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SUBGEOMETRIC RATES OF CONVERGENCE OF MARKOV
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Technion—Israel Institute of Technology

We establish subgeometric bounds on convergence rate of general
Markov processes in the Wasserstein metric. In the discrete time setting we
prove that the Lyapunov drift condition and the existence of a “good” d-small
set imply subgeometric convergence to the invariant measure. In the contin-
uous time setting we obtain the same convergence rate provided that there
exists a “good” d-small set and the Douc–Fort–Guillin supermartingale con-
dition holds. As an application of our results, we prove that the Veretennikov–
Khasminskii condition is sufficient for subexponential convergence of strong
solutions of stochastic delay differential equations.

1. Introduction. In this paper, we study rate of convergence of Markov pro-
cesses to an invariant measure in the Wasserstein metric. We establish subgeo-
metric bounds on the convergence rate, thus generalizing the results of [4, 5, 11].
We apply the obtained estimates to prove subgeometric ergodicity of strong so-
lutions of stochastic differential delay equations (SDDEs) under Veretennikov–
Khasminskii-type conditions. This extends the corresponding results [4, 15, 25,
26] for stochastic differential equations (without delay).

There are quite a few works which deal with convergence of Harris recurrent
Markov chains in total variation; see, for example, the monograph [16] and the
references therein. Less is known about convergence of Markov chains that are not
Harris recurrent. Recall [12] that if a Markov chain has a unique invariant mea-
sure, then either (a) the chain is positive Harris recurrent in an absorbing set and
the invariant measure is nonsingular, or (b) the invariant measure is singular and
there are no Harris sets. It is quite clear that in case (b) the marginal distributions
of the Markov chain do not converge in total variation, whereas they might con-
verge weakly (and, hence, in the Wasserstein metric). Thus, for non-Harris chains
[case (b)] it is natural to study convergence in the Wasserstein metric (rather than
in the total variation metric).
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Many interesting Markov processes fall into case (b). For instance, follow-
ing [11], consider SDDE

dX(t) = −cX(t) dt + g
(
X(t − 1)

)
dW(t), t > 0,

where c > 0, W is a one-dimensional Brownian motion and g is a strictly increas-
ing positive bounded continuous function. One can show that the strong solution
of this equation has a unique invariant measure and converges to it weakly, but not
in total variation. On the other hand, the Wasserstein distance between X(t) and
the invariant measure decays exponentially to zero as t → ∞. Section 3 contains
further examples of processes belonging to case (b).

Many methods of estimation of convergence rates in the total variation metric
assume that a Markov process is ψ-irreducible and are based on the analysis of
small sets. Probably, one of the first results in this area is due to Dobrushin [3],
who proved that if the whole state space is small, then a Markov chain is expo-
nentially ergodic. Later Popov [20] and Nummelin and Tuominen [17] replaced
the global Dobrushin condition with a combination of a local Dobrushin condition
(existence of a “good” small set) and the Lyapunov drift condition (LDC). This re-
sult was further extended by Jarner and Roberts [13] and Douc and coauthors [5],
who established polynomial and general subgeometric estimates of convergence
rate, correspondingly. Similar results for continuous time Markov processes (un-
der an additional assumption that the state space is locally compact) are due to Fort
and Roberts [7] and Douc, Fort and Guillin [4]. The latter work provides subgeo-
metric estimates of the convergence rate under condition that a certain functional
of a Markov process is a supermartingale. Let us also mention the recent paper of
Hairer and Mattingly [10], which contains a new simple proof of the exponential
ergodicity of a Markov process under LDC and the local Dobrushin condition.

Thus, many techniques rely on the irreducibility of a Markov process, the ex-
istence of a “good” small set, and (for continuous time processes) the local com-
pactness of the state space. However, if the state space is infinite-dimensional, then
in most “typical” situations the process is non-Harris and, therefore these assump-
tions are not fulfilled. For instance, if we go back to the above SDDE, then it is
easy to check that this processes is not ψ-irreducible, the state space is not locally
compact and, as was pointed in [11], all small sets of this process are degenerate
(i.e., consists of no more than one point).

An alternative to the local Dobrushin condition was suggested by Bakry, Cat-
tiaux and Guillin in [1]. They obtained estimates of convergence rate in the total
variation metric, provided that the LDC holds, and a Markov process has a unique
invariant measure, which satisfies a local Poincaré inequality on a large enough
set.

Let us discuss another alternative to this set of assumptions, which was de-
veloped by Hairer, Mattingly, and Scheutzow [11] specifically for establishing
exponential convergence rates of SDDEs, stochastic PDEs, and other infinite-
dimensional processes in the Wasserstein metric. Exploiting a new notion of a
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d-small set (a generalization of the notion of a small set), in conjunction with the
LDC, and without any additional assumptions on the irreducibility of the process,
the authors proved the existence of a spectral gap in a suitable norm, and, hence,
the exponential convergence to stationarity.

We extend this result and consider the more general situation where a spectral
gap may not exist. For discrete time Markov processes (Theorem 2.1) we prove
that existence of a “good” d-small set and the LDC implies subgeometrical con-
vergence in the Wasserstein metric. In the continuous time setting (Theorem 2.4)
we obtain the same rate of convergence provided that there exists a “good” d-small
set and the Douc–Fort–Guillin supermartingale condition holds. Thus, we also ex-
tend the results of [4, 5].

We apply our conditions to study the asymptotic behavior of strong solu-
tions of SDDEs. We prove that Veretennikov–Khasminskii-type conditions are
sufficient for subexponential ergodicity (Theorem 3.3). This extends the results
of [4, 15, 25, 26].

The rest of the paper is organized as follows. Section 2 contains definitions
and the main results. Applications to SDDEs and to an autoregressive model are
presented in Section 3. The proofs of the main results are placed in Section 4.

2. Main results. Let X = (Xn)n∈Z+ be a homogeneous Markov chain on a
measurable space (E,B(E)) with transition functions P n(x,A) := Px(Xn ∈ A),
where x ∈ E, A ∈ B(E), n ∈ Z+. As usual for n = 1 we will drop the upper index
and write P(x,A). For a measurable function f :E → [0,∞), let Pf (E) be the set
of probability measures on (E,B(E)) which integrate f . We will write P(E) for
the set of all probability measures on (E,B(E)). If μ ∈ Pf (E), denote μ(f ) :=∫
E f (x)μ(dx). We define Markov semigroup operators as usual,

Pϕ(x) :=
∫
E

ϕ(t)P (x, dt), Pμ(dx) :=
∫
E

P (t, dx)μ(dt).

Recall (see, e.g., [2]) that if d is a semimetric on E, then the Wasserstein
semidistance Wd between probability measures μ,ν ∈ P(E) is given by

Wd(μ, ν) := inf
λ∈C(μ,ν)

∫
E×E

d(x, y)λ(dx, dy),

where C(μ, ν) is the set of all probability measures on (E × E,B(E × E)) with
marginals μ and ν. If d is a proper metric, then Wd is a distance.

We consider also the total variation metric on the space P(E), which is defined
by the following formula:

dTV(μ, ν) := 2 sup
A∈B(E)

∣∣μ(A) − ν(A)
∣∣, μ, ν ∈ P(E).

Recall that if the space E is equipped with the discrete metric d0(x, y) := I(x �= y),
x, y ∈ E, then the Wasserstein distance is just half of the total variation distance,
that is, Wd0(μ, ν) = dTV(μ, ν)/2, μ,ν ∈ P(E).
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DEFINITION 2.1. A set A ∈ B(E) is called small for a Markov operator P if
there exists ε > 0 such that for all x, y ∈ A,

1
2dTV

(
P(x, ·),P (y, ·)) ≤ 1 − ε.

For instance, any one-point set is small. However, as discussed above, a Markov
process might have no small sets that consist of more than one point. To study such
Markov processes Hairer, Mattingly and Scheutzow [11] introduce the following
concept.

DEFINITION 2.2. A set A ∈ B(E) is called d-small for a Markov operator P

if there exists ε > 0 such that for all x, y ∈ A,

Wd

(
P(x, ·),P (y, ·)) ≤ (1 − ε) d(x, y).

Note that our definition of a d-small set is a bit different from the definition
of [11]. Namely, the multiplier d(x, y) appears on the right-hand side of the above
inequality.

If d(x, y) = I(x �= y), then the notions of a small set and a d-small set coincide.
In the general case, the latter notion is much weaker than the former. In Section 3.1
we give an example of a Markov operator P that has a d-small state space and no
nontrivial small sets.

Before we present our main result, let us recall that the total variation metric is
contracting, that is, for any Markov semigroup (P t )t≥0 one has

dTV
(
P t(x, ·),P t (y, ·)) ≤ dTV

(
P s(x, ·),P s(y, ·)), x, y ∈ E

whenever 0 ≤ s ≤ t . In general, the Wasserstein metric Wd may not be contracting.
However, as discussed in detail in [11], it is natural to focus only on Wasserstein
metrics that are contracting for the process X, since, in the general case, the Lya-
punov drift condition is not sufficient even for a weak convergence toward the
invariant measure. Note that the contractivity condition itself does not imply any
convergence at all, either. It is the combination of the contractivity, the Lyapunov
drift condition and the existence of a “good” d-small set, which yields the exis-
tence and uniqueness of the invariant measure and subgeometric convergence in
the Wasserstein metric.

For a function f :R+ → (0;∞) define

Hf (x) :=
∫ x

1

1

f (u)
du, x ≥ 1.

Since Hf is increasing, the inverse function H−1
f is well defined.

THEOREM 2.1. Suppose there exist a measurable function V :E → [0;∞)

and a metric d on E such that the following conditions hold:
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(1) V is a Lyapunov function; that is, there exist a concave differentiable func-
tion ϕ :R+ → R+ increasing to infinity with ϕ(0) = 0 and a constant K ≥ 0 such
that

PV ≤ V − ϕ ◦ V + K.(2.1)

(2) The space (E,d) is a complete separable metric space.
(3) The metric d is contracting and bounded by 1; that is, for any x, y ∈ E,

Wd

(
P(x, ·),P (y, ·)) ≤ d(x, y) ≤ 1.(2.2)

(4) The level set L := {x, y ∈ E :V (x) + V (y) ≤ R} is d-small for some R >

ϕ−1(2K); that is, there exists ρ > 0 such that

Wd

(
P(x, ·),P (y, ·)) ≤ (1 − ρ)d(x, y)

for any x, y ∈ L.

Then the process X has a unique stationary measure π and∫
E

ϕ
(
V (u)

)
π(du) ≤ K.

Moreover, for any ε > 0 there exist constants C1 and C2 such that for all x ∈ E,

Wd

(
P n(x, ·),π) ≤ C1(1 + V (x))

ϕ(H−1
ϕ (C2n))1−ε

, n ∈ Z+.(2.3)

REMARK 2.2. (i) If ϕ is a linear function, then the rate of convergence is
exponential and this case is covered by [11], Theorem 4.8.

(ii) If d(x, y) = I(x �= y), then the Wasserstein metric coincides with the total
variation metric and this case is covered by [5], Proposition 2.5.

REMARK 2.3. Conditions (3) and (4) of the theorem are a bit more general
than the corresponding conditions from [11], Theorem 4.8. Namely, we do not
assume here that Wd(P (x, ·),P (y, ·)) ≤ (1 − ρ)d(x, y) for all x, y ∈ E such that
d(x, y) < 1. We suppose that this inequality is satisfied only for x, y belonging to
the sublevel set.

Note that if ϕ grows to infinity not very rapidly (as xγ for some 0 < γ < 1
or slower), then the estimate of convergence rate given by (2.3) can be as close
as possible to the estimate of convergence rate in the total variation distance ob-
tained in [5], Proposition 2.5. Specific examples of convergence rates (polynomial,
logarithmic, etc.) for different functions ϕ are given in [5], Section 2.3.

While the proof of the theorem is postponed to Section 4, we outline now the
main steps.

SKETCH OF THE PROOF OF THEOREM 2.1. To prove the theorem we develop
the idea of constructing an auxiliary contracting semimetric [9–11]. Namely, let
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l be a semimetric on the space E such that d(x, y) ≤ l(x, y) for all x, y ∈ E. It
is possible to prove (for some “good” l) that for any probability measures μ,ν ∈
Pϕ◦V (E)

Wl(Pμ,Pν) ≤ (
1 − χ(μ, ν)

)
Wl(μ, ν),

where χ is a positive function (this is done in Lemma 4.3). Hence

Wd

(
P nμ,P nν

) ≤ Wl

(
P nμ,P nν

) ≤
n−1∏
i=0

(
1 − χ

(
P iμ,P iν

))
Wl(μ, ν).

Of course, since we want to obtain subgeometric estimates of Wd(P nμ,P nν),
there is no hope that infμ,ν∈Pϕ◦V (E) χ(μ, ν) is positive (this lower bound was
greater than zero in [9–11], where geometric estimates were obtained). Yet, a good
(albeit nonuniform) estimate of χ(P i+1μ,P i+1ν) can be derived. However, this
estimate depends not only on Wl(P

iμ,P iν) but also on μ(P i(ϕ ◦ V )) and
ν(P i(ϕ ◦ V )). The latter two expressions are unbounded if μ,ν are fixed, and i

runs over positive integers. Fortunately, there are sufficiently many integers i such
that these two expressions are “small” (Lemma 4.1). This allows us to overcome
this obstacle (Lemma 4.4) and obtain subgeometric bounds on Wd(P nμ,P nν).
The last step is to prove the existence and uniqueness of the stationary measure
(Lemma 4.5). �

Now we give a similar result for continuous time Markov processes. Let X =
(Xt)t≥0 be a time-homogeneous strong Markov process, and let (Pt )t≥0 be the
associated Markov semigroup. Recall [6], Theorem 2, that if a Markov process has
càdlàg paths, then the strong Markov property is implied by the Feller property.

THEOREM 2.4. Suppose there exist a measurable function V :E → [0;∞)

and a metric d on E such that the following conditions hold:

(1) V is a Lyapunov function; that is, there exist a concave differentiable func-
tion ϕ :R+ → R+ increasing to infinity with ϕ(0) = 0 and a constant K ≥ 0 such
that for all t ≥ 0, x ∈ E

ExV (Xt) ≤ V (x) − Ex

∫ t

0
ϕ

(
V (Xu)

)
du + Kt.(2.4)

(2) The space (E,d) is a complete separable metric space.
(3) The metric d is bounded by 1 and contracting for all t ≥ t0, for some t0 ≥ 0;

that is, for any x, y ∈ E

Wd

(
P t(x, ·),P t (y, ·)) ≤ d(x, y) ≤ 1.

(4) The level set L := {x, y ∈ E :V (x) + V (y) ≤ R} is d-small for all R > 0
and all t ≥ t0, that is, there exists ρ = ρ(R, t) > 0 such that

Wd

(
P t(x, ·),P t (y, ·)) ≤ (1 − ρ)d(x, y)

for any x, y ∈ L.
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Then the process X has a unique stationary measure π and π(ϕ ◦ V ) ≤ K .
Moreover, for any ε > 0 there exist constants C1 and C2 such that for all x ∈ E,

Wd

(
P t(x, ·),π) ≤ C1(1 + V (x))

ϕ(H−1
ϕ (C2t))1−ε

, t ≥ 0.(2.5)

REMARK 2.5. (i) The linear case ϕ(x) = λx, λ > 0 is [11], Theorem 4.8.
(ii) The case where the metric d is discrete, that is, d(x, y) = I(x �= y), is [4],

Theorem 3.2.

REMARK 2.6. (i) Condition (1) of Theorem 2.4 is equivalent to the Douc–
Fort–Guillin supermartingale condition [4], equation (3.2); that is, inequality (2.4)
holds if and only if the process Z := (Zt )t≥0,

Zt := V (Xt) +
∫ t

0
ϕ

(
V (Xu)

)
du − Kt, t ≥ 0

is a supermartingale with respect to the natural filtration of the process X.
(ii) Let L be the extended generator (see, e.g., [22], Definition 7.1.8) of the

Markov process X. If the function V belongs to the domain of L and

LV ≤ −ϕ ◦ V + K,

where K > 0 and ϕ :R+ → R+ is a concave differentiable function increasing to
infinity with ϕ(0) = 0, then condition (1) of Theorem 2.4 holds.

The proof of this theorem is given in Section 4. Let us describe here the main
idea.

SKETCH OF THE PROOF OF THEOREM 2.4. Combining the technique from
[4, 7, 18], we find a function W :E → [0;∞) such that

P t0W(x) ≤ W(x) − ϕ
(
K1W(x)

) + K2, x ∈ E

for some positive K1, K2. Therefore, by Theorem 2.1, the skeleton chain
(Xnt0)n∈Z+ has a unique invariant measure. It is possible to prove that this measure
is also invariant for the Markov process X, and inequality (2.5) holds. �

Thus Theorems 2.1 and 2.4 suggest a new method for proving results concern-
ing subgeometrical convergence. Namely, one needs to find a suitable contracting
metric d and a suitable Lyapunov function V with d-small sublevel sets, such that
the conditions of the theorems hold. It extends the ability of the existing methods
by allowing to choose the metric d (which might be different from the discrete
metric).
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3. Examples and applications. Let us give some applications of the results
of the previous section. The focus here is on stochastic delay equations; however, it
is possible to apply the results of this kind to study convergence in the Wasserstein
metric for other classes of Markov processes; see, for example, [11], Section 5.3,
for estimates of convergence rates of stochastic partial differential equations.

We first recall some terminology from [16]. A Markov chain X = (Xn)n∈Z+ is
said to be ψ-irreducible if there exists a nontrivial measure ψ on B(E) such that
for any x ∈ E and any set A ∈ B(E) with ψ(A) > 0, one has Px(TA < ∞) > 0,
where TA is the first return time to the set A, that is, TA := inf{n ≥ 1 :Xn ∈ A}.

A set H ∈ B(E) is called absorbing if P(x,H) = 1 for all x ∈ H , and Harris
if there exists a measure ψ on B(E) with ψ(H) > 0 such that for any x ∈ H and
any set A ∈ B(E) with ψ(A) > 0 one has Px(TA < ∞) = 1.

An invariant measure π is called singular if for any x ∈ E there exists an ab-
sorbing set Sx such that x ∈ Sx and π(Sx) = 0. In other words, the Markov chain,
whatever the starting point is, will remain in the set of π -measure 0.

3.1. Autoregressive model. Consider the following peculiar AR(1) process,
which belongs to case (b).

EXAMPLE 3.1. Let X = (Xn)n∈Z+ be an autoregressive process satisfying the
following equation:

Xn+1 = 1
10Xn + εn+1, n ∈ Z+,

where ε1, ε2, . . . are i.i.d. random variables uniformly distributed on the set
{0, 1

10 , . . . , 9
10} and X0 ∈ [0;1). In other words, to get Xn+1 from Xn one needs

to take the decimal notation of Xn (which starts with 0 followed by the decimal
point) and insert a random digit immediately after the decimal point. Other digits
in the decimal notation of Xn are shifted right by one position.

Clearly, X is a Markov process with state space (E,E) = ([0;1),B([0;1))).
Let d be the Euclidean metric on this space [i.e., d(x, y) = |x − y|, x, y ∈ E]. One
can easily prove that the process X has a unique invariant measure π , which is
uniformly distributed on the interval [0;1). Moreover, the sequence {Xn} weakly
converges to π as n → ∞.

This autoregression has a number of very interesting and unusual features. First,
it has a reconstruction property. Namely, if we have just one observation of Xn,
where the integer n can be arbitrarily large, then it is possible to find an initial value
X0 with probability 1 by the following simple formula: X0 = {10nXn}, where {b}
denotes the fractional part of a real b. In other words, one just needs to shift right
the decimal point by n positions and drop all the digits which will be on the left of
the decimal point.

Therefore for x, y ∈ E, x �= y, the probability measures P(x, ·) and P(y, ·) are
singular. Hence the process X has no nontrivial small sets. On the other hand, the
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whole state space E is d-small. Indeed, it is easily seen that Wd(P (x, ·),P (y, ·)) ≤
|x − y|/10, for any x, y ∈ E.

Observe also that the process X is not ψ-irreducible, and, furthermore, it has
uncountably many pairwise disjoint absorbing sets. Indeed, it is sufficient to note
that for any x ∈ E the set Sx := {y ∈ E | ∃m,n ∈ Z+ : {10my} = {10nx}} is ab-
sorbing, countable and for x, y ∈ E either Sx = Sy or Sx ∩ Sy = ∅. By the same
argument, the chain X has no Harris sets. Since π(Sx) = 0, we see that the measure
π is singular.

Finally, let us point out that for any x ∈ E, the sequence P n(x, ·) does not con-
verge to π in total variation [moreover, dTV(P n(x, ·),π) = 2 for any positive inte-
ger n]. On the other hand, P n(x, ·) converges exponentially to π in the Wasserstein
metric [moreover, Wd(P n(x, ·),π) ≤ 10−n for any positive integer n].

3.2. Stochastic delay equations. In this subsection we present our results on
convergence of SDDEs in the Wasserstein metric.

Fix r > 0, positive integers n, m, and let C = C([−r;0],Rn) be the space of
continuous functions from [−r;0] to R

n equipped with the supremum norm ‖ · ‖.
Following [11], introduce the following family of metrics on the space C:

dβ(x, y) = 1 ∧ ‖x − y‖/β, β > 0.

Consider the stochastic differential delay equation{
dX(t) = f (Xt) dt + g(Xt) dW(t), t ≥ 0,
X0 = x,

(3.1)

where f :C →R
n, g :C →R

n×m, W is an m-dimensional Brownian motion, x ∈ C
is the initial condition and as usual we use the notation Xt(s) := X(t + s), −r ≤
s ≤ 0. It is clear that the process X = (Xt)t≥0 defined on the state space (C,B(C))

is Markov.
Throughout this section we assume that the drift and the diffusion satisfy the

following conditions:

• the drift satisfies a one-sided Lipschitz condition, and the diffusion is Lipschitz;
that is, there exists K > 0 such that for any x, y ∈ C

2
〈
f (x) − f (y), x(0) − y(0)

〉+ + ∣∣∣∣∣∣g(x) − g(y)
∣∣∣∣∣∣2 ≤ K‖x − y‖2;(3.2)

• the diffusion is nondegenerate; that is, for any x ∈ C the matrix g(x) admits a
right inverse g−1(x) and

sup
x∈C

∣∣∣∣∣∣g−1(x)
∣∣∣∣∣∣ < ∞;(3.3)

• (3.4) f is continuous and bounded on bounded subsets of C.
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Here 〈·, ·〉 is the standard scalar product in R
n; for a real b we write b+ :=

max(b,0), and |||M||| denotes the Frobenius norm of a matrix M , that is, |||M|||2 =∑
M2

ij . As in [26] we also define

λ+ = sup
x∈C

x(0) �=0

〈
g(x)gT (x)

x(0)

|x(0)| ,
x(0)

|x(0)|
〉
, � = sup

x∈C
Trg(x)gT (x)

n
.

Conditions (3.2) and (3.4) imply [27] the existence and uniqueness of the strong
solution of SDDE (3.1).

Now we give a general theorem, which describes convergence rates in the
Wasserstein metric Wdβ . Theorem 3.2(i) is a generalization of [11], Assump-
tion 5.1.

THEOREM 3.2. Suppose conditions (3.2)–(3.4) hold, and there exists a Lya-
punov function V :C →R+ that satisfies inequality (2.4). If either

(i) lim‖x‖→∞ V (x) = ∞
or

(ii) V (x) = U(x(0)), for some function U :Rn → R+, lim|v|→∞ U(v) = ∞,
the diffusion coefficient is uniformly bounded, and the drift coefficient can be de-
composed into two terms,

f (x) = f1(x) + f2
(
x(0)

)
, x ∈ C,(3.5)

where the function f1 is bounded;

then SDDE (3.1) has a unique invariant measure π . Furthermore, for any β > 0,
the rate of convergence of Law(Xt) to π in the Wasserstein metric Wdβ is given
by (2.5).

PROOF. Fix β > 0. Let us check that the process X and the function V sat-
isfy the conditions of Theorem 2.4. It follows from [11], Proposition 5.4, and [24],
Lemma 3.7.2, that the process X is Feller. Since X has continuous paths, we see
that X is strongly Markovian. The first condition of the theorem is satisfied by as-
sumption. The second condition also holds. In case (i) it follows directly from [11],
Section 5.2, that there exists a γ ∈ (0;β) such that the third and the fourth condi-
tions are met. In case (ii), arguing as in [11], Proposition 5.3 and Lemma 3.8, one
can show that the set {x ∈ C : |x(0)| ≤ R}, R ≥ 0 is dγ -small for some γ ∈ (0;β),
and the metric dγ is contracting. Thus, in both cases the conditions of Theorem 2.4
are satisfied.

Apply Theorem 2.4 to the process X. It follows from this theorem that SDDE
(3.1) has a unique invariant measure π , and the rate of convergence of Law(Xt) to
π in the metric Wdγ is provided in (2.5). To complete the proof, it remains to note
that for any measures μ1,μ2 ∈ P(E) one has Wdβ (μ1,μ2) ≤ Wdγ (μ1,μ2). �
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Ergodic properties of stochastic differential equations (SDE) were studied by
Veretennikov [25, 26], Malyshkin [15], Klokov [14], Douc, Fort and Guillin [4]
and many others. It is known that the Veretennikov–Khasminskii condition on the
drift combined with a certain nondegeneracy condition on the diffusion is sufficient
for the existence and uniqueness of the invariant measure for the strong solution
of an SDE. Moreover, these conditions yield exponential, subexponential or poly-
nomial (depending on the value of the constant α, see below) convergence toward
the invariant measure in the total variation metric [4, 19]. The following theorem
extends these results to SDDE.

THEOREM 3.3. Suppose conditions (3.2)–(3.4) hold, � < ∞ and the function
f1 in decomposition (3.5) is bounded.

(i) Assume additionally that for some constants α ∈ (0,1], M > 0, κ > 0, the
generalized Veretennikov–Khasminskii condition holds, that is,〈

f (x), x(0)
〉 ≤ −κ

∣∣x(0)
∣∣α, x ∈ C,

∣∣x(0)
∣∣ ≥ M.(3.6)

Then SDDE (3.1) has a unique invariant measure π , and Law(Xt) converges to
π in the Wasserstein metric Wdβ subexponentially (if 0 < α < 1) or exponentially
(if α = 1); that is, for any β > 0 there exists positive constants C1 and C2 such that

Wdβ

(
P t(x, ·),π) ≤ C1 exp

{
C1‖x‖α − C2t

α/(2−α)}, x ∈ C, t > 0.(3.7)

(ii) If (3.6) holds with α = 0 and κ > n�/2, then SDDE (3.1) has a unique
invariant measure π , but Law(Xt) converges to π in the Wasserstein metric Wdβ

only polynomially; that is, for any β > 0, ε > 0 there exist C > 0 such that

Wdβ

(
P t(x, ·),π) ≤ C

(
1 + ‖x‖2+2κ0

)
t−κ0+ε, x ∈ C, t > 0,

where κ0 = (κ − n�/2)λ−1+ .

PROOF. The proof is based on the application of Theorem 3.2(ii) with a suit-
able Lyapunov function V . (i) Following [14], Section 3 (see also [4], Proposi-
tion 5.2), let U :Rn → [0;∞) be a twice continuously differentiable function such
that U(v) = exp{k|v|α} for |v| ≥ M0. The parameters M0 ≥ M and k ≥ 0 will be
chosen later. Take V (x) = U(x(0)). By Ito’s Lemma, for any x ∈ C and t > 0 one
has

ExV (Xt) ≤ V (x) + αkEx

∫ t

0
I
(∣∣X(s)

∣∣ ≥ M0
)
V (Xs)

∣∣X(s)
∣∣α−2〈

X(s), f (Xs)
〉
ds

+ 1

2
αkEx

×
∫ t

0
I
(∣∣X(s)

∣∣ ≥ M0
)
V (Xs)

∣∣X(s)
∣∣α−2(

λ+αk
∣∣X(s)

∣∣α + C1
)
ds

+ C2t

≤ V (x) − C3αkEx

∫ t

0
I
(∣∣X(s)

∣∣ ≥ M0
)
V (Xs)

∣∣X(s)
∣∣2α−2

ds + C2t,
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where C1 = λ+(α − 2) + n�, C2 > 0, C3 = κ − 1
2λ+αk − 1

2C1M
−α
0 and in the

second inequality we made use of (3.6).
Let ϕ :R+ →R+ be a concave differentiable function with ϕ(0) = 0 and ϕ(t) =

t (ln t)(2α−2)/α for t ≥ e2. Take k = κ

2λ+α
, and M0 = (C1

κ
)1/α ∨ (2

k
)1/α ∨ M . Then

U(M0) ≥ e2 and

ExV (Xt) ≤ V (x) − C4Ex

∫ t

0
I
(∣∣X(s)

∣∣ ≥ M0
)
V (Xs)

∣∣X(s)
∣∣2α−2

ds + C2t

= V (x) − C5Ex

∫ t

0
I
(∣∣X(s)

∣∣ ≥ M0
)
ϕ

(
V (Xs)

)
ds + C2t

≤ V (x) − C5Ex

∫ t

0
ϕ

(
V (Xs)

)
ds + C6t,

where C4 := αkκ/4, C5 := C4k
2/α−2 and C6 > 0. Thus the function V satisfies

inequality (2.4). Theorem 3.2(ii) now yields the existence and the uniqueness of
the invariant measure π and implies estimate (3.7).

(ii) Now let U(v) = |v|k , where k > 2. We take V (x) = U(x(0)) and proceed
as follows:

ExV (Xt) ≤ V (x) + 1

2
kEx

∫ t

0

∣∣X(s)
∣∣k−2(

2
〈
X(s), f (Xs)

〉 + (k − 2)λ+ + n�
)
ds

≤ V (x) − kC1Ex

∫ t

0
I
(∣∣X(s)

∣∣ ≥ M
)∣∣X(s)

∣∣k−2
ds + C2t,

where C1 = κ − k−2
2 λ+ − n�

2 , C2 > 0. Set

k = 2 + 2κ − n�

λ+
− ε,

where ε > 0. By choosing ε > 0 small enough we can ensure that k > 2. Take
ϕ(u) = u(k−2)/k . Then

ExV (Xt) ≤ V (x) − C3Ex

∫ t

0
ϕ

(
V (Xs)

)
ds + C4t

for some C3, C4 > 0. Thus the function V satisfies condition (2.4), and the state-
ment of the theorem follows now from Theorem 3.2(ii). �

EXAMPLE 3.4. Consider the following peculiar SDDE:

dX(t) = f
(
X(t)

)
dt + g

(
X(t − 1)

)
dW(t),

where n = m = 1, the functions f and g satisfies (3.2)–(3.4), f also satisfies (3.6),
and g is a strictly increasing bounded positive continuous function. The strong
solution of this SDDE also belongs to case (b). This SDDE has the reconstruc-
tion property [23]; that is, if we know Xt for any t > 0, then we can reconstruct



538 O. BUTKOVSKY

the initial condition X0 with probability one. Hence, the measures P t(x, ·) and
P t(y, ·) are always singular for any t > 0 and x �= y. It follows from Theorem 3.3
that this SDDE has a unique invariant measure π . However, the reconstruction
property implies that dTV(P t (x, ·),π) does not converge to 0 as t → ∞, and the
measure π is singular. On the other hand, if we replace the total variation metric
dTV by the Wasserstein metric Wdβ (these two metrics can be arbitrarily close to
each other for sufficiently small β), then we see that Wdβ (P t (x, ·),π) converges
to 0 subexponentially.

4. Proofs of the main results. To prove Theorems 2.1 and 2.4 we intro-
duce some notation. Consider a semimetric l(x, y) := d(x, y)1/p(1 + βϕ(V (x) +
V (y)))1/q , where β > 0, p,q > 1 and 1/p + 1/q = 1. These parameters will be
chosen later. We start with two auxiliary lemmas.

LEMMA 4.1. Assume that a function V :E → [0;∞) satisfies condition (1)
of Theorem 2.1. Then for any n ∈ Z+

n−1∑
i=0

P i(ϕ ◦ V ) ≤ nK + V.(4.1)

Furthermore, if a measure π is invariant for the process X, then π ∈ Pϕ◦V (E)

and π(ϕ ◦ V ) ≤ K .

PROOF. Let us rewrite (2.1) in the following form: ϕ ◦ V − K ≤ V − PV .
Applying the operator P i , i ∈ Z+ to the both sides of this expression and summing
the result over all 0 ≤ i < n, we get

n−1∑
i=0

P i(ϕ ◦ V ) − nK ≤ V − P nV,

which proves (4.1).
To prove the second part of the lemma we combine the first part of the lemma

with a cut-off argument; see, for example, [8], Proposition 4.24. Fix L > 0. Then,
for any nonnegative integer i, we have∫

E

(
(ϕ ◦ V )(x) ∧ L

)
π(dx) =

∫
E

P i((ϕ ◦ V ) ∧ L
)
(x)π(dx)

≤
∫
E

(
P i(ϕ ◦ V )(x) ∧ L

)
π(dx).

Summing the both sides of the above inequality over all 0 ≤ i < n, we derive

∫
E

(
(ϕ ◦ V )(x) ∧ L

)
π(dx) ≤

∫
E

((
1

n

n−1∑
i=0

P i(ϕ ◦ V )(x)

)
∧ L

)
π(dx).
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This, combined with (4.1), yields∫
E

(
(ϕ ◦ V )(x) ∧ L

)
π(dx) ≤ K +

∫
E

(
V (x)

n
∧ L

)
π(dx).

Lebesgue’s dominated convergence theorem implies that the integral on the right-
hand side of the above inequality tends to 0 as n → ∞. Thus∫

E

(
(ϕ ◦ V )(x) ∧ L

)
π(dx) ≤ K

and the second part of the lemma follows from Fatou’s lemma. �

The following Lemma 4.2 is due to Petrov.

LEMMA 4.2 ([21]). Let a0, a1, . . . be a sequence of positive numbers, and
assume that for all n ∈ Z+ one has

an+1 ≤ an

(
1 − ψ(an)

)
, 0 ≤ a0 ≤ 1,

where ψ : [0;∞) → [0;1] is a continuous increasing function with ψ(0) = 0 and
ψ(x) > 0 for x > 0. Then

an ≤ g−1(n)(4.2)

for all n ∈ Z+, where

g(x) :=
∫ 1

x

dt

tψ(t)
, 0 < x ≤ 1.

PROOF. We see that the function g−1 is well defined. This follows from the
fact that the function g is nonnegative, unbounded and strictly decreasing. Since
ψ is positive, we have an+1 ≤ an. By the mean value theorem, there exists s ∈
[an+1;an] such that

g(an+1) − g(an) = g′(s)(an+1 − an) = −an+1 − an

sψ(s)
≥ anψ(an)

sψ(s)
≥ 1.

Hence g(an) ≥ n and an ≤ g−1(n). �

The next key lemma gives the estimate of the contraction rate in one step.

LEMMA 4.3. Assume that the conditions of Theorem 2.1 hold. Then there
exist β = β(p,q) and positive c1(p, q), c2(p, q), c3(p, q) such that for any μ,ν ∈
Pϕ◦V (E) one has

Wl(Pμ,Pν) ≤ (
1 − c1 ∧ c2ϕ

′(ϕ−1(
cWl(μ, ν)−p)))

Wl(μ, ν),

where c := c3(μ(ϕ ◦ V ) + ν(ϕ ◦ V ))p and the semimetric l was introduced at the
beginning of this section.
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Here, as usual, a ∧ b = min(a, b) and a ∨ b = max(a, b) for real a, b. To sim-
plify the formulas, we will drop a pair of parentheses and write 1 − a ∧ b for
1 − (a ∧ b).

PROOF OF LEMMA 4.3. We start as in the proof of [11], Theorem 4.8, by
observing that since Wl is convex, the Jensen inequality implies

Wl(Pμ,Pν) ≤
∫
E×E

Wl

(
P(x, ·),P (y, ·))α(dx, dy)(4.3)

for any μ,ν ∈ Pϕ◦V (E) and any α ∈ C(μ, ν). Applying the Cauchy–Schwarz in-
equality and the Jensen inequality for concave functions, we find that

Wl

(
P(x, ·),P (y, ·))
= inf

λ

∫
E×E

l(u, v)λ(du, dv)

≤ inf
λ

(∫
E×E

d(u, v)λ(du, dv)

)1/p

(4.4)

×
(

1 + β

∫
E×E

ϕ
(
V (u) + V (v)

)
λ(du, dv)

)1/q

≤ Wd

(
P(x, ·),P (y, ·))1/p(

1 + βϕ
(
PV (x) + PV (y)

))1/q
,

where the infimum is taken over all measures λ ∈ C(P (x, ·),P (y, ·)).
To estimate the right-hand side of the last inequality we consider three

different cases. Note once again that contrary to the proof of [11], Theo-
rem 4.8, it is impossible here to obtain a nontrivial upper uniform bound for
Wl(P (x, ·),P (y, ·))/ l(x, y).

Fix a large M > R.
Case 1. V (x)+V (y) ≤ R. In this case we proceed similar to [9, 11]. Using (4.4)

and conditions (1) and (4) of the theorem, we obtain

Wl

(
P(x, ·),P (y, ·)) ≤ (1 − ρ)1/p d(x, y)1/p(

1 + βϕ(2K + R)
)1/q

.

Setting

β = (1 + ρ/(2 − 2ρ))q−1 − 1

ϕ(2K + R)

we get

Wl

(
P(x, ·),P (y, ·)) ≤ (1 − ρ/2)1/p d(x, y)1/p ≤ (1 − ρ/2p)l(x, y).

Case 2. R < V (x) + V (y) ≤ M . In this case we make use of (2.1) and the
concavity of ϕ to derive

ϕ
(
PV (x) + PV (y)

)
≤ ϕ

(
V (x) + V (y) − ϕ

(
V (x)

) − ϕ
(
V (y)

) + 2K
)

(4.5)

≤ ϕ
(
V (x) + V (y) − ϕ

(
V (x) + V (y)

) + 2K
)
.
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Clearly, if u ∈ (R;M], then again by the concavity of ϕ we have

ϕ
(
u − ϕ(u) + 2K

) ≤ ϕ(u)

(
1 − (

ϕ(u) − 2K
)ϕ′(u)

ϕ(u)

)

≤ ϕ(u)
(
1 − θϕ′(M)

)
,

where θ := 1 − 2K/ϕ(R). This inequality, combined with (4.4), (4.5) and contrac-
tion property (2.2), yields

Wl

(
P(x, ·),P (y, ·))
≤ d(x, y)1/p(

1 + βϕ
(
PV (x) + PV (y)

))1/q

≤ d(x, y)1/p(
1 + βϕ

(
V (x) + V (y)

)(
1 − θϕ′(M)

))1/q

≤ l(x, y)

(
1 − θβϕ(R)

1 + βϕ(R)
ϕ′(M)

)1/q

≤ l(x, y)

(
1 − θβϕ(R)

q(1 + βϕ(R))
ϕ′(M)

)
.

Case 3. V (x) + V (y) > M . This is the easiest situation because in this case
we would like to derive a very weak estimate of Wl(P (x, ·),P (y, ·)). Combin-
ing (2.2), (4.4) and (4.5), we get

Wl

(
P(x, ·),P (y, ·))
≤ d(x, y)1/p(

1 + βϕ
(
V (x) + V (y) − ϕ

(
V (x) + V (y)

) + 2K
))1/q

≤ d(x, y)1/p(
1 + βϕ

(
V (x) + V (y)

))1/q

= l(x, y).

Now we return to the main line of the proof. Introduce

c1 = c1(p, q,R,K) := θβϕ(R)

q(1 + βϕ(R))
, c2 = ρ/2p.

Note that the values of c1 and c2 depend neither on the choice of M nor on mea-
sures μ and ν. We see from (4.3) and the above estimates of Wl(P (x, ·),P (y, ·))
that for all M > R one has

Wl(Pμ,Pν)

≤ (
1 − c2 ∧ c1ϕ

′(M)
) ∫

E×E
l(x, y)α(dx, dy)(4.6)

+ (
c2 ∧ c1ϕ

′(M)
) ∫

{V (x)+V (y)>M}
l(x, y)α(dx, dy).
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The second integral on the right-hand side of (4.6) is estimated using Chebyshev
inequality. Namely,∫

{V (x)+V (y)>M}
l(x, y)α(dx, dy)

≤
∫
{V (x)+V (y)>M}

(
1 + βϕ

(
V (x) + V (y)

))1/q
α(dx, dy)

≤ C

∫
{V (x)+V (y)>M}

ϕ
(
V (x) + V (y)

)1/q
α(dx, dy)

≤ Cϕ(M)−1/p
∫
E×E

ϕ
(
V (x) + V (y)

)
α(dx, dy)

≤ Cϕ(M)−1/p(
μ(ϕ ◦ V ) + ν(ϕ ◦ V )

)
,

where C = 1/K + β + 1, and in the second inequality we used the bound
ϕ(M) > K . Note that μ(ϕ ◦ V ) as well as ν(ϕ ◦ V ) are finite because it was as-
sumed that μ,ν ∈ Pϕ◦V (E).

Recall that α is an arbitrary element of C(μ, ν). Hence we can take the infimum
over all α ∈ C(μ, ν) in (4.6) and use the above inequality to derive

Wl(Pμ,Pν) ≤ (
1 − c2 ∧ c1ϕ

′(M)
)
Wl(μ, ν)

(4.7)
+ C

(
c2 ∧ c1ϕ

′(M)
)(

μ(ϕ ◦ V ) + ν(ϕ ◦ V )
)
ϕ(M)−1/p.

Now we can choose M in such a way, that the right-hand side of the above expres-
sion is always smaller than Wl(μ, ν). Namely, it is sufficient to require that

C
(
μ(ϕ ◦ V ) + ν(ϕ ◦ V )

)
ϕ(M)−1/p ≤ Wl(μ, ν)/2.

This inequality holds for

M = ϕ−1(
c3

(
μ(ϕ ◦ V ) + ν(ϕ ◦ V )

)p
Wl(μ, ν)−p)

,

where c3 = c3(p, q,R,K) = 2p(1/K + β + 1)p . The substitution of the last ex-
pression into (4.7) proves the lemma. �

LEMMA 4.4. Assume that the conditions of Theorem 2.1 are satisfied. Let
μ,ν ∈ Pϕ◦V (E) and let (nk)k∈Z+ be an increasing sequence of positive integers
such that for all k ∈ Z+

P nkμ(ϕ ◦ V ) + P nkν(ϕ ◦ V ) ≤ C(μ,ν),

where C(μ,ν) ≥ 1. Then there exist positive C1,C2 that do not depend on μ,ν

such that for all k ∈ Z+,

Wl

(
P nkμ,P nkν

) ≤ C1C(μ,ν)
1

ϕ(H−1
ϕ (C2k))1/p

.(4.8)
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PROOF. We begin by observing that for any measures ζ1, ζ2 ∈ Pϕ◦V (E) one
has

Wl(ζ1, ζ2) ≤
∫
E×E

(
1 + βϕ

(
V (x) + V (y)

))1/q
ζ1(dx)ζ2(dy)

≤
(

1 + β

∫
E×E

ϕ
(
V (x) + V (y)

)
ζ1(dx)ζ2(dy)

)1/q

≤ (
1 + βζ1(ϕ ◦ V ) + βζ2(ϕ ◦ V )

)1/q
,

where we used the concavity of the function ϕ and the bound d ≤ 1. Hence,

Wl

(
P n0μ,P n0ν

) ≤ (
1 + βP n0μ(ϕ ◦ V ) + βP n0ν(ϕ ◦ V )

)1/q

(4.9)
≤ (

1 + βC(μ,ν)
)1/q ≤ (1 + β)C(μ, ν).

Introduce c0 := 1 + β and denote

an := Wl(P
nμ,P nν)

c0C(μ,ν)
, n ∈ Z+.

It follows from Lemma 4.3 that 0 ≤ an+1 ≤ an for all n ∈ Z+. Besides, by defi-
nition and (4.9) we have an0 ≤ 1. The function ϕ′ is decreasing, therefore using
Lemma 4.3, we derive

ank+1 ≤ ank+1

≤ (
1 − c1

∧ c2ϕ
′(ϕ−1(

c3c
−p
0

(
P nkμ(ϕ ◦ V ) + P nkν(ϕ ◦ V )

)p
C(μ, ν)−pa−p

nk

)))
ank

≤ (
1 − c1 ∧ c2ϕ

′(ϕ−1(
c4a

−p
nk

)))
ank

,

where c4 = c
−p
0 c3. Since an0 ≤ 1, it is possible to apply Lemma 4.2 to the sequence

(ank
)k∈Z+ . It follows from (4.2) that ank

≤ g−1(k), where

g(x) =
∫ 1

x

dt

c1t ∧ c2tϕ′(ϕ−1(c4t−p))
= c5

∫ c6

x

dt

tϕ′(ϕ−1(c4t−p))
+ c7

= c8

∫ ϕ−1(c4x
−p)

c9

du

ϕ(u)
+ c7 = c8Hϕ

(
ϕ−1(

c4x
−p)) + c10

and c5, c6, . . . are some positive constants. Note that to obtain the third iden-
tity, we made the change of variables u = ϕ−1(c4t

−p). Thus we finally get
ank

≤ c11ϕ(H−1
ϕ (c12k))−1/p and hence

Wl

(
P nkμ,P nkν

) ≤ c13C(μ,ν)ϕ
(
H−1

ϕ (c12k)
)−1/p

.

This completes the proof of the lemma. �
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LEMMA 4.5. Under the conditions of Theorem 2.1, the process X has a
unique stationary measure π .

As was pointed out by the referee, if we additionally assumed that the sublevel
sets of V are compact, and the process X is Feller, then the proof of the lemma
would be trivial. Indeed, in this case the statement of the lemma would follow di-
rectly from the Krylov–Bogoliubov theorem; see [9], page 20. However, we do not
make this assumption because we would like to apply Theorem 2.1 to Markov pro-
cesses with a nonlocally compact state space and in particular, to strong solutions
of stochastic delay equations defined on C([−r;0],Rn); see Section 3.2.

PROOF OF LEMMA 4.5. First let us prove the existence of a stationary mea-
sure. Fix x ∈ E. Let us verify that the sequence of measures (P nδx)n∈Z+ has
a Cauchy subsequence. For n < m ∈ Z+, define

A(n,m) := #
{
i ∈ [n;m) :P i(ϕ ◦ V )(x) ≤ 4K + 4V (x) + 1

}
,

B(n,m) := #
{
i ∈ [0;n) :

(
P i(ϕ ◦ V )(x) ∨ P m−n+i (ϕ ◦ V )(x)

)
≤ 4K + 4V (x) + 1

}
.

Here the symbol # denotes the cardinality of a finite set. It follows from the above
definitions that for n < m,

B(n,m) ≥ A(0, n) + A(m − n,n) − n.(4.10)

Introduce the following sequence. Let r−1 = −1 and for k ∈ Z+,

rk := inf
{
s > rk−1 :

(
P s(ϕ ◦ V )(x) ∨ P m−n+s(ϕ ◦ V )(x)

) ≤ 4K + 4V (x)
}
.

We see that rB(n,m)−1 < n. We apply Lemma 4.4 to the sequence (rk)k∈Z+ , the
measures δx and P m−nδx and take C(δx,P

m−nδx) = 4K + 4V (x) + 1. Then,
by (4.8),

Wl

(
P nδx,P

mδx

)
≤ Wl

(
P rB(n,m)−1δx,P

rB(n,m)−1
(
P m−nδx

))
(4.11)

≤ C1
(
4K + 4V (x) + 1

)
ϕ

(
H−1

ϕ

(
C2B(n,m) − C2

))−1/p
,

where we used Lemma 4.3 to obtain the first inequality. Recall that the constants
C1,C2 are independent of n,m.

It follows from (4.1) that for any fixed n there exists an arbitrarily large m such
that A(mn, (m + 1)n) ≥ 3n/4. Since A(0, n) ≥ 3n/4, inequality (4.10) implies
that for any fixed n there exists an arbitrarily large m such that B(n,m) ≥ n/2. It
is clear that for all such m, one has

Wl

(
P nδx,P

mδx

)
≤ C1

(
4K + 4V (x) + 1

)
ϕ

(
H−1

ϕ (C2n/2 − C2)
)−1/p =: �(n).
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It is evident that �(n) → 0, as n → ∞.
Now we can construct the desired Cauchy subsequence. We set n0 = 0, and

for k ∈ Z+,

nk+1 := inf
{
m > nk :B(nk,m) ≥ nk/2 and �(m) ≤ e−(k+1)}.

By the above arguments, we see that the sequence (nk)k∈Z+ is well defined,
B(nk, nk+1) ≥ nk/2, and �(nk) ≤ e−k . Now we claim that the sequence
(P nkδx)k∈Z+ is a Cauchy sequence in the space (P(E),Wd). Indeed, using (4.11)
and the definition of nk we derive

Wd

(
P nkδx,P

nk+mδx

) ≤
k+m−1∑

i=k

Wd

(
P ni δx,P

ni+1δx

)

≤
k+m−1∑

i=k

Wl

(
P ni δx,P

ni+1δx

)

≤
k+m−1∑

i=k

�(ni) ≤
k+m−1∑

i=k

e−i ≤ 2e−k

for all integers k,m. Since the space (P(E),Wd) is complete (see, e.g., [2], The-
orem 1.1.3), we see that there exists a measure π ∈ P(E) such that Wd(P nkδx,

π) → 0.
Let us verify that the measure π is stationary, that is, let us check that Pπ = π .

Note that the metric Wd is contractive. Indeed, for any μ,ν ∈ P(E), we have

Wd(Pμ,Pν) ≤ inf
λ∈C(μ,ν)

∫
E×E

Wd

(
P(x, ·),P (y, ·))λ(dx, dy)

≤ inf
λ∈C(μ,ν)

∫
E×E

d(x, y)λ(dx, dy)

= Wd(μ, ν),

where we used the Jensen inequality and condition (2.2).
Therefore, for any k ∈ Z+, we obtain

Wd(Pπ,π) ≤ Wd

(
Pπ,P nk+1δx

)
+ Wd

(
P nkδx,P

nk+1δx

) + Wd

(
P nkδx,π

)
(4.12)

≤ 2Wd

(
π,P nkδx

) + Wl

(
P nkδx,P

nk+1δx

)
.

The first term on the right-hand side of the last expression tends to 0, as k → ∞. To
estimate the second term, we observe that if n is a positive integer, then A(0, n) ≥
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3n/4 and A(1, n + 1) ≥ 3n/4 − 1. Therefore, inequality (4.10) implies B(n,n +
1) > n/2 − 1. This, combined with (4.11), yields

Wl

(
P nkδx,P

nk+1δx

) ≤ C1
(
4K + 4V (x) + 1

) 1

ϕ(H−1
ϕ (C2nk/2 − 2C2))1/p

.

Hence Wl(P
nkδx,P

nk+1δx) → 0 as k → ∞, and we conclude from (4.12) that
Wd(Pπ,π) = 0, which implies the stationarity of the measure π .

To complete the proof of the lemma it remains to prove the uniqueness of sta-
tionary measure. Suppose that, on the contrary, the process X has two stationary
measures π1 and π2 and π1 �= π2. By Lemma 4.1, π1, π2 ∈ Pϕ◦V (E) and hence
0 < Wl(π1, π2) < ∞. We make use of stationarity of the measures and Lemma 4.3
to obtain

Wl(π1, π2) = Wl(Pπ1,Pπ2) < Wl(π1, π2).

This contradiction proves the lemma. �

PROOF OF THEOREM 2.1. It follows from Lemmas 4.1 and 4.5, that the pro-
cess X has a unique stationary measure π ∈ Pϕ◦V (E) and π(ϕ ◦ V ) ≤ K . Fix
x ∈ E and consider the following sequence. Let n0 = 0 and

nk+1 := inf
{
m > nk :P m(ϕ ◦ V ) ≤ 2K + 2V (x) + 1

}
, k ∈ Z+.

We make use of stationarity of π , the bound π(ϕ ◦V ) ≤ K and the definition of nk

to derive

P nkδx(ϕ ◦ V ) + P nkπ(ϕ ◦ V ) = P nkδx(ϕ ◦ V ) + π(ϕ ◦ V ) ≤ 3K + 2V (x) + 1.

Let us apply Lemma 4.4 to the measures δx,π , to the sequence (nk)k∈Z+ and take
C(δx,π) = 3K + 2V (x) + 1. Clearly, C(δx,π) > 1. It follows from (4.8) that

Wl

(
P nkδx,π

) ≤ C1
(
3K + 2V (x) + 1

) 1

ϕ(H−1
ϕ (C2k))1/p

.

On the other hand, it follows from (4.1) that nk ≤ 2k. To complete the proof, it
remains to take 1/p = 1 − ε and note that

Wd

(
P 2kδx,π

) ≤ Wl

(
P 2kδx,π

) = Wl

(
P 2kδx,P

2k−nkπ
) ≤ Wl

(
P nkδx,π

)
≤ C1

(
3K + 2V (x) + 1

) 1

ϕ(H−1
ϕ (C2k))1/p

. �

To switch from discrete time to continuous time and prove Theorem 2.4, we
combine different methods from [4, 7, 18]. First of all for a set C ∈ B(E), introduce
the hitting time delayed by δ > 0

τC(δ) := inf{t ≥ δ :Xt ∈ C}
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and the hitting and return times of the skeleton chain

σm,C := inf{n ∈ Z+ :Xmn ∈ C};
Tm,C := inf{n ∈ Z+, n ≥ 1 :Xmn ∈ C},

where m > 0. Denote for brevity CR := {x ∈ E :V (x) ≤ R}.
LEMMA 4.6. If R > 0 and ϕ(R) > K , then under the conditions of Theo-

rem 2.4

Exτ{V (x)≤R}(δ) ≤ δϕ(R) + V (x)

ϕ(R) − K

for all x ∈ E and δ > 0.

PROOF. Fix L > δ. Observe that if δ ≤ u < τCR
(δ), then by definition

V (Xu) ≥ R. Combining this with (2.4) we obtain

Ex

(
τCR

(δ) ∧ L
) = δ + Ex

∫ τCR
(δ)∧L

δ
du

≤ δ + 1

ϕ(R)
Ex

∫ τCR
(δ)∧L

δ
ϕ

(
V (Xu)

)
du

≤ δ + V (x) + KEx(τCR
(δ) ∧ L)

ϕ(R)
.

Therefore

Ex(τCR(δ) ∧ L) ≤ δϕ(R) + V (x)

ϕ(R) − K
.

The desired inequality follows now from the Fatou lemma. �

LEMMA 4.7. Let m > 0. If R > Km and ϕ(R − Km) > K , then under the
conditions of Theorem 2.4,

ExTm,CR
≤ c1V (x) + c2, x ∈ E,

where c1 = c1(m,R,K) and c2 = c2(m,R,K) are positive functions that do not
depend on x.

PROOF. The proof of the lemma uses the ideas from the proof of [7], Proposi-
tion 22(ii). However, note that we cannot apply this proposition directly because in
contrast to Fort and Roberts, we assumed neither that the set {V (x) ≤ R} is petite
nor that the process X is Harris-recurrent with invariant measure.

Introduce R′ < R −Km such that ϕ(R′) > K . The existence of such R′ follows
from the conditions of the lemma. Consider the following sequence of stopping
times:

τ 0 := 0, τ 1 := τCR′ (m), τn := inf
{
t ≥ τn−1 + m :Xt ∈ CR′

}
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and let M := supx∈CR′ ExτCR′ (m). By Lemma 4.6,

M ≤ mϕ(R′) + R′

ϕ(R′) − K
.

For n ∈ Z+, n ≥ 1 define Zn := I{X�τn/m�m ∈ CR}, where �b� denotes the
upper integer part of a real b. By definition, Zn ∈ Fτn+1 , where we denote
Ft := σ {Xs,0 ≤ s ≤ t}. We combine the strong Markov property, the Chebyshev
inequality and (2.4) to obtain

P(Zn = 1 | Fτn) = 1 − EXτn I{X�τn/m�m−τn /∈ CR}

≥ 1 − V (Xτn) + Km

R
(4.13)

≥ R − R′ − Km

R
=: γ.

It follows from the choice of R′ that γ > 0.
Introduce η := inf{n ∈ Z+, n ≥ 1 :Zn = 1}. Using the strong Markov property,

(4.13) and following the same lines as in the proof of [18], Lemma 3.1, we get for
n ≥ 1 and x ∈ CR′ ,

Exτ
nI(η ≥ n) ≤ Exτ

n−1I(η ≥ n − 1)E
(
I(Zn−1 = 0) | Fτn−1

)
+ ExI(η ≥ n − 1)E

(
τn − τn−1 | Fτn−1

)
≤ (1 − γ )Exτ

n−1I(η ≥ n − 1) + (1 − γ )n−1M.

Since Exτ
0I(η ≥ 0) is obviously zero, by induction we establish the following

estimate:

Exτ
nI(η ≥ n) ≤ nM(1 − γ )n−1, x ∈ CR′ .

Thus we have

Exτ
η ≤

∞∑
n=1

Exτ
nI(η ≥ n) ≤ M

γ 2 , x ∈ CR′ .

We combine this with Lemma 4.6 to finally obtain

mExTm,CR
≤ Exτ

1 + ExEX
τ1 τ

η + m

≤ mϕ(R′) + V (x)

ϕ(R) − K
+ mϕ(R′) + R′

γ 2(ϕ(R′) − K)
+ m

≤ c1V (x) + c2

for all x ∈ E. This completes the proof of the statement. �
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PROOF OF THEOREM 2.4. First let us prove that there exist a Lyapunov func-
tion W :E → [0,∞) and positive constants K1, K2 such that

P t0W(x) ≤ W(x) − ϕ
(
K1W(x)

) + K2, x ∈ E.(4.14)

Choose a sufficiently large R (such that the conditions of Lemma 4.7 hold with
m = t0), and let

W(x) := Ex

σt0,CR∑
k=0

ϕ
(
V (Xkt0)

)
.

It follows from [16], Theorem 11.3.5(i) that for x ∈ E

P t0W(x) = W(x) − ϕ
(
V (x)

) + I(x ∈ CR)Ex

Tt0,CR∑
k=1

ϕ
(
V (Xkt0)

)
.(4.15)

Using an argument similar to that in the proof of [4], Proposition 4.8(i), we obtain
for any L > 0 and x ∈ E,

Ex

Tt0,CR
∧L∑

k=1

ϕ
(
1 + V (Xkt0)

) − Ex

∫ Tt0,CR
∧L

0
ϕ

(
1 + V (Xst0)

)
ds

≤ 1

2
ϕ′(1)Kt0Ex(Tt0,CR

∧ L).

Furthermore, using condition (2.4) and the concavity of the function ϕ, we get for
any x ∈ E,

Ex

∫ Tt0,CR
∧L

0
ϕ

(
1 + V (Xst0)

)
ds

= 1

t0
Ex

∫ t0Tt0,CR
∧t0L

0
ϕ

(
1 + V (Xu)

)
du

≤ ϕ(1)Ex(Tt0,CR
∧ L) + 1

t0
Ex

∫ t0Tt0,CR
∧t0L

0
ϕ

(
V (Xu)

)
du

≤ V (x)/t0 + (
ϕ(1) + K

)
Ex(Tt0,CR

∧ L).

Combining this with the previous inequality and using Lemma 4.7 and Fatou’s
lemma, we derive for any x ∈ E,

Ex

Tt0,CR∑
k=1

ϕ
(
V (Xkt0)

)

≤ V (x)/t0 + (
ϕ(1) + K + ϕ′(1)Kt0

)
ExTt0,CR

(4.16)
≤ V (x)/t0 + c3

(
c1V (x) + c2

)
≤ c4V (x) + c5,
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where c1 and c2 are defined in Lemma 4.7, c3 := ϕ(1) + K + ϕ′(1)Kt0, c4 :=
1/t0 + c1c3, c5 = c2c3. Therefore, by the concavity of ϕ,

W(x) ≤ ϕ
(
V (x)

) + c4V (x) + c5 ≤ V (x)
(
ϕ′(1) + c4

) + ϕ(1) + c5.

This bound, together with (4.15) and (4.16), yields

P t0W(x) ≤ W(x) − ϕ
(
c6W(x)

) + c4R + c5 + c7

for some positive c6, c7. Hence the function W satisfies (4.14).
Now the statement of Theorem 2.4 follows from the corresponding statement

for discrete time chains. Indeed, the application of Theorem 2.1 to the skeleton
chain (Xnt0)n∈Z+ yields the existence of a measure π such that P t0π = π . Note
that for any 0 < s < t0 the measure πs := P sπ is also invariant for this skeleton
chain. Indeed, P t0πs = P t0+sπ = P sP t0π = πs . On the other hand, Theorem 2.1
yields uniqueness of the invariant measure. Thus, P sπ = π and the measure π is
invariant for the process X. Arguing as in the proof of Lemma 4.1, we see that
π(ϕ ◦ V ) ≤ K .

It follows from Theorem 2.1 that for any ε > 0 there exist constants C1, C2 such
that for all x ∈ E, n ∈ Z+,

Wd

(
P nt0(x, ·),π) ≤ C1(1 + V (x))

ϕ(H−1
ϕ (C2n))1−ε

.

We combine this with condition (4) of the theorem to conclude that for any t > t0,

Wd

(
P t(x, ·),π) = Wd

(
P t(x, ·),P t0+t−�t/t0�t0π

)
≤ Wd

(
P (�t/t0�−1)t0(x, ·),π)

≤ C1(1 + V (x))

ϕ(H−1
ϕ (C3t))1−ε

for some C3 > 0. Here �b� denotes the lower integer part of a real b. This com-
pletes the proof of Theorem 2.4. �
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