
2T

(ε̂1k, . . . , ε̂Nk)
′, and M̂τ = ∑T

k=1(γ̂ k γ̂
∗
k+τ +

γ̂ k+τ γ̂
∗
k).

By Theorem A.46 of Bai and Silverstein (2010),

L
(
F M̃τ , F M̂τ

)
≤ max

k

∣∣λk(M̃τ ) − λk(M̂τ )
∣∣≤ ‖M̃τ − M̂τ‖

≤ 2

∥∥∥∥∥
T∑

k=1

(
γ̂ kEγ̃ ∗

k+τ + γ̂ k+τ Eγ̃ ∗
k

)∥∥∥∥∥+
∥∥∥∥∥

T∑
k=1

(
Eγ̃ kEγ̃ ∗

k+τ + Eγ̃ k+τ Eγ̃ ∗
k

)∥∥∥∥∥,
where L is the Lévy distance between two distribution functions. For the second
part, we have∥∥∥∥∥

T∑
k=1

(
Eγ̃ kEγ̃ ∗

k+τ + Eγ̃ k+τ Eγ̃ ∗
k

)∥∥∥∥∥
≤ 1

T

T∑
k=1

N∑
i=1

∣∣E(εikI
(|εik| ≥ ηT 1/(2+δ)))E(εi(k+τ)I

(|εi(k+τ)| ≥ ηT 1/(2+δ)))∣∣

≤ C

T 2

T +τ∑
k=1

N∑
i=1

E
(|εik|2+δI

(|εik| ≥ ηT 1/(2+δ)))= o(1).

For the first part, notice that

∥∥∥∥∥
T∑

k=1

(
γ̂ kEγ̃ ∗

k+τ + γ̂ k+τ Eγ̃ ∗
k

)∥∥∥∥∥
2

≤ 2

(∥∥∥∥∥
T∑

k=1

γ̂ kEγ̃ ∗
k+τ

∥∥∥∥∥
2

+
∥∥∥∥∥

T∑
k=1

γ̂ k+τ Eγ̃ ∗
k

∥∥∥∥∥
2)

,

∥∥∥∥∥
T∑

k=1

γ̂ kEγ̃ ∗
k+τ

∥∥∥∥∥
2

≤ 1

4T 2

N∑
i=1

N∑
j=1

(
T∑

k=1

ε̂kiEε̃(k+τ)j

)2
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= 1

4T 2

N∑
i=1

N∑
j=1

T∑
k1=1

T∑
k2=1

(ε̂k1i ε̂k2iEε̃(k1+τ)j Eε̃(k2+τ)j )

= 1

4T 2

N∑
i=1

N∑
j=1

(
T∑

k1=1

ε̂2
k1i

(Eε̃(k1+τ)j )
2 + ∑

k1 �=k2

ε̂k1i ε̂k2iEε̃(k1+τ)j Eε̃(k2+τ)j

)

≡ J11 + J12.

For Eε̂2
k1i

< ∞ and Eε̃2+δ
(k1+τ)j < ∞, there exist constants C1, C2 and C3 such

that

EJ11 = 1

4T 2

N∑
i=1

N∑
j=1

T∑
k1=1

Eε̂2
k1i

(Eε̃(k1+τ)j )
2

≤ C1

4T 2

N∑
i=1

N∑
j=1

T∑
k1=1

(
E
(|εjk|I (|εjk| ≥ ηT 1/(2+δ))))2

≤ C1

4T 2η2(1+δ)T 2(1+δ)/(2+δ)

N∑
i=1

N∑
j=1

T∑
k1=1

(
E
(|εjk|2+δI

(|εjk| ≥ ηT 1/(2+δ))))2

= O
(
T −δ/(2+δ))

and

VarJ11 = 1

42T 4

N∑
i=1

T∑
k1=1

E
(
ε̂2
k1i

− Eε̂2
k1i

)2( N∑
j=1

(Eε̃(k1+τ)j )
2

)2

≤ C2

42T 4

N∑
i=1

T∑
k1=1

Eε̃4
k1i

(
N

1

η2(1+δ)T 2(1+δ)/(2+δ)

)2

= O
(
T −1−4δ/(2+δ)).

The previous two equations imply that J11 → 0, a.s.
Furthermore, we have

VarJ12 = 1

42T 4

N∑
i=1

∑
k1 �=k2

Eε̂2
k1i

Eε̂2
k2i

(
N∑

j=1

Eε̃(k1+τ)j Eε̃(k2+τ)j

)2

≤ C3

42T 4

N∑
i=1

∑
k1 �=k2

(
N∑

j=1

1

η2(1+δ)T 2(1+δ)/(2+δ)

)2

= O
(
T −1−2δ/(2+δ)),

which implies J12 → 0, a.s. Hence, we have ‖∑T
k=1 γ̂ kEγ̃ ∗

k+τ‖2 → 0, a.s. Simi-

larly ‖∑T
k=1 γ̂ k+τ Eγ̃ ∗

k‖2 → 0 a.s. Thus L(F M̃τ , F M̂τ ) → 0, a.s.
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Now, we want to rescale the variables.
Let σ 2

ij = E|ε̂ij |2 = E|ε̃ij − Eε̃ij |2. Define E ≡ {(i, j) :σ 2
ij < 1 − } and

ε̌it =
⎧⎨
⎩

Xit , (i, t) ∈ E,

ε̂it

σit

, otherwise.

Here  = T −δ/(4+2δ) and Xit ’s are i.i.d. random variables taking values 1 and −1,
each with probability 1

2 . Note that Eε̌it = 0 and Var(ε̌it ) = 1.

Let γ̌ k = 1√
2T

(ε̌1k, . . . , ε̌Nk)
′ and M̌τ = ∑T

k=1(γ̌ kγ̌
∗
k+τ + γ̌ k+τ γ̌

∗
k). For sim-

plicity, denote A = (γ̂ 1, γ̂ 2, . . . , γ̂ T ), B = (γ̂ 1+τ , γ̂ 2+τ , . . . , γ̂ T +τ ), Ǎ = (γ̌ 1, γ̌ 2,

. . . , γ̌ T ) and B̌ = (γ̌ 1+τ , γ̌ 2+τ , . . . , γ̌ T +τ ). Then by Corollary A.41 of Bai and
Silverstein (2010), we have

L3(F M̂τ , F M̌τ
)

= L3(F AB∗+BA∗
,F ǍB̌∗+B̌Ǎ∗)

≤ 1

N
tr
[(

AB∗ + BA∗ − (
ǍB̌∗ + B̌Ǎ∗))(AB∗ + BA∗ − (

ǍB̌∗ + B̌Ǎ∗))∗]

≤ 2

N
tr
[(

AB∗ − ǍB̌∗)(AB∗ − ǍB̌∗)∗]

+ 2

N
tr
[(

BA∗ − B̌Ǎ∗)(BA∗ − B̌Ǎ∗)∗]
and

1

N
tr
[(

AB∗ − ǍB̌∗)(AB∗ − ǍB̌∗)∗]

= 1

N
tr
[(

(A − Ǎ)B∗ + Ǎ(B − B̌)∗
)(

(A − Ǎ)B∗ + Ǎ(B − B̌)∗
)∗]

≤ 2

N
tr
[(

(A − Ǎ)B∗)((A − Ǎ)B∗)∗ + (
Ǎ(B − B̌)∗

)(
Ǎ(B − B̌)∗

)∗]
.

Define J2 = 1
N

tr((A − Ǎ)B∗)((A − Ǎ)B∗)∗, and then we have

J2 = 1

N
tr
(
(A − Ǎ)∗(A − Ǎ)

)(
B∗B

)

= C

T 3

N∑
i=1

N∑
j=1

∣∣∣∣∣
T∑

k=1

(ε̌ik − ε̂ik) ¯̂εj (k+τ)

∣∣∣∣∣
2

= C

T 3

N∑
i=1

N∑
j=1

(
T∑

k1=1

(ε̌ik1 − ε̂ik1)
¯̂εj (k1+τ)

)(
T∑

k2=1

( ¯̌εik − ¯̂εik)ε̂j (k2+τ)

)
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= C

T 3

N∑
i=1

N∑
j=1

[
T∑

k=1

|ε̌ik − ε̂ik|2|ε̂j (k+τ)|2

+
T∑

k1,k2=1,k1>k2

(ε̌ik1 − ε̂ik1)(
¯̌εik2 − ¯̂εik2)

¯̂εj (k1+τ)ε̂j (k2+τ)

+
T∑

k1,k2=1,k1<k2

(ε̌ik1 − ε̂ik1)(
¯̌εik2 − ¯̂εik2)

¯̂εj (k1+τ)ε̂j (k2+τ)

]

≡ J21 + J22 + J23.

Furthermore,

J21 = C

T 3

N∑
j=1

[ ∑
i=1,...,N,k=1,...,T ,(i,k)∈E

|ε̌ik − ε̂ik|2|ε̂j (k+τ)|2

+ ∑
i=1,...,N,k=1,...,T ,(i,k)/∈E

|ε̌ik − ε̂ik|2|ε̂j (k+τ)|2
]

≡ J211 + J212.

By definition of E, we have
1−σ 2

ik


> 1 for any (i, k) ∈ E and therefore

EJ211 = C

T 3

N∑
j=1

∑
i=1,...,N,k=1,...,T ,(i,k)∈E

E|ε̌ik − ε̂ik|2E|ε̂j (k+τ)|2

≤ C

T 3

N∑
j=1

∑
i=1,...,N,k=1,...,T ,(i,k)∈E

E|ε̂j (k+τ)|2

≤ C

T 3

N∑
j=1

∑
i=1,...,N,k=1,...,T ,(i,k)∈E

1 − σ 2
ik


E|ε̂j (k+τ)|2

≤ C

T 3

N∑
j=1

N∑
i=1

T∑
k=1

T −δ/(4+2δ)

= O
(
T −δ/(4+2δ)).

For any (i, k) /∈ E, we have

(
1 − σ−1

ik

)2 = (σik − 1)2

σ 2
ik

= (1 − σ 2
ik)

2

σ 2
ik(1 + σik)2

≤ C
(
1 − σ 2

ik

)2 ≤ Cη−2δT −2δ/(2+δ).
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Here and in what follows, we assume that η → 0 slow enough such that the above
upper bound tends to 0 as T → ∞. This together with Eε̂2

ij < ∞ implies

EJ212 = C

T 3

N∑
j=1

∑
i=1,...,N,k=1,...,T ,(i,k)/∈E

(
1 − σ−1

ik

)2|Eε̂ik|2|Eε̂j (k+τ)|2

≤ C

T 3

N∑
j=1

∑
i=1,...,N,k=1,...,T ,(i,k)/∈E

(
1 − σ−1

ik

)2
= O

(
T −2δ/(2+δ)).

Note that summands in J22 and J23 are pairwise orthogonal; hence we have EJ22 =
EJ23 = 0. Therefore, we have EJ2 → 0.

Now, we want to compute VarJ2. First, we have

Var(J211) = C

T 6

N∑
j=1

∑
i=1,...,N,k=1,...,T ,(i,k)∈E

E|ε̌ik − ε̂ik|4E|ε̂j (k+τ)|4

≤ C

T 6

N∑
j=1

∑
i=1,...,N,k=1,...,T ,(i,k)∈E

(
E|ε̌ik|4 + E|ε̂ik|4)E|ε̂j (k+τ)|4

≤ C

T 6

N∑
j=1

∑
i=1,...,N,k=1,...,T ,(i,k)∈E

E|ε̂ik|4E|ε̂j (k+τ)|4

= O
(
T −1−4δ/(2+δ)).

For simplicity, write

J212 =
N∑

j=1

∑
i=1,...,N,k=1,...,T ,(i,k)/∈E

(
1 − σ−1

ik

)2[(|ε̂ik|2 − σ 2
ik

)(|ε̂j (k+τ)|2 − σ 2
j (k+τ)

)

+ σ 2
ik

(|ε̂j (k+τ)|2 − σ 2
j (k+τ)

)
+ σ 2

j (k+τ)

(|ε̂ik|2 − σ 2
ik

)+ σ 2
ikσ

2
j (k+τ)

]
≡ J2121 + J2122 + J2123 + J2124,

J22 = C

T 3

[
N∑

i=1

N∑
j=1

T∑
k1,k2=1,k1>k2,k1 �=k2+τ

(ε̌ik1 − ε̂ik1)(
¯̌εik2 − ¯̂εik2)

¯̂εj (k1+τ)ε̂j (k2+τ)

+
N∑

i,j=1,i �=j

T∑
k2=1

(ε̌i(k2+τ) − ε̂i(k2+τ))( ¯̌εik2 − ¯̂εik2)
¯̂εj (k2+2τ)ε̂j (k2+τ)

+
N∑

i=1

T∑
k2=1

(ε̌i(k2+τ) − ε̂i(k2+τ))( ¯̌εik2 − ¯̂εik2)
¯̂εi(k2+2τ)ε̂i(k2+τ)

]

≡ J221 + J222 + J223.
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Note that in all expressions except J2124, components are orthogonal to each
other. In addition, as a constant, J2124 does not contribute to VarJ2. Therefore, we
have

VarJ2121 ≤ C

T 6

N∑
i=1

N∑
j=1

T∑
k=1

(
1 − σ−1

ik

)4(E|ε̂ik|4)2

≤ C

T 6 T 3T −4δ/(2+δ)T 2(2−δ)/(2+δ)

= O
(
T −1−8δ/(2+δ)),

VarJ2122 = VarJ2123

≤ C

T 6

N∑
i=1

N∑
j=1

T∑
k=1

(
1 − σ−1

ik

)4
σ 4

ikE|ε̂ik|4

≤ C

T 6 T 3T −4δ/(2+δ)T (2−δ)/(2+δ)

= O
(
T −2−6δ/(2+δ)),

VarJ221 ≤ C

T 6

N∑
i=1

N∑
j=1

T∑
k1,k2=1,k1>k2,k1 �=k2+τ

E|ε̌ik1 − ε̂ik1 |2E| ¯̌εik2 − ¯̂εik2 |2

× E| ¯̂εj (k1+τ)|2E|ε̂j (k2+τ)|2

≤ C

T 6 T 4

= O
(
T −2),

VarJ222 ≤ C

T 6

N∑
i,j=1,i �=j

T∑
k2=1

E|ε̌i(k2+τ) − ε̂i(k2+τ)|2E| ¯̌εik2 − ¯̂εik2 |2

× E| ¯̂εj (k2+2τ)|2E|ε̂j (k2+τ)|2

≤ C

T 6 T 3

= O
(
T −3),

VarJ223 ≤ C

T 6

N∑
i=1

T∑
k2=1

E
∣∣(ε̌i(k2+τ) − ε̂i(k2+τ))ε̂i(k2+τ)

∣∣2E| ¯̌εik2 − ¯̂εik2 |2

× E| ¯̂εi(k2+2τ)|2

≤ C

T 6

N∑
i=1

T∑
k2=1

E|ε̂i(k2+τ)|4
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≤ C

T 6 T 2T (2−δ)/(2+δ)

= O
(
T −3−2δ/(2+δ)).

Therefore, we have VarJ2 = O(T −1−ε) for some ε > 0. Thus J2 → 0 a.s.
Similarly, we have

E
1

N
tr
(
Ǎ(B − B̌)∗

)(
Ǎ(B − B̌)∗

)∗ → 0

and

Var
1

N
tr
(
Ǎ(B − B̌)∗

)(
Ǎ(B − B̌)∗

)∗ = O
(
T −1−ε′)

for some ε′ > 0. Hence, we have 1
N

tr[(AB∗ − ǍB̌∗)(AB∗ − ǍB̌∗)∗] → 0 a.s. By

interchanging A and B, we have 1
N

tr[(BA∗ − B̌Ǎ∗)(BA∗ − B̌Ǎ∗)∗] → 0 a.s. There-

fore, L3(F M̂τ , F M̌τ ) → 0 a.s.

APPENDIX B: SOME TECHNICAL LEMMAS

LEMMA B.1. Under the assumptions of Theorem 1.1, γ ∗
kA−1

k γ k − c
2mN(z) →

0 almost surely and uniformly in k ≤ T + τ , where mN(z) = 1
N

tr A−1.

The proof of Lemma B.1 is similar to the proof of Lemma 9.1 of Bai and Sil-
verstein (2010).

PROOF OF LEMMA B.1. Write A−1
k = (aij ). For any given r ≥ 1, we have

E
∣∣∣∣γ ∗

kA−1
k γ k − 1

2T
tr A−1

k

∣∣∣∣
2r

≤ 22r−1(E|S1|2r + E|S2|2r),
where S1 = 1

2T

∑N
i=1 aii(ε

2
ki − 1) and S2 = 1

2T

∑
1≤i �=j≤N aij εkiεkj .

By noting |aii | ≤ ‖A−1
k ‖ ≤ v−1 and E|ε2

ki − 1|(2+δ)/2 ≡ M < ∞, we get

E|S1|2r = 1

4rT 2r
E

(∣∣∣∣∣
N∑

i=1

(
ε2
ki − 1

)
aii

∣∣∣∣∣
2r)

≤ 1

4rT 2r

r∑
l=1

∑
1≤j1<···<jl≤N

∑
i1+···+il=2r,

i1≥2,...,il≥2

(2r)!
l∏

t=1

E|ε2
kjt

− 1|it |ajt jt |it
it !(B.1)

≤ η4r

4rv2rT 2δr/(2+δ)

r∑
l=1

η−(2+δ)lT −lNlMll2r .
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Next, let us consider

E|S2|2r = 1

4rT 2r

∑
ai1j1 āt1�1 · · ·airjr ātr �r E(εki1εkt1εkj1εk�1 · · · εk�r εktr εkjr εk�r ).

Draw a directional graph G of 2r edges that link is to js and �s to ts , s = 1, . . . , r .
Note that if G has a vertex whose degree is 1, then the graph corresponds to a term
with expectation 0. That is, for any nonzero term, the vertex degrees of the graph
are not less than 2. Write the noncoincident vertices as v1, . . . , vm with degrees
p1, . . . , pm greater than 1. We have m ≤ r . By assumption, we have∣∣E(εki1εkt1εkj1εk�1 · · · εk�r εktr εkjr εk�r )

∣∣≤ (
η2T 2/(2+δ))r−m

.

Now, suppose that the graph consists of q connected components G1, . . . ,Gq

with m1, . . . ,mq noncoincident vertices, respectively. Let us consider the contri-
bution by G1 to E|S2|r . Assume that G1 has s1 edges, e1, . . . , es1 . Choose a tree
G′

1 from G1, and assume its edges are e1, em1−1, without loss of generality. Note
that

∑
v1,...,vm1≤N

m1−1∏
t=1

|aet |2 ≤ ∥∥A−1
k

∥∥2m1−2
N ≤ N

v2m1−2

and ∑
v1,...,vm1≤N

s1∏
t=m1

|aet |2 ≤ Nm1−1

v2s1−2m1+2 .

Here, the first inequality follows from the fact that
∑

v1
|av1v2 |2 ≤ ‖A−1

k ‖2 ≤ v−2

since it is a diagonal element of A−1
k (A−1

k )∗. The second inequality follows from
the fact that

∑
v1

|av1v2 |� ≤ v−� for any � ≥ 2 and that s1 ≥ m1 since all vertices
have degrees not less than 2. Therefore, the contribution of G1 is bounded by

∑
v1,...,vm1≤N

s1∏
t=1

|aet | ≤
( ∑

v1,...,vm1≤N

m1−1∏
t=1

|aet |2
∑

v1,...,vm1≤N

s1∏
t=m1

|aet |2
)1/2

≤ Nm1/2

vs1
.

Noting that m1 + · · · + mq = m and s1 + · · · + sq = 2r , eventually we obtain

that the contribution of the isomorphic class for a given canonical graph is Nm/2

v2r .
Because the two vertices of each edge cannot coincide, we have q ≤ m/2. The
number of canonical graphs is less than

(m
2

)2r ≤ m4r . We finally obtain

E|S2|2r ≤ 1

4rv2rT 2r

r∑
m=2

Nm/2(η2T 2/(2+δ))2r−m
m4r

(B.2)

≤ 1

4rv2rT 2δr/(2+δ)

r∑
m=2

(
N1/2

η2T 2/(2+δ)

)m

m4r .
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Using (B.1) and (B.2), for any t > 0, there exists r > t/δ + t/2 such that
E|γ ∗

kA−1
k γ k − 1

2T
tr A−1

k |2r = O(T −t ). Therefore, by the Borel–Cantelli lemma,

γ ∗
kA−1

k γ k − 1

2T
tr A−1

k → 0(B.3)

almost surely and uniformly in k ≤ T + τ .
Let FN denote the ESD of Mτ and FNk the ESD of Mτ − γ k(γ k+τ + γ k−τ )

∗ −
(γ k+τ + γ k−τ )γ

∗
k .

By Theorem A.43 of Bai and Silverstein (2010), we have

‖FN − FNk‖ ≤ 4

N
,

where ‖f ‖ = supx |f (x)|. Thus∣∣∣∣ 1

N

(
tr
(
A−1)− tr

(
A−1

k

))∣∣∣∣=
∣∣∣∣
∫ 1

x − u − iv
d(FN − FNk)

∣∣∣∣
≤ 1

v
‖FN − FNk‖ ≤ 4

vN
.

This implies that

1

N

(
tr
(
A−1)− tr

(
A−1

k

))→ 0 a.s.

uniformly in k ≤ T + τ . Substituting the above into (B.3), the proof of the lemma
is complete. �

LEMMA B.2. Under the assumptions of Theorem 1.1, we have γ ∗
kA−1

k γ l → 0,
almost surely and uniformly in k �= l.

PROOF. Let A−1
k γ l = b = (b1, . . . , bN)′. Noting εlj < ηNT 1/(2+δ) and

E|εlj |2+δ = v2+δ < ∞, we have

E
(
γ ∗

kA−1
k γ l

)2r

= 1

2rT r
E

(∣∣∣∣∣
N∑

i=1

εkibi

∣∣∣∣∣
2r)

≤ 1

2rT r
E

r∑
l=1

∑
1≤j1<···<jl≤N

∑
i1+···+il=2r

(2r)!
i1! · · · il!

∣∣εi1
kj1

b
i1
j1

· · · εil
kjl

b
il
j1

∣∣

≤ η2r

2rT δr/(2+δ)
E

r∑
l=1

η−(2+δ)lT −lvl
2+δ

× ∑
1≤j1<···<jl<N

∑
i1+···+il=2r,

i1≥2,...,il≥2

(2r)!
i1! · · · il! |bj1 |i1 · · · |bjl

|il .
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By
∑N

j=1 |bj |2 = ‖A−1
k γ l‖2 and the Cauchy–Schwarz inequality, we have

∑
1≤j1<···<jl≤N

∑
i1+···+il=2r,

i1≥2,...,il≥2

(2r)!
i1! · · · il! |bj1 |i1 · · · |bjl

|il

≤ ∑
i1+···+il=2r,

i1≥2,...,il≥2

(2r)!
i1! · · · il!

(
N∑

j=1

|bj |2
)r

≤ l2r
∥∥A−1

k

∥∥2r‖γ l‖2r

≤ l2r

v2r
‖γ l‖2r .

Noting εlj < ηNT 1/(2+δ) and E|εlj |2+δ = v2+δ < ∞, we get

E‖γ l‖2r = 1

2rT r
E

(
N∑

j=1

ε2
lj

)r

= E
1

2rT r

r∑
l=1

∑
1≤j1<···<jl≤N

∑
i1+···+il=r

r!
i1! · · · il!ε

2i1
lj1

· · · ε2il
ljl

≤ E
1

2r

r∑
l=1

vl
2+δη

2r−(2+δ)lT −δr/(2+δ)−l
∑

1≤j1<···<jl≤N

∑
i1+···+il=r

r!
i1! · · · il!

≤ η2r

2rT δr/(2+δ)

r∑
l=1

(
η2+δT

Nv2+δ

)−l

lr .

For any t > 0, there exists r > 2t/δ + t such that E|γ ∗
kA−1

k γ l|r = O(T −t ). There-
fore by the Borel–Cantelli lemma,

γ ∗
kA−1

k γ l → 0

almost surely and uniformly in k �= l. The proof of the lemma is complete. �

In the next lemma, we find the limit of γ ∗
k+τ A−1

k γ k+τ when T − k → ∞ and

that of γ ∗
k−τ A−1

k γ k−τ when k → ∞.

LEMMA B.3. Assume that 1
N

tr(A − zI)−1 → m = m(z). When T − k → ∞,

γ ∗
k+τ A−1

k γ k+τ → (c/2)m

x1
,

where x1 is the root of the quadratic equation x2 − x + 1
4c2m2 = 0 with the larger

absolute value.
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When k → ∞,

γ ∗
k−τ A−1

k γ k−τ → (c/2)m

x1
,

where x1 is the same as above.

PROOF. Write a = c
2m, Wk = γ ∗

k+τ A−1
k γ k+τ and Wk,k+τ,...,k+�τ =

γ ∗
k+(�+1)τ A−1

k,k+τ,...,k+�τγ k+(�+1)τ . Then by (3.3), we have

Wk = a + r(k)

1 − aWk,k+τ

,

where r(k) = oa.s.(1), uniformly in k ≤ T + τ . Using this relation again, we obtain

Wk = a + r(k)

1 − a(a + r(k + τ))/(1 − aWk,k+τ,k+2τ )
(B.4)

= (a + r(k))(1 − aWk,k+τ,k+2τ )

1 − aWk,k+τ,k+2τ − a(a + r(k + τ))
.

Applying this relation � times, we may express Wk in the following form:

Wk = (a + r(k))(αk,�−1 − aαk,�−2Wk,k+τ,...,k+�τ )

αk,� − aαk,�−1Wk,k+τ,...,k+�τ

,

where the coefficients satisfy the recursive relation

αk,� = αk,�−1 − a
(
a + r(k + �τ)

)
αk,�−2, αk,1 = 1, αk,0 = 1.(B.5)

Define x1 and x0 as the roots of the equation x2 = x −a2 with |x1| > |x0|. [Note
that the equal sign happens only when a = ±1

2 which is impossible for �(z) > 0
because a is the Stieltjes transform of a distribution function.] Then we have

x1 =
{

1
2

(
1 − √

1 − 4a2
)
, if �(a2)> 0,

1
2

(
1 + √

1 − 4a2
)
, if �(a2)< 0,

x0 =
{

1
2

(
1 + √

1 − 4a2
)
, if �(a2)> 0,

1
2

(
1 − √

1 − 4a2
)
, if �(a2)< 0.

Similarly, define νk,1 and νk,0 as the roots of the equation x2 = x −a(a + r(k)),
with |νk,1| > |νk,0|. By this definition, we have

νk,1 =
⎧⎨
⎩

1
2

(
1 −

√
1 − 4a

(
a + r(k)

))
, if �(a(a + r(k)

))
> 0,

1
2

(
1 +

√
1 − 4a

(
a + r(k)

))
, if �(a(a + r(k)

))
< 0.

Further, define α such that ανk,1 + (1 − α)νk,0 = 1. Then, define νk,1,j = νk,j ,
for j = 0,1. For t ≥ 1, define

νk,t+1,j = 1 − a(a + r(k + (t + 1)τ )

νk,t,j

for j = 0,1.(B.6)
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From this, we have

ανk,1,1 + (1 − α)νk,1,0 = 1 = αk,1.

And

ανk,2,1νk,1,1 + (1 − α)νk,2,0νk,1,0

= α
(
νk,1,1 − a

(
a + r(k + 2τ)

))+ (1 − α)
(
νk,1,0 − a

(
a + r(k + 2τ)

))
= αk,1 − a

(
a + r(k + 2τ)

)= αk,2.

Using (B.5) and (B.6), we may prove by induction that

α

�∏
t=1

νk,t,1 + (1 − α)

�∏
t=1

νk,t,0 = αk,�.

Our next goal is to estimate the difference between νk,t+1,j and xj . First, by
noticing the definition of νk,j , we have

νk,j − xj = νk,1,j − xj = oa.s.(1),

where, and in what follows, the remainder term oa.s.(1) is uniform in k and �. Then,
by νk,1,j = ν2

k,1,j + a(a + r(k)) we have

νk,2,j − xj = νk,1,j − a(a + r(k + 2τ))

νk,1,j

− xj

= a(r(k) − r(k + 2τ))

νk,1,j

+ νk,1,j − xj = oa.s.(1).

By induction, we can prove that

νk,t+1,j − xj = oa.s.(1),

provided that t is bounded by a fixed amount M . Therefore, for any given η > 0,
when N is large, we have

M∏
t=1

∣∣∣∣νk,t+1,0

νk,t+1,1

∣∣∣∣≤
( |x0|

|x1| + η

)M

.

Note that |x0| < |x1|. Thus, for any given ε > 0, we may choose η > 0 and � < ∞,
such that

�∏
t=1

∣∣∣∣νk,t+1,0

νk,t+1,1

∣∣∣∣≤ ε.

That means, when � → ∞ slowly, we have αk,�+1 = x1αk,�(1 + oa.s.(1)). Con-
sequently,

Wk = (a + r(k))(αk,� − aαk,�−1Wk,k+τ,...,k+�τ )

αk,�+1 − aαk,�Wk,k+τ,...,k+�τ

= a

x1

(
1 + oa.s.(1)

)
.
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The first conclusion of the lemma is proved. By duality, the second conclusion
follows. �

REMARK B.1. Note that one of the key steps in the above proof is to let
� → ∞ slowly. This may not be possible when τ → ∞, as in this case we may
have �τ > T −k and γ k+�τ does not exist. However, such � exists when τ = o(T ).
Therefore, the proof is still valid in this case.

LEMMA B.4. Assume the conditions of Lemma B.3 hold. For all k ∈ [1, T +
τ ], we have

γ ∗
k−τ A−1

k γ k+τ → 0 a.s.,

where the convergence is uniform in k.

PROOF. Obviously, when τ < k ≤ 2τ , the lemma is true because γ k−τ is in-
dependent of Ak . Similarly, the lemma is true when T − τ < k ≤ T .

When 2τ < k ≤ T − τ , by (3.5) and what is proved in the last lemma,

γ k−τ A−1
k γ k+τ = −a

1 − a2/x1 + oa.s.(1)
γ k−τ A−1

k,k+τγ k+2τ

= −a

x1 + oa.s.(1)
γ k−τ A−1

k,k+τγ k+2τ .

For x1x0 = a2 and |x1| > |x0|, we have |a| < |x1|. Thus

∣∣γ k−τ A−1
k γ k+τ

∣∣≤ ( |a|
|x1| + η

)∣∣γ k−τ A−1
k,k+τγ k+2τ

∣∣
for some η > 0 such that |a/x1| + η < 1. Now, the lemma can be proved by induc-
tion. �
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