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We consider a particle system on Z
d with real state space and interactions

of infinite range. Assuming that the rate of change is continuous we obtain a
Kalikow-type decomposition of the infinite range change rates as a mixture of
finite range change rates. Furthermore, if a high noise condition holds, as an
application of this decomposition, we design a feasible perfect simulation al-
gorithm to sample from the stationary process. Finally, the perfect simulation
scheme allows us to forge an algorithm to obtain an explicit construction of
a coupling attaining Ornstein’s d̄-distance for two ordered Ising probability
measures.

1. Introduction. In this paper we present a Kalikow-type decomposition for
interacting multicolor systems on Z

d having real state space and interactions of
infinite range. By a Kalikow-type decomposition we mean a representation of
the infinite range rates as a countable mixture of local change rates of increas-
ing range. This decomposition extends the notion of random Markov chains to
interacting particle systems and has many potential theoretical consequences and
applications. As a first example we present a perfect simulation algorithm which is
based on the decomposition. As a corollary we obtain a result about the existence
and uniqueness of the invariant measure of the system as well as a rate of conver-
gence to stationarity. As a second application we construct a coupling attaining the
d̄-distance for two ordered Ising probability measures.

By a perfect simulation algorithm we mean a simulation which samples in a
finite window precisely from the stationary law of the infinite process. More pre-
cisely, for any finite set of sites F we want to sample the projection of the stationary
law on F . Our approach is feasible in the sense that it stops almost surely after a
finite number of steps. It does not require any duality or monotonicity properties.
We do not assume that the system has a dual, or is attractive, or monotone in any
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sense. Our system is not spatially homogeneous. The basic assumptions are the
continuity of the infinite range change rates together with a high-noise condition
[Condition (5.2): fast decay of the range influence on the change rate and a certain
subcriticality-criterion].

Concerning possible applications, perfect simulation of infinite range continu-
ous (or discrete) systems has shown to be an important tool, for instance, in statis-
tical inference for Gibbs distributions, for Bayesian statistics, for maximum like-
lihood estimation, rates of convergence of estimators. This field of research has
enormous relevance due to its applications in image processing, spatial statistics,
gene expression, to cite just a few of the possible applications. Some of the appli-
cations use discrete state space whereas others deal with continuous state space,
some deal with nearest neighbor interaction (image processing) whereas others
need infinite range interactions (tumor growth, dynamics of populations of neurons
or gene expression). We refer the reader to the books of Møller and Waagepetersen
(2004), Gaetan and Guyon (2010) for some applications.

Let us stress that from an applied point of view, it is important to be able to deal
with infinite range systems. In neuroscience, for example, for all practical pur-
poses, the interactions between neurons have infinite range [see, e.g., Cessac et al.
(2009) and Cessac, Nasser and Vasquez (2010)]. Also, very simple error structures
superposed on finite range systems will produce infinite range systems. This is the
case, for example, of blurred images [see, e.g., Nishimori and Wong (1999) and
Tanaka (2002)]. Up to now, denoising of images has been studied mostly with very
simple models (finite lattice, nearest neighbor interaction) due to the difficulty to
sample from a Gibbs distribution with infinite range interactions and/or continuous
state space.

So it is important to build up a unifying approach that enables us to deal with in-
finite range interactions and/or continuous state space at the same time. Although
perfect simulation of Gibbs random fields are known for discrete state spaces and
finite range interaction, very little is known for simulation of continuous state
spaces and/or infinite range interaction. To the best of our knowledge ours is the
first concrete result concerning perfect simulation for interacting particle systems
with continuous state space and infinite range interactions.

This paper is organized as follows. The model and the Kalikow-type decompo-
sition (Theorem 1) are presented in Section 2. The aim of Section 4 is to present
some examples where the decomposition can be explicitly done. In particular, we
apply Theorem 1 to the important case of Gibbs measures with infinite range inter-
actions and continuous spin values. In Section 5 we present the perfect simulation
algorithm as a main application of the Kalikow-type decomposition. In particular,
Theorem 3 shows that the proposed algorithm is feasible under a high noise con-
dition. The proofs are given in Sections 3 and 6. In Section 7 we give as a main
application of the perfect simulation algorithm an explicit construction of a cou-
pling attaining Ornstein’s d̄-distance for two ordered Ising probability measures.
We present a section discussing the user impatient bias. We conclude the article
with final comments and a bibliographical discussion.
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2. Definitions, notation and convex decomposition. We consider interacting
particle systems on Z

d having state space A and interactions of infinite range. The
elements of the state space A are called colors. To each site in Z

d we assign a color.
The coloring of the sites changes as time goes by. The rate at which the color of
a fixed site i changes from a color a to a new color b is a function of the entire
configuration and depends on b.

In what follows, we suppose that A is a Borel subset of R, equipped with its
Borel sigma-field A. � will be a finite nonnegative reference measure on (A, A).

The initial lowercase letters a, b, c, . . . will denote elements of A. We denote
by S = AZ

d
the configuration space with its product sigma algebra, S . We call

an element of S a configuration. Configurations will be denoted by Greek letters
η, ζ, ξ, . . . . A point i ∈ Z

d will be called a site. We define on Z
d the L1 norm,

‖i‖ = ∑d
k=1 |ik|. For k ≥ 0, let the ball of radius k be

Vi(k) = {
j ∈ Z

d; ‖j − i‖ ≤ k
}
.

As usual, for any i ∈ Z
d , η(i) will denote the value of the configuration η at

site i. By extension, for any subset V ⊂ Z
d , η(V ) ∈ AV will denote the restriction

of the configuration η to the set of positions in V. For any η, i and a, we shall
denote ηi,a the modified configuration

ηi,a(j) = η(j) for all j �= i, and ηi,a(i) = a.

For any i ∈ Z
d, let ci(a, η) be a positive A ⊗ S − B(R+)-measurable function such

that the following two properties hold. First, for �-almost all a ∈ A, η 	→ ci(a, η)

is continuous. Second, we have

sup
i∈Zd

sup
η

∫
A

ci(a, η)�(da) < ∞.(2.1)

A multicolor system with interactions of infinite range is a Markov process on S

whose generator is defined on cylinder functions by

Gf (η) = ∑
i∈Zd

∫
A

�(da)ci(a, η)
[
f

(
ηi,a) − f (η)

]
,(2.2)

where f ∈ D(G) = {f : |||f ||| = ∑
i∈Zd �f (i) < ∞} with �f (i) = sup{|f (η) −

f (ζ )| :η(j) = ζ(j) for all j �= i}.
By Theorem 3.9 of Chapter 1 of Liggett (1985) the following condition, together

with (2.1), implies that G is the generator of a Feller process (σt ) on S:

sup
i∈Zd

∑
j �=i

sup
η

sup
b∈A

{∫
A

ρ(da)
∣∣ci(a, η) − ci

(
a, ηj,b)∣∣} < ∞.(2.3)

In the following we shall work under conditions stronger than (2.3) ensuring not
only that G is the generator of a unique Feller process, but also the possibility of
perfectly simulating the stationary distribution corresponding to this infinitesimal
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generator. As a byproduct this implies that the system admits the existence of a
unique invariant measure μ.

The main result of this article is a Kalikow-type convex decomposition of the
change rates. We will prove that the change rate can be decomposed as

ci(a, η) = Mi

[
λi(−1)p

[−1]
i (a) + ∑

k≥0

λi(k)p
[k]
i

(
a|η(

Vi(k)
))]

,(2.4)

where:

• Mi, i ∈ Z
d are positive constants,

• for each i ∈ Z
d , {λi(k), k ≥ −1} is a probability distribution on {−1,0,1,2, . . .},

• for each i ∈ Z
d , p

[−1]
i (·) is a probability density on A with respect to the refer-

ence measure �, which does not depend on the configuration,
• for each k ≥ 0 and for each η ∈ S, p

[k]
i (·|η(Vi(k))) is a probability density with

respect to the reference measure �, depending only on the local configuration
η(Vi(k)).

For convenience of the presentation we will add additional invisible jumps
in (2.2). This is obtained by adding a cemetery � to A and defining A∗ := A∪{�}.
Define also

�∗ := � + δ�.

Denote

Mi := sup
η∈AZd

∫
ci(a, η)�(da).(2.5)

Notice that Mi is finite under condition (2.1), and define

ci(�,η) := Mi −
∫
A

ci(a, η)�(da).(2.6)

Observe that

inf
η

ci(�,η) = 0.(2.7)

Therefore we can rewrite the generator given by (2.2) as

Gf (η) = ∑
i∈Zd

∫
A∗

�∗(da)ci(a, η)
[
f

(
ηi,a) − f (η)

]
,(2.8)

where, by convention, for any i ∈ Z
d and any η ∈ S = AZ

d
, we define

ηi,� = η.

It follows that (2.8) is a representation of the same generator as (2.2).
In order to obtain the decomposition we need the following continuity condi-

tion.
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Continuity condition.

sup
i∈Zd

∫
A

sup
η,ζ :η(Vi(k))=ζ(Vi(k))

∣∣ci(a, η) − ci(a, ζ )
∣∣�(da) → 0(2.9)

as k → ∞.

To describe the convex decomposition of the rate function ci , we have to intro-
duce the following quantities. Define

αi(−1) =
∫
A∗

inf
ζ∈AZd

ci(a, ζ )�∗(da),(2.10)

and for any k ≥ 0,

αi(k) = inf
w∈AVi(k)

(∫
A∗

inf
ζ :ζ(Vi(k))=w

ci(a, ζ )�∗(da)

)
.(2.11)

The continuity of ci(a, η) in η and the separability of S imply the measurability of
infζ :ζ(Vi(k))=w ci(a, ζ ) and inf

ζ∈AZd ci(a, ζ ) with respect to a.

Note that by (2.7)∫
A∗

inf
ζ∈AZd

ci(a, ζ )�∗(da) =
∫
A

inf
ζ∈AZd

ci(a, ζ )�(da).

Further, by construction, we have that αi(k) ≤ αi(k + 1), for each k ≥ −1. We
claim that

Mi = lim
k→∞αi(k).(2.12)

To obtain equality (2.12), fix some w ∈ AVi(k); from (2.6), we have that∫
A∗

inf
ζ :ζ(Vi(k))=w

ci(a, ζ )�∗(da)

=
∫
A

inf
ζ :ζ(Vi(k))=w

ci(a, ζ )�∗(da) + inf
ζ :ζ(Vi(k))=w

ci(�, ζ )

=
∫
A

inf
ζ :ζ(Vi(k))=w

ci(a, ζ )�(da) + Mi − sup
ζ :ζ(Vi(k))=w

∫
A

ci(a, ζ )�(da).

But ∫
A

inf
ζ :ζ(Vi(k))=w

ci(a, ζ )�(da) − sup
ζ :ζ(Vi(k))=w

∫
A

ci(a, ζ )�(da) → 0

as k → ∞ thanks to condition (2.9).
Hence, to each site i we can associate a probability distribution λi by

λi(−1) = αi(−1)

Mi

,(2.13)
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and for k ≥ 0

λi(k) = αi(k) − αi(k − 1)

Mi

.(2.14)

Now we are ready to state the decomposition theorem.

THEOREM 1. Let (ci)i∈Zd be a family of measurable rate functions satisfying
conditions (2.1), (2.6) and (2.9). Then, for each site i, for Mi defined by (2.5) and
λi(·) defined by (2.13) and (2.14), there exist:

• p
[−1]
i a probability density with respect to � with support A,

• a family of conditional probability densities p
[k]
i [given by (3.4)], k ≥ 0 on A∗,

with respect to �∗, depending on the local configurations η(Vi(k)) ∈ AVi(k) such
that

ci(a, η) = Mipi(a|η) for �∗-almost all a ∈ A∗,(2.15)

where

pi(a|η) = λi(−1)p
[−1]
i (a) + ∑

k≥0

λi(k)p
[k]
i

(
a|η(

Vi(k)
))

.(2.16)

As a consequence, the infinitesimal generator G given by (2.8) can be rewritten
as

Gf (η) = ∑
i∈Zd

Mi

[
λi(−1)

∫
A

p
[−1]
i (a)

[
f

(
ηi,a) − f (η)

]
�(da)

(2.17)

+ ∑
k≥0

λi(k)

∫
A∗

p
[k]
i

(
a|η(

Vi(k)
))[

f
(
ηi,a) − f (η)

]
�∗(da)

]
.

Note that for k = −1, p
[−1]
i (a) does not depend on the configuration and λi(−1)

represents the spontaneous self-coloring rate of site i in the process. We will see
in the proof that p

[−1]
i is defined in such way that p

[−1]
i (�) = 0 and therefore, the

choice k = −1 always implies a choice of a real color a ∈ A, not of a = �.

The decomposition given in Theorem 1 was designed in such way that the prob-
ability of self-coloring is maximized. This is important to speed up the perfect
simulation algorithm. Obviously, slight modifications can be employed for differ-
ent purposes as we will see in Example 2 (Section 4).

The representation given by (2.17) provides a random finite range description
of the time evolution of the process. We start with an initial configuration η at time
zero. For each site i ∈ Z

d, we consider a rate Mi Poisson point process Ni. The
Poisson processes corresponding to distinct sites are all independent. If at time t ,
the Poisson clock associated to site i rings, we choose a range k with probability
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λi(k) independently of everything else. Then, we update the value of the configura-
tion at this site by choosing a symbol a with probability p

[k]
i (a|σt (Vi(k)))�∗(da).

Choosing the symbol � means that we actually keep the current value of the spin.
In Section 4 we give examples of infinite range interacting systems where The-

orem 1 can be applied.

3. Proof of Theorem 1. Put for any a ∈ A∗,

c
[−1]
i (a) = inf

ζ
ci(a, ζ ),

�
[−1]
i (a) = c

[−1]
i (a),

c
[0]
i

(
a|η(i)

) = inf
ζ :ζ(i)=η(i)

ci(a, ζ ),

�
[0]
i

(
a|η(i)

) = c
[0]
i

(
a|η(i)

) − c
[−1]
i (a).

For any k ≥ 1, define

c
[k]
i

(
a|η(

Vi(k)
)) = inf

ζ :ζ(Vi(k))=η(Vi(k))
ci(a, ζ ),

�
[k]
i

(
a|η(

Vi(k)
)) = c

[k]
i

(
a|η(

Vi(k)
)) − c

[k−1]
i

(
a|η(

Vi(k − 1)
))

.

Then we have that for any a ∈ A,

ci(a, η) =
k∑

j=−1

�
[j ]
i

(
a|η(

Vi(j)
)) + [

ci(a, η) − c
[k]
i

(
a|η(

Vi(k)
))]

.(3.1)

Note that

c
[−1]
i (�) = inf

η
ci(�,η) = Mi − sup

η

∫
A

ci(a, η)�(da) = 0.

Therefore, for a = � decomposition (3.1) starts with j = 0,

ci(�,η) =
k∑

j=0

�
[j ]
i

(
�|η(

Vi(j)
)) + [

ci(�,η) − c
[k]
i

(
�|η(

Vi(k)
))]

.

By monotonicity, we have for �∗-almost all a ∈ A∗ that

c
[k]
i

(
a|η(

Vi(k)
)) → lim

k
c
[k]
i

(
a|η(

Vi(k)
)) ≤ ci(a, η) as k → ∞.

Hence, by monotone convergence,∫
A

c
[k]
i

(
a|η(

Vi(k)
))

�(da) →
∫
A

[
lim
k

c
[k]
i

(
a|η(

Vi(k)
))]

�(da) ≤
∫
A

ci(a, η)�(da).

On the other hand, by (2.9),∫
A

c
[k]
i

(
a|η(

Vi(k)
))

�(da) →
∫
A

ci(a, η)�(da).
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Hence, for �∗-almost all a and all η,

lim
k

c
[k]
i

(
a|η(

Vi(k)
)) =

∞∑
j=−1

�
[j ]
i

(
a|η(

Vi(j)
)) = ci(a, η).

Taking into account (2.10) and (2.13),

Miλi(−1) =
∫
A

�
[−1]
i (a)�(da).

Hence, we can define

p
[−1]
i (a) = �

[−1]
i (a)

Miλi(−1)

and

p
[−1]
i (�) = 0.

Hence, p
[−1]
i (a) is a probability density with respect to �∗. Now, for k ≥ 0, put

λ̃i

(
k, η

(
Vi(k)

)) = 1

Mi

∫
A∗

�
[k]
i

(
a|η(

Vi(k)
))

�∗(da),(3.2)

and for any i, k such that λ̃i(k, η(Vi(k))) > 0, we define

p̃
[k]
i

(
a|η(

Vi(k)
)) = �

[k]
i (a|η(Vi(k)))

Miλ̃i(k, η(Vi(k)))
.

For i, k such that λ̃i(k, η(Vi(k))) = 0, define p̃
[k]
i (a|η(Vi(k))) in an arbitrary fixed

way.
Hence, for �∗-almost all a ∈ A∗,

ci(a, η) = Mi

[
λi(−1)p

[−1]
i (a) +

∞∑
k=0

λ̃i

(
k, η

(
Vi(k)

))
p̃

[k]
i

(
a|η(

Vi(k)
))]

.(3.3)

In (3.3) the factors λ̃i(k, η(Vi(k))), k ≥ 0, still depend on η(Vi(k)). To obtain the
decomposition as in the theorem, we must rewrite it as follows.

For any i, take Mi as in (2.12) and the sequences αi(k), λi(k), k ≥ −1, as de-
fined in (2.11) and (2.14), respectively. Define the new quantities

αi

(
k, η

(
Vi(k)

)) = Mi

∑
l≤k

λ̃i

(
l, η

(
Vi(l)

))

and notice that

αi

(
k, η

(
Vi(k)

)) =
∫
A∗

c
[k]
i

(
a, η

(
Vi(k)

))
�∗(da)

is the total mass associated to c
[k]
i (·, η(Vi(k))).
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By definition of αi(k) in (2.11), αi(k) is the smallest total mass associated to
c
[k]
i , uniformly with respect to all possible neighborhoods η(Vi(k)). Hence, in or-

der to get a decomposition with weights λi(k) not depending on the configuration,
we have to define a partition of the interval [0, αi(k, η(Vi(k)))] according to the
values of αi(k).

This yields, for any k ≥ 0, the following definition of the conditional finite range
probability densities.

p
[k]
i

(
a|η(

Vi(k)
))

=
k−1∑

−1=l′≤l

1{αi(l
′−1,η(Vi(l

′−1)))<αi(k−1)≤αi(l
′,η(Vi(l

′)))}

×1{αi(l,η(Vi(l)))<αi(k)≤αi(l+1η(Vi(l+1)))}
(3.4)

×
[

αi(l
′, η(Vi(l

′))) − αi(k − 1)

Miλi(k)
p̃

[l′]
i

(
a|η(

Vi

(
l′
)))

+
l∑

m=l′+1

λ̃i(m,η(Vi(m)))

Miλi(k)
p̃

[m]
i

(
a|η(

Vi(m)
))

+ αi(k) − αi(l, η(Vi(l)))

Miλi(k)
p̃

[l+1]
i

(
a|η(

Vi(l + 1)
))]

.

The desired decomposition now follows from this.

4. Examples. In this section we give examples where the decomposition of
Theorem 1 can be applied. We start with an example from Bayesian statistics and
image reconstruction.

EXAMPLE 1 (Autonormal distribution). This model can be seen as the spatial
analogue of the autoregressive model. The usual way to describe its dynamics is
through the simultaneous schemes: Each pixel updates its value using a normal
distribution with mean depending on the values of its neighbors.

In this work, we are going to generalize this definition to incorporate long-range
interactions and arbitrary neighborhoods, but we are going to limit the values of
the process to be on a compact interval [l, u]. The existence of a unique invariant
measure for this process was studied by McBryan and Spencer (1977) and revisited
by Ferrari and Grynberg (2008). Gibbs (2004) proposes a finite version of this
model as the posterior distribution for Bayesian restoration of grayscale images.
Huber (2007) studies perfect simulation of these distributions in a finite box.

Let {σ(i), i ∈ Z
d} be a collection of positive real numbers. Consider that each

pixel in Z
d has an independent exponential clock and when the clock rings at the
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pixel i it updates its value depending on the values of its neighbors using a normal
distribution with mean h(i, η) and variance σ 2(i) conditioned to lie in a given
compact interval. Without loss of generality we can consider the interval [0,1].
The term h(i, η) depends on η only through the values on the neighborhood of the
site i. Typically,

h(i, η) = ∑
j �=i

J (i − j)η(j),

where J : Zd → R
+ is summable, nonnegative and symmetric: J (i) ≥ 0 for all

i ∈ Z
d , J (0) = 0 and 0 < J := ∑

i∈Zd J (i) = 1.
In this case, �(da) = 1[0,1](a) da and

ci(a, η) = 1

σ(i)

φ((a − h(i, η))/σ (i))


((1 − h(i, η))/σ (i)) − 
(−h(i, η)/σ (i))
,

(4.1)
0 ≤ a ≤ 1,

where φ and 
 are the density and cumulative function of the standard normal
distribution, respectively.

Applying the bounds given by Proposition 1 of Fernández, Ferrari and Grynberg
(2007) we can show that (4.1) satisfies the assumptions (2.1) and (2.9) needed in
order to apply the decomposition of Theorem 1. In our case, Mi = 1 and

αi(−1) = 1

A+
(



(
xi(σ (i)) − μ+

σ(i)

)
− 


(−μ+

σ(i)

))
(4.2)

+ 1

A−
(



(
1 − μ−

σ(i)

)
− 


(
xi(σ (i)) − μ−

σ(i)

))
,

where μ− = infη h(i, η), μ+ = supη h(i, η),

A− = 


(
1 − μ−

σ(i)

)
− 


(−μ−

σ(i)

)
, A+ = 


(
1 − μ+

σ(i)

)
− 


( −μ+
√

σ(i)

)

and

xi

(
σ(i)

) = μ− + μ+

2
− σ(i)2

μ+ − μ− log
A−

A+ .

Also,

αi(k) = inf
w∈AVi(k)

1

A+
i (k)

(



(
xi(k, σ (i)) − μ+

i (k)

σ (i)

)
− 


(−μ+
i (k)

σ (i)

))
(4.3)

+ 1

A−
i (k)

(



(
1 − μ−

i (k)

σ (i)

)
− 


(
xi(k, σ (i)) − μ−

i (k)

σ (i)

))
,
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where μ−
i (k) = infη:η(Vi(k))=w h(i, η), μ+

i (k) = supη:η(Vi(k))=w h(i, η),

A−
i (k) = 


(
1 − μ−

i (k)

σ (i)

)
− 


(−μ−
i (k)

σ (i)

)
,

A+
i (k) = 


(
1 − μ+

i (k)

σ (i)

)
− 


(
0 − μ+

i (k)√
σ(i)

)

and

xi

(
k, σ (i)

) = μ− + μ+

2
− σ(i)2

μ+ − μ− log
A−

i (k)

A+
i (k)

.

As a second example we show that the decomposition presented in Theorem 1
can be effectively implemented in Gibbsian systems with compact-valued spins.
We take A = [−1,1] and introduce the following definitions.

DEFINITION 1. A pairwise potential is a collection {J (i, j), (i, j) ∈ Z
d ×Z

d}
of real numbers which satisfies

J (i, i) = 0, sup
i∈Zd

∑
j∈Zd

∣∣J (i, j)
∣∣ < ∞.(4.4)

In what follows we use the notation

�i = ∑
j∈Zd

∣∣J (i, j)
∣∣.

For any i ∈ Z
d, let η(i) be the value of the spin at site i in the configuration

η ∈ S.

DEFINITION 2. A probability measure μ on (S, S) is said to be a Gibbs state
relative to the potential {J (i, j)} if for all i ∈ Z

d , a version of the conditional
probability density of η(i), given η(j), j �= i, is given by

μ
(
η(i) = a|η(j) for all j �= i

) = exp(a
∑

j �=i J (i, j)η(j))

Zη
,

where

Zη =
∫
A

exp
(
a

∑
j �=i

J (i, j)η(j)

)
�(da).

In the following we consider the interaction Jβ = βJ, where β is a positive
parameter. The associated Gibbs measure will be denoted μ without indicating
explicitly the dependence on β. Now, put

ci(a, η) = e
βa

∑
j∈Zd J (i,j)η(j)

.(4.5)
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Then, by construction, the process (σt ) with generator (2.2) and this choice of
change rates is reversible with respect to the Gibbs state μ corresponding to the
potential Jβ(i, j) = βJ (i, j). It is immediate to see that condition (4.4) implies the
continuity condition (2.9).

We now give the explicit decomposition in one specific case.

EXAMPLE 2. The following example is a Gibbsian time evolution with infi-
nite range interaction. The decomposition we present here is inspired by the one
presented in Galves, Löcherbach and Orlandi (2010) in the case of two color sys-
tems. In Galves, Löcherbach and Orlandi (2010), for coupling reasons, it was con-
venient to give a slightly different decomposition. The goal there was to be able to
couple together the infinite range Gibbsian system with the finite range Gibbsian
system obtained by truncating the potential interaction. We suppose that the spin
distribution � is symmetric.

Define for any i ∈ Z
d and any k ≥ −1,

S>k
i := ∑

j :‖i−j‖>k

∣∣J (i, j)
∣∣, S

≤k
i := ∑

j :‖i−j‖≤k

∣∣J (i, j)
∣∣.

Note that �i = S>−1
i .

Then the decomposition (2.16) holds with

Mi =
∫ 1

0

(
eaβ�i + e−aβ�i

)
�(da).(4.6)

Moreover,

αi(−1) = 2
∫ 1

0
e−aβ�i�(da)(4.7)

and

αi(k) = Mi +
∫ 1

0
eaβS

≤k
i e−aβS>k

i �(da) −
∫ 1

0
eaβ�i�(da).(4.8)

Finally,

λi(−1) = 2

∫ 1
0 e−aβ�i�(da)∫ 1

0 (eaβ�i + e−aβ�i )�(da)
(4.9)

and

λi(k) =
∫ 1

0
eaβS

≤k−1
i e−aβS>k

i

× (eaβ
∑

j :‖j−i‖=k |J (i,j)| − e−aβ
∑

j :‖j−i‖=k |J (i,j)|)�(da)(4.10) /∫ 1

0

(
eaβ�i + e−aβ�i

)
�(da).
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5. Perfect simulation. The goal of this section is to give an application of
the Kalikow-type decomposition given by Theorem 1. This application is a perfect
simulation algorithm for the invariant measure of an interacting multicolor system.
We assume that the interaction rates are continuous in the sense of (2.9) and sat-
isfy a high noise condition. The basis of the algorithm is the convex decomposition
given in Theorem 1. First of all, Proposition 1 gives a sufficient condition for ex-
ponential ergodicity which is based on the construction of a dominating branching
process.

From now on we will denote by (σ
η
t ) [and (σ

μ
t )] the multicolor system having

generator G given by (2.8) with a fixed initial configuration η (a random configu-
ration chosen with probability distribution μ).

PROPOSITION 1. Let (ci)i∈Zd be a family of rate functions satisfying the con-
ditions of Theorem 1. Furthermore, assume that

M = inf
i∈Zd

Mi > 0(5.1)

and

sup
i∈Zd

∑
k≥0

∣∣Vi(k)
∣∣λi(k) = γ < 1.(5.2)

Then the following two statements hold.

(1) The process (σt ) admits a unique invariant probability measure μ.

(2) For any finite set of sites F ⊂ Z
d, for any T > 0 and any initial configura-

tion η, there exists a coupling between the process (σ
η
t ) and the stationary process

(σ
μ
t ) such that

P
(
σ

η
T (F ) �= σ

μ
T (F )

) ≤ |F |e−M(1−γ )T .

Let us compare the above proposition to known results in the literature on par-
ticle systems.

(1) Condition (5.2) is stronger than Liggett’s existence condition (2.3) which
does not imply the uniqueness of the invariant measure.

(2) Let us compare our result to the M < ε-criterion of Theorem 4.1 of Liggett
(2000), page 31. Recall that Liggett’s quantity M (translated into our context) is
given by

M = sup
i∈Zd

∑
j �=i

sup
{∥∥ci(a, η)�(da) − ci(a, ζ )�(da)

∥∥
TV :η(k) = ζ(k) ∀k �= j

}
.

By our decomposition of ci(a, η), this expression can be upper bounded by

M ≤ sup
i∈Zd

Mi

∑
k≥0

λi(k)
∣∣Vi(k)

∣∣.
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Since supi Mi < ∞, condition supi∈Zd

∑
k≥0 |Vi(k)|λi(k) < ∞ implies condi-

tion (3.8) of Liggett (2000).
Concerning the quantity ε defined on page 24 of Liggett (2000), note that in our

case, it can be written as follows:

ε = inf
i∈Zd

inf
η,a �=b

[
ci

(
a, ηi,b)

�
({a}) + ci

(
b,ηi,a)

�
({b})],

which will be equal to zero in general. Hence, with our techniques we are able
to treat cases where the M < ε-condition of Liggett (2000), Theorem 4.1, is not
satisfied.

(3) Condition (5.2) is a high-noise condition reminiscent of Dobrushin–
Shlosman condition [see Maes and Shlosman (1991)]. It is a sufficient condition
ensuring that there is no phase transition.

We are now in position to present the perfect simulation scheme. Suppose we
want to sample the configuration at site i under the invariant measure μ. In a first
step, we determine the set of sites whose spins influence the spin at site i under
equilibrium. We call this set of sites ancestors of i and this stage backward sketch
procedure. First, we climb up from time 0 using a reverse time Poisson point pro-
cess with rate Mi . We stop when the last Poisson clock before time 0 rings. At
that time, we choose a range k with probability λi(k). If k = −1, we decide the
value of the spin using the law p

[−1]
i d�, independently of everything else. If k

is different from −1, we restart the above procedure from every site j ∈ Vi(k).

The procedure stops once each site involved has chosen range −1. When this oc-
curs, we can start the second stage, in which we go back to the future assigning
spins to all sites visited during the first stage. We call this procedure forward spin
assignment procedure. This is done from the past to the future by using the up-
date probability densities p

[k]
i starting at the sites which ended the first procedure

by choosing range −1. For each one of these sites a spin is chosen according to
p[−1] d�. The values obtained in this way enter successively in the choice of the
values of the spins depending on a neighborhood of range greater or equal to 0.

We now give the precise form of the algorithm. Fix a finite set F ⊂ Z
d . The

following variables will be used:

• N is an auxiliary variable taking values in the set of nonnegative integers
{0,1,2, . . .}.

• N
(F)
STOP is a counter taking values in the set of nonnegative integers {0,1,2, . . .}.

• I is a variable taking values in Z
d .

• K is a variable taking values in {−1,0,1, . . .}.
• B is an array of elements of Z

d × {−1,0,1, . . .}.
• C is a variable taking values in the set of finite subsets of Z

d .
• W is an auxiliary variable taking values in A∗.
• σ is a function from Z

d to A∗.
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ALGORITHM 1 (Backward sketch procedure).

1. Input: F ; Output: N
(F)
STOP, B

2. N ← 0, N
(F)
STOP ← 0, B ← ∅, C ← F

3. WHILE C �= ∅

4. N ← N + 1
5. Choose randomly a position I ∈ C and an integer K ≥ −1 according to the

probability distribution

P(I = i,K = k) = Miλi(k)∑
j∈C

∑
l≥−1 Mjλj (l)

6. IF K = −1, C ← C \ {I }
7. ELSE C ← C ∪ BI (K)

8. ENDIF
9. B(N) ← (I,K)

10. ENDWHILE
11. N

(F)
STOP ← N

12. RETURN N
(F)
STOP, B

Now we use the following forward spin assignment procedure to sample from
the invariant measure μ. Recall that the choice of � in (2.8) implies that the system
does not change its colors. This explains Step 9 in Algorithm 2.

ALGORITHM 2 (Forward spin assignment procedure).

1. Input: N
(F)
STOP, B; Output: {(i, σ (i)) : i ∈ F }

2. N ← N
(F)
STOP

3. σ(j) ← � for all j ∈ Z
d

4. WHILE N ≥ 1
5. (I,K) ← B(N)

6. IF K = −1 choose W randomly in A according to the probability distribution

p
[−1]
I d�

7. ELSE choose W randomly in A∗ according to the probability distribution

p
[K]
I (·|σ)d�∗

8. ENDIF
9. IF W �= � put σ(I) ← W

10. ENDIF
11. N ← N − 1
12. ENDWHILE
13. RETURN {(i, σ (i)) : i ∈ F }
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The next theorems summarize the properties of Algorithms 1 and 2. In order
to distinguish clearly to which part of the two algorithms we refer, we shall write
Psketch for the probability associated to the backward sketch procedure.

THEOREM 2. Suppose that

for all F ⊂ Z
d finite Psketch

(
N

(F)
STOP < ∞) = 1.(5.3)

Then the following two statements hold.

(1) Algorithms 1 and 2 are successful.
(2) The process (σt ) admits a unique invariant measure μ. The law of the set

{(i, σ (i)) : i ∈ F } printed at the end of Algorithms 1 and 2 is the projection on AF

of μ.

The next theorem states sufficient conditions ensuring (5.3) and gives also a
control on the rate of convergence.

THEOREM 3. (1) The sub-criticality condition (5.2) implies (5.3). More pre-
cisely, we have

Psketch
(
N

(F)
STOP > N

) ≤ |F |γ N,(5.4)

where γ is given in (5.2).
(2) Suppose, in addition to (5.2), that (5.1) holds. Fix a time t > 0, some finite

set of sites F ⊂ Z
d and two initial configurations η and ζ ∈ AZ

d
. Then there exists

a coupling of the two processes (σ
η
s )s and (σ

ζ
s )s such that

P
(
σ

η
t (F ) �= σ

ζ
t (F )

) ≤ |F |e−M(1−γ )t .

The proofs of Proposition 1, Theorems 2 and 3 will be given in the next section.

6. Proofs of Proposition 1, Theorems 2 and 3. The proofs rely on the no-
tion of black and white time-reverse sketch process that we will introduce now.
The black and white time-reverse sketch process gives the mathematically precise
description of the backward black and white Algorithm 1 given in Section 5.

For each i ∈ Z
d, denote by · · ·T i−2 < T i−1 < T i

0 < 0 < T i
1 < T i

2 < · · · the oc-
currence times of the rate Mi Poisson point process Ni on the real line. The Pois-
son point processes associated to different sites are independent. To each point
T i

n associate an independent mark Ki
n according to the probability distribution

(λi(k))k≥−1. As usual, we identify the Poisson point processes and the associated
counting measures.

For each i ∈ Z
d and t ∈ R we define the time-reverse point process starting at

time t, associated to site i,

T̃ (i,t)
n = t − T i

Ni(0,t]−n+1, t ≥ 0,
(6.1)

T̃ (i,t)
n = t − T i

−Ni(t,0]−n+1, t < 0.
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To these time-reverse point processes we can associate in an obvious way the cor-
responding marks K̃

(i,t)
n , n ∈ Z. Finally, for each site i ∈ Z

d , k ≥ −1, the reversed
k-marked Poisson point process returning from time t is defined as

Ñ (i,t,k)[s, u] = ∑
n

1{s≤T̃
(i,t)
n ≤u}1{K̃(i,t)

n =k}.(6.2)

To define the black and white time-reverse sketch process we need to introduce
a family of transformations {π(i,k), i ∈ Z

d, k ≥ −1} on the set of finite subsets of
Z

d, F (Zd), defined as follows. For any unitary set {j},
π(i,k)({j}) =

{
Vi(k), if j = i

{j}, otherwise

}
.(6.3)

Notice that for k = −1, π(i,k)({i}) = ∅. For any finite set F ⊂ Z
d , we similarly

define

π(i,k)(F ) = ⋃
j∈F

π(i,k)({j}).(6.4)

The black and white time-reverse sketch process starting at site i at time t will
be denoted by (C

(i,t)
s )s≥0. C

(i,t)
s is the set of sites at time s whose colors affect the

color of site i at time t. We call this set C
(i,t)
s set of ancestors of i at time s before

time t. The evolution of this process is defined through the following equation:
C

(i,t)
0 := {i}, and

f
(
C(i,t)

s

) = f
(
C

(i,t)
0

)
(6.5)

+ ∑
k≥−1

∑
j∈Zd

∫ s

0

[
f

(
π(j,k)(C(i,t)

u−
)) − f

(
C

(i,t)
u−

)]
Ñ (j,t,k)(du),

where f : F (Zd) → R is any bounded cylindrical function. This family of equa-
tions characterizes completely the time evolution {C(i,t)

s , s ≥ 0}. For any finite set
F ⊂ Z

d define

C(F,t)
s = ⋃

i∈F

C(i,t)
s .

The following proposition summarizes the properties of the family of processes
defined above.

PROPOSITION 2. For any finite set F ⊂ Z
d , {C(F,t)

s , s ≥ 0} is a Markov jump
process having as infinitesimal generator

Lf (C) = Mi

∑
i∈C

∑
k≥0

λi(k)
[
f

(
C ∪ Vi(k)

) − f (C)
]

(6.6)
+ λi(−1)

[
f

(
C \ {i}) − f (C)

]
,

where f is any bounded cylindrical function.
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PROOF. The proof follows in a standard way from the construction (6.5). �

If we are interested in simulating from the invariant measure of the process,
then we will start the black and white time-reverse sketch process at time t = 0;
if, however, we wish to construct the process at time t, we shall start the black and
white time-reverse sketch process at that time t precisely.

6.1. Backward oriented percolation and sub-criticality. For the algorithm to
be successful it is crucial to show that

⋃
s≥0 C

(i,t)
s , the set of ancestors of any site i,

is finite with probability one. Formally, let

T
(i)

STOP = inf
{
s :C(i,0)

s = ∅
}

be the relaxation time. We introduce the sequence of successive jump times
T̃

(i)
n , n ≥ 1, of processes N(j,k) whose jumps occur in (6.5), for t = 0. Let

T̃
(i)
1 = T

(i,0)
1 and define successively for n ≥ 2

T̃ (i)
n = inf

{
t > T̃

(i)
n−1 :∃j ∈ C

(i,0)

T̃
(i)
n−1

,∃k :N(j,k)(]T̃ (i)
n−1, t

]) = 1
}
.(6.7)

We write K̃
(i)
n for the associated marks. Now we put

C(i)
n = C

(i,0)

T̃
(i)
n

(6.8)

and

N
(i)
STOP = inf

{
n : C(i)

n = ∅
}
.

This is the number of steps of the backward sketch process—and it is exactly
the number of steps of Algorithm 1. For the perfect simulation algorithm to be
successful, it is crucial to show that the number of steps N

(i)
STOP is finite. Since

at every step of the algorithm a finite interaction range k is chosen, this implies
automatically that also T

(i)
STOP is finite almost surely. However, in order to control

the speed of convergence, we need a precise control on the tail probabilities of
T

(i)
STOP. To this aim we estimate the volume of the set C

(F,t)
s = ⋃

i∈F C
(i,t)
s where F

is a bounded set of Z
d .

LEMMA 1.

E
(∣∣C(F,t)

s

∣∣) ≤ |F |e−M(1−γ )s,(6.9)

where M is defined in (5.1) and γ in (5.2).

PROOF. Fix some N ∈ N. Let Li
s = |C(i,t)

s | and

TN = inf
{
t :Li

t ≥ N
}
.
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Then by (6.5),

Li
s∧TN

≤ 1 + ∑
k≥1

∑
j∈Zd

∫ s∧TN

0

[∣∣Vj (k)
∣∣ − 1

]
1{j∈C

(i,t)
u− }Ñ

(j,t,k)(du)

(6.10)

− ∑
j∈Zd

∫ s∧TN

0
1{j∈C

(i,t)
u− }Ñ

(j,t,−1)(du).

Recall that M = infi∈Zd Mi > 0. Passing to expectation and using that, by condi-
tion (5.2),

Mj

((∑
k≥1

λj (k)
[∣∣Vj (k)

∣∣ − 1
]) − λj (−1)

)
≤ −M(1 − γ ) < 0,

which yields

E
(
Li

s∧TN

) ≤ 1 + ∑
j∈Zd

Mj

((∑
k≥1

λj (k)
[∣∣Vj (k)

∣∣ − 1
]) − λj (−1)

)

× E

∫ s∧TN

0
1{j∈C

(i,t)
u− } du(6.11)

≤ 1 − M(1 − γ )E

∫ s∧TN

0
Li

u du.

Letting N → ∞, we thus get by Fatou’s lemma that

E
(
Li

s

) ≤ 1 − M(1 − γ )

∫ s

0
E

(
Li

u

)
du.

This implies that

E
(
Li

s

) ≤ 1 for all s ≥ 0.

Hence, we may apply Gronwall’s lemma which yields

E
(
Li

s

) ≤ e−M(1−γ )s .(6.12)

Hence, since |C(F,t)
s | ≤ ∑

i∈F |C(i,t)
s | = ∑

i∈F Li
s,

E
(∣∣C(F,t)

s

∣∣) ≤ |F |e−M(1−γ )s.(6.13) �

6.2. Proof of Proposition 1 and Theorem 2. Proposition 1 is an immediate
consequence of Theorem 2, item 2, and Theorem 3, item 2.

PROOF OF THEOREM 2. Item 1 of Theorem 2 is evident. We give the proof
of item 2 of Theorem 2.

Write μF for the law of the output {(i, σ (i)) : i ∈ F } of Algorithms 1 and 2; μF

is a probability measure on (AF , AF ). By construction, the family of probability
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laws {μF ,F ⊂ Z
d finite} is a consistent family of finite dimensional distributions.

Hence, there exists a unique probability measure μ on (S, S) such that μF is the
projection onto AF of μ, for any fixed finite set of sites F ⊂ Z

d .

We show that μ is the unique invariant measure of the process (σt ). In order
to do so, we use a slight modification of Algorithms 1 and 2 in order to construct
σ

η
t , for some fixed initial configuration η ∈ S. The modification is defined as fol-

lows. Let TSTOP and T be variables taking values in (0,∞). Replace Steps 1–3 of
Algorithm 1 by:
1. Input: F ; Output: N

(F)
STOP,B,C

2. N ← 0, NF
STOP ← 0, B ← ∅, C ← F, TSTOP ← 0

3. WHILE TSTOP < t and C �= ∅

3′. Choose a time T ∈ (0,+∞) randomly according to the exponential distribution
with parameter

∑
j∈C Mj . Update

TSTOP ← TSTOP + T .

Finally replace Step 12 of Algorithm 1 by:
12. RETURN N

(F)
STOP,B,C.

In this modified version, we stop the algorithm after time t, hence, the output
set C might not be empty. The output C is exactly the set C

(F,t)
t , the set of sites at

time 0 whose colors influence the colors of sites in F at time t. Finally, notice that
if C = ∅, then TSTOP < t, and in this case, TSTOP = T F

STOP is the relaxation time
introduced in the previous subsection.

Concerning Algorithm 2, replace Step 1 of Algorithm 2 by:
1. Input: N

(F)
STOP,B,C; Output: {(i, σ (i)) : i ∈ F }

and Step 3 by:
3. σ(j) ← η(j) for all j ∈ C; σ(j) ← � for all j ∈ Z

d \ C.

Then the law of the set {(i, σ (i)) : i ∈ F } printed at the end of the modified Al-
gorithm 2 is the law of σ

η
t (F ). Notice that the output of the modified Algorithm 2

equals the output of the unmodified Algorithm 2 if TSTOP < t.

We first give an intuitive argument showing that μ must be invariant for (σt ).

Write Pt for the transition semigroup of (σt ). Fix t > 0 and a finite set of sites
F ⊂ Z

d . Suppose we want to determine the projection on AF of μPt . This means
that we have first to run the above modified Algorithm 1 up to time t. It gives
as output the set of ancestor sites C = C

(F,t)
t . We then have to run the modified

Algorithm 2 with initial configuration {σ(i), i ∈ C = C
(F,t)
t } chosen according to

μ; cf. Step 3. But this means that we have to concatenate the modified Algorithm 1
with the original Algorithm 1, where the Algorithm 1 is now starting from C

(F,t)
t

instead of F. In other words, we concatenate two backward sketch processes and
consider C(C(F,t),0) up to the time of its extinction. By the Markov property and the
stationarity of the Poisson processes, this means that we directly consider C(F,t) up
to the time of its extinction—which is finite by our assumptions. Hence, μPt = μ

in restriction to finite cylinder sets.
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We now give a more formal argument. Recall that the output of the modified
Algorithm 2 equals the output of the unmodified Algorithm 2 if TSTOP < t. Let
f :AF → R+ be a bounded measurable function. Then

E
[
f

(
σ

η
t (i), i ∈ F

)] = E
[
f

(
σ

η
t (i), i ∈ F

)
, TSTOP < t

]
+ E

[
f

(
σ

η
t (i), i ∈ F

)
, TSTOP ≥ t

]
(6.14)

= E
[
f

(
σ(i), i ∈ F

)
, T F

STOP < t
]

+ E
[
f

(
σ

η
t (i), i ∈ F

)
, TSTOP ≥ t

]
,

where (σ (i), i ∈ F) is the output of the unmodified Algorithms 1 and 2.
But

E
[
f

(
σ

η
t (i), i ∈ F

)
, TSTOP ≥ t

] ≤ ‖f ‖∞Psketch
(
T F

STOP ≥ t
) → 0 as t → ∞,

since finiteness of NF
STOP implies the finiteness of T F

STOP. Hence, we obtain that

lim
t→∞E

[
f

(
σ

η
t (i), i ∈ F

)] = E
[
f

(
σ(i), i ∈ F

)]
,

since 1{T F
STOP<t} → 1 almost surely.

This implies that μ is an invariant measure of the process. Replacing the initial
condition η by any stationary initial condition, we finally also get uniqueness of
the invariant measure. Thus Theorem 2 is proved. �

6.3. Proof of Theorem 3. We start by proving (5.4). Let

L(i)
n = ∣∣C(i)

n

∣∣
be the cardinal of the set C(i)

n after n steps of the algorithm [recall (6.8)]. Then due
to our assumptions, L

(i)
n can be compared to a multi-type branching process Zn

having offspring mean which is bounded by γ at each step, such that L
(i)
n ≤ Zn

for all n. The details are given in Galves, Löcherbach and Orlandi (2010), proof of
Theorem 1, and are omitted here. Thus,

P
(
N

(i)
STOP > n

) = P
(
L(i)

n > 0
) = P

(
L(i)

n ≥ 1
) ≤ P(Zn ≥ 1) ≤ E(Zn) = γ n.

When starting with the initial set F instead of the singleton {i}, then the above
estimates remain true by multiplying with |F |, due to the independence properties
of the branching process.

Concerning item 2 of Theorem 3, we use once more the modified Algorithms 1
and 2 introduced in the proof of Theorem 2 above. In order to realize the coupling,
we use the same realizations of T , I and K for the construction of σ

η
t and σ

ζ
t .

Write Ls for the cardinal of C
(F,t)
s . Clearly, both realizations of σ

η
t and σ

ζ
t do
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not depend on the initial configuration η, ζ , respectively, if the output C of the
modified Algorithm 1 is void. Thus, by Lemma 1,

P
(
σ

η
t (F ) �= σ

ζ
t (F )

) ≤ P(TSTOP ≥ t)

= P(Lt ≥ 1)

≤ E(Lt) ≤ |F |e−M(1−γ )t .

This implies that the convergence toward the unique invariant measure takes place
exponentially fast. The proof of Theorem 3 is complete.

7. Applications for perfect simulation.

7.1. Maximum likelihood estimation in Gibbs distributions. Parameter esti-
mation for Gibbs distributions in the infinite lattice is usually based on the max-
imum likelihood approach [see, e.g., Gidas (1988, 1991)]. The maximum likeli-
hood estimation is theoretically well understood in this framework. Comets (1992)
proved the consistency of the MLE for exponential families of Markov random
fields on the lattice. Also, in the case of no phase transition, Janžura (1997) proved
asymptotic normality and efficiency of the MLE inside the uniqueness region of
the Gibbs distributions considered. Comets and Gidas (1992) considered maxi-
mum likelihood estimators for Markov random fields over Zd from incomplete
data. They prove the strong consistency of maximum likelihood estimators in this
case. Their results hold irrespective of the presence of long-range correlations or
nonanalytic behavior of the underlying quantities. The parameter space is thereby
allowed to be noncompact.

However, the numerical feasibility of the ML method is strongly limited, due to
the computation of the normalizing constant for each relevant parameter, in partic-
ular, for each temperature. Geyer and Thompson (1992) devised a rather ingenious
method for this computation based on an MCMC computation of the equilibrium
distribution for a fixed value of the parameter.

Consider the family of probability densities with respect to a reference mea-
sure μ given by

f (x, θ) = 1

Z(θ)
exp

〈
T (x), θ

〉
,(7.1)

where 〈T (x), θ〉 denotes the inner product between the canonical parameter θ and
the sufficient statistics T (x) and

Z(θ) =
∫

exp
〈
T (x), θ

〉
dμ(x).(7.2)

Denote by Pψ the measure having density f (·,ψ) with respect to μ. Then,

Z(θ) = Z(ψ)

∫
exp

〈
T (x), θ − ψ

〉
dPψ(x).(7.3)
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Therefore, if we have X1,X2, . . . i.i.d. random objects with distribution Pψ , we
have that

dn(θ) = 1

n

n∑
i=1

exp
〈
T (Xi), θ − ψ

〉 → d(θ) = Z(θ)

Z(ψ)
almost surely.(7.4)

The maximum likelihood of θ can be taken as

θ̂ = argmax logf (x, θ) + logZ(ψ) = argmax
〈
T (x), θ

〉 − logd(θ),(7.5)

and its Monte Carlo approximant

θ̂n = argmax
〈
T (x), θ

〉 − logdn(θ).(7.6)

Notice that if we can perfectly simulate from Pψ , we have trivially that θ̂n → θ̂

as n → ∞ along with the rate of convergence of such convergence.

7.2. Attaining Ornstein’s d̄-distance for ordered pairs of Ising probability dis-
tributions. In this section we show how to use the decomposition of Theorem 1
and the above perfect simulation algorithm in order to construct an explicit cou-
pling attaining Ornstein’s d̄-distance for two ordered Ising probability measures.
Let A := {−1,1} and S = AZ

d
.

We consider a ferromagnetic pairwise interaction J, that is, a collection
{J (i, j), i �= j, i, j ∈ Z

d} of positive real numbers satisfying J (i, j) = J (j, i) for
all i, j ∈ Z

d and for all i ∈ Z
d,

J (i, i) = 0, sup
i∈Zd

∑
j

J (i, j) < ∞.(7.7)

Let {J̃ (i, j), i �= j, i, j ∈ Z
d} be another pairwise interaction satisfying an anal-

ogous summability assumption such that

J (i, j) ≤ J̃ (i, j) for all i, j ∈ Z
d .

Moreover, let {hi, i ∈ Z
d} and {h̃i , i ∈ Z

d} be two collections of positive real
numbers representing an external field such that

hi ≤ h̃i for all i ∈ Z
d, sup

i

h̃i < ∞.

Finally we suppose that,

for all i ∈ Z
d,

∑
j

[
J̃ (i, j) − J (i, j)

] ≤ h̃i − hi.(7.8)

Recall that a probability measure μ on S is said to be a Gibbs measure relative to
the interaction J and the external field {hi} if for all i ∈ Z

d and for any fixed ζ ∈ S,
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a version of the conditional probability μ({σ :σ(i) = ζ(i)|σ(j) = ζ(j) for all j �=
i}) is given by

μ
({

σ :σ(i) = ζ(i)|σ(j) = ζ(j) for all j �= i
})

(7.9)

= 1

1 + exp(−2β[∑j J (i, j)ζ(i)ζ(j) + hiζ(i)]) .

The Gibbs measure μ̃ associated to the interaction J̃ and the external field {h̃i}
is introduced analogously.

We consider a Glauber dynamics (σt (i), i ∈ Z
d, t ∈ R) taking values in S = AZ

d

and having μ as reversible measure. The process is defined by the rates ci(σ ),

i ∈ Z
d, where ci(σ ) is the rate at which the spin i flips (i.e., changes its sign)

when the system is in the configuration σ. We take

ci(σ ) = exp
(
−β

[∑
j

J (i, j)σ (i)σ (j) + hiσ (i)

])
.(7.10)

By construction, the process (σt )t is reversible with respect to the Gibbs mea-
sure μ. In the same way, we can define a Glauber dynamics (σ̃t )t reversible with
respect to the Gibbs measure μ̃, associated to the interaction J̃ and the external
field {h̃i}.

The main idea of our approach is a coupled construction of the processes (σt )

and (σ̃t ) which is order preserving. More precisely, let us write

σ ≤ σ̃ if and only if σ(i) ≤ σ̃ (i) for all i ∈ Z
d .

Write

S = {
(σ, σ̃ ) ∈ AZ

d × AZ
d

:σ ≤ σ̃
} = {

(−1,−1), (−1,+1), (+1,+1)
}Z

d

.

We now describe the coupled time evolution of σt and σ̃t . Start with an ordered
couple of initial configurations η ≤ η̃ at time 0. Let

Mi = 2e
β[∑

j∈Zd J̃ (i,j)+h̃i ].

For each site i ∈ Z
d, consider a rate Mi Poisson process Ni. The Poisson processes

corresponding to distinct sites are independent. If at time t, the Poisson clock ate
site i rings, then both processes try simultaneously to update their spin at site i.

Process σ replaces spin σ(i) by −σ(i) with probability

ci(σt )

Mi

,

and the process σ̃ replaces spin σ̃ (i) by −σ̃ (i) with probability

c̃i (σ̃t )

Mi

.
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Hence, we can introduce the following probability measures. For any configu-
ration σ with σ(i) = −1, we put

pi(+1|σ) = ci(σ )

Mi

, pi(−1|σ) = 1 − pi(+1|σ).

In the same way, for any configuration σ with σ(i) = +1, we put

pi(−1|σ) = ci(σ )

Mi

, pi(+1|σ) = 1 − pi(−1|σ).

The same definitions hold for c̃i with obvious modifications. Then we have by
construction and thanks to condition (7.8) that

pi(+1|σ) ≤ p̃i(+1|σ̃ ) whenever σ ≤ σ̃ .

This stochastic order makes it possible to construct a coupled Glauber dynamics
(σt , σ̃t )t taking values in the space of ordered configurations S.

At each jump time t of one of the Poisson processes Ni, the ordered configura-
tion (σt , σ̃t ) is replaced at site i by the ordered pair

(+1,+1) with probability Pi

(
(+1,+1)|(σt , σ̃t )

) = pi(+1|σt ),

(−1,−1) with probability Pi

(
(−1,−1)|(σt , σ̃t )

) = p̃i(−1|σ̃t ),
(7.11)

(−1,+1)

with probability Pi

(
(−1,+1)|(σt , σ̃t )

) = pi(−1|σt ) − p̃i(−1|σ̃t ).

Now, it is straightforward to show that under our summability condition (7.7)
on the interaction J and J̃ and due to the boundedness of the force of the external
field, the transition probability Pi satisfies the continuity assumption (2.9). Hence,
the decomposition of Theorem 1 can be applied and yields the following corollary
[compare also to Theorem 3.3 of Galves, Garcia and Prieur (2010)].

COROLLARY 1. There exists a sequence of transition probabilities Pk, k ≥
−1, such that for any pair of symbols (a, b) ∈ {(−1,−1), (−1,1), (1,1)} and any
ordered pair of configurations (σ, σ̃ ) ∈ S,

Pi

(
(a, b)|(σ, σ̃ )

) =
∞∑

k=−1

λi(k)P
[k]
i

(
(a, b)|(σ, σ̃ )

(
Vi(k)

))
.

As in Galves, Löcherbach and Orlandi (2010), it can be shown that for this
decomposition, a sufficient condition for (5.2) is

sup
i∈Zd

∑
k

∣∣Vi(k)
∣∣( ∑

j :‖j−i‖=k

J̃ (i, j)

)
< ∞
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and β < βc, where βc is solution of

2β
∑
k≥1

(∣∣Vi(k)
∣∣ ∑
j :‖j−i‖=k

J̃ (i, j)

)
= 1.

In this case, we can extend the ideas of Galves, Garcia and Prieur (2010) from the
case of chains of infinite order to infinite range Gibbs measures.

Our perfect simulation algorithm simulates two ordered configurations belong-
ing to S according to the invariant distribution of the coupled Glauber dynam-
ics. This yields an explicit coupling of the two Gibbs measures μ and μ̃. Since
this coupling is ordered, the very nice argument of the proof of Theorem 3.6 in
Galves, Garcia and Prieur (2010) tells us that this coupling necessarily attains the
d̄-distance

d̄(μ, μ̃) = inf sup
i

{
P

(
σ(i) �= σ̃ (i)

)
: (σ, σ̃ ) is a coupling of μ and μ̃

}
.

Hence, our perfect simulation algorithm enables us to construct explicit couplings
achieving this distance, and as far as we know the problem of finding explicit
solutions was addressed only for finite volume Gibbs measures up to now.

8. Impatient user bias. Perfect simulation procedures, very often cannot be
run until the algorithm stops, either by limitations of time or limitations of buffer.
In this section we give upper bounds for the probability of these two types of errors.

According to our construction, the perfect simulation algorithm of μ presented
in this article is a function F : [0,1]N×Z

d
to S such that, if (Un)n = (Un(i), i ∈

Z
d)n is a sequence of i.i.d. families, indexed by Z

d, of uniform in [0,1] random
variables, then for any site i ∈ Z

d, there exists a stopping time N
(i)
STOP, such that F

depends only on the first N
(i)
STOP families of (Un)n, that is, for any measurable

B ∈ A,

P
[
F

((
U1(j)

)
j , . . . ,

(
U

N
(i)
STOP

(j)
)
j

)
(i) ∈ B

] = μ
(
σ(i) ∈ B

)
.

Note that N
(i)
STOP is not the number of uniform random variables that have to be

simulated in order to sample from μ; this number will, in general, be considerably
larger. N

(i)
STOP is the number of steps of the backward sketch procedure.

A first kind of “impatient user bias” occurs whenever the user, for reasons inde-
pendent of the algorithm, has to stop the algorithm after, say N steps maximal. In
this case, we do not sample from μ, but instead sample from

P
[
F

((
U1(j)

)
j , . . . ,

(
U

N
(i)
STOP

(j)
)
j

)
(i) ∈ B|N(i)

STOP ≤ N
]
.

By Proposition 6.2 of Fill (1998) [compare also to Section 6 of Ferrari, Fernández
and Garcia (2002)] the error made above can be bounded by

P(N
(i)
STOP > N)

1 − P(N
(i)
STOP > N)

≤ γ N

1 − γ N
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(see Theorem 3 above).
At each step of the backward sketch procedure, a range of order k is chosen,

where k is, in general, not bounded from above. In practical situations, however,
a user will be limited in the choice of the interaction range and will restrict the
simulation to the choice of ranges bounded by a certain upper bound L that he
decided to fix in advance. More precisely, writing

T
(i)
L := inf

{
T̃ (i)

n : K̃(i)
n > L

}
,

the user will therefore sample from the measure

P
[
F

((
U1(j)

)
j , . . . ,

(
U

N
(i)
STOP

(j)
)
j

)
(i) ∈ B|{N(i)

STOP ≤ N
} ∩ {

T
(i)
L > T

i)
STOP

}]
.

In order to control the error made induced by this “space–time impatient user bias,”
we have to control

P
(
T

(i)
L ≤ T

i)
STOP

)
.

Using arguments similar to Lemma 2 of Galves, Löcherbach and Orlandi (2010),
this can be bounded by

P
(
T

(i)
L ≤ T

i)
STOP

) ≤ sup
i∈Zd

(
Mi − αi(L)

Mi

)
1

1 − γ
.

9. Final comments and bibliographical discussion. In this work we study
the equilibrium measure of systems with infinite range interactions satisfying fast
decay of the long range influence on the change rate and a certain subcriticality-
criterion. For Gibbs random fields, this regime has traditionally been studied via
cluster-expansion methods which either rely on sophisticated combinatorial esti-
mations [Malyshev (1980), Seiler (1982), Brydges (1986)] or inductive hypothesis
and complex analysis [Kotecký and Preiss (1986), Dobrushin (1996a, 1996b)].

This is not the approach we follow here. Our approach is probabilistic, based
on an explicit construction of the dynamics and gives probabilistic insight into the
structure of the stationary law of the process, without combinatorial or complex-
analysis techniques. Let us stress that our approach is not an alternative to cluster
expansions. It has a different regime of validity and different aims.

Our construction is reminiscent of Harris’s graphical representation for parti-
cle systems and it is similar in spirit to procedures adopted in Bertein and Galves
(1977/78), Ferrari (1990), van den Berg and Steif (1999), Ferrari, Fernández and
Garcia (2002) and Garcia and Marić (2006) among others. However, all these pa-
pers only consider particular models, satisfying restrictive assumptions which are
not assumed in the present paper. Our approach works for any infinite range con-
tinuous interaction under the only assumption of high-noise.

There are several techniques for perfect simulation of Markov processes.
Among the most popular ones figure coupling from the past (CFTP) originally
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proposed by Propp and Wilson (1996) and applied to several special cases in a
vast literature. A good review can be found in Kendall (2005). This kind of tech-
nique applies to invariant measures of Markov processes with finite coalescence
time. One main point of the CFTP technique is that one has to be able to control
the coalescence times uniformly with respect to all possible starting points. This
is an issue that becomes particularly difficult in the case of “big” state spaces. The
problem of large state spaces can be overcome for processes with certain mono-
tonicity properties or for some specific cases. For example, for spatial point pro-
cesses there is a vast literature on the subject; we point out the works of Kendall
(1998), Kendall and Thönnes (1999), Kendall and Møller (2000) among others.

In our case, we sample directly from a time stationary realization of the pro-
cess. There is no coalescence criterion, either between coupled realizations or be-
tween sandwiching processes. The scheme neither requires nor takes advantage
of monotonicity properties. The scheme directly samples a finite window of the
equilibrium measure in infinite-volume. In contrast, other CFTP algorithms [e.g.,
Kendall (1997, 1998)] focus on finite windows with fixed boundary conditions,
and the infinite-volume limit requires an additional process of “perfect simulation
in space.” We point out Ferrari (1990), van den Berg (1993) and van den Berg and
Maes (1994) have also proposed construction schemes for (infinite-volume) Gibbs
measures of spin systems that can be easily transcribed into perfect-simulation
algorithms.

For continuous state spaces in systems with finite number of components, Cai
(2005) proposes a nonmonotone CFTP but as he points out “the detailed construc-
tion of the nonmonotone CFTP algorithm is problem specific.” Fernández, Ferrari
and Grynberg (2007) construct perfect simulation for random distributions sup-
ported on a d dimensional box, in particular, multivariate normal distributions re-
stricted to a compact set. Connor and Kendall (2007) show that for a large class
for positive recurrent Markov processes it is always possible to perform CFTP,
although not always feasible. In general, for interacting particle systems with con-
tinuous state spaces, it seems to be out of reach to apply CFTP successfully. A re-
cent paper by Huber (2007) succeeded in using CFTP for a very specific case of a
continuous autonormal system restricted to a finite box.

The notion of random Markov chains was introduced explicitly in Kalikow
(1990) and Bramson and Kalikow (1993) and appeared implicitly in Ferrari et
al. (2000) and Comets, Fernández and Ferrari (2002).
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