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THE K-PROCESS ON A TREE AS A SCALING LIMIT
OF THE GREM-LIKE TRAP MODEL

BY L. R. G. FONTES1, R. J. GAVA2 AND V. GAYRARD

University of São Paulo, Federal University of São Carlos
and Aix Marseille Université

We introduce trap models on a finite volume k-level tree as a class of
Markov jump processes with state space the leaves of that tree. They serve
to describe the GREM-like trap model of Sasaki and Nemoto. Under suitable
conditions on the parameters of the trap model, we establish its infinite vol-
ume limit, given by what we call a K-process in an infinite k-level tree. From
this we deduce that the K-process also is the scaling limit of the GREM-like
trap model on extreme time scales under a fine tuning assumption on the vol-
umes.

1. Introduction. The long time behavior of slow dynamics in random envi-
ronments and phenomena like aging is a research theme of recent interest. Trap
models and related stochastic processes have been proposed as simple models
where these issues can be studied and understood on a rigorous basis. Perhaps
the simplest such models are Markov jump processes on given graphs with simple
symmetric random walks as embedded chains. The mean jump times at the vertices
are random i.i.d. parameters, with heavy tailed distribution, that may be seen as the
depths of traps, playing the role of the random environment. The case of Zd was
extensively analyzed in the physics [14, 24] as well as mathematical literature [1,
6, 8, 16]. The case of the complete graph was introduced in [10] as a toy model
for the aging behavior of the REM, and is well understood [9–11, 18, 19]. The
actual REM dynamics (with Gibbs factors instead of the i.i.d. heavy tailed random
variables) was studied in [2, 3], where it is shown that aging is the same as in the
complete graph. Refined understanding of this dynamics on a wide range of time
scales was obtained in [2, 3, 5, 7, 17, 20]. A natural next step to the analyzes of the
REM is to consider correlated Hamiltonians, namely the p-spin SK models and
the GREM. The p-spin dynamics was studied in [4, 12, 13] in a particular range
of time scales and temperature parameters where aging is the same as in the REM.
At present, however, there is no rigorous results about the GREM dynamics. The
only results available are nonrigorous theoretical results [10, 25, 26] and concern
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trap-like models of this dynamics. In this work we consider one of these models,
namely the GREM-like trap model introduced by Sasaki and Nemoto [25].

Let us first describe the model with a fixed deterministic environment, which
we call the trap model on a tree, and come back to the GREM-like trap model
after that. Let M1, . . . ,Mk be positive integers, and consider a k-level rooted tree
whose first generation has size M1, and such that each vertex in generation j − 1
has Mj offspring at generation j , j = 2, . . . , k. The state space of our model are
the leaves of that tree. The parameters of the model are as follows. To each leaf
vertex we will attach a positive parameter γk , dependent on the vertex. To interior
vertices (not leaves), we attach probabilities pj , j = 1, . . . , k − 1, also dependent
on the vertex, all of them positive, except for proot, which vanishes. See Figure 1
below. The transition mechanism of the trap model is as follows. Once in a given
leaf vertex x of the tree, the process waits an exponential time with mean γk(x) and
then jumps. The destination of the jump, another leaf vertex of the tree—let us call
it y—is chosen as follows. An ancestor of x on the tree is first chosen by going up
the path from x to the root, and independently flipping coins whose probabilities
of heads are the pj ’s encountered along the way, until tails come up for the first
time. The corresponding stopping vertex is the chosen ancestor; let us call it z. We
then choose y uniformly at random among the leaf vertices descending from z.
The trap model on a tree is thus fully described.

The GREM-like trap model is the trap model on a (k-level) tree for which the
γk’s as well as the inverse of the pj ’s, j = 1, . . . , k − 1, are random variables,
independent over the vertices, whose common distribution on a given level j is in
the basin of attraction of a stable distribution with index αj such that 0 < αj < 1,
j = 1, . . . , k. More detailed descriptions of both the trap model on a tree and the
GREM-like trap model are done in Section 2.

We are interested in the long time behavior of the GREM-like trap model as the
volume diverges. There is of course an issue of how time scales with the volumes,

FIG. 1. A representation of T
F
3 with M1 = M2 = 3 and M3 = 2, with coin tossing and waiting

time parameters appearing beside or below a few vertices, respectively.
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and how the volumes Mj and the indices αj , j = 1, . . . , k, relate to each other.
In this paper we derive a scaling limit for the process at times of the order of the
maxima of the γk’s—we qualify this time scale as extreme. The αj ’s will be taken
in strictly increasing order. The volumes will be related to each other in what we
call the fine tuning regime [see (5.5) on Section 5.5]. On the extreme time scale
the process is close to equilibrium, so aging does not take place in this regime.
In our setting, aging requires taking a second limit, after first sending the volume
to infinity: the macroscopic time must then be sent to zero (as discussed, e.g.,
in [21]); this will be done in a follow-up paper. Alternatively, we may take a single
limit, with a smaller time scale than the extreme one—this is done in [22]; see
Remark 5.3 below.

A scaling limit for the GREM-like trap model is stated and proved in Section 5,
under the conditions outlined above; see Theorem 5.2. In the same section, we
state and prove a general infinite volume limit result for the trap model on a tree;
see Theorem 5.4. The proof of Theorem 5.2 is obtained in Section 5.5 by verifying
the conditions of Theorem 5.4.

In order to perform the infinite volume limit of the trap model on a tree, we con-
sider an alternative description of that dynamics, since the original description does
not straightforwardly suggest an infinite volume version. This is done in Section 3.
This representation, a key element of the paper, immediately suggests an infinite
volume limit version of the finite volume dynamics, introduced in Section 4.

2. The model. We describe the trap model on a tree in detail now. Let us
start with the tree. Throughout, k will be a fixed integer in N∗ := {1,2, . . .}.
Consider k numbers M1, . . . ,Mk ∈ N∗, sometimes below called volumes, and let
Mj = {1, . . . ,Mj }, M|j = M1 × · · · × Mj , j = 1, . . . , k. Let us then consider
the tree rooted at ∅

T
F
k =

k⋃
j=0

M|j ,(2.1)

where M|0 = {∅}. We will use the notation x|j ≡ (x1, . . . , xj ) for a generic ele-
ment of M|j . We will also use the notation

M|j =Mj × · · · ×Mk,(2.2)

1 ≤ j ≤ k, and let x|j ≡ (xj , . . . , xk) denote a generic element of M|j .
T

F
k is of course a finite tree, and this is emphasized in the notation by the use of

the superscript “F .” We understand the root to be at the 0th generation of TF
k , and

x|j ∈ M|j to be in its j th generation, 1 ≤ j ≤ k. We will sometimes use simply x

for x|k . Given 0 ≤ i < j ≤ k, x|i ∈ M|i and x′|j ∈ M|j , we will regard x|i as an
ancestor of x′|j whenever x|i = x′|i .
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Let N̄∗ = N∗ ∪ {∞}. In the sections below, we will consider the infinite tree

Tk =
k⋃

j=0

N̄
j∗,(2.3)

where N̄
0∗ = {∅}, with generations and ancestors as in T

F
k .

The dynamics we will consider is a continuous time Markov jump process on
the set of leaves of TF

k , namely its kth generation M|k .
Let us describe the transition mechanism of the process. There will be a set

of parameters for that. In order to distinguish this finite tree description from the
later infinite tree one (to be presented in Section 4 below) on the one hand, and to
emphasize the analogy between the two cases on the other hand, we continue re-
sorting to the use the superscript “F ” for the set of parameters of the finite volume
process as well.

For j = 1, . . . , k − 1, let

pF
j :M|j → (0,1)(2.4)

and

γ F
k :M|k → (0,∞).(2.5)

For x ∈M|k , let gx ∈ {0,1, . . . , k − 1} be a random variable such that

P(gx = i) = [
1 − pF

i (x|i )] k−1∏
j=i+1

pF
j (x|j ),(2.6)

where by convention �k−1
j=kp

F
j (x|j ) = 1 and pF

0 ≡ 0.

Let ZF
k be a continuous time Markov chain on M|k as follows. When ZF

k is at
x ∈ M|k , it waits an exponential time of mean γ F

k (x) and then jumps as follows.
It first looks at a copy g′

x of gx (at each time independent of the copies looked
at previously). If g′

x = j , then, letting ax(j) denote the (only) ancestor of x on
generation j of TF

k [namely ax(j) = x|j ], ZF
k jumps uniformly at random to one

of the descendants of ax(j) in M|k . In other words, given that g′
x = j , then the

coordinates x|j (= ax(j)) of x are left unchanged, and the remainder coordinates
are chosen uniformly at random on M|j+1. We may then say that the transition
distribution of the jump chain of ZF

k from x is the uniform distribution on the
descendants of an ancestor of x whose generation is randomly chosen according
to the distribution of gx .

REMARK 2.1. We may understand the random variable gx as follows. Let
us attach coins to the sites of the tree that are not leaves, namely, the points of⋃k−1

j=0 M|j = T
F
k \ M|k , in such a way that the probability of heads of the coin

at site x|j ∈ M|j is pF
j (x|j ), j = 1, . . . , k − 1; see Figure 1. The coin of the root
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has probability pF
0 = 0 of turning up heads. When it decides to jump from site

x ∈ M|k , ZF
k first flips successively the coins of x|k−1, . . . , x|1, ∅ (in that order)

until it gets tails for the first time, and then it stops at the respective site. Notice
that this procedure is almost surely well defined since pF

0 = 0. Given that x|j was
the stopping site of the procedure, then gx = j .

DEFINITION 2.2. We call ZF
k a trap model on T

F
k , or k-level trap model, with

waiting time parameter γ F
k and activation parameters (pF

j )k−1
j=1, and write

ZF
k ∼ T M

(
T

F
k ;γ F

k ; (pF
j

)k−1
j=1

)
.

Our main motivation in considering this model is in the particular case where
the parameters are related to the following random variables. For j = 1, . . . , k,
let τj := {τj (x|j );x|j ∈ M|j } be an i.i.d. family of positive random variables
in the domain of attraction of an αj -stable law. Now consider the k-level trap
model, with waiting time parameters γ F

k (x|k) ≡ τk(x|k) and activation parameters
pF

j (x|j ) ≡ 1/(1 + τj (x|j )), j = 1, . . . , k − 1. We call this model the GREM-like

trap model on T
F
k with parameters τj , j = 1, . . . , k. We state a scaling limit result

for this model in Section 5 below. In the next two sections we present supporting
material for that result, as anticipated at the end of the Introduction.

3. A representation of the k-level trap model. In this section we will induc-
tively construct a process XF

k on M|k , under a particular choice of whose param-
eters it is a version of the k-level trap model of last section. As explained in the
Introduction, this particular version will help us to formulate the infinite volume
limit of the latter model.

The process of this section will involve a set of parameters γ F
j :M|j →

(0,∞), j = 1, . . . , k, for given M1, . . . ,Mk ∈ N∗.
In order to have our inductive construction go smoothly, we introduce an auxil-

iary process YF
j , for bookkeeping reasons only, as will be explained below. We will

then have pairs (XF
j , YF

j ), j = 1, . . . , k. (The auxiliary process will not be needed

in the infinite volume version of XF
k to be introduced in Section 4.) We first define

the process (XF
1 , Y F

1 ). XF
1 is a continuous time Markov chain on M|1(= M1)

that, when at x1 ∈M|1, waits an exponential time of mean γ F
1 (x1) and then jumps

uniformly to a site in M|1. We will construct XF
1 in the following way.

Let N1 = {(N(x1,1)
r )r≥0, x1 ∈ N∗} be i.i.d. Poisson processes of rate 1, and let

σ
x1,1
i be the ith mark of N(x1,1) (viewed as a point process), i ≥ 1. We will call

SF
1 = {σ (x1,1)

i ;x1 ∈ M1, i ≥ 1} the set of marks of the first level of XF
k . Let

T1 = {T (1)
s , s ∈ R

+ := [0,∞)} be i.i.d. exponential random variables of rate 1.
N1 and T1 are assumed independent.
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For s ∈ SF
1 , let ξF

1 (s) = x1 if s = σ
x1,1
j for some x1 ∈ M1 and j ≥ 1. Notice

that ξF
1 is well defined almost surely. Let us now define a measure μF

1 on R
+ as

follows: μF
1 ({s}) = γ F

1 (ξF
1 (s))T

(1)
s if s ∈ SF

1 and μF
1 (R+ \ SF

1 ) = 0.

REMARK 3.1. We note that ξF
1 (s), s ∈ SF

1 , are i.i.d. uniform random variables
in M1.

For r ≥ 0, let

�F
1 (r) := μF

1
([0, r]).(3.1)

For t ≥ 0, let

ϕF
1 (t) := (

�F
1
)−1

(t) = inf
{
r ≥ 0;�F

1 (r) > t
}

(3.2)

be the (right continuous) inverse of �F
1 .

Let us recall that N̄∗ = {1,2, . . . ,∞}. We define the process (XF
1 , Y F

1 ) on
(N̄∗,R+) as follows. For t ≥ 0,(

XF
1 , Y F

1
)
(t) = (

ξF
1
(
ϕF

1 (t)
)
, ϕF

1 (t)
)
.(3.3)

Let us suppose (XF
j , YF

j ) is defined for j = 1, . . . , l − 1, l ≤ k.

DEFINITION 3.2. An interval I ⊂ R
+ is a constancy interval of (XF

j , YF
j ) if

(XF
j , YF

j ) is constant over I , that is,(
XF

j ,YF
j

)
(r) = (

XF
j ,YF

j

)
(s) for all r, s ∈ I(3.4)

and I is maximal with that property.

The maximality condition and right continuity of (XF
j , YF

j ) implies that I =
[a, b) for some 0 ≤ a < b. We are now ready to define (XF

l , YF
l ) for 2 ≤ l ≤ k.

Let IF
l−1 be the collection of constancy intervals of (XF

l−1, Y
F
l−1). Let also Nl =

{(N(xl,l)
r )r≥0, xl ∈N∗} be i.i.d. Poisson processes of rate 1. Let σ

xl,l
i the ith mark of

N(xl,l), i ≥ 1. We will call SF
l = {σ (xl,l)

i ;xl ∈ Ml , i ≥ 1} the set of Poisson marks
of the lth level, and RF

l = {a; I = [a, b) and I ∈ IF
l−1} the set of extra marks of the

lth level. Notice that RF
l is the set of left endpoints of intervals of Il−1. We call

SF
l ∪RF

l the set of marks of the lth level; see Figure 2. Let Tl = {T (l)
s , s ∈R

+} be
i.i.d. exponential random variables of rate 1. Nl and Tl are assumed independent
and are independent of Nj and Tj for j < l.

To each s ∈ RF
l , we associate a uniform random variable Ul(s) on {1, . . . ,Ml}.

Assume that {Ul(s), s ∈ RF
l , l ≥ 1} are mutually independent and independent of

the other random variables in the model. Let

ξF
l (s) =

{
xl, if s = σ

(xl,l)
j for some xl ∈Ml and j ≥ 1,

Ul(s), if s ∈RF
l .

(3.5)
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FIG. 2. Representation of the timelines of the Poisson point processes entering the definition of XF
l ,

one for each x ∈ Ml . Another ingredient are the constancy intervals of XF
l−1, here successively

represented in the x-axis as I1, . . . , I5.

We will call ξF
l (s) the label of s ∈ RF

l ∪ SF
l , 1 ≤ l ≤ k (where RF

1 = ∅).
Notice that in the first case of (3.5) above s ∈ SF

l , and that ξF
l is well defined

almost surely. Let us now define a measure μF
l on R

+ as follows:

μF
l

({s})= γ F
l

(
XF

l−1(s), ξ
F
l (s)

)
T (l)

s if s ∈ SF
l ∪RF

l(3.6)

and μF
l (R+ \ (SF

l ∪RF
l )) = 0. Notice that SF

l ∩RF
l = ∅ almost surely.

REMARK 3.3. We note that ξF
j (s), s ∈ SF

j ∪ RF
j , are i.i.d. uniform random

variables in Mj , j = 1, . . . , l.

For r ≥ 0, let

�F
l (r) := μF

l

([0, r]).(3.7)

For t ≥ 0, let

ϕF
l (t) := (

�F
l

)−1
(t) = inf

{
r ≥ 0 :�F

l (r) > t
}

(3.8)

be the inverse of �F
l .

We define the process (XF
l , YF

l ) on (M|l ,Rl+) as follows. For t ≥ 0,(
XF

l , YF
l

)
(t) = ((

XF
l−1

(
ϕF

l (t)
)
, ξF

l

(
ϕF

l (t)
)); (YF

l−1
(
ϕF

l (t)
)
, ϕF

l (t)
));(3.9)

see Figure 3.
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FIG. 3. Illustration of the construction of XF
k from the constancy intervals I1 = [a1, b1), . . . ,

I5 = [a5, b5) of XF
k−1 on x-axis, Poisson marks and extra marks [here represented as crosses on

left endpoints of the constancy intervals, with (not shown) labels Ul(a1), . . . ,Ul(a5), resp.]. The
Poissonian points may be seen as projected down from timelines of Figure 2. The point “s” in the
x-axis equals ϕF

l (t).

REMARK 3.4. We note that each interval I of IF
j , j ≥ 2 can be identified

with a jump of �F
j , that is, IF

j = {[�F
j (r−),�F

j (r)) �= ∅; r ≥ 0} = {IF
j (s) :=

[�F
j (s−),�F

j (s)); s ∈ SF
j ∪ RF

j }, and the lengths of the intervals of IF
j , namely

{|IF
j (s)|, s ∈ SF

j ∪RF
j }, are independent exponential random variables with means

{γ F
j (XF

j−1(s), ξ
F
j (s)), s ∈ SF

j ∪RF
j }, respectively.

At this point we may observe that our interest is in XF
k ; as anticipated above,

YF
k is introduced for bookkeeping purposes, solely for the convenience of having

the property mentioned in Remark 3.4. In Section 4 below we will introduce an
infinite volume version of XF

k for which the respective version of YF
k will not be

needed explicitly, and thus not explicitly introduced.

REMARK 3.5. We note that the number of marks of SF
j in each interval

I ∈ IF
j−1 (when integrated with respect to the exponential interval length; see Re-
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mark 3.4 above) is a geometric random variable1 with mean Mjγ
F
j−1(X

F
j−1(s)),

where s ∈ SF
j−1 ∪ RF

j−1 is such that I = IF
j−1(s), and that each such interval has

exactly one mark of RF
j at its left end. So, the total number of marks (of SF

j ∪RF
j )

within I is the above mentioned geometric variable plus one.

DEFINITION 3.6. We call XF
k defined above the trap model on T

F
k , or

k-level trap model, with parameter set γ F
k = {γ F

i ; i = 1, . . . , k}. Notation: XF
k ∼

T M(TF
k ;γ F

k ).

We now make the connection between the models of Sections 2 and 3, a key re-
sult of this paper, which in particular establishes that the latter is a representation of
the former under the appropriate relationship of their respective set of parameters,
thus justifying the common terminology.

LEMMA 3.7. Let XF
k be as above and ZF

k be as in Section 2, that is,

ZF
k ∼ T M

(
M|k;γ F

k ; (pF
j

)k−1
j=1

)
.

Suppose

pF
j (x|j ) := 1

1 + Mj+1γ
F
j (x|j )(3.10)

for all x|j ∈ M|j and j = 1, . . . , k − 1. Then XF
k and ZF

k have the same distribu-
tion.

PROOF. We begin with the following remark concerning ZF
k , which follows

immediately from the construction of that process in Section 2.

REMARK 3.8. Let ZF
k,i, i = 1, . . . , k, be the ith coordinate of ZF

k = (ZF
k,1, . . . ,

ZF
k,k), and let ZF

k |j = (ZF
k,1, . . . ,Z

F
k,j ), j = 1, . . . , k. As pointed out in Sec-

tion 2 above, the jump chain of ZF
k , let us call it JF

k = (J F
k,1, . . . , J

F
k,k), with

JF
k |j = (J F

k,1, . . . , J
F
k,j ), j = 1, . . . , k, can be described in terms of the sucessive

flips of the coins of JF
k |k−1, . . . , J

F
k |1; see Remark 2.1. After n jumps of JF

k , let
us consider the event Ak−1(n) = {flip of the coin of JF

k |k−1(n) results in heads}.
In terms of the random variable gJF

k (n), we have Ak−1(n) = {gJF
k (n) < k − 1}. We

now remark that, given JF
k (n) = x|k and Ak−1(n), the distribution of the jump

from JF
k |k−1(n) is the same as that from JF

k−1(n) given JF
k−1(n) = x|k−1. Since

1In this paper, we call a geometric random variable one whose probability function is given by
pn(1 − p), n = 0,1, . . . , where p is a parameter in (0,1), and whose mean is thus in terms of p

given by (1 − p)/p.



866 L. R. G. FONTES, R. J. GAVA AND V. GAYRARD

the distribution of a jump from JF
k,k(n) is always uniform in Mk independent from

anything else, we have that, given JF
k−1(n) = x|k and Ak−1(n), the distribution of

the jump from JF
k (n) is the same as the joint distribution of the jump from JF

k−1(n)

given JF
k−1(n) = x|k−1, and an independent uniform random variable in Mk .

For k = 1, we remark that the transition probabilities of XF
1 are always uniform

in M1, since the labels of the successive points of SF
1 have this property and are

independent of each other. So, XF
1 and ZF

1 are processes with the same state space
and transition probabilities, and the holding times are clearly matched. The result
follows for k = 1.

We now proceed by induction on k. Let us suppose that the result holds for
k = K − 1 for some K ≥ 2. To show that XF

K ∼ ZF
K , it is enough to identify the

transition mechanisms of both processes. Let us thus fix a time t ≥ 0 and a point
x|K ∈M|K . Given that either process is at x|K at time t , then both jump times are
exponentially distributed with mean γ F

K (x|K). So far, we have an identification.
Now let us identify the jump mechanisms of both processes.

Let Nt denote the number of jumps of ZF
K up to time t . As discussed in Re-

mark 3.8 above, given ZF
K(t) = x|K and AK−1(Nt ) we have that ZF

K |K−1(t) jumps
as ZF

K−1(t) given ZF
K−1(t) = x|K−1, and ZF

K,K(t) jumps uniformly in MK , and
the jumps of ZF

K |K−1(t) and ZF
K,K(t) are independent. Let us identify a coin toss-

ing mechanism in the jump of XF
K . Let I be the interval of IF

K−1 containing ϕK(t),
and let I ′ = (ϕK(t),∞) ∩ I . The lack of memory of the exponential distribution
of I (see Remark 3.4 above) implies that, given that XF

K(t) = x|K , then |I ′| is
an exponential random variable with mean γ F

K−1(x|K−1). The mechanism in the
XF

K process that plays the role of (the first) coin tossing is whether or not I ′ con-
tains at least one (Poisson) mark. Let us call ĀK−1 the event that I ′ contains no
mark. This corresponds to the coin at x|K−1 turning up heads. This means that
XF

K |K−1 will take a jump, which we identify as a jump of XF
K−1, independent of

the (uniform in MK ) accompanying jump of XF
K,K .

At this point we should stress that a particular element of the construction of XF
K

plays a key role in this identification, namely, the inclusion of the marks of RF
K .

This guarantees that each interval of constancy I of IF
k−1 gets at least one mark.

Without these marks, the jump of XF
K |K−1 might not coincide with that of XF

K−1—
that would happen if (and only if) the first interval of IF

K−1 neighboring I to the
right had got no mark.

By the induction hypothesis, XF
K−1 ∼ ZF

K−1 ∼ ZF
K |K−1; clearly XF

K,K ∼ ZF
K,K .

We close the argument in two steps. The first one is to show that

P
(
ĀK−1|XF

K(t) = x|K)= 1

1 + MKγ F
K−1(x|K−1)

(3.11)
= P

(
AK−1(Nt )|ZF

K(t) = x|K)
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and then use the hypothesis. But it follows from our discussion above and the
construction of XF

K that the left-hand side of (3.11) equals P(N ′
T ′ = 0), where

N ′ is a Poisson process of rate Mk and T ′ an independent exponential random
variable with mean γ F

K−1(x|K−1), and a simple computation yields the result.
And the last step is to argue that, given Āc

K−1, then XF
K |K−1 does not move,

and we have only the uniform in MK jump of XF
K,K , which agrees with the cor-

responding move of ZF
K given Ac

K−1. �

4. K-process on a tree. K-processes on N̄∗ were introduced in [18] in the
study of limits of trap models in the complete graph. They appear as scaling limits
of the REM-like trap model in the complete graph. Below we introduce an exten-
sion of that model to a model on N̄

k∗, which we will view as the leaves of a tree
with k generations, as done similarly in the previous sections. As anticipated in the
Introduction and established in the next section, the process of this section turns
up in limit results for the processes of the previous sections as volume diverges.

Let γj :Nj∗ → (0,∞), j = 1, . . . , k, be such that, making

γ̄j (x|j ) := γ1(x|1) × γ2(x|2) × · · · × γj (x|j ),(4.1)

we have ∑
x|j∈Nj∗

γ̄j (x|j ) < ∞.(4.2)

We will construct a process Xk on N̄
k∗ inductively, similarly as in Section 3. This

will be a càdlàg process, similar to the ones we dealt with so far. First we define
the process X1. It is a continuous time Markov chain on N̄∗ described as follows.

Let N1 = {(N(x1,1)
r )r≥0, x1 ∈ N∗} be i.i.d. Poisson processes of rate 1. Let σ

x1,1
i

be the ith mark of N(x1,1), i ≥ 1. We will call S1 = {σ (x1,1)
i ;x1 ∈ N∗, i ≥ 1} the

set of marks of the first level of Xk . Let T1 = {T (1)
s , s ∈ R

+} be i.i.d. exponential
random variables of rate 1. N1 and T1 are assumed independent.

For s ∈ S1, let ξ1(s) = x1 if s = σ
x1,1
i for some x1 ∈ N∗ and i ≥ 1. Notice that

ξ1 is well defined almost surely. Let us now define a measure μ1 on R
+ as follows:

μ1
({s})= γ1

(
ξ1(s)

)
T (1)

s , if s ∈ S1 and μ1
(
R

+ \ S1
)= 0.(4.3)

For r ≥ 0, let

�1(r) := μ1
([0, r])(4.4)

and, for t ≥ 0, let

ϕ1(t) := �−1
1 (t) = inf

{
r ≥ 0 :�1(r) > t

}
(4.5)

be the inverse of �1.
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REMARK 4.1. Notice that μ1 is almost surely a purely atomic measure whose
set of atoms, S1, is a.s. countable and dense in R

+. Moreover, from Lemma 4.6
below, it is a.s. σ -finite. These properties imply that �1 :R+ → R

+ is a.s. strictly
increasing and that its range �1(R

+) is an uncountable set (since it is the image
of an uncountable set, R+, by a 1 to 1 map) of Lebesgue measure zero. It fol-
lows from this and the independence and continuity of its constituents that any
fixed deterministic r is a.s. a continuity point of �1. It may also be checked that
ϕ1 :R+ →R

+ is a.s. continuous.

In order to make the processes to be defined below càdlàg, we need the follow-
ing general definition.

DEFINITION 4.2. Given a function f :R+ → R
+ and t ∈ R, we say that f is

upper locally constant at t if there exists an ε > 0 such that f is constant in
[t, t + ε]; let ULCf denote the set {t ∈R

+ :f is upper locally constant at t}.

We define X1 on N̄∗ as follows. For t ≥ 0

X1(t) =
{

ξ1
(
ϕ1(t)

)
, if ϕ1(t) ∈ S1 and t ∈ ULCϕ1 ,

∞, otherwise.
(4.6)

Suppose Xj is defined for j = 1, . . . , l − 1, 2 ≤ l ≤ k. Let Nl = {(N(xl,l)
r )r≥0,

xl ∈ N∗} be i.i.d. Poisson processes of rate 1. Let σ
xl,l
i the ith mark of N(xl,l), i ≥ 1.

We will call Sl = {σ (xl,l)
i ;xl ∈ N∗, i ≥ 1} the set of Poisson marks of the lth level.

Let Tl = {T (l)
s , s ∈ R

+} be i.i.d. exponential random variables of rate 1. Nl and Tl

are assumed independent and are independent of Nj and Tj for j < l.

For s ∈ Sl , let ξl(s) = xl if s = σ
(xl,l)
j for some xl ∈ N∗ and j ≥ 1. Notice that

ξl is well defined almost surely. Let us now define a measure μl on R
+ as follows:

μl

({s})= γl

(
Xl−1(s), ξl(s)

)
T (l)

s , if s ∈ Sl and μl

(
R

+ \ Sl

)= 0.

For r ≥ 0, let

�l(r) := μl

([0, r])(4.7)

and for t ≥ 0, let

ϕl(t) := �−1
l (t) = inf

{
r ≥ 0;�l(r) > t

}
(4.8)

be the inverse of �l . �l will sometimes below be referred to as the clock. It may be
(and has been, in the literature) also called clock process (in this case, at level l).

REMARK 4.3. Remark 4.1 holds with “1” replaced by “l.” In particular, the
range of �l has a.s. Lebesgue measure zero, l = 1, . . . , k, and every fixed deter-
ministic r is a.s. a continuity point of �l .
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We define the process Xl on N̄
l∗ as follows. For t ≥ 0, let

Xl(t) =
{(

Xl−1
(
ϕl(t)

)
, ξl

(
ϕl(t)

))
, if ϕl(t) ∈ Sl and t ∈ ULCϕl

,(
Xl−1

(
ϕl(t)

)
,∞)

, otherwise.

DEFINITION 4.4. We call Xk defined just above the K-process on Tk , or
k-level K-process, with parameter set γk = {γi; i = 1, . . . , k}. Notation: Xk ∼
K(Tk, γk).

REMARK 4.5. Since we only have Poissonian marks in the above definition
of Xk , we did not have the need of the second coordinate Yk , as in finite volume,
nor did we need to explicitly mention constancy intervals. The latter notion is
nonetheless useful in this context (it will come up later, in one of our proofs of
convergence), and is defined as follows. Given 1 ≤ j ≤ k, an interval I ⊂ R

+ is
a constancy interval of Xj if it has positive length

Xj(r) = Xj(s) for all r, s ∈ I and I is maximal.(4.9)

The maximality condition and right continuity of Xj implies that I = [a, b) for
some 0 ≤ a < b.

Pictures like those in Figures 2 and 3 might be drawn (or perhaps, more accu-
rately, envisioned) for Xk , with minor changes: in the present case we would have
an infinite sequence of time lines for the Poisson processes (N

(xl,l)
r )r≥0, xl ∈ N∗,

in Figure 2. In Figure 3, superscripts “F ” should be dropped throughout; there
would be no extra marks, and thus no crosses; the Poissonian marks would form
a dense set of the x-axis; if one wanted to represent them, the constancy intervals
would be such that there would be an infinite number of them in the neighborhood
of any fixed one of them—or, more precisely, between any two distinct such in-
tervals, there is a distinct such interval; the graph of �l would be that of a strictly
increasing function with a dense set of jumps (the Poissonian marks).

The next result makes the above construction a.s. well-defined for all times, and
implies that Xk is never absorbed at any state. For its proof, let us introduce the
notation

Xk = (Xk,1, . . . ,Xk,k), k ≥ 1,

making the coordinates of Xk explicit.

LEMMA 4.6. We have that almost surely �k(r) < ∞ for all r ∈ [0,∞) and
limr→∞ �k(r) = ∞.

PROOF. As �j is nondecreasing and unbounded for j = 1, . . . , k, it is suffi-
cient to show that, for all r ∈ (0,∞), �k ◦ · · · ◦ �1(r) < ∞ almost surely. Let

�k(r) := �k ◦ · · · ◦ �1(r).(4.10)
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We will show by induction that

E
(
�k(r)

)= r

∞∑
x1=1

· · ·
∞∑

xk=1

γ1(x|1) · · ·γk(x|k) = r
∑

x∈Nk∗

γ̄k(x).(4.11)

Since the right-hand side of (4.11) is finite by assumption [see (4.2) above], this
closes the argument.

Equation (4.11) is immediate from the definition for k = 1. Let us suppose
that it holds up to k − 1, for a fixed arbitrary k ≥ 2. Let us consider the con-
stancy intervals of Xk,1 (i.e., maximal intervals over which Xk,1 is constant):
I = {constancy intervals of Xk,1 ⊂ [0,�k(r)]}. We can enumerate such intervals
as I = {I (s) := [�1(s−),�1(s)); s ∈ S1 ∩ [0, r]}. So,

�k(r) = ∑
s∈S1∩[0,r]

∣∣I (s)
∣∣= ∞∑

x1=1

N
(x1,1)
r∑
i1=1

L
(x1)
i1

,(4.12)

where L
(x1)
i1

:= |I (σ
(x1,1)
i1

)|, and we recall that N(x1,1) is a Poisson process of
rate 1. Now notice that, for every x1 ∈ N∗, N(x1,1) and L(x1) := {L(x1)

i1
: i1 ≥ 1}

are independent, and L(x1) is an i.i.d. family of random variables with L
(x1)
i1

∼
�

(x1)
k−1(γ1(x1)T

(x1)
1 ), where �

(x1)
k−1 = �k−1 ◦ · · · ◦ �1 is the corresponding of �k for

a K process on T
(x1)
k , the k − 1-level subtree of Tk rooted on x1, and parameter set

γ
(x1)
k = {γi(x1, ·): i = 2, . . . , k}.

Then

E
(
�k(r)

)= r

∞∑
x1=1

E
{
�

(x|1)
k−1

(
γ1(x|1)T (x1)

1

)}
(4.13)

= r

∞∑
x1=1

γ1(x|1)
∑

x2,...,xk

γ2(x|2) · · ·γk(x|k),

where we have used that T
(x1)
i1

, i1 ≥ 1, are i.i.d. with mean 1 random variables, in-
dependent of all other random variables, and, in the second equality, the induction
hypothesis. The coincidence of the right-hand sides of (4.11) and (4.13) closes the
argument for the first assertion.

It follows readily from (4.12) and the independence of the summands on its
right-hand side, and the fact that their distribution depend only on x1, that a.s.
�k(r) → ∞ as r → ∞, and the second assertion follows from this and the first
assertion. �

REMARK 4.7. We will on several occasions below, as we did right above,
work with the compounded clock �j rather than with the simple clock �j or sim-
ple time. In finite volume, we will do the same with the finite volume version �

(n)
j



K-PROCESS ON A TREE 871

[appearing below; see (5.26)]. This is (only) for convenience, since we can obtain
simpler expressions to work with for quantities involving the compounded clocks,
like (4.12) above, or (5.31)–(5.32) below, than ones for simple clocks or simple
time. A typical argument (as the one above) will use the fact that a.s. �j(r) < ∞
for all r and �j(r) → ∞ as r → ∞ to go from a statement involving �j(r) to one
involving �j (r) or r . Notice that the definitions of XF

k and Xk involve only simple

clocks �F
j and �j , respectively; the composition behind �j (and �

(n)
j ) helps with

computations, however.

We next prove a property about the infinities of Xk . Even though this result
is not used in what follows it, and is in some sense contained in the next result,
Lemma 4.9, it sheds light on a characteristic of Xk which is worth pointing out.

LEMMA 4.8. Let k ≥ 1.

(1) The set of infinities of Xk has a.s. Lebesgue measure zero. More precisely,
let Ik = ⋃k

i=1 Ik,i , with Ik,i := {t ≥ 0 :Xk,i(t) = ∞}; then, Ik has a.s. Lebesgue
measure zero.

(2) Almost surely, if Xk,i(t) = ∞ for some t ≥ 0 and i = 1, . . . , k, then
Xk,j (t) = ∞ for i ≤ j ≤ k.

PROOF. From the construction of Xk it follows that Xk,k(t) ∈ N∗, that
is, is finite if and only ϕk(t) ∈ Sk and t ∈ ULCϕk

, which means that t ∈⋃
s∈Sk

[�k(s)−,�k(s)) = R
+ \ �k(R

+). From Remark 4.3, it follows that Ik,k has
a.s. Lebesgue measure zero, and in particular both claims are established for k = 1.

Let us inductively suppose they hold for k = K −1 for K ≥ 2. By the reasoning
of previous paragraph, we have that IK,K has a.s. Lebesgue measure zero. It is thus
enough to consider IK,i \ IK,K for i < K . Again by the reasoning of the previous
paragraph and the construction of XK , we have that the latter set is nonempty only
if IK−1,i ∩ SK �= ∅, but given the induction hypothesis, this a.s. does not happen
for a.e. realization of SK , since Poisson processes of constant rate a.s. assign no
point to sets of null Lebesgue measure. This means that a.s. IK = IK,K , and the
induction step for the first claim follows. The latter equality implies in particular
the second claim for i = K − 1 (which is the only remaining case if K = 2).
Suppose now that K ≥ 3 and XK,i(t) = ∞ for some i < K − 1 and t ≥ 0; since
XK,i(t) = XK−1,i (ϕK(t)), we may apply the induction hypothesis to conclude
that XK,i(t) = XK−1,i(ϕK(t)) = XK−1,K−1(ϕK(t)) = XK,K−1(t) = ∞, and from
the conclusion of the previous sentence follows the induction step for the second
claim. �

The next result roughly states that once a coordinate of a K-process is large,
then so are the subsequent ones. This is in line with the property stated in
Lemma 4.8(2) above—in a way, it is a continuous extension of it. In the next
section we establish a finite volume analogue; see Lemma 5.12 below.
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LEMMA 4.9. Let Xk be a k-level K-process. Given T > 0, not necessarily
deterministic, and m ≥ 1, there a.s. exists m̃ = m̃(k) such that if Xk,i(t) > m̃ for
some 1 ≤ i < k and t ∈ [0, T ], then Xk,j (t) > m for all j = i + 1, . . . , k.

PROOF. We will start by claiming that there a.s. exists m̂(k) such that if
Xk,i(t) > m̂(k) for any t ≤ T and i = 1, . . . , k − 1, then Xk,k(t) > m. This closes
the argument when k = 2. For k ≥ 3, we use an inductive argument.

For m ∈ N∗ and j = 1, . . . , k, let

S̃(m)
j = {

σ
(x,j)
i :x = 1, . . . ,m, i ≥ 1

}
(4.14)

be the set of Poissonian marks of level j with labels at most m. Let us fix T ′ > 0
deterministic, and let Tkj (l) denote the set of times up to �k−1(T

′) spent by
Xk−1,j above l, j = 1, . . . , k − 1. By a similar reasoning as the one employed to
prove (4.11), we may check that the expected Lebesgue measure of Tkj (l) equals

T ′
∞∑

x1=1

· · ·
∞∑

xj=l+1

· · ·
∞∑

xk−1=1

γ1(x|1) · · ·γk−1(x|k−1).(4.15)

[We recall that the reason to work with the compounded clocks �j ’s rather than
the simple clocks �j ’s or deterministic times is precisely to be able to derive a sim-
ple formula like the one in (4.15), which would be more complicated for simple
clocks or deterministic times replacing �k−1(T

′).] Since that Lebesgue measure
is decreasing in l, and, as follows from our assumptions on γk , the expression
in (4.15) vanishes as l → ∞, we have that the limit of that Lebesgue measure as
l → ∞ vanishes almost surely. We then have from elementary properties of Pois-
son processes that {

k−1⋃
j=1

Tkj (l)

}
∩ S̃(m)

k = ∅(4.16)

for all large enough l almost surely, so given m ∈ N∗, we find m̄(k) = m̄(k)(T ′) such
that on {�k(T

′) > T } if Xk,i(t) > m̄(k) for some t ≤ T and i = 1, . . . , k − 1, then,
since on {�k(T

′) > T } the trajectory of Xk,k in [0, T ] depends only on the Poisson
points of Nk on [0,�k−1(T

′)], we have from (4.16) that Xk,k(t) > m. Since from
second assertion of Lemma 4.6

⋃
T ′>0{�k(T

′) > T } has full measure, we may a.s.
choose T ′ such {�k(T

′) > T } occurs, and then choose m̂(k) = m̄(k)(T ′), and the
claim at the beginning of the proof follows.

As we have already argued, this in particular establishes the lemma for k = 2, by
the choice m̃(2) = m̂(2). Let us assume that the lemma is established for k − 1 ≥ 2.
This means that given m ≥ 1 there a.s. exists m̃(k−1) such that if Xk−1,i(t) >

m̃(k−1) for some 1 ≤ i < k − 1 and t ∈ [0,�k−1(T
′)], then Xk−1,j (t) > m, where

T ′ is as at the end of the previous paragraph [notice that we used �k−1(T
′) as T

here]. The claim of the lemma then follows by the choice m̃(k) = m̃(k−1) ∨ m̂(k),
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where m(k) is as in the claim at the beginning of the proof with �k−1(T
′) replac-

ing T . Indeed, if for some t ∈ [0, T ] we have Xk,i(t) > m̃(k), then, by the claim at
the beginning, Xk,k(t) > m, and the claim of the lemma is established for j = k.
If i < j < k, then since the trajectory of (Xk,i , i = 1, . . . , k − 1) in [0, T ] shad-
ows that of Xk−1 in [0, T ′′] for some T ′′ ≤ �k−1(T

′), meaning that there exists
t ′ ∈ [0,�k−1(T

′)] such that (Xk,i(t), i = 1, . . . , k − 1) = Xk−1(t
′), we have that

Xk,j (t) = Xk−1,j (t
′) > m, by the induction hypothesis, and the argument is com-

plete. �

5. Convergence.

5.1. Scaling limit for the GREM-like trap model. We start this section with
our main result, the scaling limit for the GREM-like trap model in the fine tuning
regime and extreme time scale. Let us go again, this time in more detail, over
the definition of these terms; see the last paragraph of Section 2. [In this section,
we replace the notation above with superscript “F ,” denoting finite volume, to
a notation with superscript “(n),” to emphasize sequence dependence instead.] The
parameters of the model of this subsection will be taken random, as described
below.

For j = 1, . . . , k, let τj := {τj (x|j );x|j ∈ M|j } be an i.i.d. family of random
variables in the domain of attraction of an αj -stable law. We suppose

0 < α1 < · · · < αk < 1.(5.1)

For j = 1, . . . , k, we will relabel τj obtaining τ
(n)
j = {τ (n)

j (x|j );x|j ∈ M|j },
so that, for every (x|j−1) ∈ M|j−1, {τ (n)

j (x|j );xj ∈ Mj } are the decreasing order
statistics of {τj (x|j );xj ∈ Mj }.

For j = 1, . . . , k, n ≥ 1 and x|j−1 ∈ N
j−1∗ , let

c
(n)
j = (

G−1
j

(
M−1

j

))−1
,(5.2)

where G−1
j is the (generalized) inverse of Gj : [0,∞) → (0,1] such that Gj(t) =

P(τj (x|j ) > t), and make

γ
(n)
j (x|j ) = c

(n)
j τ

(n)
j (x|j ), x|j ∈Mj ;(5.3)

let also {
γj (x|j ), xj ∈N

j∗
}

(5.4)

denote independent j -parametrized Poisson point processes, with intensity mea-
sure given by y−αj−1, y > 0, in decreasing order.

The fine tuning regime mentioned above and at the Introduction corresponds to
choosing M

(n)
1 = n and

M
(n)
j+1 = ⌊

1/c
(n)
j

⌋
, j = 1, . . . , k − 1.(5.5)
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We will make this choice from now on.
Let

γ̃
(n)
j (x|j ) =

⎧⎨
⎩

γ
(n)
j (x|j ), if j = 1, . . . , k − 1,

τ
(n)
k (x|k), if j = k

(5.6)

and let X̃
(n)
k ∼ T M(T

(n)
k ; γ̃ (n)

k ).

REMARK 5.1. One may readily check from Lemma 3.7 that, in terms of
the coin tossing description, X̃

(n)
k ∼ T M(T

(n)
k ; τ (n)

k , (p
(n)
j )k−1

j=1), where for j =
1, . . . , k − 1 and x|j ∈ M|j

p
(n)
j (x|j ) = 1

1 + τ
(n)
j (x|j )

.(5.7)

With this description, and general finite M1, . . . ,Mk [not necessarily satisfy-
ing (5.5)], we call X̃

(n)
k the GREM-like trap model on T

(n)
k with parameters

τj (x|j ), j = 1, . . . , k, x|j ∈ M|j . [The relabeling performed in this subsection
(cf. the definition given in the last paragraph of Section 2) is necessary for the
existence of the limit.] In this guise, with a choice of M1 = · · · = Mk , the model
was introduced and studied in [25, 26], with the derivation of infinite volume aging
functions as the main motivation, with infinite volume limits taken first, and then
an infinite time limit. See Remark 5.3 below.

Let us speed up X̃
(n)
k by c

(n)
k , namely, let

X
(n)
k = X̃

(n)
k

(
t/c

(n)
k

)
, t ≥ 0.(5.8)

This corresponds to the extreme time scale mentioned above and at the Introduc-
tion. One may readily check that X

(n)
k ∼ T M(T

(n)
k ;γ (n)

k ). Let Xk ∼ K(Tk;γk).

THEOREM 5.2. Let X
(n)
k and Xk be as above. Then(
X

(n)
k , γ

(n)
k

) ⇒ (Xk, γk),(5.9)

where ⇒ means weak convergence in the product of Skorohod space with the space
of finite measures in N

k∗ equipped with the topology of weak convergence.

The Skorohod space in the above statement will be described in detail at the
beginning of next subsection.

REMARK 5.3. As a note on the differences between the above result and those
of [25, 26], let us point out that the choice of volume relations should not be very
important in the context of [25, 26], since the volume limit is taken first, and then
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the time limit. One expects aging to take place in this regime, and that is what
is behind the (explicit) results of [25, 26]. Our choice of volume/time relations is
on the other hand essential in order to obtain the specific limit stated above. In
particular, they represent not an aging time regime, but an ergodic time regime,
that is, a time regime where the process is already close to equilibrium. (Aging is
a phenomenon that instead takes place far from equilibrium.) In this sense, our re-
sults do not compare immediately to those in [25, 26], since they involve different
time/volume regimes, where different behaviors take place. In [22], a smaller time
regime is studied, where aging takes place, with results comparable to [25, 26].
Other choices of volume/time scaling may lead to different asymptotics (from the
above one and conceivably also from [25, 26]).

5.2. Infinite volume limit for the k-level trap model. As anticipated in the In-
troduction, Theorem 5.2 will be proven in Section 5.5 below by verifying the con-
ditions of an infinite volume limit result for k-level trap models. This is the object
of this and the next two subsections. We may in this section, and in the following
two subsections, think of the parameters of the model as deterministic. We will
return to random parameters at the last subsection.

Let us consider a sequence of k-level trap models X
(n)
k , n ≥ 1, on a sequence

of finite trees T
(n)
k , with volumes M1 = M

(n)
1 , . . . ,Mk = M

(n)
k , and parameter

sets γ
(n)
k , respectively (see Definition 3.6), and prove a weak convergence result for

that sequence under the Skorohod topology on D(N̄k∗, [0,∞)), the space of càdlàg
functions from [0,∞) to N̄

k∗. As anticipated at the beginning of Section 5.1, we
replace the superscript “F ” used in the first sections by “(n)” everywhere to em-
phasize the dependence on n.

Before proceeding, let us briefly review the Skorohod topology. We start by
equipping N̄

k∗ with the metric

d(x, y) = max
1≤j≤k

∣∣x−1
j − y−1

j

∣∣, x, y ∈ N̄
k∗,(5.10)

where ∞−1 = 0, under which it is compact. The Skorohod metric on D(N̄k∗,[0,∞)) is as follows. For f,g ∈ D(N̄k∗, [0,∞)), let

ρ(f, g) = inf
λ∈�

[
φ(λ) ∨

∫ ∞
0

e−uρ(f, g,λ,u) du

]
,(5.11)

where

ρ(f, g,λ,u) = sup
t≥0

d
(
f (t ∧ u), g

(
λ(t) ∧ u

))
(5.12)

with � the class of time distortions: increasing Lipschitz functions from [0,∞)

onto [0,∞), and φ :� → [0,∞) such that

φ(λ) = sup
0≤s<t

∣∣∣∣log
λt − λs

t − s

∣∣∣∣;(5.13)
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see Section 3.5 in [15].
In order to get our convergence result, we will impose the following conditions

on the volumes and parameters. For j = 1, . . . , k, suppose that as n → ∞
M

(n)
j → ∞,(5.14)

γ
(n)
j (x) → γj (x) for every x ∈ N

j∗ and
∑

x∈Nj∗

γ̄
(n)
j (x) → ∑

x∈Nj∗

γ̄j (x)(5.15)

with γj , γ̄j as in the beginning of Section 4 [see paragraph of (4.1), (4.2) above],

γ
(n)
j ≡ 0 on N

j∗ \M|j and

γ̄
(n)
j (x|j ) := γ

(n)
1 (x|1) × γ

(n)
2 (x|2) × · · · × γ

(n)
j (x|j ).(5.16)

Our result will require additional conditions that look quite intricate. We state
them now and discuss them, together with the above conditions, after we state the
convergence result. We further suppose that for j = 2, . . . , k

1∏j−1
p=1 Mp+1

j−1∑
l=1

∑
x|j−1∈M|j−1

l−1∏
p=1

(
Mp+1γ

(n)
p (x|p)

)
(5.17)

×
j−1∏

p=l+1

(
1 + Mp+1γ

(n)
p (x|p)

)→ 0

and

1∏j−1
p=1 Mp+1

j−1∑
l=1

∑
x|j∈M|j

γ
(n)
j (x|j )

l−1∏
p=1

(
Mp+1γ

(n)
p (x|p)

)
(5.18)

×
j−1∏

p=l+1

(
1 + Mp+1γ

(n)
p (x|p)

)→ 0

as n → ∞, where by convention

0∏
p=1

(
Mp+1γ

(n)
p (x|p)

)=
j−1∏
p=j

(
1 + Mp+1γ

(n)
p (x|p)

)= 1.

Here, and many times below, we omit the superscript “(n)” from the notation for
the volumes M1, . . . ,Mk .

We are ready to state our infinite volume limit result.

THEOREM 5.4. For n ≥ 1, let X
(n)
k be the trap model on T

(n)
k , with vol-

umes M
(n)
1 , . . . ,M

(n)
k , and parameter sets γ

(n)
k , respectively, satisfying condi-

tions (5.14)–(5.18). Let Xk be the K-process on Tk with parameter set γk . Then

X
(n)
k → Xk weakly in Skorohod space as n → ∞.
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We will see (from the proofs) that conditions (5.14)–(5.18) have the following
significance. Obviously, (5.14) means that we are taking an infinite volume limit.
Equation (5.15) implies that the contributions coming from the Poisson marks to
the construction of X

(n)
k converge (in a uniform way) to the respective contribu-

tions of (Poisson) marks of Xk . Finally, as will be seen in the arguments below,
(5.17)–(5.18) imply the negligibility of the total contribution of the extra marks en-
tering X

(n)
k . [Poisson and extra marks were introduced in the paragraph before (3.5)

above.] It may be readily checked that in general neither are conditions (5.14)–
(5.18) equivalent, nor do they follow from previous conditions; in the generality of
the statement of Theorem 5.4, indeed, they need to be separately imposed.

REMARK 5.5. One way to gain insight into the meaning of (5.17)–(5.18) is
as follows. In order to have a single condition, we start by writing the sum over
M|j−1 in (5.17) as sum over M|j with an extra term of 1/Mj multiplying each
summand. We then sum the resulting expression to the one on the left of (5.18),
getting

1∏j−1
p=1 Mp+1

j−1∑
l=1

∑
x|j∈M|j

l−1∏
p=1

(
Mp+1γ

(n)
p (x|p)

)

×
j−1∏

p=l+1

(
1 + Mp+1γ

(n)
p (x|p)

)
(5.19)

×
(

1

Mj

+ γ
(n)
j (x|j )

)
.

Dividing now the double product inside the double sum in (5.19) by the product
outside the double sum, and defining

γ̄
(n)
j,l (x|j ) :=

l−1∏
p=1

γ (n)
p (x|p)

1

Ml+1
(5.20)

×
j−1∏

p=l+1

(
1

Mp+1
+ γ (n)

p (x|p)

)(
1

Mj

+ γ
(n)
j (x|j )

)
,

we find that (5.17)–(5.18) are equivalent to the following condition. For 1 ≤ l <

j ≤ k, as n → ∞ ∑
x|j∈M|j

γ̄
(n)
j,l (x|j ) → 0.(5.21)

Compare γ̄
(n)
j,l (x|j ) to γ̄

(n)
j (x|j ) and (5.21) to the second condition in (5.15).
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The remainder of this section is organized as follows. We briefly start below, in
this same subsection, with the proof of Theorem 5.4. The full proof will require
a number of auxiliary results, which we collect in Section 5.3 below, before pro-
ceeding with the proof in Section 5.4 after that. And, as we already mentioned,
Section 5.5 is devoted to the proof of Theorem 5.2.

PROOF OF THEOREM 5.4. We will argue by induction, using coupled ver-
sions of X

(n)
k and Xk , and show convergence in probability for a subsequence.

The coupling is going to be given by using common Poisson processes {N(xi,i),

xi ∈ N∗, i = 1, . . . , k} and common exponential variables {T (i)
s , s ∈ R

+, i =
1, . . . , k} in the construction of X

(n)
k and Xk . The notation is detailed at the be-

ginning of Section 5.4. It will be clear that the same can be done for every subse-
quence of (n), and that the limiting distribution for each subsubsequence does not
depend on the subsequence. This then implies weak convergence of the original
sequence.

Lemma 3.11 of [18] establishes the (convergence in probability; actually a.s.
convergence) result for k = 1 and γ

(n)
1 (x) not depending on n as soon as x ≤ M1.

This result (convergence in probability) holds (with minor changes in argumenta-
tion, as sketched in the proof of Theorem 5.2 of [18]) in our case as well. It is also
part of the argumentation of Lemma 3.11 and Theorem 5.2 of [18], and can also
be readily checked independently, that for every r ∈ [0,∞),

�
(n)
1 (r) → �1(r)(5.22)

in probability as n → ∞.
As part of our induction argument, we will then assume that for j = 1, . . . , k−1

and every r ∈ [0,∞),

X
(n)
j → Xj,(5.23)

�
(n)
j (r) → �j(r)(5.24)

as n → ∞ almost surely, possibly over a subsequence. �

5.3. Auxiliary results for the proof of Theorem 5.4. We assume throughout
that the hypotheses of Theorem 5.4 are in force.

Our first auxiliary result establishes that the contribution of extra marks and their
descendants to X

(n)
j is negligible as n → ∞. That is the content of Lemma 5.6. To

be precise, let E (n)
2 =R(n)

2 and for 3 ≤ i ≤ k

E (n)
i =R(n)

i ∪ {
s ∈ S(n)

i :ϕ(n)
i−1(s) ∈ E (n)

i−1

}
.(5.25)

E (n)
i represents the extra marks of the ith level and the descendants of extra marks

of previous levels in the ith level (i.e., Poisson marks belonging to constancy in-
tervals originating from extra marks of the previous level or descendants of extra
marks from levels before that).
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LEMMA 5.6. Assume that the induction hypotheses (5.23)–(5.24) hold. Then,
for every r > 0 and j = 2, . . . , k, we have that:

(a) min{ξ (n)
j (s) : s ∈ E (n)

j ∩ [0, r]} → ∞ in probability as n → ∞.

(b) μ
(n)
j (E (n)

j ∩ [0, r]) → 0 in probability as n → ∞.

PROOF. For r > 0, j = 1, . . . , k, let

�
(n)
j (r) := �

(n)
j ◦ · · · ◦ �

(n)
1 (r)(5.26)

and define K
(n)
j (r) := |E (n)

j ∩[0,�
(n)
j−1(r)]|, where (here) | · | stands for cardinality.

An evaluation of K
(n)
j (r) will play a crucial role in the proof. We begin with that.

It follows from induction hypothesis (5.24) that for j = 1, . . . , k − 1,
�

(n)
j (r) → ∞ as r → ∞ in probability, uniformly in n. So it is enough to consider

E (n)
j ∩ [0,�

(n)
j−1(r)] instead of E (n)

j ∩ [0, r]. In order to evaluate the cardinality of

that set, as well as its contribution to μ
(n)
j ([0,�

(n)
j−1(r)]), we start by describing

the structure of H(n)
1 := S(n)

1 , H(n)
2 := S(n)

2 ∪R(n)
2 , . . . ,H(n)

k := S(n)
k ∪R(n)

k ; at the
same time, we will relabel the marks of those sets conveniently.

Each s1 ∈ S(n)
1 can be put in a one-to-one correspondence with its label

ξ
(n)
1 (s1) = x1 and index i1(s1) = i1 ∈ N∗ via the relation s1 = σ

(x1,1)
i1

. Using this

correspondence, we see that to each mark s1 of S(n)
1 there corresponds an interval

I
(x1,i1)
n of R+ of length L

(x1,i1)
n = γ

(n)
1 (x1)T

(x1,i1). Such intervals form a partition
of R+, and the random variables involved are independent when we vary s1.

Now to each s1 ∈ S(n)
1 , there corresponds marks of S(n)

2 belonging to the re-

spective interval I
(x1,i1)
n , whose cardinality is a geometric random variable G(x1,i1)

with mean M2γ
(n)
1 (x1), plus a mark of R(n)

2 at the left endpoint of I
(x1,i1)
n —recall

Remark 3.5. Each such mark will be identified with (x1, i|2), where (x1, i1) is the
identifier of s1, and i2 ∈ {1, . . . ,G(x1,i1) + 1}, and we attach to it a random vari-
able U(x1,i|2) with uniform distribution in M2, which corresponds to ξ

(n)
2 (s2), for

(x1, i|2) ≡ s2 ∈ S(n)
2 ∪ R(n)

2 . We will identify the unique mark of R(n)
2 at the left

endpoint of I
(x1,i1)
n with (x1, i1,1).

We now proceed inductively. For 3 ≤ j ≤ k, we assume we have identified
each mark of S(n)

j−1 ∪ R(n)
j−1 as (x1, i|j−1), with x1 ∈ M1, i1 ≥ 1, il = 1, . . . ,1 +

G(x1,i|l−1), l = 2, . . . , j − 1, where, for l ≥ 3, G(x1,i|l−1) is geometric with mean
Mlγ

(n)
l−1(x1,U

(x1,i|2), . . . ,U(x1,i|l−1)), with U(x1,i|j ) ∼ Uniform(Mj ). The random
variables of

Uj−1 := {
U(x1,i|l ) : l = 2, . . . , j − 1;x1, i1, . . . , il ≥ 1

}
are independent, and, given Uj−1, so are those of{

G(x1,i|l ) : l = 1, . . . , j − 1;x1, i1, . . . , il ≥ 1
}
.
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Notice that G(x1,i|j ) is independent of U(x1,i|l ) as soon as j < l. Here ij−1 = 1

means (x1, i|j−1) ∈ R(n)
j−1; otherwise, (x1, i|j−1) ∈ S(n)

j−1. Then to each mark

(x1, i|j−1) there corresponds an interval I
(x1,i|j−1)
n of R+ of length

L
(x1,i|j−1)
n := γ

(n)
j−1

(
x1,U

(x1,i|2), . . . ,U(x1,i|j−1)
)
T (x1,i|j−1)

with {T (x1,i|j−1)} i.i.d. mean 1 exponential random variables independent of

{G(x1,i|l ), U(x1,i|l )}, l = 1, . . . , j −1, such that {I (x1,i|j−1)
n } is a partition of R+. The

mark of R(n)
j placed at the left end of I

(x1,i|j−1)
n is labeled (x1, i|j−1,1), and the

marks of S(n)
j ∈ I

(x1,i|j−1)
n , if any, are labeled (x1, i|j ), ij = 2, . . . ,1 + G(x1,i|j−1),

with G(x1,i|j−1) a geometric random variable with mean Mjγ
(n)
j−1(x1,U

(x1,i|2), . . . ,
U(x1,i|j−1)). The random variables in {G(x1,i|j−1)} are independent among them-
selves, and independent of the previous random variables. Finally, we assign to
each (x1, i|j ) a random variable U(x1,i|j ) uniformly distributed in Mj , correspond-

ing to ξ
(n)
j (sj ), for (x1, i|j ) ≡ sj ∈ S(n)

j ∪R(n)
j , with {U(x1,i|j )} independent among

themselves, and independent of previous random variables.
With this representation, we have labeled the marks of H(n)

j ∩ [0,�
(n)
j−1(r)],

j = 1, . . . , k, as (x1, i|j ), x1 = 1, . . . ,M1; i1 = 1, . . . ,N
(x1)
r ; il = 1, . . . ,1 +

G(x1,i|l−1),2 ≤ l ≤ j , with G(x1,i|l ) geometric with mean M2γ
(n)
1 (x1) when l = 1,

and with mean Ml+1γ
(n)
l (x1,U

(x1,i1), . . . ,U(x1,i|l )), when l = 2, . . . , j , respec-
tively. U(x1,i|l ) is uniformly distributed on Ml , l = 2, . . . , j . The random variables
in the family

Uj := {
U(x1,i|l );x1, i1, . . . , il ≥ 1, l = 2, . . . , j

}
are independent, and given Uj so are those in

{
G(x1,i|l );x1, i1, . . . , il ≥ 1, l = 1, . . . , j

}
.

Notice that, as before, G(x1,i|j ) is independent of U(x1,i|l ) as soon as j < l.
The marks of E (n)

j ∩ [0,�
(n)
j−1(r)] are those (x1, i|j ) as above for which il = 1

for some l = 2, . . . , j . In order to write an expression for K
(n)
j (r), we first view

E (n)
j ∩ [0,�

(n)
j−1(r)] as the leaves of a forest (see Figure 4), the distinct trees of

which have the marks labeled (x1, i|l,1), l = 1, . . . , j − 1, i1 = 1, . . . ,N
(x1)
r ; il =

2, . . . , G̃(x1,i|l−1) := 1 + G(x1,i|l−1), l = 2, . . . , j − 1, as roots; the tree rooted at
(x1, i|l,1) consisting of, besides the root, marks whose labels form the set

T
(x1,i|l )
j := {(

x1, i|lj
)

: im = 1, . . . , G̃(x1,i|lm−1),m = l + 2, . . . , j
}
,(5.27)
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FIG. 4. Schematic representation of portions of
⋃4

i=1 H
(n)
i and the forest whose leaves are

E(n)
4 ∩ [0,�

(n)
3 (r)]. Full points on horizontal dotted line represent H(n)

1 ∩ [0, r]. Successive gen-

erations of trees attached to each point of H(n)
1 ∩ [0, r] represent H(n)

2 ∩ [0,�
(n)
1 (r)], H(n)

3 ∩ [0,

�
(n)
2 (r)] and H(n)

4 ∩ [0,�
(n)
3 (r)], respectively. Forests of extra marks and their descendants are

shown in full lines and crosses. (Actual picture should look less regular, since the degrees of the
vertices of the trees are independent random variables, which should be moreover large for large n.)

where, for 1 ≤ h ≤ j ,

i|lh =
⎧⎪⎨
⎪⎩

i|l, if h ≤ l,
(i|l ,1), if h = l + 1,
(i|l ,1, il+2, . . . , ih), if h > l + 1.

(5.28)

Equation (5.27) is well defined whenever l < j − 1; otherwise, each of the above
mentioned trees consists of its root only.

REMARK 5.7. For each l = 1, . . . , j − 1, the roots of the above trees, namely
the points labeled (x1, i|l,1), with x1 and i|l as described above, represent the
extra marks of level l + 1, as described in the paragraph before the one contain-
ing (3.5), now with a labeling suited to the computations to be performed below.
The sites other than themselves on the trees of which they are the roots represent
their descendants, corresponding to either Poissonian or extra marks originating of
an extra mark at some level above.

Then the number of elements of E (n)
j ∩ [0,�

(n)
j−1(r)] on the leaves of T(x1,i|l )

j ,
l = 1, . . . , j − 2, j ≥ 3, is given by

G̃
(x1,i|l

l+1)∑
il+2=1

· · ·
G̃

(x1,i|l
j−1)∑

ij=1

1(5.29)

and their contribution to μ
(n)
j ([0,�

(n)
j−1(r)]) amounts to

G̃
(x1,i|l

l+1)∑
il+2=1

· · ·
G̃

(x1,i|l
j−1)∑

ij=1

γ
(n)
j

(
x1,U

(x1,i|l2), . . . ,U(x1,i|lj ))
T

(x1,i|lj )
,(5.30)
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where {T (x1,i|j )} are i.i.d. mean 1 exponential random variables, independent of all
other random variables. So the size of E (n)

j ∩ [0,�
(n)
j−1(r)] is given by

K
(n)
j (r) =

j−1∑
l=1

M1∑
x1=1

N
(x1,1)
r∑
i1=1

G̃(x1,i1)∑
i2=2

· · ·
G̃(x1,i|l−1)∑

il=2

G̃
(x1,i|l

l+1)∑
il+2=1

· · ·
G̃

(x1,i|l
j−1)∑

ij=1

1(5.31)

and its contribution to μ
(n)
j ([0,�

(n)
j−1(r)]) amounts to

μ
(n)
j

(
E (n)

j ∩ [
0,�

(n)
j−1(r)

])

=
j−1∑
l=1

M1∑
x1=1

N
(x1,1)
r∑
i1=1

G̃(x1,i1)∑
i2=2

· · ·
G̃(x1,i|l−1)∑

il=2

G̃
(x1,i|l

l+1)∑
il+2=1

· · ·(5.32)

G̃
(x1,i|l

j−1)∑
ij=1

γ
(n)
j

(
x1,U

(x1,i|l2), . . . ,U(x1,i|lj ))
T

(x1,i|lj )
,

where for l = 1 the sum
∑G̃(x1,i1)

i2=2 should be absent in (5.31)–(5.32); for l = j − 1,
the expressions in (5.29)–(5.30) should be interpreted as 1 and

γ
(n)
j

(
x1,U

(x1,i|2), . . . ,U(x1,i|j−1,1))T (x1,i|j−1,1),

respectively, and for j = 2 (5.31)–(5.32) should be, respectively, interpreted as

K
(n)
2 (r) =

M1∑
x1=1

N
(x1,1)
r∑
i1=1

1,

μ
(n)
2

(
E (n)

2 ∩ [
0,�

(n)
1 (r)

])=
M1∑

x1=1

N
(x1,1)
r∑
i1=1

γ
(n)
2

(
x1,U

(x1,i1,1))T (x1,i1,1),

from which we readily get

E
(
K

(n)
2 (r)

)= rM1,
(5.33)

E
(
μ

(n)
2

(
E (n)

2 ∩ [
0,�

(n)
1 (r)

]))= r

M2

∑
x|2∈M|2

γ
(n)
2 (x|2).

For j ≥ 3, by conditioning on N
(x1,1)
r ,G(x1,i1), . . . ,G(x1,i|j−2), U(x1,i|2), . . . ,

U(x1,i|j−2) (in the case of j = 3, N(x1,1)
r ,G(x1,i1)), and integrating on the remaining
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random variables, we get from (5.31)

j−1∑
l=1

M1∑
x1=1

· · ·
G̃(x1,i|l−1)∑

il=2

G̃
(x1,i|l

l+1)∑
il+2=1

· · ·

G̃
(x1,i|l

j−2)∑
ij−1=1

1

Mj−1

Mj−1∑
xj−1=1

(
1 + Mjγ

(n)
j−1

(
x1,U

(x1,i|l2), . . . ,U(x1,i|lj−2), xj−1
))

.

Proceeding inductively, we find

E
(
K

(n)
j (r)

)

= r∏j−2
p=1 Mp+1

j−1∑
l=1

∑
x|

j−1∈M|
j−1

l−1∏
p=1

Mp+1γ
(n)
p (x|p)(5.34)

×
j−1∏

p=l+1

(
1 + Mp+1γ

(n)
p (x|p)

)
.

Similarly,

E
(
μ

(n)
j

(
E (n)

j ∩ [
0,�

(n)
j−1(r)

]))

= r∏j−1
p=1 Mp+1

j−1∑
l=1

∑
x|j∈M|j

γ
(n)
j (x|j )

l−1∏
p=1

Mp+1γ
(n)
p (x|p)(5.35)

×
j−1∏

p=l+1

(
1 + Mp+1γ

(n)
p (x|p)

)
.

We are now ready to argue our claims.

(a) Fix j ∈ {2, . . . , k}, r > 0 and L > 0. Then, using Jensen’s inequality,

P
(
min

{
ξ

(n)
j (s) : s ∈ E (n)

j ∩ [
0,�

(n)
j−1(r)

]}
> L

)

=
∞∑
l=0

(
1 − L

Mj

)l

P
(
K

(n)
j (r) = l

)= E

[(
1 − L

Mj

)K
(n)
j (r)]

(5.36)

≥
(

1 − L

Mj

)E(K
(n)
j (r))

=
{(

1 − L

Mj

)Mj/L}L[E(K
(n)
j (r))/Mj ]

.

Using (5.34), we find that the expression within square brackets on the right-hand
side of (5.36) is the expression in (5.17), which goes to 0 as n → ∞ by hypothesis.
From (5.14), we have that the expression within curly brackets on the right-hand
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side of (5.36) is bounded away from zero as n → ∞. It immediately follows that
the probability on the left-hand side of (5.36) tends to 1 as n → ∞, and part (a) of
Lemma 5.6 is established.

(b) Given ε > 0, by Markov’s inequality,

P
(
μ

(n)
j

(
E (n)

j ∩ [
0,�

(n)
j−1(r)

])
> ε

)≤ ε−1E
(
μ

(n)
j

(
E (n)

j ∩ [
0,�

(n)
j−1(r)

]))
(5.37)

and the result follows from (5.35) and (5.18). �

REMARK 5.8. If X
(n)
k−1 → Xk−1 a.s. as n → ∞ in Skorohod space, then, by

Proposition 5.2 in Chapter 3 of [15] (page 118), we have that

lim
n→∞X

(n)
k−1(s) = lim

n→∞X
(n)
k−1(s−) = Xk−1(s)(5.38)

for all s ≥ 0 which is a continuity point of Xk−1.

LEMMA 5.9. Assume that the induction hypotheses (5.23)–(5.24) hold, and
let r ∈ [0,∞) be fixed. Then �

(n)
k (r) → �k(r) in probability as n → ∞.

PROOF. The strategy is to separate the contribution of the extra marks and
Poissonian marks with large labels from the remaining contributions. The conver-
gence of the remaining main (as it turns out) contributions to the corresponding
infinite volume contributions follows readily from the first part of (5.15), since
there is only a fixed finite number of contributions involved. The negligibility of
the total contribution of extra marks was established in Lemma 5.6 above, so we
are left with establishing that of the total contribution of high label marks. Details
follow.

Let �
(n)
k (r) = μ

(n)
k ((S(n)

k \ E (n)
k ) ∩ [0, r]). Then

∣∣�k(r) − �
(n)
k (r)

∣∣≤ ∣∣�k(r) − �
(n)
k (r)

∣∣+ μ
(n)
k

(
E (n)

k ∩ [0, r]).(5.39)

By Lemma 5.6(b), the second term on the right of (5.39) goes to 0 in probability
as n → ∞. We will argue that so does the first one. In preparation for this, let us
take, for given ε > 0, m1 ∈ N∗ such that∑

x1>m1

∑
x|2∈Nk−1∗

γ̄k(x|k) ≤ ε/k(5.40)

[recall the notation introduced around (2.2) above]. Proceeding inductively, with
m1, . . . ,mj−1, 2 ≤ j ≤ k − 1, fixed, choose mj such that

m1∑
x1=1

· · ·
mj−1∑

xj−1=1

∑
xj>mj

∞∑
x|j+1∈Nj+1∗

γ̄k(x|k) ≤ ε/k(5.41)
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and with m1, . . . ,mk−1 fixed, choose mk such that
m1∑

x1=1

· · ·
mk−1∑

xk−1=1

∞∑
xk>mk

γ̄k(x|k) ≤ ε/k.(5.42)

This procedure is well defined by (4.2).
Going back to the first term on the right of (5.39), we have that∣∣�k(r) − �

(n)
k (r)

∣∣
≤
∣∣∣∣ ∑
s∈S̃(mk)

k ∩[0,r]

{
γk

(
Xk−1(s), ξk(s)

)− γ
(n)
k

(
X

(n)
k−1(s), ξk(s)

)}
T (k)

s

∣∣∣∣(5.43)

+ ∑
s∈(Sk\S̃(mk)

k )∩[0,r]
γk

(
Xk−1(s), ξk(s)

)
T (k)

s(5.44)

+ ∑
s∈(S(n)

k \S̃(mk)

k )∩[0,r]
γ

(n)
k

(
X

(n)
k−1(s), ξk(s)

)
T (k)

s(5.45)

[recall (4.14)]. We have used here the fact that, given the coupled construction of
X

(n)
k and Xk , we have that ξ

(n)
k (s) = ξk(s) for Poisson points s.

The expression on the right-hand side of (5.43) converges to 0 in probability as
n increases because it is a finite sum, and from the first part of (5.15), and since
X

(n)
k−1(s) = Xk−1(s) for all s ∈ S̃(mk)

k ∩ [0, r] for all large enough n almost surely,

as follows from Remark 5.8 above, and the fact that the points of S̃(mk)
k are almost

surely continuity ponts of Xk−1.
Let B and C denote the expressions in (5.44) and (5.45), respectively.
To analyze B , we start by taking, for given η > 0, r ′

0 such that

P
(
�k−1

(
r ′

0
)
> r

)≥ 1 − η.(5.46)

This is allowed by the second assertion of Lemma 4.6. Now letting

A0 = (
Sk \ S̃(mk)

k

)∩ [
0,�k−1

(
r ′

0
)]

,

we define

A1 = {
s ∈ A0 :Xk−1,1(s) > m1

}
,

A2 = {
s ∈ A0 :Xk−1,1(s) ≤ m1,Xk−1,2(s) > m2

}
,

...
(5.47)

Ak−1 = {
s ∈ A0 :Xk−1,1(s) ≤ m1, . . . ,Xk−1,k−2(s) ≤ mk−2,

Xk−1,k−1(s) > mk−1
}
,

Ak = {
s ∈ A0 :Xk−1,1(s) ≤ m1, . . . ,Xk−1,k−1(s) ≤ mk−1

}
.
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Notice that by the definition of A0 and S̃(mk)
k (recall (4.14) above), we have that

ξk(s) > mk . Then, outside an event of probability at most η, we have that

B ≤
k∑

i=1

∑
s∈Ai

γk

(
Xk−1(s), ξk(s)

)
T (k)

s(5.48)

and following the same arguments used to establish (4.11), and using (5.40)–(5.42),
we conclude that

E

(
k∑

i=1

∑
s∈Ai

γk

(
Xk−1(s), ξk(s)

)
T (k)

s

)

≤ r ′
0

[ ∑
x1>m1

∑
x|2∈Nk−1∗

γ̄k(x|k) +
m1∑

x1=1

∑
x2>m2

∑
x|3∈Nk−2∗

γ̄k(x|k)

+ · · · +
m1∑

x1=1

· · ·
mk−1∑

xk−1=1

∑
xk>mk

γ̄k(x|k)
]

≤ r ′
0ε,

where the first inequality comes from ignoring the restriction s ∈ A0 in the first
k − 1 terms of the sum in i. This shows that B → 0 in probability as ε → 0, since
η is arbitrary.

The analysis of C is similar, with the dependence on n as a distinctive aspect.
From induction hypothesis (5.24) and the second assertion of Lemma 4.6, given
η > 0, there exists r0 such that for all n sufficiently large,

P
(
�

(n)
k−1(r0) > r

)≥ 1 − η;(5.49)

recall (5.26). With such r0 and the above choice of m1, . . . ,mk , define

A(n)
0 = (

S(n)
k \ S(mk)

k

)∩ [
0,�

(n)
k−1(r0)

]
,

A(n)
1 = {

s ∈A(n)
0 :X(n)

k−1,1(s) > m1
}
,

A(n)
2 = {

s ∈A(n)
0 :X(n)

k−1,1(s) ≤ m1,X
(n)
k−1,2(s) > m2

}
,(5.50)

...

A(n)
k = {

s ∈A(n)
0 :X(n)

k−1,1(s) ≤ m1, . . . ,X
(n)
k−1,k−1(s) ≤ mk−1

}
.

Then

P

(
C ≤

k−1∑
i=1

∑
s∈A(n)

i

γ
(n)
k

(
X

(n)
k−1(s), ξk(s)

)
T (k)

s

)
≥ 1 − η(5.51)
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for all n large enough. By (5.15), we may take n suficiently large such that∣∣∣∣∣
M1∑

x1>m1

∑
x|2∈M|2

γ̄
(n)
k (x|k) − ∑

x1>m1

∑
x|2∈Nk−1∗

γ̄k(x|k)
∣∣∣∣∣≤ ε/k,

∣∣∣∣∣
m1∑

x1=1

M2∑
x2=m2+1

∑
x|3∈M|3

γ̄
(n)
k (x|k) −

m1∑
x1=1

∑
x2>m2

∑
x|3∈Nk−2∗

γ̄k(x|k)
∣∣∣∣∣≤ ε/k,(5.52)

...∣∣∣∣∣
m1∑

x1=1

· · ·
mk−1∑

xk−1=1

Mk∑
xk=mk+1

γ̄
(n)
k (x|k) −

m1∑
x1=1

· · ·
mk−1∑

xk−1=1

∑
xk>mk

γ̄k(x|k)
∣∣∣∣∣≤ ε/k.

Following the same arguments used to establish (4.11), and using (5.40)–(5.42)
and (5.52), we get

E

(
k−1∑
i=1

∑
s∈A(n)

i

γ
(n)
k

(
X

(n)
k−1(s), ξk(s)

)
T (k)

s

)

≤ r ′
0

[
M1∑

x1=m1+1

∑
x|2∈M|2

γ̄
(n)
k (x|k) +

m1∑
x1=1

M2∑
x2=m2+1

∑
x|3∈M|3

γ̄
(n)
k (x|k)

+ · · · +
m1∑

x1=1

· · ·
mk−1∑

xk−1=1

Mk∑
xk=mk+1

γ̄
(n)
k (x|k)

]

≤ (
r0 + r ′

0
)
ε.

This shows that C → 0 in probability as we first take n → ∞ and then ε → 0,
since η is arbitrary, thus completing the proof. �

COROLLARY 5.10. The result of Lemma 5.9 still holds if we replace r on the
left-hand side by rn with rn → r as n → ∞, with (rn) a deterministic sequence.

PROOF. Let us write∣∣�(n)
k (rn) − �k(r)

∣∣≤ ∣∣�(n)
k (rn) − �

(n)
k (r)

∣∣+ ∣∣�(n)
k (r) − �k(r)

∣∣.(5.53)

Using the hypothesis and the monotonicity of �
(n)
k , given δ > 0, we have that

the first term on the right-hand side of (5.53) is bounded above by �
(n)
k (r + δ) −

�
(n)
k (r − δ) for all n large enough, which is in turn bounded above by

�k(r + δ) − �k(r − δ) + ∣∣�(n)
k (r + δ) − �k(r + δ)

∣∣
(5.54)

+ ∣∣�(n)
k (r − δ) − �k(r − δ)

∣∣.
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Let η > 0 now be given. By Lemma 5.9, and using (5.53)–(5.54), we find that

lim sup
n→∞

P
(∣∣�(n)

k (rn) − �k(r)
∣∣> η

)≤ P
(
�k(r + δ) − �k(r − δ) > η/3

)
(5.55)

and the result follows from r being almost surely a continuity point of �k (see
Remarks 4.1 and 4.3), since δ is arbitrary. �

REMARK 5.11. The same argument, of course, works in the case when (rn, r)

are random and independent of (�
(n)
k ,�k) and rn → r almost surely as n → ∞.

This can be applied to establish that under the assumption of Lemma 5.9, we have
that

�
(n)
k (T ) → �k(T ) as n → ∞,(5.56)

in probability for every T ≥ 0.

The next result is a finite volume version of Lemma 4.9 in the above section.

LEMMA 5.12. Given k ≥ 2, n ≥1, let X
(n)
k be a trap model on T

(n)
k . Suppose

that the assumptions of Theorem 5.4 and the induction hypotheses (5.23)–(5.24)
all hold. Then given m ≥ 1 and ε > 0, there exists m̃ = m̃(k) ≥ 1 such that the event

A(n)
m = {

if X
(n)
k,i (t) > m̃ for some i = 1, . . . , k − 1 and t ∈ [0, T ],

(5.57)
then X

(n)
k,j (t) > m for j = i + 1, . . . , k

}
has probability bounded below by 1 − ε for all n large enough.

PROOF. We argue similarly as in the proof of Lemma 4.9, except that state-
ments here hold with high probability, rather than almost surely.

By Remark 5.11 and the fact that limr→∞ �j(r) = ∞ for every 1 ≤ j ≤ k,

we may choose T ′ > 0 such that �
(n)
k (T ′) > T with probability at least 1 − ε/4

uniformly in n. Now for m ∈ N∗ and j = 1, . . . , k, let S̃(m)
j be as in (4.14) above.

For fixed � ∈ N∗, let T (n)
kj (�) denote the set of times up to �

(n)
k−1(T

′) spent by

X
(n)
k−1,j above �, j = 1, . . . , k − 1. Analogously as for the infinite volume case

[see (4.15)], we may check that the expected Lebesgue measure of T (n)
kj (�) equals

T ′
M1∑

x1=1

· · ·
Mj∑

xj=�+1

· · ·
Mk−1∑

xk−1=1

γ
(n)
1 (x|1) · · ·γ (n)

k−1(x|k−1)(5.58)

plus the contribution of the extra marks and their descendants. It follows
from (5.15) that the lim supn→∞ of the expression in (5.58) vanishes as � → ∞. By
Lemma 5.6(b), the contribution of the extra marks and their descendants vanishes



K-PROCESS ON A TREE 889

in probability as n → ∞. It then follows from elementary properties of Poisson
processes, that {

k−1⋃
j=1

T (n)
kj (�)

}
∩ S̃(m)

k = ∅(5.59)

outside an event whose probability is bounded above by ε/4 for all �,n large
enough. This statement is about Poissonian marks; but it also holds for extra marks
by Lemma 5.6(a).

So, given m ∈ N∗ and ε > 0, we find m̂(k) such that outside an event of prob-
ability smaller than ε/2 for all n large enough, if X

(n)
k,i (t) > m̂(k) for any t ≤ T ,

then X
(n)
k,k(t) > m. This in particular establishes the claim for k = 2 by the choice

m̃(2) = m̂(2). Let us assume that the claim is established for k − 1. Then substitut-
ing in that claim ε for ε/4, and T for T ′′ such that P(�

(n)
k−1(T

′) ≤ T ′′) > 1 − ε/4
for all large enough n as T , and choosing m̃(k) = m̃(k−1) ∨ m̂(k), we find that it
satisfies the claim for k. �

5.4. End of proof of Theorem 5.4. For j = 1, . . . , k, n ≥ 1, let X
(n)
j ∼

T M(T
(n)
k , γ

(n)
j ) and Xj ∼ Kj(Tk, γj ), and, for k ≥ 2 fixed, suppose that X

(n)
k−1 →

Xk−1 in probability as n → ∞. We may then and will inductively suppose that

X
(n′)
k−1 → Xk−1 a.s. as n′ → ∞,(5.60)

for a subsequence (n′). We will fix ε > 0, T > 0 and m ≥ 1 and choose T ′ and
m̃ such that outside an event E = En′ of probability at most ε/2 for all n′ large
enough, we have that the conclusions of Lemma 4.9 and 5.12 hold, and also that

�k−1(T
′) ∧ �

(n′)
k−1(T

′) > T . We will also assume that m̃ ≥ m, and that the claims
of Lemma 5.6 hold almost surely over (n′).

On the way to showing the validity of (5.60) with k replacing k −1 (in probabil-
ity), we now proceed to define appropriate time distortions λ(n′); see the discussion
on the Skorohod metric at the beginning of Section 5.2. Let us start by consider-
ing the constancy intervals of Xk−1,1 in [0,�k−1(T

′)) with Xk−1,1 ≤ m̃. These are
defined to be the rank-m̃ constancy intervals of the level 1 for Xk−1. Proceeding in-
ductively, given 2 ≤ � ≤ k − 1, for each rank-m̃ constancy interval I of level �− 1,
we consider the constancy intervals of Xk−1,� inside I such that Xk−1,� ≤ m̃. The
collection of all such intervals obtained from all the rank-m̃ constancy intervals of
level �−1 for Xk−1 form the set of rank-m̃ constancy intervals of level � for Xk−1.

Let a1, . . . , a2L denote the collection of all endpoints of all the rank-m̃ con-
stancy intervals of level i for Xk−1, i = 1, . . . , k − 1, in increasing order, and let
b1, . . . , b2J denote the collection of all endpoints of all the rank-m̃ constancy in-
tervals of level k − 1 for Xk−1 in increasing order. See Figure 5.
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FIG. 5. Depiction of objects appearing in the argument for the proof of Theorem 5.4 with k = 3.
Rank-m̃ constancy intervals of the first level ([a1, a6) and [a7, a14)) and rank-m̃ constancy intervals
of the second level ([a2, a3), [a4, a5), [a8, a9), [a10, a11) and [a12, a13)) for X2 appear on the
x-axis. Correspondingly on the y-axis, we have rank-m̃ constancy intervals of the first level ([A1,A6)

and another whose endpoints are not named in the picture), rank-m̃ constancy intervals of the second
level ([A2,A3), [A4,A5), and others whose endpoints are not named in the picture), and rank-m̃
constancy intervals of the third level ([A−

1 ,A+
1 ), [A−

2 ,A+
2 ), [A−

3 ,A+
3 ), and others whose endpoints

are not named in the picture) for X3. Some of the correspondences between the axes are indicated
by dotted lines. We have also b1 = a2, b2 = a3, b3 = a4, b4 = a5, b5 = a8, b6 = a9, b7 = a10,

b8 = a11, b9 = a12 and b10 = a13. This picture is also good for X
(n)
3 , with n large, and with all

endpoint labels having superscripts “(n).”

Let us also consider rank-m̃ constancy intervals of level i for X
(n′)
k−1, with the

paralell definition to the one above. By the assumption that Lemma 5.6 holds al-
most surely over (n′), and for n′ large enough, there is one-to-one correspondence

of the a
(n′)
1 , . . . , a

(n′)
2L(n′) and a1, . . . , a2L, with L(n′) = L for all large n′ and a

(n′)
i

corresponding to ai , and from (5.60),

a
(n′)
i → ai(5.61)

almost surely as n′ → ∞ for every i = 1, . . . ,2L.

Let now Ai = �k(ai) and A
(n′)
i = �

(n′)
k (a

(n′)
i ), i = 1, . . . ,2L. See Figure 5. It

follows from Lemma 5.9 (see Corollary 5.10 and Remark 5.11) that

A
(n′)
i → Ai(5.62)
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in probability as n′ → ∞, and we may assume a.s. convergence by taking a subse-
quence.

Let {s′
1, . . . , s

′
Q} be the enumeration in increasing order of

⋃J
i=1{S̃(m)

k ∩
[b2i−1, b2i )}, and let A−

i = �k(s
′
i−) and A+

i = �k(s
′
i). See Figure 5. We note that

the intervals [A−
i ,A+

i ), i = 1, . . . ,Q are the rank-m constancy intervals of level k

for Xk , whereas Ai , i = 1, . . . ,2L, are the endpoints of all the rank-m̃ constancy
intervals of level i for Xk , i = 1, . . . , k − 1.

We remark at this point that under our assumptions so far, we have that for all
i = 1, . . . , J

S̃(m)
k ∩ [

b2i−1, b2i

)= S̃(m)
k ∩ [

b
(n′)
2i−1, b

(n′)
2i

)
(5.63)

almost surely for all n′ large enough, where b
(n′)
i = a

(n′)
j such that aj = bi .

Let A−
i (n′) = �

(n′)
k (s′

i−), A+
i (n′) = �

(n′)
k (s′

i ). Then we have that for all large
enough n′, [A−

i (n′),A+
i (n′)), i = 1, . . . ,Q are the rank-m constancy intervals of

level k for X
(n′)
k , whereas A

(n′)
i , i = 1, . . . ,2L, are the endpoints of all the rank-m̃

constancy intervals of level i for X
(n′)
k , i = 1, . . . , k − 1.

Let us now argue that

A±
i

(
n′)→ A±

i(5.64)

in probability as n′ → ∞ (and again we may assume a.s. convergence by taking

a subsequence). It is enough to first note that almost surely A−
i (n′) = �̃

(n′)
k (s′

i),

A−
i = �̃k(s

′
i ), A+

i (n′) = �̃
(n′)
k (s′

i ) + γ
(n)
k (X

(n′)
k−1(s

′
i ), ξk(s

′
i)) and A+

i = �̃k(s
′
i ) +

γk(Xk−1(s
′
i ), ξk(s

′
i )), where �̃

(n′)
k and �̃k are obtained from μ̃

(n′)
k and μ̃k as �

(n′)
k

and �
(n′)
k are obtained from μ

(n′)
k and μk , respectively, where μ̃

(n′)
k = μ

(n′)
k and

μ̃k = μk everywhere except at {s′
i}, where μ̃

(n′)
k and μ̃k both vanish. By the same

arguments above we get �̃
(n′)
k (s′

i ) → �̃k(s
′
i ) in probability, and the result follows

upon noticing that X
(n′)
k−1(s

′
i) = Xk−1(s

′
i ) for all large enough n′ and using (5.15).

We are now ready to define our time distortion. Let λ(n′) : [0,∞) → [0,∞) be
such that

λ(n′)(Ai) = A
(n′)
i , λ(n′)(A−

i

)= A−
i

(
n′), λ(n′)(A+

i

)= A+
i

(
n′)(5.65)

and make it linear between successive points of A := {Ai, i = 1, . . . ,2L;A−
j ,A+

j ,

j = 1, . . . ,Q}, and linear with inclination 1 from maxA on. Then λ(n′) is almost
surely well defined for all large enough n′, and one readily checks that condi-
tion (5.65) implies that λ(n′) maps rank-m̃ constancy intervals of level i for Xk

to the corresponding rank-m̃ constancy intervals of level i for X
(n′)
k , i = 1, . . . , k,

given by the coupling. In particular, Xk,j (λ
(n′)(·)) = X

(n′)
k,j (·), j = 1, . . . i, on those
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respective intervals. From the assumptions of the paragraph of (5.60), we then have
that outside E

sup
0≤u≤T

ρ
(
X

(n′)
k ,Xk,λ

(n′), u
)≤ 1/m(5.66)

and by (5.62) and (5.64) and our construction and assumptions it follows that

φ
(
λ(n′))→ 0(5.67)

as n′ → ∞ almost surely, where φ is the time distortion function introduced
in (5.13).

It follows from all of the above that for every fixed ε, T > 0 and m ∈ N∗ we
may find a subsequence (n′) such that

P

(
ρ
(
X

(n′)
k ,Xk

)
>

1

m
+ e−T

)
≤ ε(5.68)

for all n′ large enough, so we have that X
(n′)
k → Xk in probability, and this readily

implies the claim of Theorem 5.4.

5.5. Proof of Theorem 5.2. The strategy will be to work with a coupled version
of (γ

(n)
k , γk), which we will call (γ̂

(n)
k , γ̂k), such that almost surely for every j =

1, . . . , k and x|j ∈ N
j∗

γ̂
(n)
j (x|j ) → γ̂j (x|j ) as n → ∞(5.69)

and then verify the remaining conditions of Theorem 5.4. (Recall that in the context
of Theorem 5.2, the sets of parameters γ

(n)
k and γk are random.)

For the coupling, we use the construction of [19], Section 6, which we describe
briefly, guiding the reader to that reference for more details.

Let Ej(x|j ), x|j ∈ N
j∗, j = 1, . . . , k be independent mean one exponential ran-

dom variables, and, for x|j−1 ∈ N
j−1∗ make

Sj (x|j ) =
xj∑
i=1

Ej(x|j−1, i),(5.70)

where x|0 is a void symbol. Let now

γ̂
(n)
j (x|j ) = c

(n)
j G−1

j

(
Sj (x|j )

Sj (x|j−1,Mj + 1)

)
,(5.71)

γ̂j (x|j ) = Sj (x|j )−1/αj .(5.72)

From an elementary large deviation estimate, we may assume that

Sj (x|j−1,Mj + 1) ≤ 2Mj(5.73)
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for all x|j−1 ∈ M|j−1 and n sufficiently large almost surely, recalling that the
Mj ’s depend on n.

Then γ̂
(n)
j (x|j−1) and γ̂j (x|j−1) are versions of γ

(n)
j (x|j−1) and γj (x|j−1), re-

spectively [23]. Proposition 6.3 and Lemma 6.4 of [19] immediately imply (5.69),
and also that almost surely for every j = 1, . . . , k and x|j−1 ∈N

j−1∗∑
xj∈Mj

γ̂
(n)
j (x|j ) → ∑

xj∈N∗
γ̂j (x|j ) as n → ∞.(5.74)

The a.s. validity of the first part of (5.15) for all j , x, as well as that of the second
part for k = 1, follow immediately.

In order to get the a.s. validity of the second part of (5.15) for general k, we
argue as follows. We may suppose by induction that it holds for k − 1. We first
write the sum in the second part of (5.15) more explicitly as follows:∑

x1

γ̂
(n)
1 (x1) · · ·∑

xj

γ̂
(n)
j (x|j ) · · ·∑

xk

γ̂
(n)
k (x|k),(5.75)

and break each of the k sums (following the strategy of [19]; see proof of Proposi-
tion 6.3 thereof) in three parts, so that the j th sum is written as

(1)∑
xj

+
(2)∑
xj

+
(3)∑
xj

,(5.76)

where given δj ∈ (0,1), the first sum is over xj such that γ̂j (x|j ) > δj , the second

sum is over x|j such that M
−1/αj

j < γ̂k(x|j ) ≤ δj and the third sum is over x|j
such that γ̂k(x|j ) ≤ M

−1/αj

j .
It follows from (5.69) that

(1)∑
x1

γ̂
(n)
1 (x1) · · ·

(1)∑
xk

γ̂
(n)
k (x|k) →

(1)∑
x1

γ̂1(x1) · · ·
(1)∑
xk

γ̂k(x|k)(5.77)

as n → ∞ almost surely, since these are sums over a fixed bounded set of terms.
We will show that

lim sup
δ1,...,δk→0

lim sup
n→∞

(i1)∑
x1

γ̂
(n)
1 (x1) · · ·

(ik)∑
xk

γ̂
(n)
ik

(x|k) = 0(5.78)

almost surely, for all (i1, . . . , ik) ∈ {1,2,3}k \ {(1, . . . ,1)}. Since, again,
∑(1)

xj
are

sums over a fixed bounded set of terms, and using the induction hypothesis, it is
enough to consider sums

(i1)∑
x1

γ̂
(n)
1 (x1) · · ·

(ik)∑
xk

γ̂
(n)
k (x|k)(5.79)
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with i1 ∈ {2,3}.
Let us first consider the case where i1 = 2 and ij ∈ {1,2} for all j = 2, . . . , k. It

follows from the arguments in the proof of Lemma 6.5 of [19] that given ηj > 0

there exists Cj < ∞ such that γ̂
(n)
j (x|j ) ≤ Cj [(γ̂j (x|j ))1−ηj ∨ (γ̂j (x|j ))1+ηj ], and

we replace ∨ by +, thus obtaining an upper bound. We then have an upper bound
for (5.79) in terms of 2k−1 sums of the form constant times∑

x1 : γ̂1(x1)≤δ1

(
γ̂1(x1)

)1−η1
∑
x2

(
γ̂2(x|2))1±η2 · · ·∑

xk

(
γ̂k(x|k))1±ηk .(5.80)

Now, by choosing ηj small enough such that

α1

1 ± η1
<

α2

1 ± η2
< · · · < αk

1 ± ηk

< 1,(5.81)

one readily checks, for example, by using Campbell’s theorem, that for every x1∑
x2

(
γ̂2(x|2))1±η2 · · ·∑

xk

(
γ̂k(x|k))1±ηk(5.82)

is an α2
1±η2

-stable random variable, and finally that the random variable in (5.80),
which is decreasing in δ1, converges in probability to 0 as δ1 → 0. We conclude
it converges almost surely to 0 as δ1 → 0, and (5.78) follows for the case where
i1 = 2 and ij ∈ {1,2} for all j = 2, . . . , k.

Let us now analyze the expression in (5.79) when L := {j = 1, . . . , k :
ij = 3} �= ∅. It is argued in [19] [see discussion leading to (6.20) in that refer-

ence] that for j ∈ L, γ̂
(n)
j (x|j ) is almost surely bounded above by a deterministic

constant times c
(n)
j for all large enough n uniformly in L. Let k′ = |L| and let

i ′1 < · · · < i′k′ be an enumeration of L, and let i′′1 < · · · < i ′′k′′ be an enumeration of
{1, . . . , k} \L, k′′ = k − k′. Then, arguing as above, (5.79) may be bounded above
by a sum of 2k′′

terms of the form

k′∏
j=1

c
(n)

i′j

Mi′1∑
xi′1=1

· · ·
Mi′

k′∑
xi′

k′ =1

{ Mi′′1∑
xi′′1 =1

(
γ̂

(n)

i′′1
(x|i′′1 )

)1±ηi′′1 · · ·

(5.83)
Mi′′

k′′∑
xi′′

k′′ =1

(
γ̂

(n)

i′′
k′′

(x|i′′
k′′ )

)1±ηi′′
k′′
}
.

Again, choosing η’s small enough, we have that the random variables within braces

are i.i.d.
αi′′1

1±ηi′′1
-stable ones, and since the outer sums are over

∏k′
j=1 Mi′j terms, and,

as one may readily check,
∏k′

j=1 c
(n)

i′j
(
∏k′

j=1 Mi′j )
(1±ηi′′1 )/αi′′1 decays polynomially
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in n to 0 as n → ∞, by a standard argument, we have that the expression in (5.83)
decays almost surely to 0 as n → ∞, and (5.74) follows for general k by first
taking n → ∞ and then δ1, . . . , δk → 0.

It remains to check (5.17) and (5.18) as strong limits for the γ̂ representations of
the respective γ ’s. This is done in much the same way as for checking (5.15) above,
so we will be rather sketchy. First note that the expressions in (5.17) and (5.18)
can, after dividing the M’s on the denominator inside the sum, and expanding the
resulting products

j−1∏
p=l+1

(
1

Mp+1
+ γ̂ (n)

p (x|p)

)
,(5.84)

be both written as a sum over a fixed number of terms of the form∑
x1

γ̌
(n)
1 (x1) · · ·∑

xm

γ̌
(n)
� (x|m),(5.85)

where 1 ≤ m ≤ k and γ̌
(n)
j (x|j ) is either γ̂

(n)
j (x|j ) or 1/Mj+1 = c

(n)
j for all j =

1, . . . ,m, with the latter case happening for at least one such j .
We can thus break each sum

∑
xj

into three kinds as above [see (5.76)], with the
superscript “(3)” applying also to the case where γ̌

(n)
j (x|j ) = c

(n)
j . The same argu-

ments used above to estimate the latter cases of (5.79) [see the paragraph of (5.83)]
apply, since there is always a sum of the third kind, and the result follows.
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