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ASYMPTOTICS OF ROBUST UTILITY MAXIMIZATION

BY THOMAS KNISPEL1

Leibniz Universität Hannover

For a stochastic factor model we maximize the long-term growth rate of
robust expected power utility with parameter λ ∈ (0,1). Using duality meth-
ods the problem is reformulated as an infinite time horizon, risk-sensitive
control problem. Our results characterize the optimal growth rate, an optimal
long-term trading strategy and an asymptotic worst-case model in terms of an
ergodic Bellman equation. With these results we propose a duality approach
to a “robust large deviations” criterion for optimal long-term investment.

1. Introduction. One of the basic tasks in mathematical finance is to choose
an “optimal” payoff among all available financial positions which are affordable
given an initial capital endowment. In mathematical terms, a payoff at a termi-
nal time corresponds to a real-valued random variable on some measurable space
(�, F ) and an investor faces a set X of such financial positions. Any formulation of
optimality will involve the investor’s individual preferences � on X. The relation
X � Y means that the investor prefers the payoff X over Y . Under mild conditions
such preferences admit a numerical representation U :X → R (see, e.g., [17]); that
is, for X,Y ∈ X it holds that

X � Y ⇐⇒ U (X) > U (Y ).

In this context, Savage [36] clarified the conditions which guarantee that a prefer-
ence order admits the specific numerical representation

U (X) = EQ[u(X)] =
∫

u(X(ω))Q(dω), X ∈ X,(1)

in terms of an increasing continuous function u : R → R ∪ {−∞} and a probabil-
ity measure Q on (�, F ). Here Q appears as a “subjective” probability measure
which is implicit in the investor’s preferences, and which may differ from a given
“objective” probability measure. The function u in (1) will be concave if the in-
vestor is assumed to be risk averse. In that case, u is called a utility function.

The literature on optimal investment decisions in a financial market usually in-
volves the maximization of a utility functional (1) with respect to a given mea-
sure Q. Typically, Q is assumed to model the evolution of future stock prices and
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is thus viewed as the “objective” measure. But the price dynamics are not really
known accurately, and so the choice of the evaluation measure Q is itself subject
to model uncertainty or model ambiguity, also called Knightian uncertainty in the
economic literature. There is another reason to depart from the standard setting of
expected utility as formulated in (1): some very plausible preferences such as the
famous Ellsberg paradox are not consistent with (1) (see, e.g., [17], Example 2.75).
In order to overcome this limitation, Gilboa and Schmeidler [19] proposed a more
flexible set of axioms for preference orders which leads to a “robust” extension
of (1): instead of a single measure Q the numerical representation of the prefer-
ence order involves a whole class Q of probability measures and takes the form of
a “coherent” robust utility functional

U (X) = inf
Q∈Q

EQ[u(X)].(2)

This representation suggests the following interpretation: the investor has in mind a
collection of possible probability distributions of market events and takes a worst-
case approach in evaluating the expected utility of a given payoff. In recent years,
there is an increasing interest in the maximization of the robust expected utility (2)
of wealth X

x0,ξ
T attainable at time T > 0 by investing in a financial market using

some self-financing trading strategies ξ and the initial capital x0

maximize inf
Q∈Q

EQ[u(X
x0,ξ
T )] among all self-financing strategies ξ.(3)

For general semimartingale models, this optimization problem can be solved
by a duality approach (sometimes also called martingale approach) (see, e.g.,
Quenez [35], Schied and Wu [39] or Föllmer and Gundel [14]). Their results pro-
vide a robust extension of the seminal paper by Kramkov and Schachermayer [27]
for the classical utility maximization problem in incomplete markets. The main
advantage of the duality approach lies in the fact that the primal saddle-point prob-
lem is reduced to a minimization problem on the dual side. In many cases, the dual
problem is much simpler and can be tackled with another optimization technique
(dynamic programming, BSDE).

For a finite maturity, however, the optimal investment strategies for (3) will
typically be time dependent, and they are often difficult to compute. Instead we
propose an asymptotic approach: we consider a long-term investment model with
one riskless and one risky asset whose drift coefficients are affected by an external
stochastic factor process of diffusion type. Our model takes into account ambiguity
about the “true” drift terms of both the factor process and the risky asset. The class

Q of possible prior models corresponds to affine perturbations of the drift terms in
a given reference model and is parameterized by stochastic controls. In this paper
we focus on power utility u(x) = 1

λ
xλ with parameter λ ∈ (0,1), but other utility

functions are also feasible (cf. Remark 2.1). In our model the robust expected
power utility will grow exponentially as time T ↑ ∞, and this suggests to

maximize lim
T ↑∞

1

T
ln inf

Q∈Q
EQ[(Xx0,ξ

T )λ] among all strategies ξ.(4)
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This asymptotic formulation has the advantage of allowing for stationary optimal
policies and may thus be more tractable. On the other hand, the asymptotic ansatz
provides useful insight for portfolio management with long but finite time horizon.

For the nonrobust case Q = {Q}, problem (4) is closely related to the maxi-
mization of the portfolio’s risk-sensitized expected growth rate,

�Q(θ, ξ) := lim
T ↑∞

− 2

θT
lnEQ

[
exp

(
−θ

2
lnX

x0,ξ
T

)]
, θ 
= 0.(5)

In order to explain the nature of this criterion, let us consider the entropic monetary
utility functional Uθ (X) := − 2

θ
lnEQ[exp(− θ

2X)], where θ is a positive constant.
The functional Uθ is also well defined for θ < 0, and it can be extended to θ = 0
via U0(X) := limθ→0 Uθ (X) = EQ[X]. A Taylor expansion around θ = 0 (cf., e.g.,
[41], page 5) yields

Uθ (X) = EQ[X] + θ

4
VarQ[X] + O(θ2).(6)

Thus θ can be interpreted as a “risk sensitivity” parameter that weights the impact
of variance. In particular, the Taylor expansion (6) suggests that

�Q(θ, ξ) = lim
T ↑∞

1

T
EQ[lnX

x0,ξ
T ] + θ

4
lim
T ↑∞

1

T
VarQ[lnX

x0,ξ
T ].

The first term at the right-hand side is the portfolio’s risk-neutral expected growth
rate. The second term provides a risk adjustment specified by the portfolio’s
asymptotic variance and the risk sensitivity parameter θ , and so �Q(θ, ξ) can in-
deed be seen as the risk-sensitized expected growth rate of wealth. On the other
hand, the long-run growth rates of expected power utility u(x) = (θ/2)xθ/2 are,
up to constants, of the form �Q(θ, ξ), and the limit θ → 0 corresponds to the
growth rate of expected logarithmic utility. Such risk-sensitized portfolio optimiza-
tion problems on an infinite time horizon have received much attention (see, e.g.,
[3, 4, 9, 10, 28, 31, 33]). In those papers, the maximization of (5) among a class of
trading strategies, viewed as dynamic controls, is reformulated as an infinite time
horizon, risk-sensitive control problem of the kind studied in Fleming and McE-
neaney [8]. The rewritten problem leads to an auxiliary finite horizon “exponential
of integral criterion.” This is a standard problem in stochastic control theory, and
its value function can be described by an appropriate Hamilton–Jacobi–Bellman
(HJB) equation. As time tends to infinity, a heuristic separation of time and space
variables in the HJB equation yields an ergodic Bellman equation. The optimal
growth rate and an optimal trading strategy are characterized by a specific solution
of this ergodic Bellman equation.

In contrast to (5), our robust problem (4) involves also the minimization among
the class Q, and this would lead to a stochastic differential game on an infinite
time horizon. Our main purpose, however, is to develop an alternative approach:
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the main idea consists of combining the duality approach in [39] with methods
from risk-sensitive control. Our main results characterize the optimal growth rate

�(λ) := sup
ξ

lim
T ↑∞

1

T
ln inf

Q∈Q
EQ[(Xx0,ξ

T )λ],

an optimal long-term investment strategy and an asymptotic worst-case model
Q∗ ∈ Q for robust expected power utility in terms of an appropriate ergodic Bell-
man equation.

Such asymptotic results on robust utility maximization are not only of intrinsic
interest but also relevant in connection to “robust large deviations” criteria to opti-
mal long term investment. Suppose that the investor takes into account a class Q of
prior models and wants to maximize the worst-case probability that the portfolio’s
growth rate L

x0,ξ
T := 1

T
lnX

x0,ξ
T exceeds some threshold c ∈ R. In the spirit of large

deviations theory (see, e.g., [6]) the asymptotic problem then consists of

maximizing lim
T ↑∞

1

T
ln inf

Q∈Q
Q[Lx0,ξ

T ≥ c] among all ξ.(7)

The solution can be derived by a duality approach similar to the Gärtner–Ellis
theorem, but here the dual problem involves the optimal growth rates �(λ), λ ∈
(0,1), of robust expected power utility.

The paper is organized as follows: the setup is introduced in Section 2. Section 3
contains a heuristic derivation of our main results that are verified in Section 4. In
Section 5 we discuss the existence of a solution to our ergodic Bellman equation.
Explicit case studies are given in Section 6. In Section 7 we describe the duality
approach to the robust outperformance criterion (7).

2. The model and problem formulation. Let (�, F , (Ft )t≥0,Q0) be the
canonical path space of a two-dimensional Wiener process W = (W 1

t ,W 2
t )t≥0.

We shall consider a long-term horizon investment model with one locally riskless
asset S0 and one risky asset S1. The performance of the market is determined by an
external “economic factor” Y , driven by the Wiener process W . The spectrum of
possible factors includes dividend yields, short-term interest rates, price-earning
ratios, yields on various bonds, the rate of inflation, etc. . . . Both the price pro-
cesses S0, S1 and the factor process Y will be subject to model ambiguity. This
will be described by a class Q of probabilistic models, viewed as perturbations of
the following reference model Q0. Under Q0 the dynamics of the locally riskless
asset is given by

dS0
t = S0

t r(Yt ) dt, S0
0 = 1,

and the price process of the risky asset is governed by the SDE

dS1
t = S1

t

(
m(Yt ) dt + σ dW 1

t

)
.(8)
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Thus the market price of risk is defined by

θ(y) := m(y) − r(y)

σ
.(9)

The factor process evolves according to

dYt = g(Yt ) dt + ρ dWt = g(Yt ) dt + ρ1 dW 1
t + ρ2 dW 2

t .(10)

We suppose that the economic factor can be observed but cannot be traded directly.
Therefore the market model is typically incomplete. This class of market models
is widely used in mathematical finance and economics (see, e.g., [5, 7, 18] and the
references therein). Typically the diffusion Y is also assumed to be mean reverting
and ergodic with some invariant distribution μ. A special example is the Ornstein–
Uhlenbeck (OU) process with dynamics

dYt = η0(y − Yt ) dt + σ dW 1
t , η0 > 0, σ 
= 0,(11)

and invariant distribution μ = N(y, σ 2

2η0
).

We shall use the following general assumptions on the coefficients of the diffu-
sions, summarized as

ASSUMPTION 2.1. The functions g, m admit derivatives gy,my ∈ C1
b(R), and

r belongs to C2
b(R), where Ck

b(R) denotes the class of all bounded functions with
bounded derivatives up to order k. Moreover, we assume that σ and ‖ρ‖ are posi-
tive and that the short-rate function r is bounded below by some constant a1 > 0.

Here we use ‖ · ‖ to indicate the Euclidian norm in R
2, and in the sequel (·, ·)

will denote the corresponding inner product. In particular, our assumptions ensure
that the functions g and θ satisfy the linear growth conditions

|g(y)| ≤ a2(1 + |y|) and |θ(y)| ≤ a3|y| + a4 for a2, a3, a4 > 0.

Note also that Assumption 2.1 is consistent with linear drift functions g and m.
In this paper, such a choice of the reference model will be particularly useful to
obtain explicit solutions (cf. Section 6).

In reality, however, the “true” price dynamics are not really known exactly. Here
we focus on model uncertainty with respect to the drift terms appearing in (8) and
(10). More precisely, we consider the parameterized class of possible probabilistic
models

Q := {Qη|η = (ηt )t≥0 ∈ C}
on (�, F ), where C denotes the set of all progressively measurable processes
η = (ηt )t≥0 such that ηt = (η11

t , η12
t , η21

t , η22
t ) belongs dt ⊗ Q0-a.e. to some fixed

compact and convex set � ⊂ R
4 which contains the origin. For η ∈ C and any fixed
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horizon T , the restriction of Qη to the σ -field FT is given by the Radon–Nikodým
density,

D
η
T := dQη

dQ0

∣∣∣∣
FT

:= E
(∫ ·

0
η1·

t Yt + η2·
t dWt

)
T

(12)

with respect to the reference measure Q0. Here E (·) denotes the Itô exponential.
To see that D

η
T is indeed the density of a probability measure on (�, FT ), we can

argue as follows: by Assumption 2.1 the diffusion process Y satisfies the regular-
ity conditions required in Lemma A.1, and so there exists some δ > 0 such that
sup0≤t≤T EQ0[exp(δY 2

t )] < ∞. The compactness of � thus ensures that

sup
0≤t≤T

EQ0[exp(ε‖η1·
t Yt + η2·

t ‖2)] < ∞(13)

as soon as ε > 0 is chosen sufficiently small. According to [29], Example 3, Sec-
tion 6.2, this yields EQ0[Dη

T ] = 1 as desired.
In view of (12) we have Q0 = Q0 ∈ Q, and it follows as in [23], Lemma 3.1,

that Q is a convex set of locally equivalent measures on (�, F ). By Girsanov’s
theorem,

W
η
t :=

(
W 1

t −
∫ t

0
η11

s Ys + η21
s ds,W 2

t −
∫ t

0
η12

s Ys + η22
s ds

)
, t ≥ 0,

is a two-dimensional Wiener process under the measure Qη, and the dynamics of
S1, Y under Qη take the form

dYt = [g(Yt ) + (ρ, η1·
t Yt + η2·

t )]dt + ρ dW
η
t ,(14a)

dS1
t = S1

t

([m(Yt) + σ(η11
t Yt + η21

t )]dt + σ dW
1,η
t

)
.(14b)

Roughly speaking each element of Q corresponds to an affine perturbation of the
drifts in our reference model Q0. In particular, our “robust” market model includes
the following special cases (see Section 6):

EXAMPLE 2.1 (Black–Scholes model with uncertain drift).

r(y) ≡ r, m(y) ≡ m, � = {(0,0)} × [a, b] × {0}.
EXAMPLE 2.2 (Geometric OU model with uncertain mean reversion). The

factor process Y is an OU process under Q0 with rate of mean reversion η0 > 0,
mean reversion level y = 0 and volatility σ > 0 [cf. (11)]. We also assume S0

t =
exp(rt), r > 0 and S1

t := exp(Yt + αt), α ∈ R. By Itô’s formula this corresponds
to

g(y) = −η0y, ρ1 = σ, ρ2 = 0, m(y) = −η0y + 1
2σ 2 + α.

Moreover, we take the set � := [η0−b
σ

,
η0−a

σ
] × {(0,0,0)} for 0 < a ≤ b < ∞. For

any Qη ∈ Q the process Y thus follows under Qη ∈ Q OU-type dynamics with
mean reversion process η0 − ση11

t , taking values in [a, b].
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Let us now formulate our main problem. We consider an investor with initial
capital x0 > 0 who aims at optimizing his portfolio in the long run. A trading
strategy will be a predictable stochastic process ξ = (ξ0, ξ1) whose components
ξ0 and ξ1 describe the successive amounts invested into the bond and into the risky
asset. The value of such a portfolio at time t is given by X

ξ
t = ξ0

t S0
t + ξ1

t S1
t . We

also assume that ξ1 is S1-integrable. Such a trading strategy ξ is said to be self-
financing for the given initial capital x0 if its wealth process Xξ = (X

ξ
t )t≥0 takes

the form

X
ξ
t = x0 +

∫ t

0
ξ0
u dS0

u +
∫ t

0
ξ1
u dS1

u.(15)

Here the (stochastic) integrals can be interpreted as cumulative gains or losses,
that is, any change in the portfolio value equals the profit or loss due to changes
in the asset prices. For notational convenience we omit the explicit dependence of
Xξ on the initial capital x0, since it will be irrelevant for our purpose of long-term
investment.

DEFINITION 2.1. A self-financing trading strategy ξ is called T -admissible if
X

ξ
t ≥ 0 for all t ∈ [0, T ]. A strategy ξ will be called admissible if it is T -admissible

for any time horizon T > 0. We denote by AT the class of all T -admissible strate-
gies and by A the class of all admissible strategies.

Clearly, a self-financing trading strategy ξ can also be described by the fractions

πt := ξ1
t S1

t

X
ξ
t

, t ≥ 0,

of the current wealth which should be invested into the risky asset. Throughout
this paper we identify a strategy ξ with the fractions π = (πt )t≥0. In terms of π

the wealth process defined in (15) takes the form

Xπ
t = x0 +

∫ t

0

Xπ
u (1 − πu)

S0
u

dS0
u +

∫ t

0

Xπ
u πu

S1
u

dS1
u;

that is, the investor’s wealth Xπ evolves according to the SDE

dXπ
t = Xπ

t

(
(1 − πt)

dS0
t

S0
t

+ πt

dS1
t

S1
t

)
(16)

= Xπ
t

(
r(Yt ) dt + πtσ

[(
θ(Yt ) + η11

t Yt + η21
t

)
dt + dW

1,η
t

])
with initial condition Xπ

0 = x0.
In order to specify optimality, we assume that the investor’s preferences in the

face of model ambiguity are described by a power utility function

u(x) = 1

λ
xλ with risk aversion parameter λ ∈ (0,1),
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and the set of prior probabilistic models Q (cf. page 173). For a finite maturity T ,
his robust portfolio selection problem then consists of

maximizing inf
Qη∈Q

EQη [u(Xπ
T )] among all π ∈ AT .(17)

In a general semimartingale setting, this problem is well understood from a the-
oretical point of view, in particular due to the articles [14, 35, 39]. For robust
market models of the diffusion type described above and for power utility, prob-
lem (17) has been discussed recently by Schied [38]. Applying dynamic program-
ming methods to the dual problem, he determines the maximal robust expected
utility and a worst-case model in terms of a Hamilton–Jacobi–Bellman equation.
Here we do not limit the analysis to a fixed maturity. Instead the objective of our
investor consists of maximizing the long-term growth of robust expected power
utility. A priori estimates, as established in Lemma 3.1, suggest that the maximal
values

U
Q
T (x0) := sup

π∈AT

EQ[u(Xπ
T )], UT (x0) := sup

π∈AT

inf
Qη∈Q

EQη [u(Xπ
T )](18)

for the classical utility maximization problem under Q and for its robust extension
will grow exponentially as T ↑ ∞. Thus it is natural to try to

maximize lim
T ↑∞

1

T
ln inf

Qη∈Q
EQη [(Xπ

T )λ] among all π ∈ A.(19)

Our goal is to identify the optimal growth rate,

�(λ) := sup
π∈A

lim
T ↑∞

1

T
ln inf

Qη∈Q
EQη [(Xπ

T )λ], λ ∈ (0,1),(20)

an optimal long term investment strategy π∗ and an asymptotic worst-case model
Qη∗ ∈ Q. Heuristically this means that, as T ↑ ∞,

UT (x0) ≈ 1

λ
xλ

0 e�(λ)T(21)

≈ inf
Qη∈Q

EQη [u(Xπ∗
T )](22)

≈ U
Qη∗
T (x0) = sup

π∈AT

EQη∗ [u(Xπ
T )](23)

≈ EQη∗ [u(Xπ∗
T )].(24)

Here (22) corresponds to asymptotic optimality of the trading strategy π∗, (23) to
the property of Qη∗

of being the asymptotic worst-case model, and (24) identifies
π∗ also as the asymptotically optimal strategy for the model Qη∗

. In particular,
Qη∗

and π∗ can be viewed as a saddle point for the problem of asymptotic ro-
bust utility maximization with control parameters η ∈ C and π ∈ A. Moreover,
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(22) suggests that an optimal strategy π∗ of the asymptotic criterion (19) should
provide a good approximation of an optimal investment process π∗,T for the robust
power utility maximization problem with a large but finite time horizon T .

REMARK 2.1. The asymptotic approach to robust utility maximization can be
extended to the following cases (see [26], Chapter 4):

• For power utility u(x) = 1
λ
xλ with parameter λ < 0 the distance between

UT (x0) = 1

λ
inf

π∈AT

sup
Qη∈Q

EQη [(Xπ
T )λ]

and its upper bound 0 will typically decrease exponentially as T ↑ ∞. This
suggests that we should compute the optimal growth rate,

�(λ) := inf
π∈A

lim
T ↑∞

1

T
ln sup

Qη∈Q
EQη [(Xπ

T )λ].

• For logarithmic utility u(x) = ln(x) the growth of robust expected utility will be
linear. Thus we want to

maximize lim
T ↑∞

1

T
inf

Qη∈Q
EQη [ln(Xπ

T )] among all π ∈ A.

3. Heuristic outline of the dynamic programming approach. We start with
a heuristic derivation of our main results. They provide a characterization of the
optimal growth rate �(λ), of an asymptotic worst-case model Qη∗

, and of an op-
timal long-term investment strategy π∗ in terms of an ergodic Bellman equation
(EBE). Our method combines the duality approach to robust utility maximization
with dynamic programming methods for a varying time horizon. As a byproduct of
the duality approach, we also show that UT (x0) grows exponentially at rate �(λ)

as T ↑ ∞. A more direct, but not more tractable approach to the saddle-point prob-
lem (19) via stochastic differential games will be discussed in Remark 4.2.

First, we set up the duality approach based on the results of Schied and Wu [39]
for a utility function u on the positive halfline. This will allow us to transform the
primal saddle-point problem (19) to a simpler minimization problem on the dual
side. The dual value function at time T is defined by

VT (y) := inf
Q∈Q

inf
Y∈Y Q

EQ[v(yYT /S0
T )], y > 0,(25)

where v(y) := supx>0{u(x) − xy}, y > 0, is the convex conjugate function of u.
This definition also involves the class of supermartingales

Y Q
T := {Y ≥ 0|Y0 = 1 and ∀π ∈ AT : (YtX

π
t /S0

t )t≤T is a Q-supermartingale}
as introduced by Kramkov and Schachermayer [27]. Note that Y Q

T contains the
density processes (taken with respect to Q and the numéraire S0) of the class PT
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of all equivalent local martingale measures on (�, FT ). For power utility we have
v(y) = −β−1yβ , β := λ

λ−1 , and this yields the scaling property VT (y) = yβVT (1).
Due to [39], Theorem 2.2, the primal value function (18) can then be obtained as

UT (x0) = inf
y>0

{VT (y) + x0y} = 1

λ
xλ

0 (−βVT (1))1−λ.(26)

Since power utility has asymptotic elasticity limx↑∞ xu′(x)
u(x)

< 1, it follows from
[39], Theorem 2.5, also that

VT (1) = inf
P∈PT

inf
Q∈Q

EQ

[
v

(
dP

dQ

∣∣∣∣
FT

/
S0

T

)]
.(27)

We now parameterize the sets Y Q
T and PT . Since Zt := dP/dQ0|Ft , t ≤ T , is

a positive Q0-martingale for any P ∈ PT , the martingale representation theo-
rem yields the existence of an R

2-valued progressively measurable process φ =
(φ1, φ2) with

∫ T
0 ‖φs‖2 ds < ∞ Q0-a.s. such that Zt = E (

∫ ·
0 φs dWs)t . By Gir-

sanov’s theorem, the discounted wealth process Xπ/S0 is a local martingale under
P if and only if φ1

s = −θ(Ys) ds ⊗ Q0-a.e. Thus the Q0-density process of an
martingale measure P ∈ PT necessarily takes the form

Zν
t := E

(
−

∫ ·
0

θ(Ys) dW 1
s −

∫ ·
0

νs dW 2
s

)
t

(28)

for some progressively measurable process ν such that
∫ T

0 ν2
s ds < ∞ Q0-a.s. Con-

versely, Zν
T corresponds to the Q0-density of an equivalent local martingale mea-

sure on (�, FT ) as soon as the martingale condition EQ0[Zν
T ] = 1 holds. This can

be verified if, for instance, the process ν is assumed to be bounded. Thus our mar-
ket model admits a variety of equivalent local martingale measures up to any finite
horizon T ; that is, the restriction of our model to a finite horizon is arbitrage-free
but incomplete.

More generally, we will denote by M the set of all progressively measurable
processes ν = (νt )t≥0 such that

∫ T
0 ν2

t dt < ∞ Q0-a.s. for all T > 0. Via (28) every
ν ∈ M gives rise to a positive Q0-supermartingale Zν . Using Itô’s formula one
easily shows that (Dη)−1ZνXπ/S0 is a positive local martingale under Qη for any
ν ∈ M and π ∈ AT , and hence a Qη-supermartingale. Thus{(

dP

dQη

∣∣∣∣
Ft

)
t≤T

∣∣∣P ∈ PT

}
⊂ {((Dη

t )−1Zν
t )t≤T |ν ∈ M} ⊂ Y Qη

T .

In view of (25), (27) and (26) this inclusion and a change of measure yield

UT (x0) = 1

λ
xλ

0

(
inf

ν∈M
inf
η∈C

EQ0

[
(Zν

T (S0
T )−1)λ/(λ−1)(D

η
T )1/(1−λ)])1−λ

.(29)

In a second step, we derive an ergodic Bellman equation by applying dynamic
programming methods to the dual minimization problem. Since Zν

T , D
η
T and the
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bond price S0
T depend on the factor process Y , the expectation at the right-hand

side of (29) is a function of the initial state Y0 = y. For all processes η ∈ C and
ν ∈ M we can thus define

V (η, ν, y, T ) := EQ0

[
(Zν

T (S0
T )−1)λ/(λ−1)(D

η
T )1/(1−λ)].(30)

Inserting the definitions of Zν
T , D

η
T and S0

T we then obtain the decomposition

V (η, ν, y, T ) = EQ0

[
E η,ν

T e
∫ T

0 l(ηt ,νt ,Yt ) dt ].(31)

Here the function l :� × R × R → R+ is defined by

l(η, ν, y) := 1

2

λ

(1 − λ)2

[(
θ(y) + η11y + η21)2 + (ν + η12y + η22)2]

(32)

+ λ

1 − λ
r(y)

and

E η,ν
T := E

(
1

1 − λ

(∫ ·
0

λθ(Yt )+η11
t Yt +η21

t dW 1
t +

∫ ·
0

λνt +η12
t Yt +η22

t dW 2
t

))
T

.

To simplify the expression for V (η, ν, y, T ), we shall interpret the Itô expo-
nential as the density of a probability measure Rη,ν on (�, FT ). This requires
EQ0[E η,ν

T ] = 1 which is satisfied, for example, if
∫ T

0 ν2
t dt is bounded. For arbi-

trary ν ∈ M we may have EQ0[E η,ν
T ] < 1, but here we argue heuristically, and so

we postpone this technical problem to the proof of Theorem 4.1. In terms of the
measure Rη,ν we can write

V (η, ν, y, T ) = ERη,ν

[
e

∫ T
0 l(ηt ,νt ,Yt ) dt ].(33)

Moreover, Girsanov’s theorem yields that the factor process (Yt )t≤T evolves under
Rη,ν according to the SDE

dYt = h(ηt , νt , Yt ) dt + ρ dW
η,ν
t ,(34)

where Wη,ν is a Wiener process under Rη,ν and where h is defined by

h(η, ν, y) := g(y) + 1

1 − λ
ρ1

(
λθ(y) + η11y + η21)

(35)

+ 1

1 − λ
ρ2(λν + η12y + η22).

Putting (29), (30) and (33) together, we get

UT (x0) = 1

λ
xλ

0 v(y,T )1−λ,(36)

where

v(y,T ) := inf
ν∈M

inf
η∈C

ERη,ν

[
e

∫ T
0 l(ηt ,νt ,Yt ) dt ]
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denotes the value function of the finite horizon optimization problem on the dual
side of (29). Such an “expected exponential of integral cost criterion” with a dy-
namics of the form (34) is standard in stochastic control theory (see, e.g., [11],
Remark IV.3.3). As a result, v can be described as the solution to the Hamilton–
Jacobi–Bellman (HJB) equation,

vt = 1

2
‖ρ‖2vyy + inf

ν∈R
inf
η∈�

{l(η, ν, ·)v + h(η, ν, ·)vy}, v(·,0) ≡ 1.(37)

The following lemma establishes a priori bounds for the exponential growth of
robust expected power utility, and this justifies the scaling in (19).

LEMMA 3.1. Suppose in addition to Assumption 2.1 that one of the following
conditions is satisfied:

(1) The market price of risk function θ in (9) is bounded.
(2) There exist constants K,M1,M2 > 0 such that

−Ky + M1 ≤ g(y) + λ

1 − λ
ρ1θ(y) ≤ −Ky + M2, 2

λ

(1 − λ)2 ‖ρ‖2a2
3 < K2.

Then there are constants K1,K2 > 0 such that for any initial capital x0 > 0

K1 ≤ lim
T ↑∞

1

T
lnUT (x0) ≤ lim

T ↑∞
1

T
lnUT (x0) ≤ K2.(38)

PROOF. If at any time the whole capital is put into the money market account,
then the investor’s utility at time T is given by 1

λ
xλ

0 exp(λ
∫ T

0 r(Yt ) dt) which, by
Assumption 2.1, is bounded from below by 1

λ
xλ

0 exp(λa1T ). This implies the lower
bound

0 < K1 := λa1 ≤ lim
T ↑∞

1

T
lnUT (x0).

To obtain the upper bound, observe first that

v(y,T ) ≤ V (0,0, y, T ) ≤ ER

[
e(1/2)(λ/(1−λ)2)

∫ T
0 θ2(Yt ) dt ]e(λ/(1−λ))‖r‖∞T ,

where R := R0,0 is the probability measure defined by E 0,0
T . In view of (36) we

thus get the estimate

lim
T ↑∞

1

T
lnUT (x0)

(39)

≤ (1 − λ) lim
T ↑∞

1

T
lnER

[
e(1/2)(λ/(1−λ)2)

∫ T
0 θ2(Yt ) dt ] + λ‖r‖∞.

In particular, the upper bound in (38) holds with K2 := 1
2

λ
1−λ

‖θ‖2∞ +λ‖r‖∞ if the
market price of risk function θ is bounded.
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Case (2) requires more effort. By (39) it is sufficient to show that

lim
T ↑∞

1

T
lnER

[
exp

(
1

2

λ

(1 − λ)2

∫ T

0
θ2(Yt ) dt

)]
< ∞.(40)

To this end, recall from (34) that the dynamics of Y under R are given by

dYt = h(0,0, Yt ) dt + ρ dW
0,0
t with h(0,0, y) = g(y) + λ

1 − λ
ρ1θ(y).

Consider now the R-OU processes dZit = [−KZit + Mi]dt + ρ dW
0,0
t , Zi0 = y,

i = 1,2. Then a comparison argument for the solutions of SDEs ensures that

R[Z1t ≤ Yt ≤ Z2t for all t ≥ 0] = 1.(41)

Take now ε > 0 satisfying 2 λ
(1−λ)2 ‖ρ‖2(a2

3 + ε) < K2. By Assumption 2.1 there
exist constants C1, C2 depending on ε such that

θ2(y) ≤ (a3|y| + a4)
2 ≤

(
a2

3 + ε

2

)
y2 + C1 ≤ (a2

3 + ε)(y − Mi/K)2 + C1 + C2

for any y ∈ R. Together with (41) and Hölder’s inequality (applied in line 3) this
leads to

ER

[
e(1/2)(λ/(1−λ)2)

∫ T
0 θ2(Yt ) dt ]

≤ ER

[
e(1/2)(λ/(1−λ)2)(a2

3+ε/2)
∫ T

0 Y 2
t dt ]e(1/2)(λ/(1−λ)2)C1T

≤ ER

[
e(1/2)(λ/(1−λ)2)(a2

3+ε/2)
∫ T

0 Z2
1t+Z2

2t dt ]eC3T

(42)
≤ max

i=1,2
ER

[
eλ/(1−λ)2(a2

3+ε/2)
∫ T

0 Z2
it dt ]eC3T

≤ max
i=1,2

ER

[
eλ/(1−λ)2(a2

3+ε)
∫ T

0 (Zit−Mi/K)2 dt ]eC4T

= max
i=1,2

ER

[
eλ/(1−λ)2‖ρ‖2(a2

3+ε)
∫ T

0 Z̃2
it dt ]eC4T .

Here we use the processes Z̃i , i = 1,2, defined by Z̃it := ‖ρ‖−1(Zit − Mi/K).
Note that Z̃i is an OU process with rate of mean reversion K , equilibrium level
0 and volatility 1, since B := ∫

0(‖ρ‖)−1ρ dW
0,0
t is a standard one-dimensional

R-Brownian motion, due to Lévy’s characterization. Applying Lemma 4.2 in [13]
[here with λ = 0, μ = λ

(1−λ)2 ‖ρ‖2(a2
3 +ε) and θ0 = −K] for the asymptotics of the

Laplace transform of the energy integral of a normalized OU process, we obtain

lim
T ↑∞

1

T
lnER

[
e(λ/(1−λ)2)‖ρ‖2(a2

3+ε)
∫ T

0 Z̃2
it dt ]

= 1

2

(
K −

√
K2 − 2

λ

(1 − λ)2 ‖ρ‖2(a2
3 + ε)

)
.
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In view of (42) we have thus shown (40). This completes the proof. �

Combining the discussion of (21) with (36), it is natural to expect that the optimal
growth rate �(λ) in (20) satisfies

�(λ) = lim
T ↑∞

1

T
lnUT (x0) = lim

T ↑∞
1

T
ln(v(y, T )1−λ).

As in Fleming and McEneaney [8] we now use a formal separation of time and
space variables and formulate the heuristic ansatz

(1 − λ) lnv(y,T ) = lnUT (x0) ≈ �(λ)T + ϕ(y).(43)

Here the function ϕ : R → R incorporates the influence of the initial state Y0 = y.
Inserting this ansatz into the HJB equation (37), we obtain a steady-state dynamic
programming equation for the pair (�(λ),ϕ)

�(λ) = 1

2
‖ρ‖2

[
ϕyy + 1

1 − λ
ϕ2

y

]
(44)

+ inf
ν∈R

inf
η∈�

{(1 − λ)l(η, ν, ·) + ϕyh(η, ν, ·)}.

An equation of this type is called an ergodic Bellman equation (EBE) (see, e.g., [1,
25, 30] and the references therein). For fixed η ∈ � the minimizer ν∗(η, y) among
all ν ∈ R can be computed explicitly as

ν∗(η, y) = −η12y − η22 − ρ2ϕy(y).(45)

Thus the EBE (44) can be rewritten in condensed form that involves only an in-
fimum among the set �. Let us now assume that our EBE (44) admits a solution
�(λ) ∈ R+, ϕ ∈ C2(R). In addition, assume that η∗(y) is a minimizer in (44),
and let Qη∗ ∈ Q be the probabilistic model corresponding to the feedback control
η∗

t = η∗(Yt ). We are now going to give a heuristic argument to identify a candidate
for the optimal long-run investment process π∗. To this end, we suppose that the
measure Qη∗

is a worst-case model in the asymptotic sense that

�(λ) = lim
T ↑∞

1

T
lnUT (x0) = lim

T ↑∞
1

T
ln sup

π∈AT

EQη∗ [(Xπ
T )λ].(46)

Later on we will show that this assumption is indeed justified. We are now going
to introduce a change of measure which will allow us to interpret the finite time
maximization problem at the right-hand side of (46) as an exponential of integral
criterion. For this purpose, note that an optimal wealth process should stay positive,
and this suggests that we should focus on those strategies π ∈ A, where the unique
strong solution to (16) takes the form

Xπ
t = x0e

∫ t
0 πuσ dW

1,η∗
u +∫ t

0 r(Yu)+σπu(θ(Yu)+η
11,∗
u Yu+η

21,∗
u )−(1/2)σ 2π2

u du.
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In this case the expectation at the right-hand side of (46) can be rewritten as

EQη∗ [(Xπ
T )λ] = xλ

0 ERπ,η∗
[
e

∫ T
0 l̃(πt ,η

∗(Yt ),Yt ) dt ].
Here we use the notation

l̃(π, η, y) := 1
2λ(λ − 1)σ 2π2 + λσ [θ(y) + η11y + η21]π + λr(y),(47)

and Rπ,η denotes the probability measure on (�, FT ) defined by

dRπ,η

dQη

∣∣∣∣
FT

:= E
(∫ ·

0
λπtσ dW

1,η
t

)
T

.(48)

By Girsanov’s theorem, the dynamics of (Yt )t≤T under Rπ,η are described by

dYt = h̃(πt , ηt , Yt ) dt + ρ dW
π,η
t(49)

in terms of the function h̃ defined by

h̃(π, η, y) := g(y) + (ρ, η1·y + η2·) + λρ1σπ(50)

and the one-dimensional Wiener process Wπ,η. We have thus shown that the finite
horizon maximization problem appearing in the right-hand side of (46) can be
viewed as a finite horizon control problem with value function

ṽ(y, T ) := sup
π∈A

EQη∗ [(Xπ
T )λ] = xλ

0 sup
π∈A

ERπ,η∗
[
e

∫ T
0 l̃(πt ,η

∗(Yt ),Yt ) dt ]
and with dynamics (49). In analogy to (37), we expect that ṽ is the solution to the
HJB equation

ṽt = 1

2
‖ρ‖2ṽyy + sup

π∈R

{̃l(π, η∗, ·)ṽ + h̃(π, η∗, ·)ṽy}, ṽ(·,0) ≡ 1.(51)

Our ansatz (43) combined with (46) for the worst-case measure Qη∗
now sug-

gests the heuristic separation of variables ln ṽ(y, T ) ≈ �(λ)T + ϕ(y). Inserting
this asymptotic identity into (51), we finally obtain an alternative version of the
EBE,

�(λ) = 1

2
‖ρ‖2[ϕyy + ϕ2

y] + sup
π∈R

{̃l(π, η∗, ·) + ϕyh̃(π, η∗, ·)}.(52)

Note that the role played by the controls η and ν in (44) is now taken over by the
“trading strategies” π . We expect that the maximizing function

π∗(y) = 1

1 − λ

1

σ

(
ρ1ϕy(y) + θ(y) + η11,∗(y)y + η12,∗(y)

)
(53)

in (52) provides an optimal feedback control π∗
t = π∗(Yt ), t ≥ 0, for the asymp-

totic maximization of power utility with respect to the specific model Qη∗
and at

the same time for the original robust problem (19).
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4. Verification theorems. In this section we verify our heuristic results. For
this purpose, we first return to the heuristic change of measure in (33) which is
crucial to translate the dual problem (29) into a standard “exponential of integral
criterion.” From the technical point of view this requires the condition EQ0[E η,ν

T ] =
1 that can be violated if the supermartingale Zν is not a true Q0-martingale. This
fact will create some technical difficulties. To overcome this obstacle, we shall
employ a localization argument.

LEMMA 4.1. Let η ∈ C and ν ∈ M be arbitrary controls, and suppose that
(τn)n∈N is a localizing sequence of stopping times for the local Q0-martingale Zν .
Then V (η, ν, y, T ∧ τn) ↗ V (η, ν, y, T ) as n ↑ ∞, and the integrands in (30) even
converge in L1(Q0) if V (η, ν, y, T ) < ∞.

PROOF. The proof is given in [38], Lemma 3.2. The main idea consists of
applying the concept of extended martingale measures introduced in [14]. �

In a second step we are going to show that the value �̃(λ) given by a specific
solution to the EBE (44) is actually the exponential growth rate of the maximal
robust power utility UT (x0). For this purpose, we need

ASSUMPTION 4.1. Suppose that �̃(λ) ∈ R+, ϕ ∈ C2(R) is a solution to

�̃(λ) = 1

2
‖ρ‖2

[
ϕyy + 1

1 − λ
ϕ2

y

]
(54)

+ inf
ν∈R

inf
η∈�

{(1 − λ)l(η, ν, ·) + ϕyh(η, ν, ·)},

which fulfills the following regularity conditions:

(a) Either the first derivative ϕy is bounded or ϕ is bounded below, and its
derivative ϕy has at most linear growth, that is,

|ϕy(y)| ≤ C1(1 + |y|) for some constant C1 > 0.

(b) There exist C2,C3 > 0 such that yκ(η, y) ≤ −C2y
2 + C3, where

κ(η, y) := g(y) + λ

1 − λ
ρ1

(
θ(y) + η11y + η21)

(55)

+ (ρ, η1·y + η2·) +
[

1

1 − λ
ρ2

1 + ρ2
2

]
ϕy(y).

In full generality, we are unfortunately not able to clarify whether the EBE (54)
has such a solution (�̃(λ), ϕ). In Section 5 we are going to state sufficient (but
rather restrictive) conditions under which the existence of a solution to our EBE
(54) is already known. Moreover, Section 6 contains two case studies with linear
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drift coefficients, where the solution can be derived even explicitly. But as illus-
trated in Section 6.2 in case of the geometric OU model, there may exist multiple
such pairs (�̃(λ),ϕ), even beyond the fact that ϕ is determined only except for an
additive constant. However, the verification theorems will require a certain “uni-
form ergodicity condition” such as Assumption 4.1(b) for the diffusion Y , and
this condition selects the “good candidate” for the optimal growth rate �(λ) (cf.
Remark 6.2).

THEOREM 4.1. If Assumption 4.1 is satisfied, then we get the identity

�̃(λ) = lim
T ↑∞

1

T
ln

(
inf

ν∈M
inf
η∈C

V (η, ν, y0, T )1−λ
)

for any Y0 = y0.(56)

Moreover, the infima at the right-hand side are attained for feedback controls

η∗
t := η∗(Yt ), ν∗

t := ν∗(Yt ), t ≥ 0,(57)

defined in terms of a measurable �-valued function η∗ and the function

ν∗(y) := ν∗(η∗(y), y) = −η12,∗(y)y − η22,∗(y) − ρ2ϕy(y)

such that the infima in (54) are attained. Thus,

�̃(λ) = lim
T ↑∞

1

T
ln(V (η∗, ν∗, y0, T )1−λ).(58)

In particular, the duality relations for robust utility maximization yield that

�̃(λ) = lim
T ↑∞

1

T
lnUT (x0) = lim

T ↑∞
1

T
lnU

Qη∗
T (x0) for any Xπ

0 = x0.(59)

REMARK 4.1. In view of (59), Qη∗
can be seen as the asymptotic worst-case

measure for robust expected power utility with parameter λ ∈ (0,1). On the other
hand, the probability measure P ν∗

on (�, F ) with Radon–Nikodým density pro-
cess (Zν∗

t )t≥0 is a martingale measure which is equivalent to Q0 on each σ -algebra
Ft , t > 0. In view of (58) and the duality relation (26) it can be interpreted as the
asymptotic worst-case martingale measure.

PROOF OF THEOREM 4.1. (1) In order to show that the constant �̃(λ) given
by the specific solution (�̃(λ),ϕ) to the EBE (54) coincides with the exponential
growth rate of the maximal robust power utility, we first prove that �̃(λ) provides
a lower bound for the growth rate. To this end, we use the duality relation

UT (x0) = 1

λ
xλ

0 inf
ν∈M

inf
η∈C

V (η, ν, y, T )1−λ

[cf. (29)] with V introduced in (30), derive suitable lower bounds for any fixed
horizon T and then pass to the limit.
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Let η ∈ C , ν ∈ M be fixed controls, and let T be a given maturity. Then τn :=
inf{t ≥ 0||Yt | ≥ n or

∫ t
0 ν2

s ds ≥ n} ∧ T , n ∈ N, is a localizing sequence for the
local Q0-martingale (Zν

t )t≤T . This will allow us to apply the change of measure
(33) locally and to use the localization Lemma 4.1 for τn ↑ T . In analogy to (31)
we obtain

V (η, ν, y0, τn) = EQ0

[
E η,ν

τn
e

∫ τn
0 l(ηt ,νt ,Yt ) dt ], n ∈ N,

where l is the auxiliary function defined in (32), and where

E η,ν
τn

= E
(

1

1 − λ

(∫ ·
0

λθ(Yu)+η11
u Yu+η21

u dW 1
u +

∫ ·
0

λνu+η12
u Yu+η22

u dW 2
u

))
τn

.

To eliminate the Itô exponential E η,ν
τn , we pass to the new probability measure R

η,ν
n

on (�, FT ) with density process dR
η,ν
n /dQ0|Ft := E η,ν

t∧τn
, t ∈ [0, T ]. It remains

to justify this change of measure. For this purpose, note that the process η ∈ C
takes its values in a compact subset � ⊂ R

4 and that θ2(y) ≤ (a3|y| + a4)
2 ≤

2(a2
3y2 + a2

4), due to Assumption 2.1. Using the definition of τn we can verify the
Novikov condition (see, e.g., [29], Theorem 6.1 and the note after it). This allows
us to write

V (η, ν, y0, τn) = ER
η,ν
n

[
e

∫ τn
0 l(ηt ,νt ,Yt ) dt ], n ∈ N.(60)

By Girsanov’s theorem, the dynamics of Y follow under R
η,ν
n the SDE

dYt = h(ηt , νt , Yt ) dt + ρ dW
η,ν
t on {t ≤ τn}(61)

for the drift function h given by (35) and for a two-dimensional R
η,ν
n -Wiener pro-

cess Wη,ν . Note that (60) can be viewed as a cost functional of an “expected ex-
ponential of integral criterion” with dynamics (61) (cf. page 182).

Let us next introduce the auxiliary function γ ≥ 0 by

γ (η, ν, y) := (1 − λ)l(η, ν, y) + ϕy(y)h(η, ν, y)
(62)

− inf
ν∈R

{(1 − λ)l(η, ν, y) + ϕy(y)h(η, ν, y)}.
Inserting the minimizer ν∗(η, y) introduced in (45), we then see that γ takes the
condensed form

γ (η, ν, y) = 1

2

λ

1 − λ

(
ν − ν∗(η, y)

)2
.(63)

Later on this representation of γ will be crucial to eliminate the control ν in the
dynamics of Y . In terms of γ our EBE (54) yields the inequality

�̃(λ) ≤ 1

2
‖ρ‖2

[
ϕyy + 1

1 − λ
ϕ2

y

]
(64)

+ (1 − λ)l(η, ν, ·) + ϕyh(η, ν, ·) − γ (η, ν, ·).
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By Itô’s formula applied to ϕ ∈ C2(R) and to the dynamics of Y in (61), this
estimate translates on {u ≤ τn} into

ϕ(Yu) − ϕ(y0)

=
∫ u

0
ϕy(Yt )h(ηt , νt , Yt ) + 1

2
‖ρ‖2ϕyy(Yt ) dt +

∫ u

0
ϕy(Yt )ρ dW

η,ν
t

(65)

≥
∫ u

0
�̃(λ) − 1

2

1

1 − λ
‖ρ‖2ϕ2

y(Yt ) − (1 − λ)l(ηt , νt , Yt )

+ γ (ηt , νt , Yt ) dt +
∫ u

0
ϕy(Yt )ρ dW

η,ν
t .

Dividing through 1 − λ, rearranging the terms and taking the exponential on both
sides, we thus obtain from (60) that

V (η, ν, y0, τn)

≥ ER
η,ν
n

[
e(1/(1−λ))(�̃(λ)τn+ϕ(y0)−ϕ(Yτn)+∫ τn

0 γ (ηt ,νt ,Yt ) dt)

(66)

× E
(∫ ·

0

ϕy(Yt )

1 − λ
ρ dW

η,ν
t

)
τn

]
= ER

η,ν
n

[
e(1/(1−λ))(�̃(λ)τn+ϕ(y0)−ϕ(Yτn)+∫ τn

0 γ (ηt ,νt ,Yt ) dt)].
Here the last expectation is taken with respect to the probability measure R

η,ν
n on

(�, FT ) with density process

dR
η,ν
n

dR
η,ν
n

∣∣∣∣
Ft

:= E
(∫ ·

0

ρϕy(Yu)

1 − λ
dWη,ν

u

)
t∧τn

.

Indeed, since ϕy grows at most linearly according to Assumption 4.1(a), this
change of measure can be justified again by Novikov’s condition (cf., e.g., [29],
Theorem 6.1 and the note after it). By Girsanov’s theorem, the factor process Y

evolves under R
η,ν
n according to

dYt =
[
h(ηt , νt , Yt ) + 1

1 − λ
‖ρ‖2ϕy(Yt )

]
dt + ρ dW

η,ν
t on {t ≤ τn},

where Wη,ν denotes a two-dimensional R
η,ν
n -Wiener process. But these dynamics

still depend on the irrepressible control ν. To eliminate this dependence, we apply
once more a Girsanov transformation. Consider the probability measure R

η
n on

(�, FT ) with density process

dR̂
η
n

dR
η,ν
n

∣∣∣∣
Ft

:= E
(∫ ·

0

λ

1 − λ

(
ν∗(ηs, Ys) − νs

)
dW

2,η,ν
t

)
t∧τn

.
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Verifying once more Novikov’s condition, we see that R
η
n is well defined, and so

the inequality (66) translates into

V (η, ν, y0, τn)
(67)

≥ ER̂
η
n

[
e(1/(1−λ))(�̃(λ)τn+ϕ(y0)−ϕ(Yτn)+∫ τn

0 γ (ηt ,νt ,Yt ) dt) dR
η,ν
n

dR̂
η
n

∣∣∣∣
Fτn

]
.

Moreover, Girsanov’s theorem yields that the dynamics of Y under R̂
η
n on {t ≤ τn}

takes the form

dYt =
[
h(ηt , νt , Yt ) + 1

1 − λ
‖ρ‖2ϕy(Yt ) + λ

1 − λ
ρ2

(
ν∗(ηt , Yt ) − νt

)]
dt + ρ dŴ

η
t

in terms of the two-dimensional R̂
η
n-Wiener process Ŵ η. Recalling from (35) and

(45) the definitions of the drift function h and of the minimizer ν∗(η, y), a straight-
forward computation shows that this SDE is equivalent to

dYt = κ(ηt , Yt ) dt + ρ dŴ
η
t ,(68)

where κ denotes the auxiliary function introduced in Assumption 4.1(b). To elim-
inate the density dR

η,ν
n /dR̂

η
n|Fτn

, we define p := λ−1
λ

< 0 and apply Hölder’s in-
equality with 1/p + 1/q = 1 to (67) (see, e.g., [24], page 191, for an extension of
the classical result to p < 0, q ∈ (0,1)). This leads to

V (η, ν, y0, τn) ≥ ER̂
η
n

[
e(q/(1−λ))(�̃(λ)τn+ϕ(y0)−ϕ(Yτn))]1/q

(69)

× ER̂
η
n

[(
dR

(η,ν)
n

dR̂
(η)
n

∣∣∣∣
Fτn

e(1/(1−λ))
∫ τn

0 γ (ηt ,νt ,Yt ) dt

)p]1/p

.

But in view of (63) and our choice of p we see that(
dR

η,ν
n

dR̂
η
n

∣∣∣∣
Fτn

e(1/(1−λ))
∫ τn

0 γ (ηt ,νt ,Yt ) dt

)p

= E
(∫ ·

0

pλ

1 − λ

(
ν∗(ηt , Yt ) − νt

)
dŴ

2,η
t

)
τn

.

Since the Itô exponential of a local martingale is always a supermartingale, it fol-
lows that the expectation in (69) is less than 1. Raised to the power of 1/p < 0,
this estimate is reversed, and we obtain

V (η, ν, y0, τn) ≥ ER̂
η
n

[
e(q/(1−λ))(�̃(λ)τn+ϕ(y0)−ϕ(Yτn))]1/q

, n ∈ N.(70)

In our next step, we shall extend the measures R̂
η
n|Fτn

, n ∈ N, to a probability
measure R̂η on the σ -field FT whose restrictions to Fτn are equal to R̂

η
n|Fτn

for
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all n ∈ N. To this end, note that the sequence τn increases to T and that the family
(R̂

η
n|Fτn

)n∈N is consistent in the sense that R̂
η
n+1(A) = R̂

η
n(A) for all A ∈ Fτn since

dR̂
η
n

dQ0

∣∣∣∣
Fτn

= dR̂
η
n

dR
η,ν
n

∣∣∣∣
Fτn

dR
η,ν
n

dR
η,ν
n

∣∣∣∣
Fτn

dR
η,ν
n

dQ0

∣∣∣∣
Fτn

= E
(∫ ·

0

1

1 − λ

(
λθ(Yu) + η11

u Yu + η21
u + ϕy(Yu)ρ1

)
dW 1

u(71)

+
∫ ·

0
η12

u Yu + η22
u + ϕy(Yu)ρ2 dW 2

u

)
τn

,

n ∈ N, is a discrete-time Q0-martingale. Thus the existence of a unique exten-
sion R̂η to σ(

⋃
n∈N Fτn) = FT follows from [32], Theorem V.4.2. More directly,

(71) suggests that we should define the probability measure R̂η on (�, FT ) by

dR̂η

dQ0

∣∣∣∣
FT

:= E
(∫ ·

0

1

1 − λ

(
λθ(Yu) + η11

u Yu + η21
u + ϕy(Yu)ρ1

)
dW 1

u

(72)

+
∫ ·

0
η12

u Yu + η22
u + ϕy(Yu)ρ2 dW 2

u

)
T

.

Since the functions θ , ϕ grow, at most, linearly, it follows similarly to page 177
that R̂η is well defined, that is, EQ0[dR̂η/dQ0|FT

] = 1. In particular, the corre-
sponding Itô exponential is a Q0-martingale up to time T , and in view of (71) this
yields R̂η|Fτn

= R̂
η
n|Fτn

for all n ∈ N. We thus see that estimate (70) is equivalent
to

V (η, ν, y0, τn) ≥ ER̂η

[
e(q/(1−λ))(�̃(λ)τn+ϕ(y0)−ϕ(Yτn))]1/q for any n ∈ N.

Now we are ready to replace the stopping times τn by the deterministic time T

by passing to the limit n ↑ ∞. Indeed, as shown in Lemma 4.1, the left-hand side
increases to V (η, ν, y0, T ) as n ↑ ∞ (cf. Lemma 4.1). Applying Fatou’s lemma
and then Jensen’s inequality to the rightmost expectation, we now obtain the lower
bound

V (η, ν, y0, T ) ≥ ER̂η

[
e(1/(1−λ))(�̃(λ)T +ϕ(y0)−ϕ(YT ))]

≥ e(1/(1−λ))(�̃(λ)T +ϕ(y0)+ER̂η [−ϕ(YT )])

for any finite horizon T and for all controls η ∈ C , ν ∈ M. Taking the scaling
1
T

ln(·)1−λ on both sides and passing to the limit T ↑ ∞, this yields

lim
T ↑∞

1

T
ln

(
inf

ν∈M
inf
η∈C

V (η, ν, y0, T )1−λ
)

≥ �̃(λ) + lim
T ↑∞

1

T
inf
η∈C

ER̂η [−ϕ(YT )].

Thus the constant �̃(λ) provides a lower bound if

lim
T ↑∞

1

T
inf
η∈C

ER̂η [−ϕ(YT )] = 0.(73)
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Indeed, Assumption 4.1(a) ensures that ϕ grows at most quadratically, that is, there
exists some constant K1 > 0 with |ϕ(y)| ≤ K1(1 + y2). Therefore, we have the
bounds

−K1

(
1 + sup

η∈C
ER̂η [Y 2

T ]
)

≤ inf
η∈C

ER̂η [−ϕ(YT )] ≤ K1

(
1 + sup

η∈C
ER̂η [Y 2

T ]
)
.(74)

Recall now from (68) that Y evolves under R̂η, η ∈ C , according to the SDE

dYt = κ(ηt , Yt ) dt + ρ(Yt ) dŴ
η
t .

Due to Assumption 4.1(b) there exist constants C2,C3 > 0 such that the drift func-
tion κ satisfies yκ(η, y) ≤ −C2y

2 + C3 for all η ∈ �. Therefore, Lemma A.2 en-
sures that

sup
T ≥0

sup
η∈C

ER̂η [Y 2
T ] ≤ y2

0 + const. < ∞.

But in view of (74) this implies (73), and hence

lim
T ↑∞

1

T
ln

(
inf

ν∈M
inf
η∈C

V (η, ν, y0, T )1−λ
)

≥ �̃(λ).(75)

(2) In the second part we identify controls η∗ ∈ C and ν∗ ∈ M such that

�̃(λ) = lim
T ↑∞

1

T
ln(V (η∗, ν∗, y0, T )1−λ).(76)

Together with (75) this implies (56). Indeed, by compactness of � and continuity
of the functions l, h and ν∗(·, y) with respect to η, there exists

η∗(y) ∈ arg min
η∈�

{(1 − λ)l(η, ν∗(y, η), y) + ϕy(y)h(η, ν∗(y, η), y)}.(77)

By a measurable selection argument η∗(·) can be chosen as a measurable function.
Set ν∗(y) := ν∗(η∗(y), y) [cf. (45)], and let η∗, ν∗ be the feedback controls defined
by η∗

t := η∗(Yt ), ν∗
t := ν∗(Yt ), t ≥ 0. In that case, we have η∗ ∈ C , and one easily

proves that the process ν∗ belongs to the class M.
In order to verify (76), we now proceed as in part (1). As in (60) we obtain

V (η∗, ν∗, y0, T ) = ERη∗,ν∗
[
e

∫ T
0 l(η∗

t ,ν∗
t ,Yt ) dt ].

The measure Rη∗,ν∗
is defined on (�, FT ) in terms of the density E η∗,ν∗

T . Since
ν∗(η, ·) grows at most linearly, this change of measure can be justified in analogy
to page 177. By Girsanov’s theorem, the dynamics of Y under Rη∗,ν∗

follow the
SDE

dYt = h(η∗
t , ν

∗
t , Yt ) dt + ρ dW

η∗,ν∗
t ,(78)
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where the drift function h is given by (35), and where (W
η∗,ν∗
t )t≤T is a two-

dimensional Wiener process under Rη∗,ν∗
(cf. page 189). Using the specific con-

trols η∗, ν∗, the auxiliary function γ in (62) satisfies γ (η∗
t , ν

∗
t , Yt ) = 0, and we

also obtain equality in (64). Along the lines of part (1) this implies

V (η∗, ν∗, y0, T )

= ERη∗,ν∗
[
e(1/(1−λ))(�̃(λ)T +ϕ(y0)−ϕ(YT ))E

(∫ ·
0

ϕy(Yt )

1 − λ
ρ dW

η∗,ν∗
t

)
T

]
in analogy to (66). Once more the Itô exponential is interpreted as the density of a
new probability measure R̂η∗

on (�, FT ). Since the drift function h(η∗(·), ν∗(·), ·)
of Y under Rη∗,ν∗

only depends on the control η∗ and satisfies the linear growth
condition |h(η∗(y), ν∗(y), y)| ≤ K2(1 + |y|), we may proceed in analogy to
page 177 to justify this change of measure. Then we get

V (η∗, ν∗, y0, T ) = e(1/(1−λ))(�̃(λ)T +ϕ(y0)ER̂η∗
[
e−(1/(1−λ))ϕ(YT )].(79)

Moreover, by Girsanov’s theorem, the dynamics of Y with respect to R̂η∗
are given

by

dYt = κ(η∗
t , Yt ) dt + ρ dŴ

η∗
t ,(80)

where (Ŵ
η∗
t )t≤T is a two-dimensional Wiener process, and where the drift function

κ satisfies Assumption 4.1(b). In analogy to part (1), we now take the scaling
1
T

ln(·)1−λ on both sides of (79) and then pass to the limit T ↑ ∞. For this purpose,
note that

sup
T ≥0

ER̂η∗ [Y 2
T ] < ∞ and that sup

T ≥0
ER̂η∗ [exp(k|YT |)] < ∞ for any k ∈ R,

due to Assumption 4.1(b) and Lemma A.2 applied to the SDE (80). If ϕy is
bounded and consequently |ϕ(y)| ≤ K3(1 + |y|), then this implies the uniform
upper bound

sup
T ≥0

ER̂η∗
[
exp

(
− 1

1 − λ
ϕ(YT )

)]
≤ sup

T ≥0
ER̂η∗

[
exp

(
1

1 − λ
K3(1 + |YT |)

)]
< ∞.

This uniform boundedness among all T clearly also holds, if ϕ is bounded below.
In particular, the identity (79) translates into

lim
T ↑∞

1

T
ln(V (η∗, ν∗, y0, T )1−λ) = �̃(λ).

Thus we have shown (76). This ends the proof of (56).
(3) In our last step we return to the initial problem of robust utility maximiza-

tion. The finite horizon duality relation (26) holds for any (regular) convex class of
measures, and in particular for the one-point set {Qη∗}. In analogy to (29) it thus
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follows that the maximal value for expected power utility in the specific model
Qη∗

satisfies the duality formula

U
Qη∗
T (x0) = 1

λ
xλ

0

(
inf

ν∈M
V (η∗, ν, y0, T )

)1−λ
.

Using this representation and the duality relation (29) for the whole set Q, we
obtain (59) immediately from (56) and (58). �

Theorem 4.1 shows that the solution (�̃(λ),ϕ) to the EBE (54) specified in
Assumption 4.1 describes the exponential growth of the maximal robust power
utility UT (x0) as T ↑ ∞. We have also seen that the maximal utility in the specific
model Qη∗

grows at the same rate as UT (x0). In the next step we shall use these
facts in order to identify an optimal long-term investment strategy π∗ ∈ A. For this
purpose, we introduce the additional regularity.

ASSUMPTION 4.2. Let (�̃(λ),ϕ) be the solution to the EBE (54) introduced
in Assumption 4.1, and let η∗ denote the corresponding minimizing function. Then
the function κ̃ defined by

κ̃(η, y) := g(y) + λ

1 − λ
ρ1

(
θ(y) + η11,∗(y)y + η21,∗(y)

)
(81)

+ (ρ, η1·y + η2·) +
[

1

1 − λ
ρ2

1 + ρ2
2

]
ϕy(y)

satisfies yκ̃(η, y) ≤ −C4y
2 + C5 for all η ∈ � with constants C4,C5 > 0.

THEOREM 4.2. Under the regularity Assumptions 4.1 and 4.2 we have:

(i) The value �̃(λ) given by the solution to the EBE (54) can be identified as
the optimal exponential growth rate

�(λ) = sup
π∈A

lim
T ↑∞

1

T
ln inf

Qη∈Q
EQη [(Xπ

T )λ]

for robust expected power utility. In particular, (59) implies

�(λ) = lim
T ↑∞

1

T
lnUT (x0) = lim

T ↑∞
1

T
lnU

Qη∗
T (x0),

where Qη∗ ∈ Q is defined in terms of the control η∗ in (57).
(ii) In the specific model Qη∗

, the maximal growth rate of power utility

�Qη∗ (λ) := sup
π∈A

lim
T ↑∞

1

T
lnEQη∗ [(Xπ

T )λ]

coincides with �(λ).
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(iii) Let π∗
t = π∗(Yt ), t ≥ 0, be the trading strategy defined in terms of the

function (53). Then π∗ belongs to class A, and it satisfies the optimality condition

�(λ) = lim
T ↑∞

1

T
ln inf

Qη∈Q
EQη [(Xπ∗

T )λ] = lim
T ↑∞

1

T
lnEQη∗ [(Xπ∗

T )λ].(82)

In other words, the strategy π∗ and the measure Qη∗ ∈ Q form a saddle point for
the robust optimization problem (19).

PROOF. (1) Theorem 4.1 shows that the maximal power utility U
Qη∗
T (x0) in

the specific model Qη∗
grows exponentially with rate �̃(λ), that is,

�̃(λ) = lim
T ↑∞

1

T
lnU

Qη∗
T (x0) = lim

T ↑∞
1

T
ln sup

π∈AT

EQη∗ [(Xπ
T )λ].

Since A ⊆ AT , this implies

�̃(λ) ≥ sup
π∈A

lim
T ↑∞

1

T
lnEQη∗ [(Xπ

T )λ] ≥ sup
π∈A

lim
T ↑∞

1

T
ln inf

Qη∈Q
EQη [(Xπ

T )λ] = �(λ).

In order to verify that this chain of inequalities is indeed a series of equalities, it
suffices to show that π∗ belongs to A, and that

�̃(λ) ≤ lim
T ↑∞

1

T
ln inf

Qη∈Q
EQη [(Xπ∗

T )λ].(83)

This yields the converse inequality �̃(λ) ≤ �(λ), and hence the identity �̃(λ) =
�(λ) = �Qη∗ (λ). In particular, the strategy π∗ satisfies (82).

Let us first show that π∗ is admissible in the sense of Definition 2.1. For this
purpose, note that the adapted process π∗

t = π∗(Yt ), t ≥ 0, admits continuous paths
and that the unique strong solution to (16) takes the form

Xπ∗
t = x0e

∫ t
0 π∗

uσ dW
1,η
u +∫ T

0 r(Yu)+σπ∗
u [θ(Yu)+η11

u Yu+η21
u ]−(1/2)σ 2(π∗

u )2 du) > 0(84)

for any t ≥ 0. Thus the processes defined by the number of shares,

ξ
∗,0
t = Xπ∗

t (1 − π∗
t )

S0
t

and ξ
∗,1
t = Xπ∗

t π∗
t

S1
t

, t ≥ 0,

are continuous and adapted to the Brownian filtration, hence predictable. More-
over, the integrals in (15) are well defined for ξ∗ = (ξ∗,0, ξ∗,1). In other words,
π∗ associated with ξ∗ is an admissible long-term investment process.

To verify (83), we derive suitable lower bounds for infQη∈Q EQη [(Xπ∗
T )λ] for

any finite horizon T and then pass to the limit. We first argue for a fixed con-
trol η ∈ C and the corresponding model Qη ∈ Q. Representation (84) yields the
decomposition

EQη [(Xπ∗
T )λ] = xλ

0 EQη

[
E

(∫ ·
0

λσπ∗
t dW

1,η
t

)
T

e
∫ T

0 l̃(π∗
t ,ηt ,Yt ) dt

]
,(85)
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where we use, as in (47), the function l̃. In order to eliminate the Itô exponential,
we introduce a new probability measure Qη on (�, FT ) with density

dQη

dQη

∣∣∣∣
FT

:= E
(∫ ·

0
λσπ∗

t dW
1,η
t

)
T

= E
(∫ ·

0
λσπ∗(Yt ) dW

1,η
t

)
T

.(86)

This requires us to verify EQη [dQη/dQη|FT
] = 1. Indeed, the factor process Y

evolves under Qη according to the SDE (14a), and the drift function satisfies

|g(y) + (ρ, η1·y + η2·)|2 ≤ K1(1 + y2),

due to Assumption 2.1 and compactness of � ⊂ R
4. Thus, by Lemma A.1, there

exists some constant K2 > 0 such that sup0≤t≤T EQη [exp(K2Y
2
t )] < ∞. Since

|π∗(y)| ≤ K3(1 + |y|), this implies supt≤T EQη [exp(δ(λσπ∗(Yt ))
2] < ∞ as soon

as δ > 0 is chosen sufficiently small. Therefore, [29], Example 3 of Section 6.2,
guarantees that (86) defines a probability measure on (�, FT ). In particular, equa-
tion (85) becomes equivalent to

EQη [(Xπ∗
T )λ] = xλ

0 EQη

[
e

∫ T
0 l̃(π∗

t ,ηt ,Yt ) dt ].(87)

By Girsanov’s theorem, the factor process Y follows under Qη the SDE

dYt = h̃(π∗
t , ηt , Yt ) dt + ρ dW

η
t , t ≤ T , Y0 = y0.(88)

Here (W
η
t )t≤T is a two-dimensional Qη-Wiener process and the drift function h̃

is defined by (50). Note that the right-hand side of (87) can be viewed as a cost
functional of an “exponential of integral criterion” with dynamics (88).

In terms of the functions l̃ and h̃ the EBE (54) for the pair (�̃(λ),ϕ) can be
rewritten as

�̃(λ) = 1

2
‖ρ‖2[ϕyy + ϕ2

y] + inf
η∈�

{̃l(π∗, η, ·) + ϕyh̃(π∗, η, ·)}.(89)

For clarity of exposition the precise arguments are postponed to part (2) of this
proof. We now proceed in analogy to the proof of Theorem 4.1. Note that the roles
played by l, h are taken over by l̃, h̃.

Applying Itô’s formula to ϕ ∈ C2(R) and to the dynamics (88) we obtain

ϕ(YT ) = ϕ(y0)+
∫ T

0
ϕy(Yt )h̃(π∗

t , ηt , Yt )+ 1

2
‖ρ‖2ϕyy(Yt ) dt +

∫ T

0
ϕy(Yt )ρ dW

η
t .

The alternative version (89) of our EBE thus yields the inequality

ϕ(YT ) ≥ ϕ(y0) +
∫ T

0
�̃(λ) − l̃(π∗

t , ηt , Yt ) dt + ln E
(∫ ·

0
ϕy(Yt )ρ dW

η
t

)
T

.

Rearranging the terms and taking the exponential on both sides, (87) allows us to
deduce that

EQη [(Xπ∗
T )λ] = xλ

0 EQη

[
e

∫ T
0 l̃(π∗

t ,ηt ,Yt ) dt ]
≥ xλ

0 e�̃(λ)T +ϕ(y0)EQη

[
e−ϕ(YT )E

(∫ ·
0

ϕy(Yt )ρ dW
η
t

)
T

]
.
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Applying once more a Girsanov transformation to eliminate the Itô exponential,
we obtain

EQη [(Xπ∗
T )λ] ≥ xλ

0 e�̃(λ)T +ϕ(y0)EQ̂η

[
e−ϕ(YT )],(90)

where the expectation is taken with respect to the probability measure Q̂η on
(�, FT ) defined by

dQ̂η

dQη

∣∣∣∣
FT

:= E
(∫ ·

0
ϕy(Yt )ρ dW

η
t

)
T

.

In particular, (90) means that

lim
T ↑∞

1

T
ln inf

Qη∈Q
EQη [(Xπ∗

T )λ] ≥ �̃(λ) + lim
T ↑∞

1

T
ln inf

Qη∈Q
EQ̂η

[
e−ϕ(YT )].(91)

Since |h̃(π∗(y), η, y)|2 ≤ K4(1 + y2), this second change of measure can be jus-
tified again by Lemma A.1 combined with [29], Example 3 of Section 6.2. By
Girsanov’s theorem, the dynamics of Y under the new probability measure Q̂η is
given by

dYt = (
h̃(π∗

t , ηt , Yt ) + ‖ρ‖2ϕy(Yt )
)
dt + ρ dŴ

η
t , t ≤ T ,

where Ŵ
η
t is a two-dimensional Q̂η-Wiener process. Moreover, inserting the defi-

nition (53) of π∗(y), a straightforward computation yields the identity

h̃(π∗(y), η, y) + ‖ρ‖2ϕy(y) = κ̃(η, y).

Here the function κ̃ introduced in Assumption 4.2 satisfies the inequality yκ̃(η,
y) ≤ −C4y

2 + C5 for all η ∈ � with appropriate constants C4,C5 > 0. Thus, by
Lemma A.2, the quadratic moments EQ̂η [Y 2

T ] are bounded above uniformly with
respect to all processes η ∈ C and T ≥ 0, that is,

sup
T ≥0

sup
η∈C

EQ̂η [Y 2
T ] ≤ K5(1 + y2

0).

Note now that |ϕ(y)| ≤ K6(1+y2) for some constant K6 > 0, since the first deriva-
tive ϕy grows at most linearly [cf. Assumption 4.1(a)]. Using Jensen’s inequality,
we obtain the lower bound

ln inf
Qη∈Q

EQ̂η

[
e−ϕ(YT )] ≥ inf

η∈C
EQ̂η [−ϕ(YT )] ≥ −K6

(
1 + sup

η∈C
EQ̂η [Y 2

T ]
)

≥ −K6
(
1 + K5(1 + y2

0)
)

for any finite horizon T . Thus the last term in (91) nonnegative, and so the desired
estimate (83) follows from (91).

(2) It remains to verify that the solution (�̃(λ),ϕ) to our EBE (54) also satisfies
(89) and vice versa. In other words, the EBE (89) is an alternative version of the
original equation (54). For this purpose, we use the minimizing functions η∗ and



ASYMPTOTICS OF ROBUST UTILITY MAXIMIZATION 199

ν∗ defined in Theorem 4.1 and write η∗, ν∗ and π∗ instead of η∗(y), ν∗(y) and
π∗(y) to simplify the notation. Then an easy but tedious computation yields the
identity

�̃(λ) = 1
2‖ρ‖2[ϕyy(y) + ϕ2

y(y)] + l̃(π∗, η∗, y) + ϕy(y)h̃(π∗, η∗, y).

Thus the pair (�̃(λ),ϕ) also solves the EBE (89) if and only if for all η ∈ �

0 ≤ l̃(π∗, η, y) + ϕy(y)h̃(π∗, η, y) − [̃l(π∗, η∗, y) + ϕy(y)h̃(π∗, η∗, y)].(92)

Inserting formula (53) for π∗, this inequality takes the explicit form

0 ≤ λ

1 − λ
[(η11 − η11,∗)y + (η21 − η21,∗)][θ(y) + η11,∗y + η21,∗]

+ 1

1 − λ
ρ1ϕy(y)[(η11 − η11,∗)y + (η21 − η21,∗)](93)

+ ρ2ϕy(y)[(η21 − η21,∗)y + (η22 − η22,∗)]
for all η ∈ �. To derive (93), we fix η ∈ � and define the convex combina-
tion η̃α := η∗ + α(η − η∗), α ∈ (0,1). Then η̃α belongs to �, due to convex-
ity of this set. Moreover, using the minimizers η∗, ν∗ and the specific choice
ν∗
α(y) := ν∗(η̃α, y) = −η̃12

α y − η̃22
α − ρ2(y)ϕy(y), we easily derive the inequal-

ity

0 ≤ (1 − λ)l(η̃α, ν∗
α(y), y) + ϕy(y)h(η̃α, ν∗

α(y), y)

− [(1 − λ)l(η∗, ν∗, y) + ϕy(y)h(η∗, ν∗, y)]

= α[terms in (93)] + 1

2

λ

1 − λ
α2[(η11 − η11,∗)y + (η21 − η21,∗)]2.

Dividing finally by α and letting afterwards α tend to zero yields the desired esti-
mate (93) and equivalently (92). Thus we have shown that the solution (�̃(λ), ϕ)

to the EBE (54) also satisfies (89). This completes the proof. �

REMARK 4.2. The duality approach used above requires two verification the-
orems. The first one characterizes the growth rate of UT (x0) in terms of the
EBE (54), and the second one identifies an optimal long-term investment strategy
and the associated optimal growth rate �(λ). In this remark, we discuss heuris-
tically a more direct approach to (19) via stochastic differential game techniques
(see, e.g., [12] for an introduction). To this end, note that (if Xπ

t > 0 for all t)

EQη [(Xπ
T )λ] = xλ

0 ERη,π

[
e

∫ T
0 l̃(πt ,ηt ,Yt ) dt ],

where l̃ is defined in (47), the measure Rπ,η is introduced in (48), and the dynamics
of Y under Rη,π is specified in (49). This suggests that

UT (x0) = xλ
0 vu(y, T ) := xλ

0 sup
π∈AT

inf
η∈C

ERη,π

[
e

∫ T
0 l̃(πt ,ηt ,Yt ) dt ], Y0 = y,
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where vu can be seen as the upper value function of a stochastic differential game
with maximizing “player” π and minimizing “player” η. The function vu should
be determined by the HJB-Isaacs equation

vu
t = 1

2
‖ρ‖2vu

yy + sup
π∈R

inf
η∈�

{̃l(π, η, ·)vu + h̃(π, η, ·)vu
y }, vu(·,0) ≡ 1.

Using the heuristic transform lnvu(y, T ) ≈ lnUT (x0) ≈ �(λ)T +ϕ(y), this trans-
lates into the following EBE of Isaacs type:

�(λ) = 1

2
‖ρ‖2[ϕyy + ϕ2

y] + sup
π∈R

inf
η∈�

{̃l(π, η, ·) + ϕyh̃(π, η, ·)}.
If this equation has a solution (�(λ),ϕ), then it is easy to show that sup and inf
can be interchanged and that the saddle point is attained by π∗(y) in (53) and
η∗(y) defined in (57); that is, the EBE of Isaacs type is actually a version of (54).
We conjecture that the alternative approach via differential games is also feasible.
However, the detailed derivation would be a lenghty and technical exercise that is
beyond the scope of the present paper.

5. Existence of a solution to the ergodic Bellman equation. Our results rely
on the existence of a specific solution (�̃(λ),ϕ) ∈ R+ × C2(R) to the EBE (54).
More generally, an EBE is given by

�̃ = Dϕ(x) + H(x,∇ϕ) + q(x), x ∈ R
d,(94)

where q maps from R
d to R, D is a second order differential operator, and where

H is a real-valued nonlinear function of the gradient ∇ϕ, called the Hamiltonian.
A solution to (94) is a pair (�̃, ϕ) of a constant �̃ and a function ϕ : Rd → R. Such
equations have been analyzed by various authors (see, e.g., [8, 25, 30] for a dis-
cussion related to risk-sensitive control problems, or [1, 2]). Unfortunately their
existence results do not, in general, apply to our EBE (54). The main difficulty
relies on three facts: we consider a model with nonlinear coefficients r , g and m

appearing in the functions l and h; the cost function l may grow quadratically in y;
(54) exhibits a nonlinearity with respect to the first derivative ϕy . If the discus-
sion is limited to linear coefficients, then a quadratic ansatz may yield an explicit
solution to (54) (see, e.g., [9, 33], and also Section 6.2 for a case study).

Let us now turn to the existence problem for nonlinear coefficients. The EBE
(54) can be rewritten in the condensed form

�̃(λ) = 1

2
‖ρ‖2ϕyy(y) + 1

2
(ρ̂ϕy(y))2 + inf

η∈�
{n(η, y) + ϕy(y)m(η, y)},(95)

where we use the notation ρ̂ :=
√

1
1−λ

ρ2
1 + ρ2

2 ,

n(η, y) := 1

2

λ

1 − λ
[θ(y) + η11y + η21]2 + λr(y),

m(η, y) := g(y) + 1

1 − λ
ρ1

(
λθ(y) + η11y + η21) + ρ2(η

12y + η22).
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The following existence result is deduced from Fleming and McEneaney [8]. Their
construction of a solution involves a parameterized family of finite time horizon
stochastic differential games (see, e.g., Fleming and Souganidis [12]). The asso-
ciated value function is characterized in terms of a parabolic PDE, called Isaacs’
equation, and the existence of a solution (�̃(λ),ϕ) follows by taking appropriate
limits of the Isaacs’ PDE when both “time” tends to infinity and the underlying
parameter converges to zero.

LEMMA 5.1. In addition to Assumption 2.1 let us assume that θ is bounded,
that � ⊂ {(0,0)} × R

2 and that

∃K > 0 :gy(y) + λ

1 − λ
ρ1θy(y) ≤ −K for all y ∈ R.(96)

Then there exist a pair �̃(λ) ∈ R+, ϕ ∈ C2(R) that solves the EBE (54). More-
over, we have |ϕy | ≤ maxη∈� ‖ny(η, ·)‖∞/K , and so this solution also satisfies the
regularity Assumptions 4.1 and 4.2.

PROOF. Our assumptions ensure boundedness of n ≥ 0, ηy and my on � × R.
Moreover, the mean value theorem combined with (96) gives

(x − y)
(
m(η,x) − m(η,y)

) ≤ −K|x − y|2 for all x, y ∈ R, η ∈ �.

The functions n, m thus satisfy condition (7.2) in Fleming and McEneaney [8],
and applying [8], Theorem 7.1, for γ := (

√
2ρ̂)−1 and ε := ‖ρ‖2/ρ̂2 the desired

existence result follows. �

6. Explicit results.

6.1. Black–Scholes model with uncertain drift. For constant coefficients
r(y) ≡ r and m(y) ≡ m, the reference model Q0 in Section 2 becomes the Black–
Scholes model with price dynamics

dS0
t = S0

t r dt, dS1
t = S1

t (mdt + σ dW 1
t ).

In particular, the market price of risk function θ(y) = m−r
σ

is constant. Taking the
specific set � = {(0,0)} × [a, b] × {0}, a ≤ 0 ≤ b, each measure Qη ∈ Q corre-
sponds to a drift perturbation of the following type:

dS1
t = S1

t

([m + ση21
t ]dt + σ dW

1,η
t

)
.

In this example the factor process Y plays no role. In particular, the maximal ex-
pected utility for a finite horizon does not depend on the initial state of the factor
process. Hence the function ϕ appearing in the heuristic separation of time and
space variables (43) is constant, and its derivatives ϕy , ϕyy vanish. The EBE (54)
thus reduces to

�̃(λ) = inf
ν∈R

inf
η∈�

{
1

2

λ

1 − λ
[(θ + η21)2 + ν2] + λr

}
= 1

2

λ

1 − λ
inf
η∈�

{(θ + η21)2} + λr.
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The number �̃(λ) can be expressed in terms of the element η21,∗ ∈ [a, b] which
minimizes the absolute value |θ + η21| among all η21 ∈ [a, b]. Defining the con-
stant controls η∗

t := (0,0, η21,∗,0) and ν∗
t := 0, t ≥ 0, the verification theorems

can be transferred to our present example in a simplified form which does not not
require any additional conditions as in Assumptions 4.1 and 4.2. As a result we get
the following description of the aymptotics of robust expected power utility:

• The maximal robust utility UT (x0) grows exponentially with rate

�̃(λ) = 1

2

λ

1 − λ
(θ + η21,∗)2 + λr > 0.

• �(λ) = supπ∈A limT ↑∞ 1
T

ln infQη∈Q EQη [(Xπ
T )λ] = �̃(λ).

• The optimal long-term strategy takes the form

π∗
t := 1

1 − λ

1

σ
(θ + η21,∗), t ≥ 0.

• The asymptotic worst-case model Qη∗
is given by the constant control η∗

t =
(0,0, η21,∗,0), and it does not depend on the parameter λ.

REMARK 6.1. Using methods from robust statistics, Schied [37] shows that
the measure Qη∗

is actually least favorable in the following sense: for any finite
maturity, the robust utility maximization problem (17) is equivalent to the classical
problem for Qη∗

, regardless of the choice of the underlying utility function u.

6.2. Geometric Ornstein–Uhlenbeck model with uncertain mean reversion.
As our second case study, we consider the case where the economic factor Y is
of OU type, and where there interest rate r is constant. In our reference model Q0,
the factor Y is assumed to be a classical OU process with constant rate of mean
reversion η0 > 0 and volatility σ > 0, that is,

dYt = −η0Yt dt + σ dW 1
t , Y0 = y0.(97)

We assume that S1
t := exp(Yt +αt), α ∈ R, describes the price process of the risky

asset. By Itô’s formula, the dynamics of S1 is governed by the SDE

dS1
t = S1

t

(
α dt + dYt + 1

2 d〈Y 〉t ) = S1
t

((−η0Yt + 1
2σ 2 + α

)
dt + σ dW 1

t

)
.

Hence this example corresponds to the general model of Section 2 for the choice
g(y) = −η0y, ρ1 = σ , ρ2 = 0, m(y) = −η0y + 1

2σ 2 +α, and for the affine market
price of risk function

θ(y) = 1

σ

(
−η0y + 1

2
σ 2 + α − r

)
.

Let us suppose that the investor is uncertain about the “true” future rate of mean
reversion: instead of a constant rate we admit any rate process that is progressively
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measurable and that takes its values in some interval [a, b], 0 < a ≤ η0 ≤ b < ∞.
This uncertainty about the true rate of mean reversion can be embedded into our
general model by choosing the set

� =
[
η0 − b

σ
,
η0 − a

σ

]
× {(0,0,0)}.

Indeed, let Qη ∈ Q denote the probabilistic model generated by a �-valued, pro-
gressively measurable process η = (ηt )t≥0; cf. (12). In view of (14a), the factor
process Y then evolves under Qη according to

dYt = −(η0 − ση11
t )Yt dt + σ dW

1,η
t ,

and the resulting mean reversion process (η0 − ση11
t )t≥0 takes values in [a, b].

To prepare the analysis of the asymptotic robust utility maximization prob-
lem (19), we first solve its nonrobust version

maximize lim
T ↑∞

1

T
lnEQ0[(Xπ

T )λ] among all π ∈ A(98)

for the specific model Q0. This problem has been studied, amongst others, by
Fleming and Sheu [9] and Pham [33]. By the following proposition we recover
their results as a special case of our general robust duality approach. To indicate
the nonrobust case, we denote the optimal growth rate for (98) by �Q0(λ). Note
that Q = {Q0} if we take the one-point set � = {(0,0,0,0)}. Thus our general
EBE (54) takes the simplified form

�̃Q0(λ) = 1

2
σ 2

[
ϕyy(y) + 1

1 − λ
ϕ2

y(y)

]
+ λr

+ 1

2

λ

1 − λ

(−η0y + (1/2)σ 2 + α − r

σ

)2

(99)

+ ϕy(y)

[
− 1

1 − λ
η0y + λ

1 − λ

(
1

2
σ 2 + α − r

)]
,

where the infimum among all ν ∈ R is attained for ν∗(y) ≡ 0.

PROPOSITION 6.1. The EBE (99) has the solution

�̃Q0(λ) = 1

2

(
1 − √

1 − λ
)
η0 + λ

(
r + 1

2σ 2

(
1

2
σ 2 + α − r

)2)
,(100a)

ϕ(y) = 1

2

(
1 − √

1 − λ
) η0

σ 2 y2 − λ

σ 2

(
1

2
σ 2 + α − r

)
y,(100b)

which satisfies our regularity Assumptions 4.1 and 4.2. Thus it holds that

�̃Q0(λ) = lim
T ↑∞

1

T
lnU

Q0
T (x0) = �Q0(λ) = sup

π∈A
lim
T ↑∞

1

T
lnEQ0[(Xπ

T )λ].
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Moreover, an optimal feedback strategy π∗
t = π∗(Yt ), t ≥ 0, for our investment

problem (98) is given by the affine function

π∗(y) = − 1√
1 − λ

η0

σ 2 y + 1

σ 2

(
1

2
σ 2 + α − r

)
.(101)

PROOF. Following [9] and [33] we are looking for a quadratic solution ϕ(y) =
1
2Ay2 + By. Inserting the derivatives in (99) and comparing the coefficients of the
terms in y2, in y, and the constants yields that the EBE (99) holds for every triple
(A,B, �̃Q0(λ)) satisfying the system of equations

0 = 1

2
σ 2A2 − η0A + λ

2σ 2 η2
0,

0 = σ 2AB + λ

(
1

2
σ 2 + α − r

)
A − Bη0 − λ

σ 2

(
1

2
σ 2 + α − r

)
η0,

�̃Q0(λ) = 1

2
σ 2

(
A + 1

1 − λ
B2

)
+ λ

1 − λ

(
1

2
σ 2 + α − r

)
B + λr

+ 1

2

λ

1 − λ

(
(1/2)σ 2 + α − r

σ

)2

.

The quadratic equation for A has the solutions A± = (1 ± √
1 − λ)

η0
σ 2 . We choose

A = A−, and we shall explain in Remark 6.2 why the other solution is irrelevant.
A straightforward calculation gives B = − λ

σ 2 (1
2σ 2 + α − r) and finally the ex-

pressions for �̃Q0(λ) and ϕ in (100). The parabola ϕ is bounded below, ϕy grows
linearly and the functions κ , κ̃ defined in Assumption 4.1(b) and 4.2 satisfy the
regularity condition

yκ(0, y) = yκ̃(0, y) = − 1√
1 − λ

η0y
2.

Applying Theorems 4.1 and 4.2 completes the proof. �

REMARK 6.2. Using the other root A+ yields ϕ(y) = 1
2A+y2 + By and

�̃Q0(λ) = 1

2

(
1 + √

1 − λ
)
η0 + λ

(
r + 1

2σ 2

(
1

2
σ 2 + α − r

)2)
.

In particular, this example illustrates that the solution to an EBE is not necessarily
unique. On the other hand, the “ergodicity” Assumption 4.1(b) selects the good
candidate. Indeed, the proof of Theorem 4.1 requires that limT ↑∞ 1

T
ER̂η [Y 2

T ] = 0,
where Y follows the SDE (68). Given the geometric OU model and the solutions
ϕ(y) = 1

2A±y2 + By this SDE takes the form

dYt = ± η0√
1 − λ

Yt dt + σdŴ
1,η
t , Y0 = y0.
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The factor process Y is an “explosive” Gaussian process for the root A+ in the
sense that limT ↑∞ 1

T
ER̂η [Y 2

T ] = ∞. Thus the arguments used in the proof of The-
orem 4.1 fail and so the solution associated with A+ is irrelevant. Conversely,
taking A−, Theorem A.2 applies to the ergodic process Y .

As a complement to Proposition 6.1 we look at the maximal robust utility
U

Q0
T (x0) attainable at time T and the asymptotics of the optimal investment strat-

egy π∗,T as T ↑ ∞. The following proposition extends Propositions 5.6 and 5.7
in Föllmer and Schachermayer [16] by including an interest rate r > 0 and the
additional drift component α for the price process S1.

PROPOSITION 6.2. For any initial condition Y0 = y0, the maximal robust ex-
pected utility U

Q0
T (x0) takes the form

U
Q0
T (x0) = 1

λ
xλ

0
[
(A−

T )−1/2eBT (y0)+(λ/(1−λ))rT +(A−
T )−1CT (y0)

]1−λ
,(102)

where we use the notation

A±
T := 1 − 1

2

(
1 − (1 − λ)−1/2)(

1 ± exp
(−2η0(1 − λ)−1/2T

))
,

BT (y) := − η0

2σ 2 [(1 − λ)−1/2 − (1 − λ)−1]y2 + 1

σ 2

λ

λ − 1

(
1

2
σ 2 + α − r

)
y

− 1

2

[
η0

(
(1 − λ)−1/2 − (1 − λ)−1) + 1

σ 2

λ

λ − 1

(
1

2
σ 2 + α − r

)2]
T ,

CT (y) := η0

2σ 2

(
(1 − λ)−1/2 − (1 − λ)−1)

exp
(−2η0(1 − λ)−1/2T

)
y2

− 1

σ 2

λ

λ − 1

(
1

2
σ 2 + α − r

)
exp

(−η0(1 − λ)−1/2T
)
y

+ 1

4σ 2

λ2

(1 − λ)3/2

(
1

2
σ 2 + α − r

)2(
1 − exp

(−2η0(1 − λ)−1/2T
))

.

The optimal proportion π
∗,T
t is an affine function of the current state Yt of the

factor process given by π
∗,T
t = a[T − t]Yt + b[T − t], where

a[T − t] := − η0

σ 2 (1 − λ)−1/2A+
T −t (A

−
T −t )

−1,

b[T − t] := 1

σ 2

(
1

2
σ 2 + α − r

)[
1 + (A−

T −t )
−1 λ

1 − λ
e−η0(1−λ)−1/2(T −t)

]
.

PROOF. Detailed computations can be found in [26], Chapter 4. �

Since A±
T and CT (y0) converge to a finite limit as T ↑ ∞, we thus obtain

lim
T ↑∞

1

T
lnU

Q0
T (x0) = (1 − λ) lim

T ↑∞
1

T

(
BT (y0) + λ

1 − λ
rT

)
= �̃Q0(λ),
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in accordance with Proposition 6.1. Moreover, we have

lim
T ↑∞a[T − t] = − η0

σ 2
√

1 − λ
and lim

T ↑∞b[T − t] = 1

σ 2

(
1

2
σ 2 + α − r

)
,

due to limT ↑∞ A±
T = 1

2(1 + (1 −λ)−1/2). Thus the asymptotic form of the optimal
strategy π∗,T as T ↑ ∞ is given by

lim
T ↑∞π

∗,T
t = − 1

σ 2
√

1 − λ
η0Yt + 1

σ 2

(
1

2
σ 2 + α − r

)
,(103)

and so it coincides with the optimal long-term strategy π∗ in (101). On the other
hand, Fleming and Sheu [9] observed that limT ↑∞ π

∗,T
t does not provide an opti-

mal long-term strategy for power utility with parameter λ ≤ −3.
Let us now analyze the robust case. Since �Q0(λ) is increasing in η0, it is

natural to expect that the asymptotic worst-case measure Qη∗
corresponds to the

probabilistic model, under which Y has the minimal rate of mean reversion a. The
following proposition confirms this conjecture.

PROPOSITION 6.3. For the geometric OU model with uncertain rate of mean
reversion, the optimal growth rate of robust power utility is given by

�(λ) = 1

2

(
1 − √

1 − λ
)
a + λ

(
r + 1

2σ 2

(
1

2
σ 2 + α − r

)2)
> 0,

and the maximal robust utility UT (x0) grows exponentially at this rate. The asymp-
totic worst-case model Qη∗

is determined by η∗
t = (

η0−a
σ

,0,0,0), and the optimal
long term strategy π∗

t = π∗(Yt ) is specified by the affine function

π∗(y) = − 1√
1 − λ

a

σ 2 y + 1

σ 2

(
1

2
σ 2 + α − r

)
.

PROOF. Replacing η0 in (100) by the minimal mean reversion a provides

�̃(λ) = 1

2

(
1 − √

1 − λ
)
a + λ

(
r + 1

2σ 2

(
1

2
σ 2 + α − r

)2)
> 0,

ϕ(y) = 1

2

(
1 − √

1 − λ
) a

σ 2 y2 − λ

σ 2

(
1

2
σ 2 + α − r

)
y

as a candidate for the solution to the EBE (54), and it is easy to verify that
(�̃(λ), ϕ) is indeed a solution. The corresponding minimizers are ν∗(y) ≡ 0,
η∗(y) ≡ (

η0−a
σ

,0,0,0) ∈ �. It remains to verify that (�̃(λ),ϕ) satisfies our As-
sumptions 4.1 and 4.2: since ϕ ∈ C2(R) is a parabola, it is bounded below and its
first derivative ϕy grows linearly. Moreover, the auxiliary functions κ , κ̃ appearing
in our Assumptions 4.1 and 4.2 satisfy for all η ∈ �

yκ(η, y) =
[
− 1

1 − λ
(η0 − a − ση11) − 1√

1 − λ
a

]
y2 ≤ − 1√

1 − λ
ay2
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and

yκ̃(η, y) =
[
−(η0 − a) + ση11 − 1√

1 − λ
a

]
y2 ≤ − 1√

1 − λ
ay2

due to η11 ≤ η0−a
σ

and η11,∗ = η0−a
σ

. We thus derive Proposition 6.3 as a special
case of Theorems 4.1 and 4.2. �

7. Application to a robust outperformance criterion. Utility maximization
is conceptually related to specific numerical representations of the investor’s pref-
erences. The application requires us to know the utility function u which is by
nature subjective. For institutional managers utility maximization thus creates se-
vere difficulties. On the one hand, the preferences of their customers and the cor-
responding numerical representations are not really known exactly. On the other
hand, the individual preferences of the managers and of the various customers with
shares in the same investment fund will typically be different. This suggests that
we should look for an “intersubjective” criterion for optimal portfolio management
which is acceptable for a large variety of investors. Such an alternative consists of
evaluating the performance of the portfolio relative to a given benchmark such as
a stock index. The investor aims at outperforming the benchmark with maximal
probability. If the benchmark is a contingent claim H at a terminal time T , then
the outperformance problem reduces to maximizing the probability Q[Xπ

T ≥ H ] of
a successful hedge. This criterion, known as quantile hedging, has been developed
as a substitute for investors who are not willing or not able to raise the initial costs
required by a perfect hedging or superhedging strategy of H (see, e.g., Föllmer
and Leukert [15] and the references therein).

Pham [33] proposed an asymptotic benchmark criterion for optimal long-term
investment. Here the investor has in mind a level of return c and aims at maximiz-
ing the probability that the portfolio’s growth rate

Lπ
T := 1

T
lnXπ

T

[or more generally 1
T

ln(Xπ
T /IT ) for an index process I ] exceeds this threshold.

For finite T this corresponds to quantile hedging for H = exp(cT ). But what
happens in the long run? If the growth rates Lπ

T converge Q-a.s. as T ↑ ∞
and satisfy under Q a large deviations principle with rate function Iπ , then
Q[Lπ

T ≥ c] ≈ exp(−Iπ (c)T ) as T ↑ ∞; that is, the probability that Lπ
T departs

from its limiting value decays to zero exponentially fast. Thus the long term view
amounts to minimizing the rates Iπ(c), or equivalently to

maximizing lim
T ↑∞

1

T
lnQ[Lπ

T ≥ c] among all π.(104)

An asymptotic benchmark criterion of this form may be of particular interest for in-
stitutional managers with long-term horizon, such as mutual fund managers. Note,
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however, that this ansatz does not take into account the size of the shortfall if it
does occur. From a mathematical point of view, it leads to a large deviations con-
trol problem. On the other hand, standard results from the large deviations theory
(such as the Gärtner–Ellis theorem; see, e.g., [6], Theorem 2.3.6) suggest that the
rate function Iπ is a Fenchel–Legendre transform of the logarithmic moment gen-
erating function

�Q(λ,π) := lim
T ↑∞

1

T
lnEQ[exp(λT Lπ

T )] = lim
T ↑∞

1

T
lnEQ[(Xπ

T )λ].

In this spirit, Pham developed a duality approach to (104). His Theorem 3.1, rely-
ing on large deviations arguments, but not on the specific structure of the underly-
ing market model, states that

sup
π

lim
T ↑∞

1

T
lnQ[Lπ

T ≥ c] = − sup
λ∈(0,λ′)

{λc − �Q(λ)},(105)

where �Q(λ) := supπ �Q(λ,π) is the optimal growth rate of expected power util-
ity with respect to Q. Applications of Pham’s theorem to specific market models
can be found in [20, 22, 33, 34, 40].

However, the benchmark criterion (104) does not account for model ambiguity.
To overcome this limitation, it is natural to study its robust version,

maximize lim
T ↑∞

1

T
ln inf

Q∈Q
Q[Lπ

T ≥ c] among all π.(106)

The solution is derived in [26], Chapter 6, for the robust stochastic factor model of
Section 2, and it is closely related to the asymptotics of robust utility maximization.
Under suitable regularity assumptions [e.g., � ∈ C1((0,1))] and limλ↑λ′ �′(λ) =
∞ for some λ′ ≤ 1 we obtain the duality formula

sup
π∈A

lim
T ↑∞

1

T
ln inf

Qη∈Q
Qη[Lπ

T ≥ c] = − sup
λ∈(0,λ′)

{λc − �(λ)}.(107)

This can be seen as a robust extension of (105), but here the duality formula in-
volves the optimal growth rates �(λ), λ ∈ (0,1), of robust power utility. Moreover,
the sequence of investment processes π̂ c,n, n ∈ N, defined by

π̂
c,n
t =

{
π∗

t (λ[c + 1/n]), for c > �′(0),
π∗

t

(
λ[�′(0) + 1/n]), for c ≤ �′(0),

in terms of the optimal long term strategies π∗(λ) for robust power utility, and in
terms of parameters λ[c] ∈ arg maxλ∈(0,λ′){λc − �(λ)} is nearly optimal for (106).
The proof is beyond the scope of this paper and therefore omitted.

EXAMPLE 7.1. For the geometric OU model with uncertain mean reversion
(see Section 6.2) Proposition 6.3 shows that:
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• �(λ) = 1
2(1 − √

1 − λ)a + λγ with γ := r + 1
2σ 2 (1

2σ 2 + α − r)2,

• π∗
t (λ) = − 1√

1−λ

a
σ 2 Yt + 1

σ 2 (1
2σ 2 + α − r), t ≥ 0.

We thus obtain from (107) the optimal rate of exponential decay

sup
π∈A

lim
T ↑∞

1

T
ln inf

Q∈Q
Q[Lπ

T ≥ c] =

⎧⎪⎪⎨⎪⎪⎩
−(a/4 − c + γ )2

c − γ
, for c >

a

4
+ γ ,

0, for c ≤ a

4
+ γ .

Since λ[c] = 1 − ( a
4(c−γ )

)2, the nearly optimal strategies are given by

π̂
c,n
t =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− 4

σ 2

(
c + 1

n
− γ

)
Yt + 1

σ 2

(
1

2
σ 2 + α − r

)
, for c >

a

4
+ γ ,

− 4

σ 2

(
a

4
+ 1

n

)
Yt + 1

σ 2

(
1

2
σ 2 + α − r

)
, for c ≤ a

4
+ γ .

REMARK 7.1. Another natural problem is to minimize the robust large devi-
ations probability of downside risk

lim
T ↑∞

1

T
ln sup

Q∈Q
Q[Lπ

T ≤ c].(108)

Here the investor is interested in minimizing, in the long run, the worst-case prob-
ability that his portfolio underperforms a savings account with interest rate c. In
the nonrobust case, this large deviation criterion has been proposed by Pham [33],
but a rigorous solution was given first by Hata, Nagai and Sheu [21] for the special
case of a linear Gaussian factor model. The solution can be derived by a duality
approach which, in contrast to (105) and (107), involves the optimal growth rates
�(λ) of power utility with negative parameter λ (cf. Remark 2.1). For a detailed
discussion of problem (108) see [26].

APPENDIX

Let us finally summarize some technicalities.

LEMMA A.1. Let W be a two-dimensional Brownian motion on the stochastic
base (�, G,G,Q), and let η be a G-progressively measurable process taking its
values in a compact subset � ⊂ R

d . Moreover, let (Yt )t≤T be a continuous process
that is a strong solution of the SDE

dYt = h(ηt , Yt ) dt + σ dWt, Y0 = y0, ‖σ‖ > 0,(109)

where the drift function h :� × R → R satisfies for all η ∈ �, y ∈ R

h2(η, y) ≤ K2(1 + y2) for some constant K.

Then there exists δ = δ(T ) > 0 such that supt≤T EQ[exp(δY 2
t )] < ∞.
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PROOF. The local martingale Bt := ‖σ‖−1σWt , t ∈ [0, T ], satisfies 〈B〉t = t .
Thus, B is a one-dimensional Brownian motion, due to Lévy’s characterization. In
particular, the SDE (109) can be rewritten as

dYt = h(ηt , Yt ) dt + ‖σ‖dBt .(110)

The proof now follows in two steps: first we argue for a constant function
h(y) ≡ h. In that case, the solution to (110) is given by the Gaussian OU process
Yt = eht (y0 + ∫ t

0 e−hs‖σ‖dBs), t ∈ [0, T ], and the claim follows easily. In a sec-
ond step, we extend this result to the general case by a comparison argument. The
details are given in [29], Theorem 4.7, restricted to the special case h(η, y) = h(y).

�

LEMMA A.2. Let (�, G,G,Q) be a reference probability system supporting a
two-dimensional Brownian motion W = (W 1,W 2), and let η be a G-progressively
measurable process with values in a compact subset � ⊂ R

d . Furthermore, we
suppose that Y is a strong solution to the SDE (109), where h is real-valued func-
tion such that

∃K,M > 0,∀η ∈ � :yh(η, y) ≤ −Ky2 + M,

and where the volatility vector satisfies ‖σ‖ > 0. Then it holds that:

(i) There exist constants C,Cn > 0, n ∈ N, such that

sup
t≥0

EQ[Y 2n
t ] ≤ y2n

0 + Cn and sup
t≥0

EQ[|Yt |] ≤ C(1 + |y0|).

(ii) For all k ∈ R, supt≥0 EQ[exp(k|Yt |)] < ∞.

In particular, these bounds are uniform among the class of all progressively mea-
surable �-valued processes η.

PROOF. The proof is rather standard in ergodic control theory and appears in
single components under slight different assumptions in various papers (see, e.g.,
[8] or [21]). For a unifying version see [26], Lemma A.2. �
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