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UNIFORM CONVERGENCE FOR COMPLEX [0,1]-MARTINGALES

BY JULIEN BARRAL, XIONG JIN AND BENOÎT MANDELBROT

Université Paris 13, INRIA and Yale University

Positive T -martingales were developed as a general framework that ex-
tends the positive measure-valued martingales and are meant to model in-
termittent turbulence. We extend their scope by allowing the martingale to
take complex values. We focus on martingales constructed on the interval
T = [0,1] and replace random measures by random functions. We specify
a large class of such martingales for which we provide a general sufficient
condition for almost sure uniform convergence to a nontrivial limit. Such a
limit yields new examples of naturally generated multifractal processes that
may be of use in multifractal signals modeling.

1. Introduction.

1.1. Foreword about multifractal functions. Multifractal analysis is a natural
framework to describe the heterogeneity that is reflected in the distribution at small
scales of the Hölder singularities of a given locally bounded function or signal
F : I �→ C where I is an interval. The Hölder singularity of F can be defined, at
every point t , by

hF (t) = lim inf
r→0+

log OscF ([t − r, t + r])
log(r)

or

hF (t) = lim inf
n→∞

log2 OscF (In(t))

−n
,

where In(t) is the dyadic interval of length 2−n containing t and OscF (J ) =
sups,t∈J |F(t) − F(s)|. The multifractal analysis of F classifies points according
to hF . It may compute the singularity spectrum of F , that is, the Hausdorff di-
mension of the sets h−1

F ({h}) for h ≥ 0 or, more roughly, measure the asymptotic
number of dyadic intervals of generation n needed to cover the sets h−1

F ({h}) by
estimating the large deviation spectrum

LF (h) = lim
ε→0

lim sup
n→∞

log2 #{J ∈ Gn,2−n(h+ε) ≤ OscF (J ) ≤ 2−n(h−ε)}
n

,
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where Gn is the set of dyadic intervals of generation n. One says that F is
monofractal if there exists a unique h ≥ 0 such that EF (h) �= ∅ or LF (h) �= −∞.
Otherwise, F is multifractal (see [13, 25] for more details).

1.2. Motivations and methods to build multifractal processes. The main moti-
vation for constructing and studying multifractal functions or stochastic processes
comes from the need to model empirical signals for which the estimation of LF

and related quantities reveals striking scaling invariance properties. These signals
concern physical or social intermittent phenomena like energy dissipation in turbu-
lence [11, 19, 20], spatial rainfall [12], human heart rate [29], internet traffic [26]
and stock exchange prices [22]. Models of these phenomena are the statistically
self-similar measures constructed in [2, 5, 17, 20]. These objects are special ex-
amples of limit of “T -martingales,” which consist in a class of random measures
developed in [14, 15] after the seminal work [19] about Gaussian multiplicative
chaos (see also [10, 30]). When T = [0,1], these martingales and their limit are
also used to build models of nonmonotonic scaling invariant signals as follows:
By performing a multifractal time change in Fractional Brownian motions or sta-
ble Lévy processes [2, 22, 25], by integrating a positive [0,1]-martingale with
respect to the Brownian motion or using such a martingale to specify the covari-
ance of some Gaussian processes to get new types of multifractal random walks
[2, 18], or by considering random wavelet series whose coefficients are built from
a multifractal measure [1, 8].

1.3. A natural alternative construction. This paper considers the natural alter-
native to these constructions which allows the multiplicative processes involved in
[0,1]-martingales to take complex values.

Let us now recall what are [0,1]-martingales. Let (�, B,P) be a probability
space, endow the interval [0,1] with the Borel σ -algebra B([0,1]) and the prod-
uct space [0,1] × � with the product σ -algebra B([0,1]) ⊗ B. Let (Bn)n≥1 be
a nondecreasing sequence of σ -algebras in B. Also let (Qn)n≥1 be a sequence
of complex-valued measurable functions defined on [0,1] × � such that for each
t ∈ [0,1], {Qn(t, ·), Bn}n≥1 is a martingale of expectation 1. Such a sequence of
functions is called a [0,1]-martingale. Given a Radon measure λ on [0,1], for
every n ≥ 1 we can define the random complex measure μn whose density with
respect to λ is equal to Qn.

If the functions Qn take nonnegative values, then, with probability 1, the se-
quence of Radon measures (μn)n≥1 weakly converges to a measure μ ([14, 15]).
This property is an almost straightforward consequence of the positive martingale
convergence theorem and Riesz’s representation theorem. When the random func-
tions Qn cease to be nonnegative, the martingales Qn(t) need not be bounded
in L1 norm; hence the total variations of the complex measures μn may diverge,
and (μn)n≥1 need not converge almost surely weakly to an element of the dual
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of C([0,1]), the space of continuous complex-valued functions over [0,1]. In this
paper we rather consider the sequence of random continuous functions

Fn : t ∈ [0,1] �→ μn([0, t]) =
∫ t

0
Qn(u)dλ(u).

Then the following questions arise naturally:

QUESTION 1. Does there exist a general necessary and sufficient condition
under which (Fn)n≥1 converges almost surely uniformly to a limit which is non-
trivial (i.e., different from 0) with positive probability?

QUESTION 2. When the sequence (Fn)n≥1 diverges, or converges to 0 in
C([0,1]), can a natural normalization of Fn make it converge to a nontrivial multi-
fractal limit F̃ , at least in distribution?

QUESTION 3. Consider the case of strong or weak convergence to a limit
process F or F̃ having scaling invariance properties. What is the multifractal na-
ture of F (or F̃ ), and does F or F̃ possess the remarkable property to be naturally
decomposed as a monofractal function in multifractal time, like for some other
classes of multifractal functions [2, 21, 22, 27]?

We will introduce a subclass of complex [0,1]-martingales, namely M, such
that for (Qn)n≥1 ∈ M, we have a general sufficient condition for the almost sure
uniform convergence of (Fn)n≥1 to a nontrivial limit, as well as a result of global
Hölder regularity for the limit function (Theorem 2.1). Our result makes it possible
to construct the complex extensions of some fundamental examples of statistically
self-similar positive multiplicative cascades mentioned above (see Section 2.3 and
an illustration in Figure 1).

Companion papers [3] and [4] provide further results and answers to the previ-
ous questions in the particular case of complex b-adic independent cascades (it is
worth noting that these objects also play a role in the study of directed polymers
in a random medium [9]).

Section 2 introduces the class M, states Theorem 2.1 and provides fundamental
examples in M. Section 3 provides the proof of Theorem 2.1. We end this section
with some definitions.

1.4. Definitions. Given an integer b ≥ 2, we denote by A the alphabet
{0, . . . , b − 1} and define A ∗ = ⋃

n≥0 A n (by convention A 0 is the set re-
duced to the empty word denoted ∅). For every n ≥ 0, the length of an ele-
ment of A n is by definition equal to n, and we denote it by |w|. For w ∈ A ∗,
we define tw = ∑|w|

i=1 wib
−i and Iw = [tw, tw + b−|w|[. For n ≥ 1 we define

Tn = {tw : w ∈ A n} ∪ {1} and then T∗ = ⋃
n≥1 Tn.
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FIG. 1. A complex valued canonical dyadic cascade Fn for n = 9, 11, 15, 16, 17, 18.

For any t ∈ [0,1) and n ≥ 1, we denote by t |n the unique word in A n such that
t ∈ It |n. We also denote by t |0 the empty word.

If f ∈ C([0,1]) we denote by ‖f ‖∞ the norm supt∈[0,1] |f (t)|.
We denote by (�, B,P) the probability space on which the random variables

considered in this paper are defined.

2. A class of complex [0,1]-martingales.

2.1. Definition. Consider a sequence of measurable complex functions

Pn :
([0,1] × �, B([0,1]) ⊗ B

) �→ (C, B(C)), n ≥ 1.

For n ≥ 1 and I , a subinterval of [0,1], let F I
n be the σ -field generated in B

by the family of random variables {Pm(t, ·)}t∈I,1≤m≤n. Also let F I
n be the σ -field

generated in B by the family of random variables {Pm(t, ·)}t∈I,m>n. The σ -fields
F [0,1]

n and F [0,1]
n are simply denoted by Fn and F n.

(P1) For all t ∈ [0,1], Pn(t, ·) is integrable, and E(Pn(t, ·)) = 1.
(P2) For every n ≥ 1, Fn and F n are independent.
(P3) There exist two integers b ≥ 2 and N ≥ 1 such that for every n ≥ 1 and

every family G of b-adic subintervals of [0,1] of generation n such that d(I, J ) ≥
Nb−n for every I �= J ∈ G , the σ -algebra’s F I

n, I ∈ G , are mutually independent,
where d(I, J ) = inf{|t − s| : s ∈ I, t ∈ J }.
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Under the properties (P1) and (P2), for each t ∈ (0,1) the sequence

Qn(t, ·) =
n∏

k=1

Pk(t, ·)

is a martingale of expectation 1 with respect to the filtration {Fn}n≥1.
We denote by M the class of martingales (Qn)n≥1 obtained as above and which

satisfy properties (P1)–(P3).
We denote by M′ the subclass of M of those (Qn)n≥1 which, in addition to

(P1)–(P3), satisfy the statistical self-similarity property:

(P4) Let b be as in (P3). For every closed b-adic subinterval I of [0,1], let n(I)

and SI , respectively, stand for the generation of I and the canonical affine map
from [0,1] onto I . The processes (Pn(I)+n ◦ SI )n≥1 and (Pn)n≥1 have the same
distributions.

Let λ be a Radon measure on [0,1]. If (Qn)n≥1 ∈ M, for n ≥ 1, we define

Fn(t) =
∫ t

0
Qn(u)dλ(u).(2.1)

2.2. Convergence theorem for (Fn)n≥1. Theorem 2.1 provides a sufficient
condition for the almost sure uniform convergence of Fn, as n tends to ∞, to a
limit F such that P(F �= 0) > 0. This condition is the extension of the condition
introduced in Part II of [6] to show that when (Qn)n≥1 is nonnegative, the sequence
of measures F ′

n converge almost surely weakly to a random measure μ such that
P(μ �= 0) > 0. When (Qn)n≥1 is not nonnegative, the uniform convergence of Fn

is a more delicate issue.
For p ∈ R+ and n ≥ 1 we define

S(n,p) = ∑
w∈A n

λ(Iw)p−1
∫
Iw

E(|Qn(t)|p)dλ(t) and(2.2)

ϕ(p) = lim inf
n→∞

(
−1

n
logb S(n,p)

)
.(2.3)

We notice that ϕ is a concave function of p, ϕ(0) ≤ 0 by construction, and that due
to our assumption that E(Qn(t)) = 1, we also have ϕ(1) ≤ 0.

THEOREM 2.1.

(1) Suppose that ϕ(p) > 0 for some p ∈ (0,1), and that there exists a func-
tion ψ : N+ → R+ such that ψ(n) = o(n) and E(supt∈Iw

|Qn(t)|p) ≤ exp(ψ(n))×
E(|Qn(t)|p) for all n ≥ 1, w ∈ A n and t ∈ Iw . Then, with probability 1, Fn con-
verge uniformly to 0 as n → ∞.

(2) Let p ∈ (1,2]. Suppose that ϕ(p) > 0. The functions Fn converge uniformly,
almost surely and in L1 norm, to a limit F , as n → ∞. The function F is γ -Hölder
continuous for all γ ∈ (0,maxq∈(1,p] ϕ(q)/q). Moreover, E(‖F‖p∞) < ∞.
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REMARK 2.1. (1) The proof of Theorem 2.1(1) will show that this result does
not require (P1), (P2) or (P3). The existence of the function ψ corresponds to a
kind of bounded distortion principle.

(2) Under the assumptions of Theorem 2.1(2), let β = min{p ∈ [1,2) :ϕ(p) =
0}. The nonnegative sequence (Q

(β)
n )n≥1 = (|Qn|β)n≥1 is an element of M, and by

construction, the corresponding function ϕ is positive near 1+. Consequently, the
sequence F

(β)
n defined by

∫ ·
0 Q

(β)
n (u)du converges uniformly to a nondecreasing

function F (β). Inspired by the results obtained in [4], it is natural to ask under
which additional assumptions it is possible to write F = B1/β ◦ F (β) where B1/β

is a monofractal function of exponent 1/β .
(3) Suppose that ϕ is not positive over [0,2]. In the case where the martingale

(Fn(1))n≥1 is not bounded in L2 norm, inspired again by what is done in [4], it is
natural to look at the process Fn/

√
E(Fn(1)2) and seek for conditions under which

it converges in distribution, as n → ∞.

2.3. Examples.

Homogeneous b-adic independent cascades. We consider the complex exten-
sion of the nonnegative [0,1]-martingales introduced in [20]. Let b be an integer
≥ 2 and for every k ≥ 0 let W(k) = (W

(k)
0 , . . . ,W

(k)
b−1) be a vector such that each of

its components is complex, integrable and has an expectation equal to 1. Then, con-
sider {W(|w|)(w)}w∈A ∗ , a family of independent vectors such that for each k ≥ 0
and w ∈ 
k the vector W(k)(w) is a copy of W(k).

An element of M is obtained as follows. For t ∈ [0,1) and n ≥ 1 let
Pn(t) = W

(n−1)
tn (t |n − 1) and then Qn(t) = ∏n

k=1 Pk(t). If λ is the inhomoge-
neous Bernoulli measure associated with a sequence of probability vectors (λ(k) =
λ

(k)
0 , . . . , λ

(k)
b−1)k≥0, then

ϕ(p) = lim inf
n→∞

(
−1

n

n−1∑
k=0

logb E

(
b−1∑
i=0

(
λ

(k)
i

∣∣W(k)
i

∣∣)p))
.

If all the vectors W(k) have the same distribution as a vector W , then (Qn)n≥1
belongs to M′. Canonical cascades correspond to W whose components are i.i.d.
and λ equal to the Lebesgue measure. Then a necessary and sufficient condition
for the almost sure uniform convergence of Fn to a nontrivial limit is ϕ′(1−) > 0
if W ≥ 0 [16, 17] and ϕ(p) > 0 for some p ∈ (1,2] for the special “monofractal”
examples considered in [7].

Compound Poisson cascades. We consider the complex extension of the non-
negative [0,1]-martingales introduced in [5]. Let ν be a positive Radon mea-
sure over (0,1] and denote by � the measure Leb ⊗ ν where Leb stands for the
Lebesgue measure over R. We consider a Poisson point process S of intensity �.
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To each point M of S, we associate a random variable WM picked in a collection
of random variables that are independent, independent of S, and are identically
distributed with an integrable complex random variable W . We fix β > 0, and for
n ≥ 1 and t ∈ [0,1] we define the truncated cone


Cn(t) = {(t ′, r) :b−n < r ≤ b1−n, t − βr/2 ≤ t ′ < t + βr/2}.
We obtain an element of M as follows. For t ∈ [0,1) and n ≥ 1 we define

Pn(t) = e−�(
Cn(t))(E(W)−1)
∏

M∈S∩
Cn(t)

WM,

and then

Qn(t) =
n∏

k=1

Pk(t).

If λ is the Lebesgue measure and β̃ stands for lim supn→∞ n−1 logb �(
⋃n

k=1 
Cn),

ϕ(p) = p − 1 + β̃
(
p

(
E(�W) − 1

) − (
E(|W |p) − 1

))
.

If, moreover, there exists δ > 0 such that ν(dr) = δ dr/r2, that is, if � possesses
scaling invariance properties, we have β̃ = βδ, and (Qn)n≥1 belongs to M′.

Log-infinitely divisible cascades. This example is an extension of compound
Poisson cascades when the weights WM take the form exp(LM), and, in particular,
the WM do not vanish. We use the notations of the previous section and take β =
δ = 1. Let ψ be a characteristic Lévy exponent ψ defined on R

2, that is,

ψ : ξ ∈ R
2 �→ i〈ξ |a〉 − Q(ξ)/2 +

∫
R2

(
1 − ei〈ξ |x〉 + i〈ξ |x〉1|x|≤1

)
π(dx),(2.4)

where a ∈ R
2, Q is a nonnegative quadratic form and π is a Radon measure on

R
2 \ {0} such that

∫
(1 ∧ |x|2)π(dx) < ∞.

Then let ρ = (ρ1, ρ2) be an independently scattered infinitely divisible random
R

2-valued measure on R×R
∗+ with � as control measure and ψ as Lévy exponent

(see [24] for the definition). In particular, for every Borel set B ∈ R × R
∗+ and

ξ ∈ R
2 we have

E
(
ei〈ξ |ρ(B)〉) = exp(ψ(ξ)�(B)),

and for every finite family {Bi} of pairwise disjoint Borel subsets of R × R
∗+ such

that �(Bi) < ∞, the random variables ρ(Bi) are independent.
Let I1 be the interval of those ξ1 ∈ R such that

∫
|x|≥1 eξ1x1π(dx) < ∞. The

function ψ has a natural extension ψ̃ to D = R
2 ∪ (−iI1 × R) given by the same

expression as in (2.4) if we extend Q to an Hermitian form on C
2. Then for every

ξ ∈ D and every Borel subset of R×R
∗+ we have E(ei〈ξ |ρ(B)〉) = exp(ψ̃(ξ)�(B)).
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Now, we assume that ξ0 = (−i,1) ∈ D, and without loss of generality we set

ψ̃ := ψ̃ − ψ̃(ξ0).

Then, with the same definition of cones as in the previous section, if n ≥ 1 and
t ∈ [0,1], we define

Pn(t) = exp[〈ξ0|ρ(
Cn(t))〉] = exp[ρ1(
Cn(t)) + iρ2(
Cn(t))]
and Qn(t) = ∏n

k=1 Pn(t). If we take λ equal to the Lebesgue measure, and if p ∈ R

is such that (−ip,0) ∈ D, then

ϕ(p) = p − 1 − β̃ψ̃(−ip,0).(2.5)

In the positive case, this construction that has been proposed has an extension
of compound Poisson cascades in [2]. If ν(dr) = dr/r2, then (Qn)n≥1 belongs
to M′. In [2], a modification of P1(t) is introduced, which yields a nice exact
statistical scaling invariance property for the increments of the limit measure. It
can be easily checked that this property, which is different from the statistical self-
similarity imposed by (P4), also holds for the complex extension.

3. Proof of Theorem 2.1.

PROOF OF THEOREM 2.1(1). For any w ∈ A ∗ and n ≥ 1, define


Fn(Iw) = Fn(tw + b−n) − Fn(tw) =
∫
Iw

Qn(t)dλ(t).(3.1)

We have E(‖Fn‖p∞) ≤ E((
∑

w∈A n |
Fn(Iw)|)p) ≤ E(
∑

w∈A n |
Fn(Iw)|p),

where we have used the subadditivity of x ≥ 0 �→ xp (p ∈ (0,1]). Thus

E(‖Fn‖p∞) ≤ ∑
w∈A n

E

(∣∣∣∣ ∫
Iw

Qn(t)dλ(t)

∣∣∣∣p)

≤ ∑
w∈A n

λ(Iw)pE

(
sup
t∈Iw

|Qn(t)|p
)

≤ ∑
w∈A n

exp(ψ(n))λ(Iw)p−1
∫
Iw

E(|Qn(t)|p)dλ(t)

= exp(ψ(n))S(n,p).

Due to the property of ψ(n), we have lim supn→∞ logb(E(‖Fn‖p∞))/n ≤ −ϕ(p) < 0.
This implies the result. �

PROOF OF THEOREM 2.1(2). The two following crucial statements, which
take natural and classical forms, will be proved at the end of the section.
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PROPOSITION 3.1. There exists a constant Cp > 0 such that

(∀n ≥ 2) E

(
max
t∈Tn

|Fn(t) − Fn−1(t)|p
)

≤ CpS(n,p).(3.2)

Consequently, for every b-adic number t ∈ T∗, Fn(t) converges almost surely and
in Lp norm as n → ∞.

PROPOSITION 3.2. Let γ ∈ (0,maxq∈(1,p] ϕ(q)/q). With probability 1, there
exists ηγ > 0 such that for any t, s ∈ T∗ such that |t − s| < ηγ we have

sup
n≥1

|Fn(t) − Fn(s)| ≤ Cγ |t − s|γ ,(3.3)

where Cγ is a constant depending on γ only.

Since Fn(0) = 0 almost surely for all n ≥ 1, it follows from Propositions 3.2
and Ascoli–Arzela’s theorem that, with probability 1, the sequence of continuous
functions (Fn)n≥1 is relatively compact, and all the limits of subsequences of Fn

are γ -Hölder continuous for all 0 < γ < maxq∈(1,p] ϕ(q)/q . Moreover, Proposi-
tion 3.1 tells us that, with probability 1, Fn is convergent over the dense countable
subset T∗ of [0,1]. This yields the uniform convergence of Fn and the Hölder
regularity of the limit F .

We then prove that ‖‖F(t)‖∞‖p < ∞. For n ≥ 1, let Mn = maxt∈Tn |Fn(t)|. We
have

Mn+1 ≤ Mn + max
t∈T n

|Fn+1(t) − Fn(t)| + b · max
w∈A n+1

|
Fn+1(w)|.(3.4)

Then Minkowski’s inequality yields

‖Mn+1‖p ≤ ‖Mn‖p +
∥∥∥ max

t∈Tn

|Fn+1(t) − Fn(t)|
∥∥∥
p

+ b ·
∥∥∥ max

w∈A n+1
|
Fn+1(w)|

∥∥∥
p
.

Also, due to Proposition 3.1 we have
∑

n≥1 ‖maxt∈Tn |Fn+1(t) − Fn(t)|‖p < ∞.

Moreover,∥∥∥ max
w∈A n+1

|
Fn+1(w)|
∥∥∥
p

≤
( ∑

w∈A n+1

E(|
Fn+1(w)|p)

)1/p

≤ S(n + 1,p)1/p,

so
∑

n≥1 ‖maxw∈A n+1 |
Fn+1(w)|‖p < ∞. This implies supn≥1 ‖Mn‖p < ∞,
and since, with probability 1, Fn converges uniformly to F∞, and T∗ is dense in
[0,1], we get ‖ supt∈[0,1] |F(t)|‖p ≤ lim infn→∞ ‖Mn‖p < ∞. In particular, F be-
longs to L1 and for every n ≥ 1, the conditional expectation of F with respect
to Fn is well defined, and it converges almost surely and in L1 norm to F (see
Proposition V-2-6 in [23]). It remains to prove that Fn = E(F |Fn) almost surely.
For every t ∈ T∗, we have shown that the martingale (Fn(t), Fn)n≥1 is uniformly
integrable, so Fn(t) = E(F (t)|Fn) almost surely. Consequently, since T∗ is count-
able, with probability 1, the restriction of E(F |Fn) coincides with the function Fn

over T∗. Moreover, these two random functions are continuous and T∗ is dense in
[0,1], so, with probability 1, they are equal.
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PROOF OF PROPOSITION 3.1. Fix n ≥ 2 and denote the elements of Tn by tj ,
0 ≤ j ≤ bn, where 0 = t0 < t1 < · · · < tbn = 1. Also define Jj = [tj , tj+1] for
0 ≤ j < bn. We can write

Fn(tj ) − Fn−1(tj ) =
j−1∑
k=0

∫
Jk

U(t)V (t)dλ(t)

with U(t) = Qn−1(t) and V (t) = Pn(t)−1. Then we divide the family {Jj }0≤j<bn

into bN sub-families, namely the {JbNk+i}k≥0,0≤bNk+i<bn , for 0 ≤ i ≤ bN − 1.
Also we define Mn = max0≤j≤bn |Fn(tj ) − Fn−1(tj )| and remark that

Mn ≤ bN max
0≤j<bn

0≤i≤bN−1

∣∣∣∣ ∑
k≥0

0≤bNk+i≤j

∫
JbNk+i

U(t)V (t)dλ(t)

∣∣∣∣.
By raising both sides of the previous inequality to the power p we can get

Mp
n ≤ (bN)p max

0≤j<bn

0≤i≤bN−1

∣∣∣∣ ∫
JbNk+i

U(t)V (t)dλ(t)

∣∣∣∣p
(3.5)

≤ (bN)p
bN−1∑
i=0

max
0≤j≤bn

∣∣∣∣ ∑
k≥0

0≤bNk+i≤j

∫
JbNk+i

U(t)V (t)dλ(t)

∣∣∣∣p.

We are going to use the following lemma. It is proved for real valued random
variables in [28], and its extension to the complex case is immediate.

LEMMA 3.1. Let p ∈ (1,2]. There exists a constant Cp > 0 such that for every
n ≥ 1 and every sequence {Vj }1≤j≤n of independent and centered complex random
variables we have

E

(
max

1≤k≤n

∣∣∣∣∣
k∑

j=1

Vj

∣∣∣∣∣
p)

≤ Cp

n∑
j=1

E(|Vj |p).

Due to (P3), for each 0 ≤ i ≤ bN − 1, the restrictions of the function V (t) to
the intervals JbNk+i , 0 ≤ bNk + i < bn, are centered and independent. Also, due
to (P2), the functions U(t) and V (t) are independent. Consequently, by taking the
conditional expectation with respect to Fn−1 in (3.5) and using Lemma 3.1 we get
for each 0 ≤ i ≤ bN − 1

E

(
max

0≤j≤bn

∣∣∣∣ ∑
k≥0

0≤bNk+i≤j

∫
JbNk+i

U(t)V (t)dλ(t)

∣∣∣∣p∣∣∣Fn−1

)

≤ Cp

∑
k≥0

0≤bNk+i<bn

E

(∣∣∣∣ ∫
JbNk+i

U(t)V (t)dλ(t)

∣∣∣∣p∣∣∣Fn−1

)
.
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This implies

E(Mp
n |Fn−1) ≤ C̃p

∑
0≤j≤bn

E

(∣∣∣∣ ∫
Jj

U(t)V (t)dλ(t)

∣∣∣∣p∣∣∣Fn−1

)
(3.6)

with C̃p = Cp(bN)p+1. Now, since p > 1, the Jensen inequality yields∣∣∣∣ ∫
Ij

U(t)V (t)dλ(t)

∣∣∣∣p ≤ λ(Ij )
p−1

∫
Ij

|U(t)V (t)|p dλ(t).

Moreover, since E(|Pn(t)|) ≥ 1 and p ≥ 1, we have

E(|V (t)|p) ≤ 2p−1(
1 + E(|Pn(t)|p)

) ≤ 2p
E(|Pn(t)|p).(3.7)

Thus, taking the expectation in (3.6) yields

E

(
max
t∈Tn

|Fn(t) − Fn−1(t)|p
)

≤ 2pC̃pS(n,p),

that is, (3.2). If ϕ(p) > 0, by definition of ϕ, S(n,p) converges exponentially fast
to 0; hence the series

∑
n≥1 S(n,p)1/p converge and, due to (3.2) and the fact that

T∗ = ⋃
n≥0 Tn, Fn(t) converges almost surely and in Lp norm as n → ∞ for all

t ∈ T∗. �

PROOF OF PROPOSITION 3.2. Recall (3.1). Let q ∈ (1,p] such that ϕ(q) > 0.
It follows from (P1) that (
Fn(Iw))n≥1 is a martingale, so Doob’s and then
Jensen’s inequalities yield a constant Cq such that for n ≥ 1

E

(
max

1≤k≤n
|
Fk(Iw)|q

)
≤ CqE(|
Fn(Iw)|q) ≤ Cqλ(Iw)q−1

∫
Iw

E(|Qn(t)|q)dλ(t).

Consequently ∑
w∈An

E

(
max

1≤k≤n
|
Fk(Iw)|q

)
≤ CqS(n, q).(3.8)

By using Markov’s inequality as well as (3.8) and Proposition 3.1, we get

P

(
max
w∈An

max
0≤k≤n

|
Fk(Iw)| > b−nγ or max
t∈Tn

|Fn(t) − Fn−1(t)| > b−nγ
)

≤ ∑
w∈An

P

(
max

0≤k≤n
|
Fk(Iw)| > b−nγ

)
+ P

(
max
t∈Tn

|Fn(t) − Fn−1(t)| > b−nγ
)

≤ ∑
w∈An

bnγ q · E

(
max

0≤k≤n
|
Fk(Iw)|q

)
+ bnγ q · E

(
max
t∈Tn

|Fn(t) − Fn−1(t)|q
)

≤ Cqb
nγ qS(n, q),
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where Cq is another constant depending only on q . Since γ ∈ (0, ϕ(q)/q), by de-
finition of ϕ(q) the series

∑
n≥1 bnγ qS(n, q) converges, and by the Borel–Cantelli

lemma, with probability 1, there exists n1 such that for all n ≥ n1,

max
w∈An

max
0≤k≤n

|
Fk(Iw)| ≤ b−nγ and max
t∈Tn

|Fn(t) − Fn−1(t)| ≤ b−nγ .(3.9)

Now fix n ≥ n1. We are going to prove by induction that for all M ≥ n + 1 and
t, s ∈ TM such that 0 < t − s < b−n we have


M(t, s) ≤ 2b

M∑
m=n+1

b−mγ where

(3.10)

M(t, s) = max

0≤k≤M
|Fk(t) − Fk(s)|.

If M = n + 1, then there exist i and i′ with 0 < i − i ′ < 2b such that t = ib−(n+1)

and s = i ′b−(n+1), so due to (3.9) applied at generation n + 1,


n+1(t, s) ≤ (i − i ′)b−(n+1)γ ≤ 2b · b−(n+1)γ .

Now let M ≥ n + 1 and suppose that (3.10) holds for all n + 1 ≤ m ≤ M . Let
t, s ∈ TM+1 such that 0 < t − s < b−n. If there is no element of TM between s

and t , then (3.9) yields 
M+1(t, s) ≤ (b − 1)b−(M+1)γ . Otherwise, consider t̄ =
max{u ∈ TM : u ≤ t} and s̄ = min{u ∈ TM :u ≥ s}. We have

s ≤ s̄ ≤ t̄ ≤ t, t − t̄ ≤ (b − 1)b−(M+1),

s̄ − s ≤ (b − 1)b−(M+1), t̄ − s̄ < b−n.

Since s̄ and t̄ belong to TM ⊂ TM+1, we deduce from (3.9) that{
max{
M+1(t, t̄),
M+1(s̄, s)} ≤ (b − 1)b−(M+1)γ ,

max{|FM+1(s̄) − FM(s̄)|, |FM+1(t̄) − FM(t̄)|} ≤ b−(M+1)γ .

Also, due to (3.10) we have 
M(t̄, s̄) ≤ 2b
∑M

m=n+1 b−mγ . Consequently,


M+1(t, s) ≤ 
M+1(t, t̄) + 
M+1(s̄, s) + 
M(t̄, s̄)

+ |FM+1(s̄) − FM(s̄)| + |FM+1(t̄) − FM(t̄)|

≤ 2(b − 1)b−(M+1)γ + 2b

M∑
m=n+1

b−jγ + 2b−(M+1)γ ,

so (3.10) holds for m = M + 1. Let Cγ = 2b/(1 − b−γ ). Letting M tend to infin-
ity in (3.10) yields that maxk≥1 |Fk(t) − Fk(s)| ≤ Cγ b−(n+1)γ for all n ≥ n1 and
t, s ∈ T∗ such that |t − s| ≤ b−n. Now, for t, s ∈ T∗ with |t − s| ≤ b−n1 , there is
a unique n ≥ n1 such that b−(n+1) ≤ |t − s| < b−n and maxk≥1 |Fk(t) − Fk(s)| ≤
Cγ b−(n+1)γ ≤ Cγ |t − s|γ . The conclusion comes from the density of T∗ in [0,1]
and the continuity of the Fk . �
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