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MIXING TIME FOR THE SOLID-ON-SOLID MODEL1

BY FABIO MARTINELLI2 AND ALISTAIR SINCLAIR3

Università degli Studi Roma Tre and University of California at Berkeley

We analyze the mixing time of a natural local Markov chain (the Glauber
dynamics) on configurations of the solid-on-solid model of statistical physics.
This model has been proposed, among other things, as an idealization of the
behavior of contours in the Ising model at low temperatures. Our main result
is an upper bound on the mixing time of Õ(n3.5), which is tight within a
factor of Õ(

√
n). The proof, which in addition gives some insight into the

actual evolution of the contours, requires the introduction of a number of
novel analytical techniques that we conjecture will have other applications.

1. Introduction. In the n × n solid-on-solid (SOS) model [24, 25], a config-
uration is an assignment of an integer height η(i) ∈ [0, n]4 to each of n positions
i ∈ [1, n], with fixed boundary conditions η(0) = η(n + 1) = 0. The probability of
a configuration is given by the Gibbs distribution,

μ(η) = Z−1
β exp

{
−β

n+1∑
i=1

|η(i − 1) − η(i)|
}
.(1.1)

Here β is a positive parameter, and Zβ is a normalizing factor (the “partition func-
tion”). Thus a configuration η = {η(i)} of the SOS model may be pictured as an
interface or contour with fixed endpoints (0,0) and (n + 1,0); see Figure 1(a).
Notice that the Gibbs distribution favors contours that are “smooth” (i.e., have
no large jumps in height), this bias being more pronounced for larger values of β .
Moreover, the contour can be thought of as the path of an n-step random walk with
independent geometric increments, conditioned to be positive and smaller than n

and to return to the origin at time n. Therefore, its typical maximum height will be
of order

√
n.

In this paper we analyze the (discrete time) Glauber dynamics for the SOS
model. This is a natural local Markov chain on configurations whose transitions
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FIG. 1. (a) A contour in the SOS model. (b) A contour in the Ising model.

update the height at a randomly chosen position i from η(i) to η(i) ± 1; the tran-
sition probabilities are chosen so that the dynamics is reversible w.r.t. the Gibbs
distribution μ and thus converges to it from any initial configuration. Our goal is
to determine the mixing time, that is, the number of steps until the dynamics is
close to its equilibrium distribution μ in variation distance.

Although Markovian dynamics for the SOS and related models have been stud-
ied extensively in many contexts connected with the behavior of random surfaces
(see, e.g., [11–13, 23]), to the best of our knowledge the mixing time has not been
rigorously analyzed. There are at least three motivations for studying this question,
which we now describe.

The first motivation comes from the tight connection with the more familiar
(two dimensional) Ising model, whose Glauber dynamics has been the focus of
much attention in both statistical physics and computer science; see, for example,
[2, 4, 7, 18–20, 29].

In the Ising model in an n × n box �n ⊆ Z
2, the configurations are assign-

ments σ of spin values {+,−} to the vertices of �n. The Gibbs distribution is
μ(σ) = Z−1

β exp(−βD(σ)), where D(σ) is the number of neighbors in �n whose
spins differ, and β is inverse temperature. The (heat-bath) Glauber dynamics runs
as follows: at each time step a random vertex i ∈ �n is chosen, and its current spin
value is replaced by a new value sampled from the equilibrium distribution at i

given the neighboring spins. A variety of techniques have been introduced in order
to analyze, at increasing levels of sophistication, the typical time scales of the re-
laxation process to the reversible Gibbs measure; see, for example, [7, 15, 18, 20].
These techniques have proved to be quite successful in the so-called “one-phase”
region, corresponding to the case when the system has a unique Gibbs state. When
instead the thermodynamic parameters of the system correspond to a point in the
“phase coexistence” region, a whole class of new dynamical phenomena appear
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(such as coarsening, phase nucleation and motion of interfaces between different
phases) whose mathematical analysis at a microscopic level is still far from com-
plete.

One of the most important and fundamental open problems is that of proving a
polynomial (in n) upper bound on the mixing time at low temperatures (large β),
when the boundary conditions around the edges of �n are fixed to be + and hence
force the system into the + phase.5 (We remark that even the proof of a lower
bound, usually a much simpler task, requires all the heavy technology of the Wulff
construction [10] and the associated large deviation theory [4].) The above ques-
tion is easily reduced to the following problem: if the box is initially filled with −
spins, how long does it take until this large region of − is destroyed under the influ-
ence of the + boundary conditions and replaced by an equilibrium configuration?
This in turn is equivalent to the question of how the outer contour of the − region
contracts toward the center of the box. For large β , it is conjectured [14] that the
contour evolves according to a mean curvature motion and therefore should disap-
pear in polynomial time O(n4) (independent of β);6 however, until very recently
only very weak upper bounds of the form exp(O(n1/2+ε)) were known [18] (ex-
cept in the qualitatively different zero temperature case, which is analyzed in [8]).

The SOS model has been proposed [25] as an idealized model of this Ising con-
tour, in which we think of the sites above and below the SOS contour as being +
and −, respectively. [Note that the sum

∑
i |η(i − 1) − η(i)| in the Gibbs distri-

bution (1.1) is, up to an additive constant, exactly D(σ) under this interpretation.]
The mixing time is essentially the number of steps until the maximal contour (i.e.,
with η(i) = n for 1 ≤ i ≤ n) drops down close to the bottom of the box under the
influence of the boundary conditions of height 0. The main simplification here is
that, unlike the Ising model, the SOS contour has no “overhangs;” see Figure 1(b).
However, for large β one may hope that overhangs are rare, so the approximation
should give useful insight into the behavior of the true Ising contour; see [10] for
much more on this point. One of our principal motivations in this paper is to in-
troduce techniques that may find application to the Ising model. Indeed, this has
already occurred, as the very recent paper [21] builds on some of the ideas and
techniques of the present paper to obtain an upper bound of exp(O(nε)) (for ar-
bitrary ε > 0) on the mixing time of the Ising model at low temperatures with +
boundaries, a substantial improvement on the exp(O(n1/2+ε)) bound mentioned
earlier though still quite far from polynomial.

The second motivation comes from general polymer models [13], and their nat-
ural Glauber-type evolutions; for example, [5, 17, 30]. In these models the “poly-
mer” is just the n-step path of some type of random walk, starting and ending

5It is worth mentioning that when the underlying graph Z2 is replaced by a regular tree or hyper-
bolic graph, then optimal O(n logn) bounds on the mixing time [20] or on the spectral gap [3] have
been established.

6In continuous time the corresponding scaling should be O(n2), apart from possible logarithmic
corrections.
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at zero and constrained to stay nonnegative. The associated Gibbs distribution is
simply that induced by the probability distribution of the random walk. An addi-
tional interaction, or pinning, between the polymer and the line or “wall” at height
zero can also be included, and the nature of this interaction (attractive, repulsive
or even random) plays a crucial role. The Glauber dynamics can be defined in
analogous fashion to the one studied in this paper. When the increments of the
random walk are i.i.d. ±1 random variables (with or without a bias), the mixing
time of the associated Glauber chain has been analyzed quite precisely in various
cases using the so called “Wilson method” [5]. When instead the increments are
no longer uniformly bounded, as is the case for the SOS interface in this paper,
a rigorous analysis of the associated Glauber dynamics apparently becomes much
more challenging.

This brings us to our third motivation, which stems from the challenge that
the SOS model poses to standard techniques. The two most natural approaches to
estimating the mixing time seem to be the following:

(1) Coupling. One might hope that, under the natural monotone coupling of the
SOS model (see Section 2), the expected Hamming distance between two coupled
copies of the dynamics is nonincreasing. This would lead to a mixing time bound
of Õ(n5),7 which as we shall see is rather weak and also gives little insight into
the evolution of the contour. In fact even this is not always true (the distance may
increase in expectation in some cases), and a direct approach based on monotone
coupling remains elusive.

(2) Comparison. Another standard approach is to first analyze the “nonlocal”
dynamics in which transitions are allowed to update the height η(i) to any value
in [0, n]. Typically, nonlocal dynamics are easier to analyze precisely; see, for ex-
ample, [17, 30]. One can then use the machinery of Diaconis and Saloff-Coste [9]
to relate the mixing time of the local dynamics to that of the nonlocal one, as
was done, for example, by Randall and Tetali [27] for the related “lozenge tilings”
model. However, since such comparisons proceed via the spectral gap, they are
usually quite wasteful; in particular, for the SOS model, this approach leads to a
mixing time of Õ(n8).

In this paper we aim for a more refined analysis that gives, in addition to an
almost tight bound, greater insight into the actual evolution of the contour in the
SOS model. Our main result is the following:

THEOREM 1.1. For the n × n SOS model at any inverse temperature β > 0,
the mixing time is Õ(n3.5).

7Throughout the paper the notation Õ(·) hides factors of polylog(n).
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The bound on mixing time is tight up to a factor of
√

n (and logarithmic fac-
tors), as a lower bound of �(n3) follows from straightforward arguments; see The-
orem 3.6 below.8

The high-level strategy of our analysis is as follows:

(a) We first prove (see Section 4.2) that in Õ(n3.5) steps the maximal configu-
ration (i.e., the one in which the contour has height n everywhere) reaches equi-
librium. This analysis in turn is split into O(

√
n) repetitions of a basic key result

which says that, starting in equilibrium but conditioned to be above height Õ(
√

n),
in time Õ(n3) the system reaches equilibrium; see Theorem 4.7. This result allows
us to bring the original contour at height n down to equilibrium in a sequence of
O(

√
n) stages, each of which runs in Õ(n3) steps and decreases the height by

�(
√

n).
(b) We then (see Section 4.3) analyze the time to reach equilibrium when the

initial configuration is the minimal one (where the height is 0 everywhere), and
show that Õ(n3) steps suffice.

The results of (a) and (b) easily imply, by standard results on monotone cou-
pling, that the mixing time is Õ(n3.5).

Our analysis in the key intermediate result of part (a), and also in part (b), rests
on the following four essential ingredients:

(i) First, we give a tight analysis of the nonlocal dynamics mentioned above,
showing that its mixing time is O(n3 logn); see Theorem 3.1. This analysis, which
we believe to be of independent interest, follows an idea of Wilson, developed in
the context of the lozenge tilings model [30], in using an eigenvector of the discrete
Laplacian to obtain a contraction in distance. However, to get this approach to
work in our setting we need to bound a certain “entropy repulsion” effect due to
the height barriers at 0 and n; see Lemma 3.2.

(ii) We then relate the local to the nonlocal dynamics using a recent “censoring
inequality” of Peres and Winkler [22], which says that censoring (i.e., not apply-
ing) some subset of updates in a monotone dynamics can only increase the distance
from stationarity. This allows one to simulate a single move of the nonlocal dy-
namics, at position i, by censoring all local moves except those that update η(i);
by the censoring inequality, this can only increase the mixing time. As a result,
the mixing time of the local dynamics is bounded above by that of the nonlocal
dynamics times a factor related to the mixing time of the one-dimensional local
process within the ith “column.” Essentially, censoring allows us to “schedule”
the updates and thus maintain detailed control of the shape of the contour.

8Very recently, after the acceptance of the present paper, a tight bound of Õ(n3) on the mixing

time has been obtained in [6]. A key ingredient in that result is our bound of Õ(n3) on the mixing
time starting from a contour of maximal height Õ(

√
n) (see Theorem 4.7 below).
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(iii) A naïve application of the censoring inequality would entail a substantial
overhead of O(n2) due to the mixing time within a column, which is essentially the
square of the maximum height difference between the two neighboring columns.
To overcome this, we need to control the height differences, or “gradients” along
the contour. For this purpose, we work with a sequence of “bounding dynamics”
with gradually decreasing boundary conditions [these correspond to the O(

√
n)

repetitions of the basic result mentioned earlier]; since the boundary conditions
are—intuitively at least—the source of large gradients, this gives us control of
the gradients. As a result, we are able to cut the simulation overhead between the
local and nonlocal dynamics to Õ(

√
n). We note that this sequence of bounding

dynamics captures some of the intuition about the actual evolution of the contour.
(iv) Making rigorous the above bound on gradients requires detailed informa-

tion about the nonequilibrium shape of the contour, which is notoriously difficult
to obtain. We get around this difficulty by starting the bounding dynamics in equi-
librium, but conditioned on a certain rare event A. (The conditioning is necessary
to ensure that the bounding property holds.) By choosing A such that its probabil-
ity, though tiny, is nonetheless much larger than the probability of large gradients
in equilibrium, we are able to argue that large gradients do not occur during the
evolution. This technique is isolated in Lemma 4.2.

2. Preliminaries.

Gibbs distribution. We denote by �n = [0, n]n the set of all configurations
η = {η(i)}ni=1 of the n × n solid-on-solid model, as defined in the Introduction.
The probability of a configuration η is given by the Gibbs distribution defined in
equation (1.1). This distribution induces a conditional distribution on the height
η(i) at position i, given the heights η(i ± 1) at its neighbors, as follows. Let a =
min{η(i − 1), η(i + 1)}, b = max{η(i − 1), η(i + 1)}. Then μab(j) := Pr[η(i) =
j |a, b] is given by

μab(j) =
⎧⎪⎨
⎪⎩

e−β(b−a)−2β(a−j)/Z, if 0 ≤ j < a,

e−β(b−a)/Z, if a ≤ j ≤ b,

e−β(b−a)−2β(j−b)/Z, if b < j ≤ n,

(2.1)

where Z = Zβ is a normalizing factor. Note that μab is uniform on the interval
[a, b] and decays exponentially (at a rate depending on β) outside it.

Single-site dynamics. Our goal is to analyze the single-site Glauber dynam-
ics,9 which is a reversible Markov chain Mss

n on �n with transitions defined as
follows, where η = ηt denotes the current configuration at time t :

9This dynamics has been chosen for concreteness; our arguments apply with minor modifications
to any reversible, monotone local dynamics.
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(1) Pick i ∈ [1, n] u.a.r.
(2) Let η−, η+ be the configurations obtained from η by replacing η(i) by

max{η(i) − 1,0} and min{η(i) + 1, n}, respectively. Set ηt+1 equal to η− or η+
with probabilities p−, p+, respectively, determined as follows (where a, b are the
minimum and maximum heights of the neighbors, as above): if η(i) ≤ a, then
p− = 1

4e−2β , else p− = 1
4 ; if η(i) ≥ b, then p+ = 1

4e−2β , else p+ = 1
4 . With the

remaining probability 1 − (p− + p+), set ηt+1 = η.

It is standard that Mss
n is an ergodic, reversible Markov chain that converges to

the stationary distribution μ on �n. Our goal is to estimate its mixing time, that is,
the number of steps required for the distribution to get close (in variation distance)
to μ from an arbitrary initial configuration.

Column dynamics. We will analyze Mss
n by first analyzing a related Glauber

dynamics Mcol
n that makes nonlocal moves. (The term “column” refers to the set

[0, n] of possible heights at i.) If the configuration at time t is ηt = η, Mcol
n makes

a transition as follows:

(1) Pick i ∈ [1, n] u.a.r.
(2) For each j ∈ [0, n], let ηj denote the configuration obtained from η by

replacing η(i) by j . Set ηt+1 = ηj with probability proportional to μ(ηj ).

Mcol
n is again ergodic and reversible with stationary distribution μ. Note that

both Mss
n and Mcol

n update the height at a randomly chosen position i in a man-
ner, that is, reversible w.r.t. the conditional distribution (2.1). The difference is that
Mss

n considers only local moves (changing the height by ±1), while Mcol
n allows

the height at i to be set to any value. Accordingly, we call Mcol
n the “column dy-

namics” and Mss
n the “single-site dynamics.”

2.1. Mixing time. Let M be any reversible Markov chain on �n with station-
ary distribution μ. Following standard practice, we measure the convergence rate
of M via the quantity

τM(ε) = min{t :‖νξ
t − μ‖ ≤ ε ∀ξ ∈ �n},

where ν
ξ
t denotes the distribution of the configuration at time t starting from con-

figuration ξ at time 0, and ‖ · ‖ denotes variation distance. Thus τM(ε) is the num-
ber of steps until the variation distance from μ drops to ε, for an arbitrary initial
configuration. For definiteness we define the mixing time as τmix

M = τM(1/2e); it
is well known (see, e.g., [1]), that τM(ε) ≤ 	ln ε−1
 × τmix

M for all ε > 0.

Monotonicity and coupling. We define a natural partial order on �n as follows:
for configurations η, ξ ∈ �n, we say that η � ξ iff η(i) ≤ ξ(i) for all i ∈ [1, n].
Note that � has unique maximal and minimal elements ηmax and ηmin given by
ηmax(i) = n and ηmin(i) = 0 for 1 ≤ i ≤ n. We can naturally extend this ordering
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to probability distributions as follows: for two distributions ν,μ on �n, we write
ν � μ if for any increasing10 function f the average of f w.r.t. ν is less than or
equal to its average w.r.t. μ.

A key fact we shall exploit throughout is the existence of a complete
coupling of the Glauber dynamics (single-site or column), that is, monotone
w.r.t. �. A complete coupling of a Markov chain M on �n is a random
function f :�n → �n that preserves the transition probabilities of M, that is,
Prf [f (η) = η′] = PrM(η → η′) for all η,η′ ∈ �n. Note that f simultaneously
couples the evolution of the Markov chain at all configurations. For the column
dynamics, we define f as follows. Suppose the current configuration is η:

(1) Pick i ∈ [1, n] and a real number r ∈ [0,1] independently and u.a.r.
(2) Let g(k) = ∑k

j=0 μab(j) be the cumulative distribution function of the
height at position i, given neighboring heights a, b. Set η′(i) = min{k :g(k) ≤ r}.
An analogous definition holds for the single-site dynamics. It is simple to check
that these couplings are monotone w.r.t. the partial order �, in the sense that if
ηt � ξt , and ηt+1, ξt+1 are the corresponding configurations at the next time step
under the coupling, then ηt+1 � ξt+1.

A further standard fact we will need is that the mixing time of the Glauber
dynamics is bounded above by the time until the coupled evolutions started in the
two extremal configurations, ηmax and ηmin, coincide with constant probability.
More precisely:

PROPOSITION 2.1. Let (ηmax
t ), (ηmin

t ) denote the coupled evolutions of two
copies of a monotone Glauber dynamics M on �n started in configurations ηmax,
ηmin, respectively, and let νmax

t , νmin
t denote the corresponding marginals. Then:

(a) τM(ε) ≤ min{t : Pr[ηmax
t �= ηmin

t ] ≤ ε};
(b) Pr[ηmax

t �= ηmin
t ] ≤ n2‖νmax

t − νmin
t ‖.

PROOF. Part (a) is standard; see [26]. As far as part (b) is concerned, mono-
tonicity and the Markov inequality give

Pr[ηmax
t �= ηmin

t ] ≤
n∑

i=1

Pr[ηmax
t (i) > ηmin

t (i)]

≤
n∑

i=1

n∑
j=1

j
(
Pr[ηmax

t (i) = j ] − Pr[ηmin
t (i) = j ])

≤ n2‖νmax
t − νmin

t ‖. �

10A real-valued function f on �n is increasing w.r.t. � if η � ξ implies f (η) ≤ f (ξ).
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Censoring. In our analysis of the single-site dynamics, we shall also need a
useful tool from recent work of Peres and Winkler, which says that censoring (i.e.,
not applying) any subset of updates in the dynamics can only increase the distance
from stationarity. This so-called “censoring inequality” applies to any monotone
single-site dynamics.

LEMMA 2.2 ([22]). Suppose a monotone single-site dynamics is started in a
random initial configuration with distribution ν0 such that ν0/μ is increasing w.r.t.
�. Let ν denote the distribution after updates at positions i1, i2, . . . , im, and ν′
the distribution after updates at a subsequence of these positions ij1, ij2, . . . , ijm′
(chosen a priori). Then ν/μ is increasing and ‖ν − μ‖ ≤ ‖ν′ − μ‖.

REMARK 2.3. [22, Theorem 16.5] states this result for the special case in
which ν0 is concentrated on the maximal state ηmax. However, it is easy to see that
the proof requires only the weaker assumption that ν0/μ is increasing. Moreover,
by symmetry the lemma clearly also holds with “increasing” replaced by “decreas-
ing.”

The censoring inequality can be used to relate the single-site and column dy-
namics via the following observation. If we censor all moves of the single-site
dynamics except for those that update a certain position i, then after some fixed
number of steps T (which depends on the mixing time of the single-site dynamics
just within the ith column, with its neighbors fixed) we will, up to small error,
have simulated one move of the column dynamics. By Lemma 2.2 the censoring
can only slow down convergence of the single-site dynamics, so the mixing time
of Mss

n is bounded above by roughly T times that of Mcol
n . We shall use a more

sophisticated version of this argument in Section 4.

3. The column dynamics. Our goal in this section is to provide a tight anal-
ysis of the column dynamics Mcol

n . Specifically, we will prove the following theo-
rem.

THEOREM 3.1. For any β > 0, the mixing time of the column dynamics Mcol
n

is O(n3 logn).

We believe this result, which we show is tight up to the logn factor (see Theo-
rem 3.6 below), is interesting in its own right. It will also be a key ingredient in
our analysis of the single-site dynamics later.

Recall that, if the current configuration of Mcol
n is ηt , and we choose position

i ∈ [1, n] at the next step, then the new height ηt+1(i) is drawn from the con-
ditional distribution (2.1), where a, b are the minimum and maximum heights,
respectively, of the neighbors ηt (i ± 1). A key observation is that, under such a
move, the expected value of the new height ηt+1(i) is close to the average a+b

2
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of its two neighbors; moreover, the error term satisfies a natural ordering property
w.r.t. a, b.

LEMMA 3.2. In the above situation, and assuming a + b ≤ n, the expected
value of the new height ηt+1(i) satisfies

E[ηt+1(i)|a, b] = a + b

2
+ ε(a, b),(3.1)

where ε(a, b) ≥ 0. Moreover, ε(a, b) ≤ ε(c, d) for any pair c, d with c ≤
min{a, d} ≤ max{a, d} ≤ b.

We defer the proof of the lemma, which is somewhat technical, to the Appendix.
However, the intuition is as follows. Note that the distribution of ηt+1(i) is uniform
on the interval [a, b], and decays symmetrically on either side except for the effects
of the barriers at heights 0 and n. Thus we would expect its mean to be close to
a+b

2 . The term ε(a, b) captures the “entropy repulsion” effect of the barriers. This
effect is more pronounced for pairs (a, b) that are closer to 0, as is the case for the
pair (c, d) in the lemma.

We can derive from Lemma 3.2 the following more symmetrical form that al-
lows us to compare the heights of two ordered configurations under the monotone
coupling (again, see the Appendix for a proof).

COROLLARY 3.3. Suppose ηt and ξt are two configurations satisfying ηt � ξt ,
and let a = min{ξt (i −1), ξt (i +1)}, b = max{ξt (i −1), ξt (i +1)}, c = min{ηt (i −
1), ηt (i + 1)}, d = max{ηt (i − 1), ηt (i + 1)}. Then

0 ≤ E[ξt+1(i)|a, b] − E[ηt+1(i)|c, d] ≤ a + b

2
− c + d

2
.(3.2)

Armed with Corollary 3.3, we can now proceed to our analysis of Mcol
n .

PROOF OF THEOREM 3.1. Following Proposition 2.1, it suffices to show that
two coupled copies of Mcol

n , started in configurations ηmax and ηmin, will coincide
with constant probability after O(n3 logn) steps. Call these two copies (ηmax

t ),
(ηmin

t ), respectively.
We will measure the distance between ηmax

t and ηmin
t using the quantity

D(t) =
n∑

i=1

w(i)
(
ηmax

t (i) − ηmin
t (i)

)
,(3.3)

where w(i) is a suitably chosen, strictly positive weight function. Note that
ηmax

t (i) ≥ ηmin
t (i) for all i, t by monotonicity, so all terms in the sum are nonnega-

tive; and D(t) = 0 iff ηmax
t = ηmin

t . Following an idea of Wilson [30], we choose w

as the second eigenvector of the discrete Laplacian operator � on [1, n] with zero
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boundary conditions, defined by �g(i) = −1
2(g(i + 1) + g(i − 1)) + g(i), g(0) =

g(n + 1) = 0. It is well known (and easy to verify) that w(i) = cos(−π
2 + πi

n+1)

with corresponding eigenvalue λ = 1 − cos( π
n+1) = �( 1

n2 ).
The reason for this choice is that, by Corollary 3.3, one step of the dynamics

behaves very like the Laplacian, so choosing w as an eigenvector of � should give
us a contraction of (1 − λ

n
) in D at every step. The argument proceeds as follows:

E[D(t + 1) − D(t)|ηmax
t , ηmin

t ]

= 1

n

n∑
i=1

w(i)
{
E[ηmax

t+1 (i)|ηmax
t (i − 1), ηmax

t (i + 1)]

− E[ηmin
t+1(i)|ηmin

t (i − 1), ηmin
t (i + 1)]

− (
ηmax

t (i) − ηmin
t (i)

)}
≤ −1

n

∑
i

w(i)
(
�ηmax

t (i) − �ηmin
t (i)

)

= −1

n

∑
i

�w(i)
(
ηmax

t (i) − ηmin
t (i)

) = −λ

n
D(t),(3.4)

where in the inequality we have used Corollary 3.3.
Thus after t steps of the dynamics we have E[D(t)] ≤ (1 − λ

n
)tD(0) ≤ (1 −

c
n3 )tn2 for a constant c > 0. Taking t = t∗ = c′n3 log(n

ε
) for a sufficiently large

constant c′ ensures that E[D(t∗)] � ε
n2 . Finally, we may bound the coupling prob-

ability at time t∗ as follows:

Pr[ηmax
t∗ �= ηmin

t∗ ] ≤ ∑
i

Pr[ηmax
t∗ (i) − ηmin

t∗ (i) ≥ 1]

≤
(
min

i
w(i)

)−1 ∑
i

w(i)E[ηmax
t∗ (i) − ηmin

t∗ (i)]

=
(
min

i
w(i)

)−1
E[D(t∗)] ≤ ε,

where in the second line we used Markov’s inequality, and in the last line the fact
that mini w(i) = cos(−π

2 + π
n+1) = �( 1

n2 ). Thus, by Proposition 2.1, τMcol
n

(ε) ≤
t∗ = O(n3 log(n/ε)). �

For our analysis of the single-site dynamics, it will be convenient to introduce
a “parallel” version Mpar

n of the column dynamics in which all odd-numbered (or
all even-numbered) positions are updated simultaneously at each step. Moreover,
since repeated updates of odd or even positions have no effect, we may as well
assume that odd and even updates alternate. This leads to the following definition
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of Mpar
n , in which O,E denote updates of all odd and even positions, respectively,

and the update at any given position is performed as in the column dynamics:

(1) Flip a single fair coin.
(2) If heads, perform t pairs of odd–even updates [i.e., (OE)t ], else if tails

perform t pairs of even–odd updates [i.e., (EO)t ].

Note that Mpar
n is a convex combination of two reversible Markov chains, one

performing the update sequence (OE)t and the other (EO)t . We will call these
chains MOE

n and MEO
n , respectively.

Following our analysis of Mcol
n , it is straightforward to see that Mpar

n inherits
a similar bound on the mixing time, with a factor n speedup coming from the
parallelization of the updates.

THEOREM 3.4. The mixing time of Mpar
n is O(n2 logn).

PROOF. We use the same distance measure (3.3) as in the proof of Theo-
rem 3.1. From equation (3.4) of that proof, we conclude that under the t-step
evolution of the column dynamics this distance satisfies E[D(t)] ≤ 1

n

∑
i (I −

�)tw(i)(ηmax
0 (i) − ηmin

0 (i)), where I is the identity operator Ig = g. An analo-
gous calculation for Mpar

n leads to

E[D(t)] ≤ 1

2

∑
i

(
(I − �)2tw + (I − �)2t−1w

)
(i)

(
ηmax

0 (i) − ηmin
0 (i)

)

≤ 1

2

(
(1 − λ)2t + (1 − λ)2t−1)

D(0)

≤ (1 − λ)2t−1D(0).

Using the facts that λ = �( 1
n2 ) and D(0) ≤ n2, and arguing as in the previous

proof, gives τMpar
n

(ε) = O(n2 log(n/ε)), as claimed. �

REMARK 3.5. The proofs of Theorems 3.1 and 3.4 show the stronger results
that τMcol

n
(ε) = O(n3 log(n/ε)) and τMpar

n
(ε) = O(n2 log(n/ε)). We shall use this

result for τMpar
n

(ε) in the next section.

We close this section with a lower bound which shows that the above bound
on the mixing time of the column dynamics is tight up to the logn factor. This
lower bound also applies to the single-site dynamics, which will imply that our
upper bound on its mixing time derived in the next section is tight within a factor
of Õ(

√
n), as claimed in the Introduction.

THEOREM 3.6. The mixing times of both Mcol
n and Mss

n are at least �(n3).
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PROOF. Recall that the spectral gap of a reversible dynamics M is given by

gapM = 1

2
inf
f

∑
η,η′ μ(η)PrM[η → η′](f (η) − f (η′))2

Varμ(f )
,(3.5)

where the infimum is over all nonconstant functions f :�n → R (see, e.g., [16]).
As is well known, the mixing time is bounded below by gap−1

M , so it suffices to
show that gapM ≤ n−3.

Take the test function f (η) = ∑
i w(i)(η(i + 1) − η(i)), where w is as in the

proof of Theorem 3.1. Following step by step the proof of the analogous result in
the context of polymer dynamics (see Proposition 5.2 in [5]) we get that for both
Mcol

n and Mss
n , the numerator of (3.5) is at most c1/n2, and the denominator is at

least c2n, for constants c1, c2 > 0. This completes the proof. �

4. The single-site dynamics. In this section we prove our main result, Theo-
rem 1.1 of the Introduction, which we restate here for convenience.

THEOREM 4.1. The mixing time of the single-site dynamics Mss
n at any in-

verse temperature β > 0 is Õ(n3.5).

As indicated in the Introduction, we analyze separately the time required for max-
imal and minimal contours to reach equilibrium under a monotone complete cou-
pling; by Proposition 2.1 this will suffice to bound the mixing time. We handle the
more challenging case of the maximal contour in Section 4.2 and the minimal con-
tour in Section 4.3. We begin with a basic analytical tool that we will use in both
parts, which allows us to relate the single-site dynamics to the column dynamics
analyzed previously.

4.1. Basic building block. As explained in the Introduction, our main tool for
analyzing the evolution of the single-site dynamics is to relate it to the column
dynamics, for which we obtained a tight mixing time analysis in Section 3. To
do this we will use the censoring idea explained in Section 2. As indicated in the
Introduction, the overhead in the mixing time introduced by censoring depends
crucially on the maximum gradient (or height difference) that arises in the dynam-
ics. In this subsection, we show that this overhead can be kept very low (poly-
logarithmic in n) provided we start the dynamics in the equilibrium distribution
conditioned on a monotone event A whose probability is not extremely small [at
least exp(−polylog(n))]. In our subsequent analysis, we will use this basic build-
ing block repeatedly by conditioning on various suitable events A.

LEMMA 4.2. Let A be any increasing or decreasing event, and consider the
single-site dynamics started from ν0 := μ(· |A). Denote by νt its distribution after
t steps. Let D := 	log( 1

μ(A)
)
, and tn,D := 2n3D2 log8 n. Then for any t ≥ tn,D

and any fixed b > 0 we have

‖νt − μ‖ = o(1/nb).



MIXING TIME FOR THE SOLID-ON-SOLID MODEL 1149

REMARK 4.3. Here and elsewhere in this section, in the interests of clarity
of exposition we make no attempt to minimize the number of log factors in our
bounds. In particular, we frequently use a log factor in place of a sufficiently large
constant. Also, we generally ignore issues of rounding throughout.

PROOF. We consider only the case of an increasing event A; the decreasing
case is entirely symmetrical. To bound the mixing time of the single-site dynamics,
we relate it to the corresponding parallel column dynamics using the censoring
inequality (Lemma 2.2). Note that this is valid because the initial distribution ν0
satisfies the requirement that ν0/μ = χA/μ(A) is increasing w.r.t. �.

To do this, we split the time tn,D into M := n2 log2 n epochs each of length
m := 2nD2 log6 n. Given tn,D random positions i = (i1, i2, . . . , itn,D

) in [1, n],
the distribution νtn,D

can be written as the average over i of the distribution νi
obtained by applying, in the given order, tn,D single-site updates at positions
i1, i2, . . . , itn,D

. Next we write w(i) = (w1, . . . ,wM) by grouping together posi-
tions in the same epoch. Finally, we define two censored versions of the dynamics
as follows. In the first version, we delete all even positions from the odd epochs
and all odd positions from the even epochs; denote the resulting censored vector
OE(i) = (OE1, . . . ,OEM) and the associated distribution νOE(i). In the second
version, we reverse the roles of odd and even and denote the resulting censored
vector EO(i) = (EO1, . . . ,EOM) and the associated distribution νEO(i).

This construction gives us

‖νtn,D
− μ‖ = ‖Aviνi − μ‖ ≤ Avi‖νi − μ‖ ≤ Avi

∥∥1
2

(
νOE(i) + νEO(i)

) − μ
∥∥,(4.1)

where Avi denotes the spatial average over the column index i, and the last step
relies on the censoring inequality. Note that the expected number of times any
position i appears in i is m/n = 2D2 log6 n. Hence a standard Chernoff bound
guarantees that, apart from an error, that is, exponentially small in log6 n (and
hence certainly o(1/nb)), the r.h.s. of (4.1) is bounded above by

max
i∈�

∥∥∥∥1

2

(
νOE(i) + νEO(i)

) − μ

∥∥∥∥,(4.2)

where � consists of all i such that the censored vectors OE(i) and EO(i) contain at
least D2 log6 n updates of every position i ∈ [1, n] in every epoch k ∈ {1, . . . ,M}.

Now we claim that, for i ∈ �, the distribution 1
2(νOE(i) + νEO(i)) is very close

to the distribution at time M = n2 log2 n of the parallel column dynamics Mpar
n ,

with the same initial distribution. To establish this, we need to show that D2 log6 n

single-site updates at position i, with its neighboring heights fixed, are enough to
simulate (with small error) one column update at i. This relies crucially on the fact
that Mpar

n is unlikely to produce configurations with large gradients, which we
define to be at least D log2 n. Accordingly, define the set of “bad” configurations

B = {η : |η(i + 1) − η(i)| ≥ D log2 n for some i ∈ [0, n]}.(4.3)
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CLAIM 4.4. For i ∈ �, we have∥∥∥∥1

2

(
νOE(i) + νEO(i)

) − ν
par
M

∥∥∥∥ ≤ M
(
max

s
{νOE

s (B) + νEO
s (B)} + e−�(log2 n)

)
,

where νOE
s and νEO

s denote the distributions of MOE
n and MEO

n , respectively, af-
ter s steps, starting from ν0.

The intuition for this claim, which is proved formally in the Appendix, is the fol-
lowing. The first term on the r.h.s. bounds the probability of seeing a bad con-
figuration in Mpar

n , so we may assume that η /∈ B . A sequence of single-site up-
dates at position i (with its neighboring heights a, b fixed) can be viewed as a
nearest-neighbor random walk on column i with stationary distribution equal to
the distribution of a column update. This distribution [see (2.1)] is uniform on
the interval [a, b] and decays exponentially outside it. Hence the mixing time of
this random walk, starting from a position at distance � from the interval [a, b], is
O((b−a)2 +�). But since η /∈ B , both (b−a) and � are bounded by 2D log2 n, so
the mixing time is O((D log2 n)2). Thus D2 log6 n single-site updates at position i

suffice to simulate a single column update with very small error e−�(log2 n), which
is the second term in the bound. The factor M comes from a union bound over
steps of the column dynamics.

In order to use Claim 4.4, we need to bound νOE
s (B) [and, symmetrically,

νEO
s (B)], the probability of the dynamics creating a large gradient. This is in

general a nontrivial task because it requires detailed nonequilibrium information
about the contours. However, it is here that our choice of the initial distribution
ν0 = μ(· |A) becomes crucial. Since μ remains invariant under any number of
steps of MOE

n (and of MEO
n ), we can write, for any s,

νOE
s (B) ≤ μ(B)/μ(A),(4.4)

with an identical bound for νEO
s (B). But the right-hand side here is easy to evaluate

as it is the ratio of the probabilities of two events in equilibrium! In particular,
the following straightforward bound is proved in part (c) of Lemma C.1 in the
Appendix:

μ(B) ≤ nae−(D log2 n)/c

for some constants a, c > 0. Hence, thanks to the definition of D,

μ(B)/μ(A) ≤ e−�(log2 n).(4.5)

We can now put everything together. For each i ∈ �, the quantity in (4.2) is
bounded by ∥∥1

2

(
νOE(i) + νEO(i)

) − ν
par
M

∥∥ + ‖νpar
M − μ‖,(4.6)
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where ν
par
s denotes the distribution obtained from ν0 after s steps of the parallel

column dynamics. By Claim 4.4 and inequalities (4.4) and (4.5), the first term
in (4.6) is bounded by e−�(log2 n), which is certainly o(1/nb) for any fixed b, while
the second term is o(1/nb) by Theorem 3.4 and Remark 3.5 and the fact that M �
n2 logn (the mixing time of Mpar

n ). Hence the variation distance of the dynamics
is o(1/nb), as claimed in the lemma. �

4.2. From maximal height to equilibrium. In this subsection we show that,
after at most Õ(n3.5) steps, the single-site dynamics starting from the maximal
configuration (in which the contour has height n everywhere) reaches equilibrium.
For convenience we will work throughout this subsection with a slightly modified
model in which the set of allowed heights is N rather than [0, n]. The equilibrium
distribution μ for this model is defined exactly as in (1.1), where the partition func-
tion Zβ is appropriately defined. (Note that Zβ remains bounded for any β > 0.)
We will show that the variation distance between the contour at height n and the
equilibrium contour in this model becomes very small in Õ(n3.5) steps. This im-
mediately implies the same result for our original model with height set [0, n]
because of monotonicity and the fact that the variation distance between the two
equilibrium distributions is exponentially small in n (see Remark C.2 in the Ap-
pendix). We will use �∞

n to denote the set of configurations with height set N. We
note also that our basic building block, Lemma 4.2, is easily seen to hold in this
setting also.

The main ingredient in this subsection is the following lemma, which says
roughly that an initial contour at height h ≤ √

n drops to height approximately
h/2 after Õ(n3) steps.

LEMMA 4.5. Let C(β) logn ≤ h ≤ √
n, where C(β) is a specific constant

depending only on β . Let νt be the distribution at time t of the single-site dynamics
started from μ conditioned on the event Ah := {η(i) ≥ h ∀i ∈ [1, n]}. Then there
exists a time tn = Õ(n3) such that, for any increasing function f :�∞

n �→ R with
‖f ‖∞ ≤ 1,

νtn(f ) ≤ μ(f |Ah/2) + o(1/n),(4.7)

where the term o(1/n) is independent of f .

PROOF. In the proof, we will make use of the single-site dynamics on the
enlarged interval [−� + 1, n + �], with boundary conditions at positions −� and
n + � + 1. The parameter � ≤ n will be chosen later in such a way that the equilib-
rium probability of the event Ah in the enlarged interval is �(1/poly(n)). We may
construct a monotone coupling of this dynamics with our original one by choosing
the position i to be updated from the enlarged interval [−� + 1, n + �], and doing
nothing in the original dynamics if i /∈ [1, n]. Plainly this slows down the original
dynamics by at most a factor of 3 and so does not affect our results.
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Now consider the enlarged dynamics started in its equilibrium distribution μ(�)

conditioned on the event Ah. Denote its distribution at time t by ν
(�)
t . By part (b)

of Lemma C.1 in the Appendix, we have

μ(�)(Ah) ≥ 1

cna
e−ch2/�

for constants a, c > 0. Moreover the event Ah is clearly increasing, and therefore
Lemma 4.2 applied to the enlarged dynamics implies that for a suitable time t =
Õ(n3 h4

�2 ) the variation distance between ν
(�)
t and μ(�) is o(1/n). If we now set the

free parameter � equal to � δh2

logn
�, where δ � 1 will be fixed later, we have that

t = Õ(n3). (Note also that � ≤ n, as stipulated earlier; this is why we require the
upper bound on h.) Thus we may take tn := t = Õ(n3) and get that, for any f as
in the statement of the lemma,

νtn(f ) ≤ ν
(�)
tn (f ) ≤ μ(�)(f ) + o(1/n).(4.8)

We now bound μ(�)(f ). Let Eh = {η ∈ �∞
n : max(η(1), η(n)) ≤ h}. Then

μ(�)(f ) ≤ μ(�)(f |Eh/2) + μ(�)(Ec
h/2)

(4.9)
≤ μ(f |Ah/2) + μ(�)(Ec

h/2).

Now by part (a) of Lemma C.1 in the Appendix, provided h/2� ≤ β/2, we have

μ(�)(Ec
h/2) ≤ nae−h2/c�

for constants a, c > 0. By choosing the constant δ in our definition of � small
enough, we can make this latter quantity o(1/n), which via (4.9) and (4.8)
yields the desired bound (4.7). Finally, the condition h/2� ≤ β/2 translates to
h ≥ 1

δβ
logn, that is, h ≥ C(β) logn. �

A simple iterative application of Lemma 4.5 yields the following:

COROLLARY 4.6. In the setting of Lemma 4.5, for any integer j such that
2−jh ≥ C(β) logn we have

νjtn(f ) ≤ μ(f |Ah/2j ) + o(j/n).(4.10)

PROOF. Write ν
(h)
t for the distribution of the single-site dynamics at time t ,

started in μ(· |Ah). Let f (j−1) be the function on �∞
n obtained by applying the

transition matrix of the single-site dynamics (j − 1)tn times to the original func-
tion f . Clearly f (j−1) is still increasing with ‖f (j−1)‖ ≤ 1, so Lemma 4.5 yields

ν
(h)
j tn

(f ) = ν
(h)
tn

(
f (j−1)) ≤ μ

(
f (j−1)|Ah/2

) + o(1/n)

= ν
(h/2)
(j−1)tn

(f ) + o(1/n).

Iterating over j completes the proof. �
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We are now in a position to prove our first main result, which says that the
mixing time of the single-site dynamics starting at height

√
n is Õ(n3).

THEOREM 4.7. Let A = {η ∈ �∞
n :η(i) ≥ √

n ∀i ∈ [1, n]}, and let νt be the
distribution at time t of the single-site dynamics started in the distribution μ(· |A).
Then for some time tn = Õ(n3) we have

‖νtn − μ‖ = o(1/
√

n).

PROOF. The event A is increasing, so the relative density between the initial
distribution and the equilibrium one given by g(η) := μ(η|A)

μ(η)
= χ(η∈A)

μ(A)
is also in-

creasing. As shown in [22] the same holds for gt (η) = νt (η)/μ(η). In particular
the event Ut = {η :νt (η) ≥ μ(η)} is increasing.

By Corollary 4.6 with j = O(logn) there exists a time s = Õ(n3) such that

νs(f ) ≤ μ
(
f |A	C(β) logn


) + o
(
(logn)/n

)
for any increasing function f with ‖f ‖∞ ≤ 1, where Ah is defined as in
Lemma 4.5. Thus, for any t > 0, we can bound the probability νs+t (Us+t ) by

νs+t (Us+t ) ≤ ν̃t (Us+t ) + o(1/
√

n),

where ν̃t is the distribution of the Glauber chain at time t started from the equi-
librium distribution μ conditioned on the event A	C(β) logn
. It follows from the
proof of part (b) of Lemma C.1 that log( 1

μ(A	C(β) logn
) ) = O(logn). Therefore, by

Lemma 4.2 we have that, for some t = Õ(n3),

ν̃t (Us+t ) = μ(Us+t ) + o(1/
√

n).

In conclusion, setting tn := s + t = Õ(n3) we get

‖νtn − μ‖ = νtn(Utn) − μ(Utn) = o(1
√

n),

which completes the proof. �

A simple iterative application of the above theorem shows that, starting at
height n, the single-site dynamics reaches equilibrium with a further O(

√
n) factor

overhead, that is, in total time Õ(n3.5).

THEOREM 4.8. Let B = {η ∈ �∞
n :η(i) ≥ n ∀i ∈ [1, n]}, and let νt be the

distribution at time t of the single-site dynamics started from μ(· |B). Then for
some time tn = Õ(n3.5) we have

‖νtn − μ‖ = o(1).

REMARK 4.9. By monotonicity, the theorem immediately implies the same
conclusion for the single-site dynamics started in the (maximal) configuration
η(i) = n for all i ∈ [1, n].
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PROOF. Let us define a new height set H(1) := [n − √
n,∞], let �

(1)
n := {η ∈

�∞
n :η(i) ∈ H(1) ∀i ∈ [1, n]}, and let μ(1) be the equilibrium distribution on �

(1)
n

given by μ(· |�(1)
n ). Let ν

(1)
t be the distribution at time t of the single-site dynamics

on �
(1)
n started from μ(1)(· |B) and with boundary conditions η(0) = η(n + 1) =

n − √
n.

By monotonicity and Theorem 4.7 applied to ν
(1)
t we have that, after time t =

Õ(n3), for any increasing function f with ‖f ‖∞ ≤ 1,

νt (f ) ≤ ν
(1)
t (f ) ≤ μ(1)(f ) + o

(
1/

√
n
)
.

If we now define H(2) := [n − 2
√

n,∞] and �
(2)
n ,μ(2) analogously, we get that

after a further t steps the distribution ν2t of the original chain satisfies

ν2t (f ) ≤ μ(2)(f ) + o
(
1/

√
n
) + o

(
1/

√
n
)
.

Iterating
√

n times shows that at time tn := √
nt = Õ(n3.5) we have

νtn(f ) ≤ μ(f ) + o(1).

The proof is complete once we apply the above inequality to the indicator of the
increasing set U = {η ∈ �∞

n :νtn(η) ≥ μ(η)}. �

4.3. From zero height to equilibrium. In this subsection we prove the comple-
mentary fact that the single-site dynamics starting from the minimal configuration
(in which all heights are zero) reaches equilibrium in Õ(n3) steps. In our argu-
ment we will make use of auxiliary versions of the dynamics in which certain
heights are fixed to be zero. Specifically, for any integer m, let Mss

n,m denote the
single-site dynamics defined as before, except that η(i) is constrained always to be
zero for i ∈ {jm : j = 1,2, . . . , �n/m�}. Let μ(m) denote its stationary distribution.
Clearly μ(m) is equivalent to μ(· |Am), where Am is the event that η(i) = 0 at the
above positions i; moreover, μ(m) is a product of �n/m� + 1 unconditioned SOS
Gibbs distributions each on an interval of length (at most) m − 1.

The idea in the proof is to control the evolution of the contour by coupling it
with the sequence of dynamics Mss

n,m for m = 2,4,8, . . . , so that the number of
positions with height fixed to zero is successively halved. At each stage in the se-
quence, we will allow Mss

n,m to reach its equilibrium distribution μ(m). Initially, in
the minimum configuration, all heights are zero; ultimately we will reach equilib-
rium with no heights fixed to zero, which is our desired SOS equilibrium distribu-
tion μ.

The main ingredient in our proof is the following lemma, which says that if we
start in the equilibrium distribution μ(m) (with every mth height fixed to zero), then
after Õ(n3) steps of Mss

n,2m we will reach the equilibrium distribution μ(2m) [with
every (2m)th height fixed to zero].
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LEMMA 4.10. Let νt denote the distribution at time t of Mss
n,2m started in the

distribution μ(m) = μ(2m)(· |Am). Then for some time sn = Õ(n3) we have∥∥νsn − μ(2m)
∥∥ = o(1/n).

PROOF. Note that we can view Mss
n,2m as a collection of r = �n/(2m)� in-

dependent standard dynamics on intervals of length 2m − 1, with zero bound-
ary conditions at positions 2mj,2m(j + 1). Let us focus on the dynamics re-
stricted to one such interval Ij . Let μ̃ denote the stationary distribution within Ij ,
and Ã the event Am restricted to Ij [i.e., Ã is just the event η(2mj + m) = 0].
Clearly Ã is a decreasing event, and standard random walk arguments [28] imply
that μ̃(Ã) ≥ 1

c
m−c for a constant c > 0. Hence a slight modification of Lemma 4.2

applied to the dynamics within Ij implies that, after t = O(m3 log10 n) steps of
this dynamics, the variation distance from μ̃ is o(1/n2). (The presence of logn

rather than logm here is to ensure a variation distance that depends on n.)
Returning now to the full dynamics Mss

n,m, suppose we execute sufficiently
many steps T that at least the above number t updates are performed within each
interval Ij for j = 1,2, . . . , r . Since μ(2m) is a product distribution, this will ensure
that the variation distance ‖νT − μ(2m)‖ is o(r/n2) = o(1/n). But by a Chernoff
bound it suffices to take T = 2tr = Õ(nm2) = Õ(n3) in order to ensure the above
condition with probability 1 − exp(−�(log10 n)) = 1 − o(1/n). Taking sn = T

completes the proof. �

An iterative application of the above lemma now proves the main result of this
subsection, which is the analog of Theorem 4.8 starting from the minimal config-
uration.

THEOREM 4.11. Let νt be the distribution at time t of the single-site dynamics
started from the minimal configuration. Then for some time tn = Õ(n3) we have

‖νtn − μ‖ = o(1).

PROOF. Let ν̃t be the distribution at time t of the following dynamics, starting
from the minimal configuration. For the first sn steps [where sn = Õ(n3) is as
defined in Lemma 4.10], run the dynamics Mss

n,2; for the next sn steps run the
dynamics Mss

n,4; and so on (i.e., run sn steps of each dynamics Mss
n,2j for j =

1,2, . . .). Note that the distribution of the initial configuration is exactly μ(1). Thus
by Lemma 4.10 we have ‖ν̃sn − μ(2)‖ = o(1/n). Similarly, applying Lemma 4.10
iteratively implies that

∥∥ν̃jsn − μ(2j )
∥∥ = o(j/n)
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for j = 1,2, . . . . Since μ(m) = μ for m > n, we may set j = 	logn
 and tn :=
	logn
sn = Õ(n3) to conclude

‖ν̃tn − μ‖ = o
(
(logn)/n

) = o(1).(4.11)

Finally, note that by monotonicity we have ν̃t � νt � μ for all t . Hence (4.11)
implies ‖νtn − μ‖ = o(1), as required. �

4.4. Proof of Theorem 4.1. The proof of Theorem 4.1 is now easily deduced
from Theorems 4.8 and 4.11. Let νmax

t and νmin
t denote the distributions of the

single-site dynamics at time t starting in the maximal and minimal configura-
tions, respectively. By Proposition 2.1, to prove the theorem it suffices to show
that for some time t = Õ(n3.5) we have ‖νmax

t − νmin
t ‖ = o(1/n2). But Theo-

rem 4.8 shows that, for some t ′ = Õ(n3.5), ‖νmax
t ′ − μ‖ = o(1), and Theorem 4.11

that ‖νmin
t ′ − μ‖ = o(1). Hence ‖νmax

t ′ − νmin
t ′ ‖ = o(1). It is now enough to observe

that γ (t) := max{‖νmax
t ′ − μ‖,‖νmin

t ′ − μ‖} satisfies γ (t + s) ≤ 4γ (t)γ (s) (see,
e.g., Corollary 2.7 in [21]) to conclude that, for t = c log(n)t ′ with c large enough,
‖νmax

t − νmin
t ‖ = o(1/n2).

REMARK 4.12. It should be clear that our result generalizes to the SOS dy-
namics on a region [1, n] × [0, h], in which the allowed height set is [0, h]. The
mixing time for the single-site dynamics is then Õ(max{n3, n2.5h}). The only dif-
ference from the h = n case is in the analysis of the maximal contour: by an ar-
gument analogous to that in Theorem 4.7, we achieve a height reduction of

√
n in

Õ(n3) steps, yielding the above bound.

APPENDIX A: PROOFS OF LEMMA 3.2 AND COROLLARY 3.3

PROOF OF LEMMA 3.2. Abusing notation, we write η for ηt+1(i) and abbre-
viate E[· |a, b] and Pr[· |a, b] to E[·] and Pr[·]. We also introduce the notation Sm

for the sum
∑m

j=1 e−2βj = S∞(1 − e−2βm), where S∞ := e−2β/(1 − e−2β), and
S0 = 0. Note that the normalizing factor in (2.1) can then be written as

Z =
a−1∑
j=0

e−β(b−a)−2β(a−j) +
b∑

j=a

e−β(b−a) +
n∑

j=b+1

e−β(b−a)−2β(j−b)

= e−β(b−a)(Sa + (b − a + 1) + Sn−b

)
.

Our goal is to evaluate E[ηt+1(i)|a, b] = E[η], which we may write as

E[η] = Pr[η ≤ a + b]E[η | η ≤ a + b] + Pr[η > a + b]E[η | η > a + b].
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Since the conditional distribution Pr[· |η ≤ a + b] is symmetric w.r.t. to the point
a+b

2 then E[η | η ≤ a + b] = (a + b)/2, while

E[η | η > a + b] =
(

n∑
j=a+b+1

je−2βj+β(a+b)

)/(
n∑

j=a+b+1

e−2βj+β(a+b)

)

=
(

n−(a+b)∑
k=1

(a + b + k)e−2βk

)/(
n−(a+b)∑

k=1

e−2βk

)

= a + b + Tn−(a+b),

where Tm := (
∑m

j=1 je−2βj )/Sm = 1/(1 − e−2β) − me−2βm/(1 − e−2βm). There-
fore, we have

E[η] = a + b

2
+ ε(a, b),

where

ε(a, b) = Pr[η > a + b]((a + b)/2 + Tn−(a+b)

)
.(A.1)

Since plainly ε(a, b) ≥ 0, this gives the first part of the lemma.
To prove the second part, we claim it suffices to show that ε(a, b) is a decreasing

function of a and of b (subject to a ≤ b and a + b ≤ n). To see this, consider any
pair (c, d) such that c ≤ min{a, d} ≤ max{a, d} ≤ b. (Note that this also implies
c + d ≤ n.) If a ≤ d then using monotonicity in b and then in a we have ε(a, b) ≤
ε(a, d) ≤ ε(c, d); if on the other hand d ≤ a then we have similarly ε(a, b) ≤
ε(c, b) ≤ ε(c, d).

To show that ε is decreasing with b, note first that

Pr[η > a + b] = e−2βaSn−(a+b)

Sa + (b − a + 1) + Sn−b

.

Plugging this into (A.1) and differentiating w.r.t. b gives

∂

∂b
ε(a, b) =

(
1

2
− T ′

n−(a+b)

)
Pr[η > a + b]

(A.2)

+ (
(a + b)/2 + Tn−(a+b)

) ∂

∂b
Pr[η > a + b],

where ∂
∂b

Pr[η > a + b] is given by the expression

e−2βa
−S′

n−(a+b)(Sa + (b − a + 1) + Sn−b) − (1 − S′
n−b)Sn−(a+b)

[Sa + (b − a + 1) + Sn−b]2 .

(Here we are viewing Sm and Tm as continuous functions of the parameter m.)
Note that S′ is nonnegative, and that

S′
n−(a+b)Sn−b ≥ S′

n−bSn−(a+b)(A.3)
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because

S′
n−(a+b)Sn−b = 2βS2∞e−2β(n−(a+b))(1 − e−2β(n−b)),

S′
n−bSn−(a+b) = 2βS2∞e−2β(n−b)(1 − e−2β(n−(a+b))).

Therefore,

∂

∂b
Pr[η > a + b] ≤ − e−2βaSn−(a+b)

[Sa + (b − a + 1) + Sn−b]2 = − Pr[η > a + b]
Sa + (b − a + 1) + Sn−b

.

Plugging this into (A.2), and noting that T ′ is also nonnegative, we get

∂

∂b
ε(a, b) ≤ 1

2
Pr[η > a + b]

(
1 − a + b + 2Tn−(a+b)

Sa + (b − a + 1) + Sn−b

)
.(A.4)

We will therefore be done if we can show

a + b + 2Tn−(a+b) ≥ Sa + (b − a + 1) + Sn−b.

We do this in two steps, as follows:

a + b + 2Tn−(a+b) ≥ a + b + 1 + Sn−(a+b) ≥ Sa + (b − a + 1) + Sn−b.(A.5)

Note that we may assume n − (a + b) ≥ 1 since if a + b = n, then ε(a, b) = 0.
Proof of first inequality in (A.5): Setting m = n− (a + b), we need to show that

Sm + 1 ≤ 2Tm for 1 ≤ m ≤ n.(A.6)

Recall that Sm = S∞(1 − e−2βm), where S∞ = e−2β/(1 − e−2β), and that Tm =∑m
j=1 je−2βj /Sm. A simple calculation shows that

Tm = 1

1 − e−2β
− me−2βm

1 − e−2βm
.

Thus, writing x = e−2β , the desired inequality in (A.6) becomes

x

1 − x
(1 − xm) + 1 ≤ 2

1 − x
− 2mxm

1 − xm
for 0 < x < 1.

Rearranging yields the equivalent expression

1 − (2m + 1)xm + (2m + 1)xm+1 − x2m+1 ≥ 0.(A.7)

Differentiating the left-hand side w.r.t. x gives

−m(2m + 1)xm−1 + (m + 1)(2m + 1)xm − (2m + 1)x2m

(A.8)
= −(2m + 1)xm−1[m − (m + 1)x + xm+1].

But the function f (x) := m− (m+1)x +xm+1 is zero at x = 1 and monotonically
decreasing for 0 ≤ x < 1, so is always nonnegative on this interval. Therefore, the
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derivative in (A.8) is nonpositive. Thus the left-hand side of (A.7) is a nonincreas-
ing function of x, and is zero at x = 1; hence the inequality holds, and (A.6) is
proved.

Proof of second inequality in (A.5): We need to show

Sa + Sn−b − Sn−(a+b) ≤ 2a.(A.9)

The left-hand side here is equal to

S∞
(
1 − e−2βa + e−2β(n−b)(e2βa − 1)

)
.

For any fixed a ≥ 0, this expression is maximized by taking n − b as small as
possible, which means n− b = a + 1 (since we are assuming a + b ≤ n− 1). Thus
the expression is bounded above by

S∞
(
1 − e−2βa + e−2βa(e2βa − 1)

) = 2S∞(1 − e−2βa).

Plugging this back into (A.9) means we need to prove 2S∞(1 − e−2βa) ≤ 2a, or
equivalently,

e−2β

1 − e−2β
(1 − e−2βa) ≤ a.

Writing x = e−2β and rearranging gives the equivalent inequality

a − (a + 1)x + xa+1 ≥ 0 for 0 < x < 1.

But the function on the LHS here is precisely the function f (x) in the previous part
of the proof (with m replaced by a), so we know that it is nonnegative throughout
the desired interval. This completes the proof of (A.9), and also the proof that
∂
∂b

ε(a, b) ≤ 0.
We now carry out a similar computation for ∂

∂a
ε(a, b) to get

∂

∂a
ε(a, b) =

(
1

2
− T ′

n−(a+b)

)
Pr[η > a + b]

(A.10)

+ (
(a + b)/2 + Tn−(a+b)

) ∂

∂a
Pr[η > a + b],

where
∂

∂a
Pr[η > a + b]
= −2β Pr[η > a + b]

+ e−2βa
−S′

n−(a+b)(Sa + (b − a + 1) + Sn−b) − (S′
a − 1)Sn−(a+b)

[Sa + (b − a + 1) + Sn−b]2 .

Using (A.3) and the fact that S′ is nonnegative, we get

∂

∂a
Pr[η > a + b] ≤ Pr[η > a + b]

(
−2β + 1 − S′

a − S′
n−b

Sa + (b − a + 1) + Sn−b

)
.(A.11)
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We claim that the term in parentheses here is bounded above by −β . To see this,
note first that S′

m = 2β(S∞ − Sm) for all m > 0. Thus the term in parentheses can
be written

−4βS∞ − 2β(b − a + 1) + 1

Sa + Sn−b + (b − a + 1)
.

This is bounded by −β provided

4βS∞ + 2β(b − a + 1) − β
(
Sa + Sn−b + (b − a + 1)

) ≥ 1.

Using the facts that S∞ ≥ Sa, Sb, and that b − a + 1 ≥ 1, is is sufficient to show

β(2S∞ + 1) ≥ 0.

Plugging in S∞ = e−2β/(1 − e−2β) and rearranging, this is equivalent to

f (β) := (β − 1)e2β + β + 1 ≥ 0.

The function f is 0 at β = 0, and its first and second derivatives are e2β(2β−1)+1
and 4βe2β , respectively. Since the first derivative is 0 at β = 0, and the second
derivative is nonnegative for all β ≥ 0, f must indeed be ≥ 0 throughout this
range.

Replacing the parenthesis in (A.11) by the upper bound −β , and plugging this
into (A.10), we get

∂

∂a
ε(a, b) ≤ 1

2
Pr[η > a + b](1 − 2T ′

n−(a+b) − β
(
a + b + 2Tn−(a+b)

))

≤ 1

2
Pr[η > a + b](1 − 2T ′

m − 2βTm),

where m = n − (a + b). We will thus be done if we can show

T ′
m + βTm ≥ 1

2
.

Substituting for Tm and T ′
m, writing y = 2βm and rearranging, we see that this is

equivalent to

e−y

2(1 − e−y)2

(
y − 2 + (2 + y)e−y) + β

1 − e−2β
≥ 1

2
.

But since β/(1−e−2β) ≥ 1/2 for all β > 0, it is sufficient to show that the function
g(y) := y − 2 + (2 + y)e−y is nonnegative for all y ≥ 0. But g(y) is zero at y = 0,
and its first and second derivatives are 1 − e−y − ye−y and ye−y , respectively.
Since the first derivative is 0 at y = 0, and the second derivative is nonnegative for
all y ≥ 0, g must indeed be nonnegative for all y ≥ 0.

This completes the proof that ∂
∂a

ε(a, b) ≤ 0, and hence also the proof of the
lemma. �
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PROOF OF COROLLARY 3.3. Note first that, by symmetry, if a + b ≥ n

then we get a complementary statement to Lemma 3.2 with ε(a, b) replaced by
−ε(b′, a′), where a′ = n − a, b′ = n − b. (This corresponds to exchanging the
roles of the top and bottom barriers.) We shall use both versions below.

Consider first the case a + b ≤ n and c + d ≤ n. Note that ηt � ξt implies that
c ≤ min{a, d} ≤ max{a, d} ≤ b. Then we have

E[ξt+1(i)|a, b] − E[ηt+1(i)|c, d] = a + b

2
− c + d

2
+ ε(a, b) − ε(c, d),

and by Lemma 3.2 we can conclude that ε(a, b) ≤ ε(c, d), as required.
Now consider the case a + b ≥ n and c + d ≥ n. In this case we can change

variables to η′(i) = n − η(i), ξ ′(i) = n − ξ(i), a′ = n − b, b′ = n − a, c′ = n − d ,
d ′ = n − c. Note that a′ ≤ min{b′, c′} ≤ max{b′, c′} ≤ d ′. Then we have

E[ξt+1(i)|a, b] − E[ηt+1(i)|c, d] = E[η′
t+1(i)|c′, d ′] − E[ξ ′

t+1(i)|a′, b′]

= a + b

2
− c + d

2
+ ε(c′, d ′) − ε(a′, b′),

and by Lemma 3.2 we can conclude that ε(c′, d ′) ≤ ε(a′, b′), as required.
Finally, if a + b ≥ n but c + d ≤ n then we apply the above change of variables

only to η, a and b to get

E[ξt+1(i)|a, b] − E[ηt+1(i)|c, d] = n − E[ξ ′
t+1(i)|b′, a′] − E[ηt+1(i)|c, d]

= a + b

2
− c + d

2
− ε(a′, b′) − ε(c, d),

and use the fact that both ε(a′, b′) and ε(c, d) are nonnegative. �

APPENDIX B: PROOF OF CLAIM 4.4

Let μ̃ be any probability distribution on �n or �
(∞)
n , and let w = {i1, . . . , ik}

be a sequence of even positions in which every even position i ∈ [1, n] appears at
least D2 log6 n times. Let μ̃even be the new distribution obtained by applying to μ̃

one parallel update E of the even positions, and μ̃w the distribution obtained by
applying to μ̃ the single-site updates at the sequence of positions w.

We claim that

‖μ̃even − μ̃w‖ ≤ μ̃(B) + e−�(log2 n),(B.1)

where the �(log2 n) term is independent of μ̃. An entirely analogous statement
will clearly also hold for a parallel update O of the odd positions. This will com-
plete the proof by a simple induction over the number of epochs M , since it ensures
that every step of MOE

n and MEO
n (the constituent chains of Mpar

n ) is simulated

correctly with error at most μ̃(B) + e−�(log2 n), where μ̃ is the current distribution
of the respective chain and clearly satisfies μ̃(B) ≤ maxs{νOE

s (B) + νEO
s (B)}.
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To prove (B.1), let η /∈ B be a configuration without large gradients, which ac-
counts for the term μ̃(B) on the right-hand side. We need to show that, for each
even position i ∈ [1, n], applying at least D2 log6 n single-site updates to i is equiv-
alent to applying one column update at i, except for an error e−�(log2 n). Recall that
a column update at i replaces the height η(i) by a random height drawn from the
distribution (2.1). Note that this distribution is uniform on the interval [a, b], where
a = min{η(i −1), η(i +1)} and b = max{η(i −1), η(i +1)}, and decays exponen-
tially outside this interval (at a rate that depends on β). On the other hand, under
the single-site updates the height at i performs a nearest neighbor random walk
on N, that is, reversible w.r.t. this distribution, and of course converges to it. If we
can show that the random walk starting at η(i) is very close to equilibrium after
D2 log6 n steps, we will have proved the Claim.

Now we claim that the mixing time of the above random walk, starting at a
position at distance � from the interval [a, b], is O((b − a)2 + �). To see this, note
that the random walk is symmetric on [a, b] and has a uniform drift toward this
interval from everywhere outside it. The term O(�) in the mixing time reflects the
time to reach [a, b], which is linear because of the drift, and the term O((b − a)2)

is the mixing time starting inside the interval, which is essentially the same as that
of symmetric random walk on [a, b]. This can be verified formally by showing that
the walk started at distance � from [a, b] can be coupled with a stationary walk so
that the two walks coalesce with constant probability in the interval [a, b] after
O((b − a)2 + �) steps. But the fact that η /∈ B implies that (b − a) ≤ 2D log2 n

and � ≤ D log2 n, so the above coupling time is O((D log2 n)2). Hence D2 log6 n

steps suffice to simulate a column update with error e−�(log2 n). This completes the
proof of (B.1) and hence of the Claim.

APPENDIX C: EQUILIBRIUM BOUNDS

The lemma below contains bounds on the probabilities of various events under
the equilibrium distribution μ that are used extensively in Section 4. We state and
prove the lemma for the case where μ is the equilibrium distribution of the SOS
model with height set N (which we use in Section 4.2). However, essentially the
same bounds hold for the SOS model with height set [0, n] once we observe that
the variation distance between the two equilibrium distributions is exponentially
small in n (see Remark C.2 below for details).

LEMMA C.1. Let μ be the equilibrium distribution for the SOS model on
[1, n] with height set N. There exist positive constants a, c such that:

(a) for any h ≥ 0 and � ∈ [1, n] with h/� ≤ β/2,

μ
(
η(�) ≥ h

) ≤ nae−h2/c�;
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(b) for any h ≥ 0, 0 ≤ � ≤ �n/2�, and A = {η ∈ �n :η(i) ≥ h ∀i ∈ [� + 1, n −
�]},

μ(A) ≥ 1

cna
e−ch2/�;

(c) if B = {η : |η(i + 1) − η(i)| ≥ d for some i ∈ [0, n]}, then

μ(B) ≤ cnae−d/c;
(d) if C = {∀i :η(i) ≤ n}, then

μ(Cc) ≤ cna+1e−n/c.

REMARK C.2. It should be clear that the equilibrium distribution with height
set [0, n] is nothing other than the distribution μ conditioned on the event C

above. Thus the variation distance between these two distributions is no larger
than 2μ(Cc), that is, it is exponentially small in n. In particular the bounds (a)
and (c) above hold (possibly with different constants a′, c′) for height set [0, n].
The lower bound (b) also holds for height set [0, n] under the additional restric-
tion that h2/� � n [so that the variation distance between the two distributions is
negligible compared to the r.h.s. in (b)].

PROOF. (a) Let Z0 = 0, and let {Zj }j≥1 be i.i.d. geometric random vari-
ables with random signs, so that Pr[Zj = z] = Pr[Zj = −z] ∝ e−βz. Define
X(i) := ∑i

j=0 Zi to be the symmetric random walk on Z started at the origin
whose increments are the Zj .

Then the SOS equilibrium distribution μ on [1, n] with height set N can be
written as

μ(η) = Pr
[{X(i)}n+1

i=0 = η|X(n + 1) = 0;X(i) ≥ 0 ∀i ∈ [1, n]].
Standard random walk bounds show that

Pr
[
X(n + 1) = 0,X(i) ≥ 0 ∀i ∈ [1, n]] ≥ 1/na

for some constant a. Therefore, by Markov’s inequality applied to the random
variable exp(λ

∑
i Zi), for any λ ∈ [0, β) we have

μ
(
η(�) ≥ h

) ≤ na Pr[X(�) ≥ h]
≤ nae−λhE(eλZ1)�

≤ nae−λh(
1 + 1

2λ2E
(
eλ|Z1|Z2

1
))�

,(C.1)

where we used the inequality eλx ≤ 1 + λx + 1
2λ2x2emax(λx,0) together with the

fact that E(Z1) = 0.
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Now choose λ = δh/� with 0 ≤ δ ≤ 1. Since λ ≤ β/2 the term E(eλ|Z1|Z2
1) is

bounded by a constant c = c(β) so that

μ
(
η(�) ≥ h

) ≤ nae−(δ−(c/2)δ2)h2/�.

By choosing δ small enough we complete the proof of part (a).
(b) With the same notation as in part (a), and using the FKG inequality, we may

write

μ(A) ≥ ∑
h1,h2≥h

Pr
[
X(i) ≥ 0 ∀i /∈ [� + 1, n − �];

X(� + 1) = h1,X(n − �) = h2|X(0) = X(n + 1) = 0
]

× Pr
[
X(i) ≥ h ∀i ∈ [� + 1, n − �]|X(� + 1) = h1,

X(n − �) = h2
]

≥ Pr
[
X(i) ≥ 0 ∀i ∈ [0, �];X(� + 1) ≥ h|X(0) = 0

]2

×Pr
[
X(i) ≥ 0 ∀i ∈ [0, n + 1 − 2�]|X(0) = X(n − �) = 0

]
≥ 1

n3γ
Pr[X(�) ≥ h|X(0) = 0]2,

where in the last step we used standard random walk estimates [28] to get

Pr
[
X(i) ≥ 0 ∀i ∈ [0, n]|X(0) = 0

] ≥ 1/nγ

for some constant γ . The proof is easily finished by standard techniques for prov-
ing large deviation lower bounds for sums of i.i.d. random variables. If h/� > 1
we can write

Pr[X(�) ≥ h|X(0) = 0] ≥ Pr[X(� − 1) > 0;Z� ≥ h|X(0) = 0]
≥ ce−βh ≥ ce−βh2/�

for a suitable constant c. If instead h/� ≤ 1 we introduce the tilted distribution
Prλ(Z1 = z) ∝ e−β|z|+λz with λ such that Eλ(Z1) = h/�. It is easy to see that
λ = O(h/�). Using Jensen’s inequality we can write

Pr[X(�) ≥ h|X(0) = 0] ≥ E(eλZ1)�Eλ

(
e−λ

∑�
i=1 Ziχ

(
�∑

i=1

Zi ∈ [h,2h]
))

≥ e−2λhPrλ
[

�∑
i=1

Zi ∈ [h,2h]
]

≥ e−ch2/�

for another suitable constant c.
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(c) It is enough to write

μ(B) ≤ nmax
i

Pr(|Zi | ≥ d)

Pr[X(i) ≥ 0 ∀i ∈ [1, n];X(n) = 0|X(0) = 0] ≤ e−βdnγ+1/2,

again by standard random walk bounds.
(d) After a union bound over the index i ∈ [1, n] it is enough to repeat the argu-

ments used in the proof of part (a) up to (C.1), and then choose the free parameter λ

small enough (independent of n). �
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