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We design exact polynomial expansions of a class of Feynman–Kac par-
ticle distributions. These expansions are finite and are parametrized by coa-
lescent trees and other related combinatorial quantities. The accuracy of the
expansions at any order is related naturally to the number of coalescences of
the trees. Our results include an extension of the Wick product formula to
interacting particle systems. They also provide refined nonasymptotic propa-
gation of chaos-type properties, as well as sharp Lp-mean error bounds, and
laws of large numbers for U -statistics.

0. Introduction. The typical phenomenon we are interested in is the behav-
ior of particles scattered according to a diffusion process (encoded by a Markov
transition) and submitted to a potential function. The problem is fairly general,
since its modelization encodes, besides the scattering of particles in an absorbing
medium, also filtering problems in signal processing or polymerization models, to
quote only a few of the applications areas of the theory. In these three cases, the
potential function represents, respectively, the absorption rate, the likehood of the
signal values conditional to some observations, or the intermolecular attraction or
repulsion forces between the monomers. For further details and a survey of the
applications of Feynman–Kac interacting particle models, the interested reader is
recommended to consult the pair of books [5, 6], and the references therein.

As it is well known, naive Monte-Carlo methods fail to give a satisfactory an-
swer to these questions. This is easily understood with the example of particles
in an absorbing medium. In that case, the size of the nonabsorbed population will
decrease according to the absorption rate of the medium, so that, in the end, the
empirical distribution of the surviving sample may give only a poor approximation
of the final repartition of the particles. The solution to the decrease of the popula-
tion size is simple and relies on a mean-field approximation. In general, particles
will explore the state space as a free Markov evolution; during their exploration
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particles with low potential are killed, while the ones with high potential value
duplicate.

During the last two decades, the asymptotic analysis of these Feynman–Kac in-
teracting particle models has been developed in various directions, including prop-
agation of chaos analysis, Lp-mean error estimates, central limit-type theorems,
and large deviation principles. The purpose of the present work is to improve on
these results and develop exact, nonasymptotic, tree-based functional representa-
tions of particle block distributions. Actually, two probability distributions arise
naturally in these models. To stick with the diffusion-absorption scheme, they are
associated, respectively, to the empirical distribution of the nonabsorbed compo-
nent of the Markov chain modeling the trajectories (1.8) and to the corresponding
normalized empirical occupation measure (1.9). In both cases, the distributions
can be expanded polynomially with respect to N−1, where N stands for the total
population size. These Laurent-type expansions are the main results of the article.
They are described in Theorems 1.5 and 4.12.

They rely on an original combinatorial, and permutation group analysis on a
special class of trees and forests that parametrize naturally the trajectories of inter-
acting particle systems. Much attention has been paid recently to the combinatorics
of trees and their applications in physics. A short overview of the areas where these
phenomena show up is included in Section 3. To the best of our knowledge, their
introduction in the analysis of Feynman–Kac and interacting particle models is
new. Since the corresponding geometrical and combinatorial study might be use-
ful in other contexts, we have tried to isolate its exposition, as far as possible, from
its applications to Feynman–Kac models.

The functional expansions allow us to derive as a direct consequence Wick for-
mulas for interacting particle systems [Theorem 3.14, (5.1)], refined, nonasymp-
totic, propagation of chaos-type properties including strong expansions of the par-
ticle block distributions with respect to Zolotarev-type seminorms (5.2), as well
as explicit formulas for Lp-mean error bounds (5.4), and laws of large numbers
for U -statistics (5.3), yielding what seems to be the first results of this type for
mean-field particle models.

The article is divided into four main parts, devoted, respectively, to the pre-
cise description of Feynman–Kac particle models and tree-based expansions (Sec-
tion 1), to the proof of the expansion formulas (Section 2), to the combinatorial and
group-theoretical analysis of trajectories in mean-field interacting particle models
(Section 3), and to the extension to path-space models with applications to propa-
gation of chaos-type properties (Section 4). The last section gathers various direct
consequences of the main theorems.

Notation.

Combinatorial quantities. Let us gather first various notations, for further use
in the various parts of the article.
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Let S be a finite set; we write |S| for the cardinal of S. The notation is extended
to applications a between finite sets and |a| denotes then the cardinal of the image
of a. Precisely, for any pair of integers (l,m) ∈ (N�)2, we set [l] = {1, . . . , l}, and
[l][m] the set of mappings a from [m] into [l]. By |a|, we denote the cardinality of
the set a([m]), and for any 1 ≤ p ≤ l we set

[l][m]
p = {

a ∈ [l][m] : |a| = p
}
.

When l > m, we also denote by 〈m, l〉(= [l][m]
m ) the set of all

(l)m := l!
(l − m)!

one-to-one mappings from [m] into [l], and by Sl = 〈l, l〉 the symmetric group
of all permutations of [l]. We also denote by 1l the identity in Sl . Recall that the
Stirling number of the second kind S(q,p) is the number of partitions of [q] into
p nonempty subsets, so that∣∣[N ][q]

p

∣∣= S(q,p)(N)p and Nq = ∑
1≤k≤q

S(q, k)(N)k.

Sequences of maps and associated quantities will be one of the main ingredients
of our approach to Feynman–Kac models. We write An,q =def. ([q][q])n+1 (resp.
IAn,q) for the set of (n+ 1)-sequences of maps (resp. of weakly increasing maps)
a = (ap)0≤p≤n from [q] into itself:

[q] a0←− [q] a1←− · · · ←− [q] an−1←− [q] an←− [q].
Notice that we write in bold the symbols for sequences (of maps, integers, . . .)
such as a.

For any sequences of integers p = (pk)0≤k≤n, and l = (lk)0≤k≤n, we write p ≤ l
if and only if pk ≤ lk for all 0 ≤ k ≤ n. We write ‖p‖ for (p0 +· · ·+pn). Assuming
now that p ≤ l, we use the multi-index notation

(l)p = ∏
0≤k≤n

(lk)pk
, p! = ∏

0≤k≤n

pk!, s(l,p) =
n∏

k=0

s(lk,pk),

where the s(lk,pk) are Stirling numbers of the first kind. Recall that these num-
bers provide the coefficients of the polynomial expansion of the (N)p (Stirling
formula):

(N)p = ∑
1≤k≤p

s(p, k)Nk;

see, for example, [3] for further details. The difference (p− l) and, respectively, the
addition (p+ l) of two sequences is the sequence (pk − lk)0≤k≤n and, respectively,
(pk + lk)0≤k≤n. When no confusions can arise, we write N and q, for the constant
sequences (N)0≤i≤n, and (q)0≤i≤n. We also write 1 and, respectively, 0, for the
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sequence of unit integers and, respectively, null integers. The above definitions are
extended to infinite sequence of integers p = (pk)k≥0 ∈ NN, with a finite number
of strictly positive terms. Any function α : N 	→ N on the set of integers into itself,
is extended to integer sequences p ∈ NN, by setting α(p) = (α(pk))k≥0.

In particular, for a ∈ An,q , we write ‖a‖ the sequence (‖ai‖)0≤i≤n. By a slight
abuse of notation, we write ‖a‖ for ‖(|a|)‖ = |a0|+· · ·+|an|. The sequence q−|a|
is called the coalescence sequence of a. The coalescence degree of a is defined by

coal(a) := ‖q‖ − ‖a‖ =
n∑

i=0

(q − |ai |).

The subset of An,q of sequences a such that |a| ≥ q − p is written An,q(p).

Measures, norms and related notions. Let (E,E) be a measurable space. We
denote, respectively, by M(E), P (E) and Bb(E), the set of all finite signed mea-
sures on (E,E), the convex subset of all probability measures and the Banach
space of all bounded and measurable functions f on E, equipped with the uniform
norm ‖f ‖ = supx∈E |f (x)|. The total variation norm is written ‖ · ‖TV, so that, for
any linear operator L on Bb(E),

‖L‖TV := sup
f ∈Bb(E):‖f ‖≤1

|L(f )|.

A bounded integral operator Q between the measurable spaces (E,E) and
(F,F ), such that, for any f ∈ Bb(F ), the functions

Q(f ) :x ∈ E 	→ Q(f )(x) =
∫
F

Q(x, dy)f (y) ∈ R

are E -measurable, and bounded, generates a dual operator μ 	→ μQ from M(E)

into M(F ), defined by (μQ)(f ) := μ(Q(f )). The tensor power Q⊗q represents
the bounded integral operator defined for any f ∈ Bb(F

q) by

Q⊗q(f )(x1, . . . , xq) =
∫
Fq

[Q(x1, dy1) · · ·Q(xq, dyq)]f (y1, . . . , yq).

For a bounded integral operator Q1 from E into F , and an operator Q2 from F

into G, we denote by Q1Q2 the composition operator from E into G, defined for
any f ∈ Bb(G) by (Q1Q2)(f ) := Q1(Q2(f )).

The notion of differential for sequences of signed measures is also useful. Let
(�N)N≥1 ∈ M(E)N be a uniformly bounded sequence of signed measures on a
measurable space (E,E), in the sense that supN≥1 ‖�N‖TV < ∞. The sequence
�N is said to converge strongly to some measure � ∈ M(E), as N ↑ ∞, if and
only if

∀f ∈ Bb(E) lim
N↑∞�N(f ) = �(f ).
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DEFINITION 0.1. Let us assume that �N converges strongly to �. The dis-
crete derivative of the sequence (�N)N≥1 is the sequence of measures (∂�N)N≥1
defined by

∂�N := N [�N − �].
We say that �N is differentiable, if ∂�N is uniformly bounded, and if it strongly
converges to some measure ∂� ∈ M(E), as N ↑ ∞.

The discrete derivative ∂�N of a differentiable sequence can itself be differen-
tiable. In this situation, the derivative of the discrete derivative is called the second
derivative and it is denoted by ∂2� = ∂(∂�), and so on.

A sequence �N that is differentiable up to order (k + 1) has the following
representation:

�N = ∑
0≤l≤k

1

Nl
∂l� + 1

Nk+1 ∂k+1�N

with supN≥1 ‖∂k+1�N‖TV < ∞, and the convention ∂0� = �, for l = 0.

1. Feynman–Kac semigroups.

1.1. Definitions. We let (En,En)n≥0 be a collection of measurable state
spaces. In some applications, the series En will be constant or there will exist
canonical isomorphisms between the various state spaces (think to the distribution
of particles in a fixed absorbing medium), but it may also happen that the vari-
ous state spaces are significantly different (think to path estimation and smoothing
in signal processing or to polymerization sequences of monomers). For a survey
of the various applications of the theory and examples of families of state spaces
En occurring in practice, we refer to the pair of books [5, 6], and the references
therein.

We consider a distribution η0 on E0, a collection of Markov transitions
Mn(xn−1, dxn) from En−1 into En, and a collection of En-measurable and
bounded potential functions Gn on the state spaces En. We will always assume
that the potential functions are chosen such that

0 < inf
xn∈En

Gn(xn) ≤ sup
xn∈En

Gn(xn) < ∞.(1.1)

We associate to these objects the Feynman–Kac measures defined for any function
fn ∈ Bb(En) by the following formulas.

DEFINITION 1.1. The Feynman–Kac measure γn and its normalization ηn are
defined by

γn(fn) := E

[
fn(Xn)

∏
0≤k<n

Gk(Xk)

]
and ηn(fn) := γn(fn)/γn(1),(1.2)
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where (Xn)n≥0 is a Markov chain, taking values in the state spaces (En)n≥0, with
initial distribution η0 on E0, and elementary transitions Mn from En−1 into En.

By the Markov property and the multiplicative structure of (1.2), we check that
the flow (ηn)n≥0 satisfies the following equation:

ηn+1 = �n+1(ηn),(1.3)

where the transformations �n+1 :P (En) → P (En+1) are defined for any pair
(ηn, fn+1) ∈ (P (En) × Bb(En+1)) as follows:

�n+1(ηn)(fn+1) = ηn(Qn+1(fn+1))

ηn(Qn+1(1))

with Qn+1(xn, dxn+1) = Gn(xn) × Mn+1(xn, dxn+1).

The measures γn can be expressed in terms of the flow (ηp)0≤p≤n with the formu-
las

γn(fn) = ηn(fn) × γn(1) with γn(1) = ∏
0≤p<n

ηp(Gp)(1.4)

for any fn ∈ Bb(En).
To illustrate their meaning and motivate further the forthcoming developments,

let us develop with some details an important application of these Feynman–
Kac flows. Let us consider the distribution of a particle evolving in an absorbing
medium, with obstacles related to potential functions Gn, taking values in ]0,1]. In
this context, the particle Yn evolves according to two separate mechanisms. First,
it moves from a site yn−1 ∈ En−1, to another yn ∈ En according to elementary
transitions Mn(yn−1, dyn). Then, it is absorbed with a probability 1 −Gn(yn), and
placed in an auxiliary cemetery state Yn = c; otherwise it remains in the same site.
If we let T be the random absorption time, then it is not difficult to check that

γn(fn) = E[fn(Yn)1T ≥n] and ηn(fn) = E[fn(Yn)|T ≥ n].(1.5)

In the above displayed formulas, we have used the convention that fn(c) = 0,
when Yn = c. In time-homogeneous settings (Gn = G and Mn = M), we have
([5], Proposition 12.4.1)

γn(1) = P(T ≥ n) ∼ e−λn

as n → ∞. The positive constant λ is a measure of the strength and trapping ef-
fects of the obstacle. By a lemma of Varadhan’s, λ coincides with the logarith-
mic Lyapunov exponent λ0 of the transition operator Q(x,dy) = G(x)M(x, dy).
Whenever it exists, the corresponding eigenfunction h of Q represents the ground
state of the operator Q; see, for example, [5].
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1.2. Mean-field interacting particle models. A natural mean-field particle
model associated with the nonlinear Feyman–Kac flow (1.3) is the EN

n -valued
Markov chain ξ

(N)
n = (ξ i,N

n )1≤i≤N with elementary transitions defined for any
F ∈ Bb(E

N
n ) by

E
(
F
(
ξ (N)
n

)|ξ (N)
n−1

)= �n

(
m
(
ξ

(N)
n−1

))⊗N
(F ) with m

(
ξ

(N)
n−1

)= 1

N

N∑
i=1

δ
ξ

i,N
n−1

.(1.6)

In other terms, given the configuration ξ
(N)
n−1 at rank (n − 1), the particle sys-

tem ξ
(N)
n at rank n consists of N independent and identically distributed ran-

dom variables with common distribution �n(m(ξ
(N)
n−1)). The initial configuration

ξ
(N)
0 consists of N independent and identically distributed random variables with

distribution η0. Although the dependency of the model on N is strong, due to the
mean-field nature of the model, we abbreviate (ξ i,N

n )1≤i≤N to (ξ i
n)1≤i≤N when N

is fixed, except when we want to emphasize explicitly the dependency on N of
the model, for example, as in the definition of the measure PN

n,q below. The same
observation will apply for other random variables, measures or functions in a self-
explanatory way.

Notice that

�n

(
m
(
ξ

(N)
n−1

))
(dxn) = 1∑N

j=1 Gn−1(ξ
j
n−1)

(
N∑

i=1

Gn−1(ξ
i
n−1)Mn(ξ

i
n−1, dxn)

)

so that the particle model evolves as a genetic-type model with proportional
selections, and mutation transitions dictated by the pair of potential-transition
(Gn−1,Mn).

DEFINITION 1.2. The approximation measure γ N
n and the normalized ap-

proximation measure ηN
n associated with the Feynman–Kac measures γn and ηn

are defined by the empirical occupation measures

ηN
n := m

(
ξ (N)
n

)
and for any fn ∈ Bb(En),

γ N
n (fn) := ηN

n (fn) × γ N
n (1) with γ N

n (1) := ∏
0≤p<n

ηN
p (Gp).(1.7)

The distribution of particle blocks for any size q ≤ N is written PN
n,q :

PN
n,q := Law(ξ1,N

n , . . . , ξq,N
n ) ∈ P (Eq

n).(1.8)

For a rather complete asymptotic analysis of these measures we again refer the
reader to [5], and references therein. In particular, for any fn ∈ Bb(En), we have
the following almost convergence results:

lim
N→∞ηN

n (fn) = ηn(fn) and lim
N→∞γ N

n (fn) = γn(fn).
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It is well known that γ N
n is an unbias approximation measure of γn, in the sense

that

E(γ N
n (fn)) = γn(fn).

However, it turns out that for any n ≥ 1

E(ηN
n (fn)) = E(fn(ξ

1,N
n )) �= ηn(fn).

This means that the mean-field particle model is not an exact sampling algorithm
of the distributions ηn. In practice, it is clearly important to analyze the bias of
these quantities, and more generally the one of the distributions PN

n,q . From the
pure mathematical point of view, the PN

n,q are better understood when they are
connected with the following measures.

DEFINITION 1.3. The tensor product occupation measures (resp. the re-
stricted tensor product occupation measures) on E

q
n are given by

(ηN
n )⊗q := 1

Nq

∑
a∈[N][q]

δ
(ξ

a(1)
n ,...,ξ

a(q)
n )

[
resp. (ηN

n )�q := 1

(N)q

∑
a∈〈q,N〉

δ
(ξ

a(1)
n ,...,ξ

a(q)
n )

]
.

The corresponding unnormalized tensor product occupation measures (γ N
n )⊗q

[resp. restricted unnormalized tensor product occupation measures (γ N
n )�q ] are

defined for any F ∈ Bb(E
q
n) by

(γ N
n )⊗q(F ) := (ηN

n )⊗q(F ) × (γ N
n (1))q and

(γ N
n )�q(F ) := (ηN

n )�q(F ) × (γ N
n (1))q .

The corresponding nonnegative measure QN
n,q , indexed by the particle block sizes,

on the product state spaces E
q
n , is defined for any F ∈ Bb(E

q
n) by

QN
n,q(F ) := E((γ N

n )⊗q(F )).(1.9)

Notice that these various tensor product occupation measures are symmetry-
invariant by construction. That is, for any F ∈ Bb(E

q
n) and any σ ∈ Sq ,

(ηN
n )⊗q(F ) = (ηN

n )⊗q(F ◦ σ) and (ηN
n )�q(F ) = (ηN

n )�q(F ◦ σ),

where σ acts by permutation on E
q
n . In particular, we may assume without restric-

tion in our forthcoming computations on q-tensor product occupation measures,
that F is a symmetric function, that is,

F = Fsym := 1

q!
∑

σ∈Sq

F ◦ σ.
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We write from now on, Bsym
b (E

q
n) for the set of all symmetric functions in Bb(E

q
n).

Notice also the following symmetry property, essential in view of all the
forthcoming computations. Since, conditional to ξ

(N)
n−1, the ξ i

n are i.i.d., for any
F ∈ Bb(E

q
n) and any a, b ∈ 〈q,N〉2, we have

E
[
F
(
ξa(1)
n , . . . , ξa(q)

n

)]= E
[
F
(
ξb(1)
n , . . . , ξb(q)

n

)]
.

For instance, we have that

E((ηN
n )�q(F )) = E(F (ξ1

n , . . . , ξq
n )) = PN

n,q(F ).(1.10)

Let us return to the diffusion-absorption model introduced in the previous sec-
tion. As a consequence of the results presented in [5], the sequence of distributions
QN

n,q converges, as N tends to infinity, to the distribution of q nonabsorbed, and
independent particles (Y i

n)1≤i≤q evolving in the original absorbing medium. That
is, we have that

lim
N→∞ QN

n,q(F ) = γ ⊗q
n (F ) = E(F (Y 1

n , . . . , Y q
n )1T 1≥n · · ·1T q≥n)

for any F ∈ Bb(E
q
n), and where T i stands for the random absorption time se-

quence of the chain (Y i
k )k≥0, with 1 ≤ i ≤ q .

This article is mainly concerned with explicit expansions of the deterministic
measures PN

n,q ∈ P (E
q
n), and QN

n,q ∈ M(E
q
n), with respect to the precision para-

meter N .

1.3. Expansion formulas. Recall that An,q stands for the set of (n + 1)-
sequences of mappings from [q] into itself. We let n,q be the nonnegative
measure-valued functional on An,q defined by

n,q : a ∈ An,q 	→ a
n,q := (η

⊗q
0 Da0Q

⊗q
1 Da1 · · ·Q⊗q

n Dan) ∈ M(Eq
n),(1.11)

where the operator Db stands for the Markov transition from E
q
n into itself, asso-

ciated with a mapping b ∈ [q][q], and defined by

Db(F )(x1
n, . . . , xq

n ) := F
(
xb(1)
n , . . . , xb(q)

n

)
for any F ∈ Bb(E

q
n), and (x1, . . . , xq) ∈ E

q
n . Notice that

DaDb = Dab

for any pair of mappings (a, b) ∈ ([q][q])2. For u a linear combination
∑

i∈I αiai

of elements of [q][q], we extend the definition of D by linearity and write

Du :=∑
i∈I

αiDai
.
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Notice that the measures a
n,q inherit a remarkable invariance property from

their set-theoretic definition. Namely, let us introduce the natural left action of the
group Sn+2

q on An,q defined for all a ∈ An,q and all s = (s0, . . . , sn+1) ∈ Sn+2
q by

s(a) := (s0a0s
−1
1 , s1a1s

−1
2 , . . . , snans

−1
n+1).

Then, for any F ∈ B
sym
b (E

q
n) we have

b
n,q(F ) = s(b)

n,q (F ).(1.12)

The identity would not hold if F was not a symmetric function. However, as
already mentioned, this is not a serious restriction as far as the determination
of the q-tensor occupation measures is concerned, since the latter are symmetry-
invariant.

DEFINITION 1.4. We write Fn,q for the set of orbits for the action of Sn+2
q on

An,q . We write a ≈ b if a and b belong to the same orbit, that is, if there exists
s ∈ Sn+2

q such that a = s(b).

If a ∈ An,q , the orbit of a under the action of s ∈ Sn+2
q is written a. We also

write Stab(a) for the stabilizer of a in Sn+2
q . According to the class formula, the

number of elements in a, written #(a) or #(a), is given by

#(a) = (q!)n+2

|Stab(a)| .

Explicit formulas for #(a) and for the various quantities associated to the action of
Sn+2

q on An,q such as the number of orbits (and much more) will be given later,
and, from the combinatorial point of view, form one of the cores of the article.

Notice that, if a ≈ b, |a| = |b|, so that the two sequences of maps have the
same coalescence sequence and coalescence degree. It follows that the notions of
coalescence degree and coalescence sequence go over to the set Fn,q . In particular,
notation such as |a| or coal(a) is well defined. In view of (1.12), for any f = a in
Fn,q , we set

f
n,q = a

n,q and |f| = |a|.
The subset of Fn,q associated to An,q(p) is written Fn,q(p). We are now in posi-
tion to state one of the main results of this article.

THEOREM 1.5. For any 1 ≤ q ≤ N we have the polynomial expansion

QN
n,q = γ ⊗q

n + ∑
1≤k≤(q−1)(n+1)

1

Nk
∂kQn,q
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with the collection of signed measures ∂kQn,q given by the formula

∂kQn,q(F ) = ∑
r≤q−1:‖r‖=k

∑
f∈Fn,q (r)

s(|f|,q − r)#(f)
(q)|f|

f
n,q(F )

for any F ∈ B
sym
b (E

q
n).

In Section 2, we will prove the exact polynomial expansion (in the parame-
ter N−1) of Theorem 1.5. In Section 3, we will develop combinatorial concepts
in order to compute #(f) for any f ∈ Fn,q (Theorem 3.8). In Section 3, we shall
also present several important consequences of Theorem 1.5, including explicit
descriptions of the first two order terms in the polynomial expansion, and a new
extension of the Wick product formula to forests (Theorem 3.14).

Although more difficult to study since their analysis involves tensor product
measures on path-spaces, the distributions PN

n,q have similar expansions (Theo-
rem 4.12). The description of these expansions, and of the corresponding signed
measures, is postponed to Section 4.

2. Particle measures expansions.

2.1. A preliminary stochastic tensor product formula. The link between the
two, usual and restricted, tensor products measures, (ηN

n )⊗q and (ηN
n )�q , relies

in the end on a simple observation, that will appear to be fundamental for all
our forthcoming computations. Throughout this section, integers N ≥ q ≥ 1 and a
measurable state space E are fixed once for all.

Consider first the surjection

π : [q][q] × 〈q,N〉 −→ [N ][q],
(s, a) 	−→ as := a ◦ s.

LEMMA 2.1. Let b ∈ [N ][q]; then the cardinal |π−1({b})| of π−1({b}) only
depends on the cardinal |b| of the image of b. It is given by

|π−1({b})| = (N − |b|)q−|b|(q)|b|.

SKETCH OF THE PROOF. Let b ∈ [N ][q]. How many possibilities do we have
to write b in the form b = a ◦ s with s ∈ [q][q], a ∈ 〈q,N〉? Set k1, . . . , k|b| ∈
[q] such that b({k1, . . . , k|b|}) = Im(b). Any sequence (without repetitions)
s(k1), . . . , s(k|b|) determines uniquely s (since a is injective and b = a ◦ s) so
that there are (q)|b| possibilities for s. Then a(s(ki)) = b(ki) is fixed for any
i ∈ {1, . . . , |b|} so there remain (N − |b|)q−|b| possibilities for a. �
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We denote by m(x) the empirical measure associated with an N -uple x =
(xi)1≤i≤N ∈ EN :

m(x) := 1

N

N∑
i=1

δxi .

For any integer q ≤ N , we also consider the empirical measures on Eq defined by

m(x)⊗q := 1

Nq

∑
a∈[N][q]

δ(xa(1),...,xa(q)),

m(x)�q := 1

(N)q

∑
a∈〈q,N〉

δ(xa(1),...,xa(q)).

Although the notation is self-explanatory, notice that, in the sequel, we will write
simply xa for (xa(1), . . . , xa(q)) and δxa for δ(xa(1),...,xa(q)).

COROLLARY 2.2. We have

m(x)⊗q = m(x)�qDLN
q
,

where

LN
q = 1

Nq

∑
a∈[q][q]

(N)|a|
(q)|a|

a.

PROOF. In view of the following identity, that holds for any function F ∈
B

sym
b (Eq), with q ≤ N :

δxaDb(F ) = Db(F )
(
xa(1), . . . , xa(q))= F

(
xab(1), . . . , xab(q))= δxab (F ),

the corollary follows from Lemma 2.1 and the identity

1

(N)q
(N)p(N − p)q−p = 1 where N ≥ q ≥ p. �

COROLLARY 2.3. The tensor product measure m(x)⊗q has a Laurent expan-
sion:

m(x)⊗q = m(x)�q · ∑
0≤k<q

1

Nk
D∂kLq

,

where

∂kLq = ∑
q−k≤p≤q

s(p, q − k)
1

(q)p

∑
a∈[q][q]

p

a.



790 P. DEL MORAL, F. PATRAS AND S. RUBENTHALER

The corollary follows from Corollary 2.2 and from the Stirling formula

(N)p = ∑
1≤k≤p

s(p, k)Nk.

Assuming from now on that x is generic (i.e., xi �= xj if i �= j ), we have the
following corollary. Notice that the assumption that x is generic is here only to
ensure equalities in Corollary 2.4, if it does not hold, we could replace the “=” by
“≤.”

COROLLARY 2.4. The following formulas hold for the expansion of m(x)⊗q :

N‖m(x)⊗q − m(x)�q‖TV −→
N→+∞ q(q − 1),

‖m(x)�qD∂kLq
‖TV =

q∑
p=q−k

|s(p, q − k)|S(q,p).

The corollary follows from our previous computations, from the definition of
the Stirling numbers of the second kind and from the following lemma.

LEMMA 2.5. Let Q = ∑
0≤p≤q up

∑
a∈[N][q] δxa , where the up are arbitrary

real coefficients; then we have

‖Q‖TV = ∑
0≤p≤q

|up|(N)pS(q,p).

PROOF. Indeed, we have ‖Q‖TV ≤ ∑
0≤p≤q |up|(N)pS(q,p) by direct in-

spection, since ‖δxa‖TV = 1, for all a ∈ [q][q]. Let us write sgn(uk) for the sign
of uk , and let us introduce the function φ ∈ Bb(E

q) defined by

φ(y1, . . . , yq) = ∑
0≤k≤q

sgn(uk)δ
k
λ(y1,...,yq ),

where λ(y1, . . . , yq) := |{y1, . . . , yq}| and δk
λ(y1,...,yq) stands for the Dirac function.

Then, Q(φ) =∑
0≤p≤q |up|(N)pS(q,p) and the lemma follows. �

2.2. Laurent expansions. The goal of this section is to prove Theorem 1.5,
that is, to derive a Laurent expansion of the measures QN

n,q ∈ M(E
q
n), QN

n,q(F ) :=
E((γ N

n )⊗q(F )), F ∈ Bb(E
q
n), with respect to the population size parameter N .

The following proposition is fundamental. Recall from Section 1.3 that we write
Fn,q for the set of orbits in An,q under the action of the permutation group Sn+2

q .

PROPOSITION 2.6. For any integers q ≤ N , any time parameter n ∈ N and
any F ∈ B

sym
b (E

q
n), we have the Laurent expansion

QN
n,q(F ) = 1

Nq(n+1)

∑
f∈Fn,q

(N)|f|
(q)|f|

#(f)f
n,q(F )
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with the mappings n,q introduced in (1.11) properly extended to Fn,q .

PROOF. Combining the definition of the particle model with Corollary 2.2, we
first find that

E
(
(γ N

n )⊗q(F )|ξ (N)
n−1

)
= (γ N

n (1))q × E
(
(ηN

n )⊗q(F )|ξ (N)
n−1

)
= (γ N

n (1))q × E
(
(ηN

n )�qDLN
q
(F )|ξ (N)

n−1

)
[by (1.6)] = (γ N

n (1))q × E
(
�n(η

N
n−1)

⊗qDLN
q
(F )|ξ (N)

n−1

)
.

Using the fact that, conditionally to ξ
(N)
n−1 and for F ∈ B

sym
b (E

q
n),

�n(η
N
n−1)

⊗q(F ) = (ηN
n−1)

⊗q(Q
⊗q
n F )

(ηN
n−1)

⊗q(Q
⊗q
n (1))

= (γ N
n−1)

⊗q(Q
⊗q
n F )

(γ N
n−1)

⊗q(Q
⊗q
n (1))

and

(γ N
n−1)

⊗q(Q⊗q
n (1)) = (γ N

n−1Qn(1))q = (γ N
n−1(Gn−1))

q = (γ N
n (1))q,

we arrive at

E
(
(γ N

n )⊗q(F )|ξ (N)
n−1

)= (γ N
n (1))q × E

((γ N
n−1)

⊗q(Q
⊗q
n DLN

q
F )

(γ N
n−1)

⊗q(Q
⊗q
n (1))

∣∣∣ξ (N)
n−1

)
(2.1)

= E
(
(γ N

n−1)
⊗q(Q⊗q

n DLN
q
F )|ξ (N)

n−1

)
.

Integrating over the past, this yields that

E((γ N
n )⊗q(F )) = E((γ N

n−1)
⊗q(Q⊗q

n DLN
q
F )).

Using a simple induction, we readily obtain the formulas

E((γ N
n )⊗q(F )) = E(((γ N

0 )⊗qQ
⊗q
1 DLN

q
· · ·Q⊗q

n DLN
q
)(F ))

= E((η
⊗q
0 DLN

q
Q

⊗q
1 DLN

q
· · ·Q⊗q

n DLN
q
)(F ))

= 1

Nq(n+1)

∑
a∈An,q

(N)|a|
(q)|a|

a
n,q(F ),

where An,q is the set of sequences of maps introduced in Section 1.3. In view
of (1.12), we know that

b
n,q(F ) = s(b)

n,q (F )

for any s ∈ Sn+2
q and the proposition follows. �
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We are now in position to derive Theorem 1.5. According to Proposition 2.6

QN
n,q(F ) = 1

Nq(n+1)

∑
p∈[1,q]n+1

(N)p

(q)p

∑
f∈Fn,q ,|f|=p

#(f)f
n,q(F ).

Using the Stirling formula ([3], page 48), we notice that

(N)p = ∑
1≤l≤p

s(p, l)N |l|.(2.2)

We also have that

QN
n,q(F ) = ∑

1≤l≤p≤q

s(p, l)
1

N |q−l|
1

(q)p

∑
f∈Fn,q ,|f|=p

#(f)f
n,q(F )

from which we conclude that

QN
n,q(F ) = ∑

r≤q−1

∑
q−r≤p≤q

s(p,q − r)
1

N |r|
1

(q)p

∑
f∈Fn,q |f|=p

#(f)f
n,q(F ).

The leading term of the development corresponds to the case r = 0. Since #(f) =
(q!)n+1 if |f| = q, this term is equal to γ

⊗q
n . Observe then that, for r ≤ q−1,‖r‖ ≤

(q − 1)(n + 1). The theorem follows.

COROLLARY 2.7. The following formula holds for the expansion of QN
n,q :

lim
N−→∞N‖QN

n,q − γ ⊗q
n ‖TV ≤ (n + 1)q(q − 1) × sup

f∈Fn,q

‖f
n,q‖TV.

REMARK 2.8. If 0 ≤ G ≤ 1, then the above supremum is bounded by 1. The
above corollary is here to show an estimate of the size of the error term we derive
from Theorem 1.5.

PROOF. The corollary follows from the Laurent expansion of Theorem 1.5.
The term 1/N in the expansion is given by sequences r s.t. ‖r‖ = 1. But then, we
have two cases to consider, |f| > q − r (which happens if and only if |f| = q) and
|f| = q − r.

Then, we have that #(f) = (q!)n+1 if |f| = q and besides, |{r,‖r‖ = 1}| = n+ 1,
and for any such r, s(q,q − r) = −(q2). In conclusion, the case |f| = q contributes

to (n + 1)q(q − 1)/2 to the asymptotic evaluation of N‖QN
n,q − γ

⊗q
n ‖TV.

Now, let us consider a sequence r with ‖r‖ = 1, for example, the one, written ri

with ri = 1, for a given 0 ≤ i ≤ n. In that case, there is a unique f with |f| =
q − r, which is the set of all sequences of maps a in An,q with aj ∈ Sq, j �= i and
|ai | = q − 1. In particular #(f) = (q!)n+1(q

2

)
, so that, on the whole, the case |f| = ri

contributes to q(q − 1)/2 to the evaluation. �
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To conclude this section, notice that the above functional expansions also apply
to the dot-tensor product measures

(γ N
n )�q(F ) = (γ N

n (1))q × (ηN
n )�q(F ).

More precisely, by definition of the particle model we have that

E((γ N
n )�q(F )) = E((γ N

n−1)
⊗qQ⊗q

n (F )) = QN
n−1,q(Q⊗q

n F ).(2.3)

3. Combinatorial methods for path enumeration. In the present section,
we face the problem of computing the cardinals #(f) involved in our Laurent ex-
pansions. We also derive various identities relevant for the fine asymptotical analy-
sis of mean-field particle interacting models, such as the number of elements in
Fn,q with a given coalescence degree. To express them, we have chosen to use
the language of botanical and genealogical trees, both for technical reasons (since
forests appear to be the most natural parametrization of elements in Fn,q ), and also
for the clarity of the exposition.

Forests, graphs, colored graphs and their combinatorics have appeared recently
or in various situations in probability and analysis, often in connection with prob-
lems in mathematical physics. A classical example is given by the forest formula
of Zimmermann, which encodes the renormalization process for the divergent in-
tegrals showing up in perturbative quantum field theory. The construction is clas-
sical, since it goes back to the foundation of modern particle physics (see, e.g.,
[2]), but has been revisited recently by Connes and Kreimer, who showed that
the algebraic study of Feynman graphs (colored by suitable terms appearing in
the Lagrangian of the theory) and of associated trees and forests could give rise
to a totally new Hopf algebraic approach to the theory [4]. Another example is
provided by the Butcher group and Runge–Kutta methods in numerical analysis.
Here also, once again, the fine study of the underlying combinatorial and algebraic
structures on trees has given rise to a renewal of the subject [1]. Let us mention
at last the appearance of the combinatorics of colored graphs in Gaussian matrix
integral models. We refer to [7] and subsequent papers by these authors for further
references on the subject.

The approach to Feynman–Kac particle models by means of trees, forests and
analogous objects which is introduced in the present article is original, to our best
knowledge, and the methods developed in this setting seem complementary to
the graph and tree-theoretical results that have been obtained in other application
fields.

3.1. Jungles, trees and forests.

3.1.1. Definitions. In this section, we detail the vocabulary of trees, that will
be of constant use later in the article. The following definitions are motivated by the
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parametrization of tensor product measures expansions introduced in the previous
sections.

Let a = (a0, a1, . . . , an) be any sequence of maps ak : [pk+1] → [pk], with
k = 0, . . . , n. By associating to each element i in [pk] the point (i, k) in R2 and
for k >0, an oriented arrow from (i, k) to (ak−1(i), k − 1), the sequence can be
represented graphically by a graph J (a) in the plane, where the edges are allowed
to cross.

More generally, let us consider the set P of graphs in the plane defined by a
(possibly empty) finite set S of points in R2 (the vertices) and a finite subset A

of S2 (the arrows or oriented edges) with the following properties: (1) The ele-
ments of S are of the form (x, k), k ∈ N (notice that, in particular, elements in
Sk := {s ∈ S|∃x, s = (x, k)} are naturally left-to-right ordered). (2) For each s ∈ S,
there is at most one arrow starting from s. (3) The elements of A are of the form
((x, k + 1), (x′, k)), k ≥ 0. (4) For any s ∈ S, s = (x, k), there is always a (neces-
sarily unique) sequence of arrows joining s to a vertex (x′,0).

Two elements (S′,A′) and (S,A) of P are said to be strongly equivalent if and
only if there exists a bijection φ between S and S′ with the properties: (1) φ maps
bijectively Sk to S′

k . (2) φ induces a bijection between A and A′. They are said to
be LR-equivalent if they are strongly equivalent and moreover: (3) φ respects the
left-to-right ordering.

DEFINITION 3.1. A jungle is an equivalence class in P for the LR-equivalence
relation. The set of jungles is written J.

Notice that the process that is described above and maps a sequence of maps a
to the corresponding jungle [the equivalence class of J (a) in P, still written J (a)

by a slight abuse of notation] can be inverted. That is, jungles are actually in bi-
jection with sequences of maps; however, the introduction of jungles is convenient
for our purposes, as it will appear below. If j is a jungle, we write Seq(j) for the
corresponding sequence of maps [so that j = J (Seq(j))]. In the example in Fig-
ure 1, we have Seq(j) = (a0, a1) with a0 (resp. a1) a map from [7] to [3] (resp. [6]
to [7]) and, for example, a1(5) = 7 and a0(3) = 2.

Notice that, since the LR-equivalence relation is weaker than the strong equiv-
alence relation, the strong equivalence relation goes over from graphs in P to jun-
gles.

FIG. 1. The graphical representation of a jungle.
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DEFINITION 3.2. A forest is an equivalence class of jungles for the strong
equivalence relation. The set of all forests is written F . A tree is a connected
forest. The set of all trees is written T .

Here, connected has the usual topological sense (an oriented graph is connected
if and only if two arbitrary vertices of the graph can be related by a sequence of
adjacent unoriented edges). The forest naturally associated to a sequence of maps a
and to the corresponding jungle J (a) is written F(a).

A tree can be viewed alternatively as an abstract graph—more precisely as an
abstract finite connected oriented graph without loops such that any vertex has at
most one outgoing edge. The empty graph ∅ is viewed as a tree and is called the
empty tree. The vertices of a tree without incoming edges are called the leaves; the
vertices with both incoming edges and an outgoing edge are called the internal ver-
tices; the (necessarily unique) vertex without outgoing edge is called the root. This
terminology, as well as other notions introduced below, extend in a straightforward
or self-explanatory way from trees to forests, jungles, and so on.

Forests can be viewed as multisets of trees, that is, sets of trees with repetitions
of the same tree allowed. An algebraic notation is convenient for our purposes, and
we write

f = T
m1
1 · · ·T mk

k

for the forest with the tree Ti appearing with multiplicity mi , i ≤ k. This algebraic
notation will prove useful, among others, when computing Hilbert series for forest
enumeration; see Section 3.4. When Ti �= Tj for i �= j , we say that f is written in
normal form.

We say that a tree T is a subtree of T ′ and we write T ⊂ T ′, if the graph of T

is a subgraph of the graph of T ′, and if the root of T is also the root of T ′. A sub-
forest f ⊂ f′ of a forest f′ is defined accordingly, as a collection of pairwise disjoint
subtrees of the trees in f′.

Forests are equivalence classes of jungles. It will be convenient in our forth-
coming arguments to choose, for a given forest f, a representative in J with nice
graphical properties. For that purpose, we introduce the notion of planar forest and
planar tree. Namely, a jungle j such that Seq(j) is a sequence of weakly increasing
maps is called a planar forest. A connected planar forest is called a planar tree.
Graphically, planar forests are jungles in which the arrows do not cross.

It is important to notice that (as illustrated in Figure 2) a planar forest pf can
be viewed as an ordered sequence of planar trees. Planar forests can therefore be
represented by noncommutative monomials (or words) on the set of planar trees.
For example, if PT1 and PT2 are two planar trees, pf = PT1PT2PT1 is the planar
forest obtained by left-to-right concatenation of PT1, PT2 and another copy of
PT1.
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FIG. 2. The graphical representation of a planar forest pf = PT1PT2PT1.

3.1.2. Functions and operators on jungles, trees and forests. The distance be-
tween two vertices in a tree is the minimal number of nonoriented edges of a path
joining them. The height of a vertex is its distance to the root. We also say that a
vertex with height k is a vertex at level k in the tree. The height ht(T ) of a tree T

is the maximal distance between a leaf and the root. The height ht(f) of a forest f
is the maximal height ht(T ) of the trees T ⊂ f in the forest. We write vk(f) for the
number of vertices in a forest f at level k ≥ 0. The number of vertices at each level
in a forest is encoded in the mapping

v : f ∈ F 	→ v(f) = (vk(f))k≥0.

Notice that for any pair of forests (f,g) ∈ F , we have, using the algebraic nota-
tion (the product of forests corresponding to the union of the multisets of trees):

v(fg) = v(f) + v(g).

We write V for v(F ), which coincides with the set of integer sequences p =
(pk)k≥0 ∈ NN satisfying the following property:

∃ht(p) ∈ N s.t. inf
k≤ht(p)

pk > 0 and supk>ht(p) pk = 0.

For any p ∈ V, we write Fp for the set of forests f such that v(f) = p. Our
notation is consistent, since the height ht(f) of a forest f ∈ Fp clearly coincides
with the height ht(p) of the integer sequence p. When p ∈ V is chosen so that
p0 = 1, the set Fp reduces to the set Tp of all trees T such that v(T ) = p. These
notations on trees and forests go over to planar forests, planar trees and jungles
in a self-explanatory way. The notation is also extended to sequences of maps, so
that, if p = (p0, . . . , pn+1), Ap stands for the set of sequences (a0, . . . , an) with ai

a map from pi+1 to pi .
For the unit empty tree T0 = ∅, we use the conventions

v(∅) = 0 = (0,0, . . .), ht(∅) = ht(0) = −1, F0 = {∅}.
For any n ∈ (N ∪ {−1}), we denote by Vn ⊂ V the subset of sequences p such

that ht(p) = n. Notice that V−1 = {0}. In this notation, the sets of all forests and
trees with height n are given by the sets

Fn := ∐
p∈Vn

Fp and Tn := ∐
p∈Vn,p0=1

Tp.
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The shift operator

B : p = (pk)k≥0 ∈ V 	→ B(p) = (ql)l≥0 ∈ V with ql := pl+1

induces a canonical bijection, still denoted by B , between the set of trees Tp with
p ∈ Vn+1 and the set of forests FB(p) obtained by removing the root of the tree:

B :T ∈ Tp 	→ B(T ) ∈ FB(p).

We extend the map B from trees to forests to a map between forests and, if
f = T

m1
1 · · ·T mk

k is a forest, set

B(f) = B(T1)
m1 · · ·B(Tk)

mk .

From the point of view of graphs, the operation amounts to removing all the roots
and all the edges that have the root as terminal vertex from the graph defining f.

From the graph-theoretic point of view, the number of coalescences c(f)k at
each level k ≥ 0 in a forest f ∈ F is defined by the mapping

c : f ∈ F 	→ c(f) := B(v(f)) − |f|.
The sequence c(f) is called the coalescence sequence of f, following the termi-
nology introduced for sequences of maps. In the above displayed formula, the
sequence |f| = (|f|k)k≥0 represents the number of vertices at level k ≥ 0 minus the
number of leaves at the same level, that is, the number of vertices with an ingoing
edge, whereas B(v(f))k stands, by definition, for the number of edges between the
levels k + 1 and k. Finally observe that for any pair of forests (f,g) ∈ F , we have(|fg| = |f| + |g| and B

(
v(f) + v(g)

)= B(v(f)) + B(v(g))
)⇒ c(fg) = c(f) + c(g).

We also say that the coalescence order of a vertex in a tree or a forest is its number
of incoming edges minus 1. The coalescence degree ‖c(f)‖ of a tree or a forest f
is the sum of the ck(f) or, equivalently, the sum of the coalescence orders of its
vertices. We say that a tree is trivial if its coalescence degree is 0.

3.2. Automorphism groups on jungles. For any given sequence of integers p ∈
Vn+1, the product permutation group

Sp := (Sp0 × Sp1 × · · · × Spn+1)

acts naturally on sequences of maps a = (a0, a1, . . . , an) ∈ Ap, and equivalently
on jungles J (a) ∈ Jp by permutation of the vertices at each level. More formally,
for any s = (s0, . . . , sn+1) ∈ Sp this pair of actions is given by

s(a) := (s0a0s
−1
1 , . . . , snans

−1
n+1) and sJ (a) := J (s(a)).

An automorphism s ∈ Sp of a given jungle J (a) ∈ Jp is a sequence of permutations
that preserves the jungle, in the sense that sJ (a) = J (a). The set of automorphisms
of a given jungle J (a) ∈ Jp coincides with the stabilizer of a and J (a) with respect
to the group action of Sp.
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By definition of forests, two sequences a and b in Ap satisfy F(a) = F(b) if
and only if J (a) and J (b) differ only by the order of the vertices, that is, if a and b
belong to the same orbit under the action of Sp.

REMARK 3.3. The set of equivalence classes of jungles in Jp under the action
of the permutation groups Sp is in bijection with the set of forests Fp. In particular,
due to the equivalence between the two notions of jungles and sequences of maps,
it follows that the set Fn,q of equivalence classes in An,q under the natural action
of Sn+2

q is canonically in bijection with the set of forests Fq with q vertices at
levels 0 ≤ i ≤ n + 1.

In the next section, we will compute #(f) (the number of jungles associated to a
given forest f) by computing the cardinal of the stabilizer of a planar forest pf such
that F(pf) = f (such a pf always exists).

EXAMPLE 3.4. The jungle j represented in Figure 1 is such that Seq(j) =
(a0, a1) with

a1(1) = 2, a1(2) = a1(3) = 1, a1(4) = a1(6) = 5, a1(5) = 7,

a0(1) = a0(2) = 1, a0(3) = a0(4) = a0(6) = 2, a0(5) = a0(7) = 3.

For convenience, let us represent a permutation in Sp by the sequence of its values
on 1, . . . , p, that is, by (i1, . . . , iq) for the permutation s of [q] such that s(j) = ij
(take care that this is not the cycle representation of permutations, in spite of the
notational analogy). We get that the jungle represented in Figure 2 is obtained by
the action of (123)×(1,234,657)×(312,465) on j. The planar forest j′ represented
in Figure 2 is thus in the same class as j (under the action of S(2,7,6)).

A more graphical way of seeing the action of S(2,7,6) is to say that it permutes
the dots while the edges remain attached to their dots.

3.3. An inductive method for counting jungles. From the Feynman–Kac mean-
field approximation point of view, the elements of An,q parametrize the trajectories
of families of particles. Two trajectories that are equivalent under the action of Sq
have the same statistical properties; this is the ground for the formulas for tensor
product occupation measures that have been obtained in the previous section.

In the present section, we face the general problem of computing the cardinals
#(f), defined as the number of jungles associated to a given forest f ∈ Fp, for some
integer sequence p ∈ Vn+1. Let us write f in normal form (with the Ti’s all distinct)
as a commutative monomial of trees:

f = T
m1
1 · · ·T mk

k , m1 + · · · + mk = p0.

Let us also choose arbitrary planar trees PTi representing the Tis, so that we can
view f as the forest associated to the planar forest

pf = (PT1)
m1 · · · (PTk)

mk
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obtained by left-to-right concatenation of m1 copies of PT1, m2 copies of
PT2, . . . ,mk copies of PTk . We write PT ′

1 · · ·PT ′
p0

for the expansion of the non-
commutative monomial

pf = (PT1)
m1 · · · (PTk)

mk = PT ′
1 · · ·PT ′

p0
(3.1)

as a product of planar trees (without exponents).
From previous considerations, we have that

#(f) = # Orb(pf) = #{g ∈ Jp :∃s ∈ Sp s.t. g = s · pf}.
Due to the class formula, we also know that

#(f) = # Orb(pf) = |Sp|
Stab(pf)

= p!
Stab(pf)

,

where Stab(pf) stands for the stabilizer of the jungle pf ∈ Jp.
The computation of #(f) will be done by induction on (n + 1) = ht(f). Let us

assume that we know #(g) for any forest of height less than or equal to n. Notice
that, then, we also know #(t) for any tree t of height (n + 1), due to the canonical
bijection B between trees and forests: #(t) = #(Bt). From the previous discus-
sion, the problem amounts to computing the cardinals of the stabilizers Stab(pf)
inductively with respect to the height parameter.

LEMMA 3.5. There is a natural isomorphism

Stab((PT1)
m1 · · · (PTk)

mk ) ∩ ({1p0} × S(p1,...,pn+1)

)
∼ Stab(PT ′

1) × · · · × Stab(PT ′
p0

)

[with the same notation as in (3.1)].

The lemma encodes the observation that an automorphism of a planar forest
which acts as the identity on the roots decomposes as a product of automorphisms
of the planar trees in the forest. This follows, for example, from the more general
fact that an automorphism of a jungle necessarily preserves connectedness proper-
ties.

Besides, the first coordinate mapping

π : s = (s0, . . . , sn+1) ∈ Stab((PT1)
m1 · · · (PTk)

mk )

	→ π(s) = s0 ∈ (Sm1 × · · · × Smk
)

is a surjective map (it even has a natural section, the construction of which is
omitted), and

Ker(π) = π−1(1p0) ∼ Stab(PT ′
1) × · · · × Stab(PT ′

p0
)

∼ Stab(PT1)
m1 × · · · × Stab(PTk)

mk .
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This yields the isomorphism formula

Stab((PT1)
m1 · · · (PTk)

mk )/
(
Stab(PT1)

m1 × · · · × Stab(PTk)
mk
)

(3.2)
∼ (Sm1 × · · · × Smk

).

Let us introduce some further notation.

DEFINITION 3.6. Let f be a forest written in normal form f = T
m1

1 · · ·T mk

k .
In this situation, we say that the unordered k-uplet (m1, . . . ,mk) is the symmetry
multiset of the tree T = B−1(f) and write

s(T ) = s(B−1(T
m1
1 · · ·T mk

k )) = (m1, . . . ,mk).

The symmetry multiset of the forest f = T
m1

1 · · ·T mk

k is the disjoint union of the
symmetry multisets of its trees

s(T m1
1 . . . T

mk

k ) =
⎛
⎜⎝s(T1), . . . , s(T1)︸ ︷︷ ︸

m1 terms

, . . . , s(Tk), . . . , s(Tk)︸ ︷︷ ︸
mk terms

⎞
⎟⎠ .

For example, the symmetry multiset of the first tree of the forest f displayed in
Figure 2 is (1,1); the symmetry multiset of B−1(f) is (2,1); and the symmetry
multiset of f is (1,1,3,1,1).

The definition of symmetry multisets extends naturally to planar forests and
planar trees. In particular, if pf is a planar forest with f as its underlying forest, we
set s(pf) := s(f).

We deduce from (3.2) the following recursive formula for the computation of
#(f).

PROPOSITION 3.7. We have

|Stab((PT1)
m1 · · · (PTk)

mk )| =
k∏

i=1

(mi !|Stab(B(PTi))|mi )

= s(B−1(pf))!
k∏

i=1

(|Stab(B(PTi))|mi ).

THEOREM 3.8. The number of jungles (or, equivalently, of Feynman–Kac
mean-field type trajectories with the same statistics) in f ∈ Fp, with p ∈ Vn+1,
is given by

#(f) = p!∏n
i=−1 s(Bi(f))! ,

where we use the usual multi-index notation to define s(Bi(f))!.
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PROOF. It clearly suffices to prove that

|Stab(pf)| =
n∏

i=−1

s(Bi(pf))!

for any planar forest pf of height (n + 1). We check this assertion by induction on
the height parameter. First, we observe that a planar forest pf of height 1 can be
represented as a noncommutative monomial

pf = (PT1)
m1 · · · (PTk)

mk

with different planar trees PTi of height 1, and some sequence of integers mi . In
that case, the planar forests B(PTi) reduce to sequences of trees with null height.
This yields that

|Stab(B(PTi))| = s(PTi)!.
By Proposition 3.7, we conclude that

|Stab(pf)| =
k∏

j=1

(mj !(s(PTj )!)mj ) = s(B−1(pf))!s(pf)!.

This ends the proof of the formula at rank 1.
Suppose now that the assertion is satisfied for any planar forest with height at

most n. By Proposition 3.7, for any planar forest pf = (PT1)
m1 · · · (PTk)

mk , with
height (n + 1), and written in terms of distinct planar trees PTi , we have

|Stab(pf)| = s(B−1(pf))!
k∏

i=1

|Stab(B(PTi))|mi .

Since the planar forests B(PTi) have height at most n, the induction hypothesis
implies that

|Stab(B(PTi))| =
n−1∏

j=−1

s(Bj (B(PTi)))! =
n∏

j=0

s(Bj (PTi))!.

Recalling that Bj(pf) = Bj(PT1)
m1 · · ·Bj(PTk)

mk , we also find that

s(Bj (pf)) = (s(Bj (PT1)), . . . , s(Bj (PT1))︸ ︷︷ ︸
m1 terms

, . . . , s(Bj (PTk)), . . . , s(Bj (PTk))︸ ︷︷ ︸
mk terms

).

We conclude that

|Stab(pf)| = s(B−1(pf))!
n∏

j=0

s(Bj (pf))!.

The theorem follows. �
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3.4. Hilbert series method for forest enumeration. In the present subsection,
we face the problem of computing other cardinals relevant to the analysis of
Feynman–Kac mean-field particle models, according to our Theorem 1.5. For ex-
ample, we want to be able to compute the number of forests in any Fp [the set
of forests f such that v(f) = p], or the number of forests in Fn,q (as defined in
Definition 1.4) with a given coalescence degree or a prescribed coalescence se-
quence. Recall that the notions of coalescence sequence and degree, as defined in
the Introduction for sequences of maps in An,q , go over to arbitrary forests and
trees.

Recall first some general properties of free monoids. Let us write 〈S〉 for the
free commutative monoid generated by a set S:

〈S〉 = {f m1
1 · · ·f mk

k :k ≥ 0 and ∀1 ≤ i ≤ k,mi ≥ 0 and fi ∈ S}
with the convention f

m1
1 · · ·f mk

k = 1, for k = 0. We then have the Hilbert series
(i.e., formal series) expansions

1

1 − s
=∑

n

sn and
∏
s∈S

1

1 − s
= ∑

x∈〈S〉
x.(3.3)

Now, if ξ is a multiplicative map from 〈S〉 to an algebra A, we have, whenever the
expression on the right-hand side makes sense (this will be obviously the case in
the examples that we will consider):∑

x∈〈S〉
ξ(x) = ∏

s∈S

1

1 − ξ(s)
.

Since a forest is, in the algebraic representation, nothing but a commutative
monomial of trees, this result applies to forest enumeration. Moreover, as we shall
see, suitable refinements of the previous identity lead naturally to a formal se-
ries enumeration approach to the various quantities meaningful in the study of
Feynman–Kac particle models.

DEFINITION 3.9. The (multidegree) Hilbert series of forests, Hn
F (x), is the

Hilbert series associated to the partition of the set of forests of height less than or
equal to n into subsets according to the number of vertices at each level, that is,

Hn
F (x) := ∑

ht(p)≤n

|Fp|xp = Hn−1
F (x) + ∑

p∈Vn

|Fp|xp,

where we write xp as a shorthand for x
p0
0 x

p1
1 · · ·.

We let ∂p = ∂
p0
x0

p0!
∂

p1
x1

p1! · · ·, and we consider the mapping B−1 from V into itself
defined for any k ≥ 0 by

B−1 : p ∈ Vk 	→ B−1(p) = (1,p) = (1,p0,p1, . . .) ∈ Vk+1.



FEYNMAN–KAC PARTICLE MODELS 803

Since forests f of height 0 are characterized by the number of roots in f, we clearly
have the formula

(∀p ∈ V0|Fp| = 1) �⇒ H0
F (x0) = 1

1 − x0
= ∑

p≥0

x
p
0 .

PROPOSITION 3.10.

∀n ≥ 1 Hn
F (x) = ∏

ht(p)≤n−1

(
1

1 − xB−1(p)

)|Fp|

= Hn−1
F (x) × ∏

p∈Vn−1

(
1

1 − xB−1(p)

)∂pHn−1
F (0)

.

In addition, the generating function associated with the number of forests with
multidegree p ∈ Vn, and built with trees with height n (elements of Tn), is given by

∀n ≥ 1
∑

p∈Vn

|〈Tn〉 ∩ Fp|xp = ∏
p∈Vn−1

(
1

1 − xB−1(p)

)∂pHn−1
F (0)

.

The proposition follows directly from the formula for Hilbert series of free com-
mutative monoids and from the following three observations. First, the map that
sends a forest in Fp to xp is a multiplicative map from the set of forests (viewed
as a free commutative monoid) to the algebra of formal power series over the vari-
ables xi . Second, as we have already observed, the set of forests identifies naturally
with the free commutative monoid over the set of trees, another formulation of the
fact that a forest is a multiset of trees. Third, the maps B−1 and B define bijections
between the set of forests of height n − 1 and trees of height n.

Notice that these formulas make the Hilbert series computable at any finite ver-
tex order, and at any height using any formal computation software. The first two
orders can be handily computed. We already know the generating series for n = 0.
By Definition 3.9 we find

H1
F (x) = ∑

p0≥0

x
p0
0 + ∑

p∈V1

|Fp|xp0
0 x

p1
1 .

This readily yields that for any p ∈ V1, we have

|Fp| = #

{
(kn)n≥0 ∈ NN :

∑
n≥0

kn = p0 and
∑
n≥0

nkn = p1

}
.

More generally, recall that for any m ≥ 1, we have the following formal series
expansion (

1

1 − u

)m

= ∑
k≥0

(m − 1 + k)!
(m − 1)!k! uk
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so that

Hn+1
F (x) = ∏

ht(p)≤n

∑
kp≥0

(|Fp| − 1 + kp)!
(|Fp| − 1)!kp! xkpB−1(p)

= ∑
k:{p:ht(p)≤n}→N

( ∏
ht(p)≤n

(|Fp| − 1 + k(p))!
(|Fp| − 1)!k(p)!

)
x
∑

ht(p)≤n k(p)B−1(p).

This implies that for any p ∈ Vn+1, we have

|Fp| = ∑
k:{q:ht(q)≤n}→N∑

ht(q)≤n k(q)B−1(q)=p

( ∏
ht(q)≤n

(|Fq| − 1 + k(q))!
(|Fq| − 1)!k(q)!

)
.(3.4)

To compute or estimate the Laurent expansions of the distributions QN
n,q , we

are actually interested in a more precise Hilbert series, namely the one taking into
account, besides the multidegrees of forests, their coalescence numbers.

DEFINITION 3.11. We denote by Fp[q] := Fp ∩ c−1(q) the set of forests in
Fp with a prescribed coalescence sequence q (we also use the convention F0[0] =
{∅}).

We let Cn
F (x,y) be the (multidegree) Hilbert series of forests associated to the

partition of the set of forests of height less than or equal to n with prescribed
coalescence sequences, that is,

Cn
F (x,y) := ∑

ht(p)≤n

∑
q∈C(p)

|Fp[q]|xpyq.

In the above display, C(p) stands for the set of coalescence multidegrees:

∀p ∈ V C(p) := c(Fp) = {
q ∈ NN :

(
B(p) − p

)
+ ≤ q ≤ (

B(p) − 1
)
+
}

with (B(p) − 1)+ = ((pk − 1)+)k≥1, for any p = (pk)k≥0 ∈ V.

PROPOSITION 3.12. The multidegree Hilbert series of coalescent forests
Cn

F (x,y) satisfies the recursive formula

Cn
F (x,y) = Cn−1

F (x,y)
∏

p∈Vn−1

∏
q∈C(B−1(p))

(
1

1 − xB−1(p)yq

)∂p∂B(q)C
n−1
F (0,0)

.

Notice first that Fp =⋃
q∈C(p) Fp[q], and ht(q) ≤ (ht(p)−1), for any q ∈ C(p).

Also observe that

FB−1(p) = T(1,p) �⇒ C(B−1(p)) = c(T(1,p)) = {p0 − 1} × C(p).

Notice at last that the map from forests to formal power series that maps a forest
in Fp[q] to xpyq induces a multiplicative map from forests to formal power series.
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The proposition follows then once again from the formula for Hilbert series of free
commutative monoids and the correspondence between trees and forests.

Using the same lines of arguments as before, this proposition can be used to de-
rive a recursive formula for the explicit combinatorial calculation of the number of
forests with prescribed heights and coalescence multi-indices. The first two orders
are given by

C0
F (x,y) = 1

1 − x0
and C1

F (x,y) = ∏
p0≥0

1

(1 − x0x
p0
1 y

(p0−1)+
0 )

.

Notice that the Hilbert series technique can be developed to any order of refine-
ment. For example, it could be used to take into account, besides the number of
vertices or of coalescences at each level, the cardinals #(f), so that the coefficients
of the Laurent expansion of the measures QN

n,q could be read, in the end, entirely
on the corresponding Hilbert series. We leave the task of expressing the recursive
formula to the interested reader, and simply point out that the technique allows an
easy, systematic, recursive computation of the coefficients of the expansion of the
measures QN

n,q at any order, in both n and q . The observation can be useful, espe-
cially in view of the systematic development of numerical schemes and numerical
approximations based on Feynman–Kac particle models.

3.5. Some forests expansions. In the present section, and the forthcoming one,
we take advantage of the language of trees and of the results obtained on their
statistics to compute the first orders of the Laurent functional representation of
QN

n,q and, respectively, to derive a natural generalization to Feynman–Kac particle
models of the classical Wick product formula.

Let us fix n and q ≥ 4, so that the notation q denotes, once again, the constant
sequence of length n associated to q . As we have already pointed out, there is only
one forest in Fq without coalescence, which is the product of q trivial trees of
height n. There is only one forest in Fq with only one coalescence, at level i, that
will be written f1,i . Its only nontrivial tree is the tree with one coalescence at level i

and two leaves at level n. There are two forests with coalescence degree 2 and two
coalescences at level i, written f1

2,i and f2
2,i . The notation f1

2,i denotes the forest
with only one nontrivial tree with coalescence degree 2, a vertex with coalescence
order 2 at level i and its three leaves at level n. The notation f2

2,i denotes the forest
with two nontrivial trees with coalescence degree 1 and the coalescence at level i.
There are four forests with coalescence degree 2 and two coalescences at levels
i < j , written fk2,i,j , k = 1, . . . ,4. The forest f1

2,i,j has one nontrivial tree with

coalescences at levels i and j and its tree leaves at level n. The forest f2
2,i,j has one

nontrivial tree with coalescences at levels i and j and its three leaves at the levels
j, n,n. The forest f3

2,i,j has two nontrivial trees with one coalescence at level i,

resp. j and their two leaves at level n. The forest f4
2,i,j has two nontrivial trees



806 P. DEL MORAL, F. PATRAS AND S. RUBENTHALER

FIG. 3. Examples of planar tree representatives pfkr,s of the fkr,s ’s for q = 4, n = 2.

with one coalescence at level i, resp. j and their two respective leaves at level j, n,
resp. n,n. See Figure 3.

Expanding the formulas for ∂iQq,n, using the formulas obtained in Theorem 3.8
for the cardinals #(f) and using that s(q, q − 2) = (q

3

)3q−1
4 (see, e.g., [3], on

page 63), we get the following result.

COROLLARY 3.13. The first three order terms in the polynomial functional
representation of QN

n,q are given by the following formulas:

∂0Qn,q = γ ⊗q
n ,

∂1Qn,q = q(q − 1)

2

∑
0≤k≤n

(
f1,k
n,q − γ ⊗q

n ),

∂2Qn,q = q!
(q − 3)!3!

∑
0≤k≤n

(


f1
2,k
n,q + 3

4
(q − 3)

f2
2,k
n,q − 3

2
(q − 1)

f1,k
n,q

+ (3q − 1)

4
γ ⊗q
n

)

+
(

q(q − 1)

2

)2 ∑
0≤k<l≤n

(
γ ⊗q
n − (

f1,l
n,q + 

f1,k
n,q)

)

+ q(q − 1)

2

∑
0≤k<l≤n

(


f2
2,k,l
n,q + (q − 2)(

f1
2,k,l
n,q + 

f4
2,k,l
n,q )

+ (q − 2)(q − 3)

2


f3
2,k,l
n,q

)
.

3.6. A Wick product formula on forests. Let now B
sym
0 (E

q
n) ⊂ Bb(E

q
n) be the

set of symmetric functions F on E
q
n such that

(D1q−1 ⊗ γn)(F )(x1, . . . , xq−1) =
∫

F(x1, . . . , xq−1, xq)γn(dxq) = 0.
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Notice that B
sym
0 (E

q
n) contains the set of functions F = (P )sym, with P ∈

Poly(E
q
n), where Poly(E

q
n) ⊂ Bb(E

q
n) stands for the subset of polynomial func-

tions of the form

P =∑
a∈I

c(a)f a with f a = (
f a(1) ⊗ · · · ⊗ f a(q)).

In the above display, I is a finite subset of N[q], c ∈ RI , and the elementary func-
tions f p ∈ Bb(En) are chosen such that γn(f

p) = 0. For instance, we can take

f p = (
gp − ηn(g

p)
)

with gp ∈ Bb(En).

Notice first that, by Theorem 1.5, for any integer q and any F ∈ B
sym
0 (E

q
0 ),

∂iQ0,q(F ) = 0, i <
q

2
and, if q is even,

∂q/2Q0,q(F ) = q!
2q/2(q/2)!

f
0,q(F ),

where f is the forest in F0,q containing q
2 copies of the tree of unit height, with two

vertices at level 1, and q
2 copies of the tree with the root as unique vertex (the reader

may check these identities or refer to the more general arguments given below).
For symmetric tensor product functions F = (f 1 ⊗ · · · ⊗ f q)sym, associated with
a collection of functions f i ∈ Bb(E0), such that η0(f

i) = γ0(f
i) = 0, for any

1 ≤ i ≤ q , we readily find that

f
0,q(F ) = 2q/2(q/2)!

q!
∑
Iq

( ∏
{i,j}∈Iq

η0(f
if j )

)
(3.5)

as soon as q is even. In the above displayed formula, Iq ranges over all parti-
tions of [q] into pairs. In a more probabilistic language, the above formula can be
interpreted as the qth-order central moment

∂q/2Q0,q(F ) = E(W0(f
1) · · ·W0(f

q))
(3.6)

(Wick)= ∑
Iq

( ∏
{i,j}∈Iq

E(W0(f
i)W0(f

j ))

)

of a Gaussian field W0 on the Banach space of functions Bb(E0), such that for
any pair of functions (ϕ,ψ) ∈ Bb(E0), E(W0(ϕ)) = 0 and E(W0(ϕ)W0(ψ)) =
η0(ϕψ). In the above equation (3.6), the second equality is the classical Wick
formula.

We choose to call (3.5) and the more general identities that will appear below
“Wick formulas” because of this interpretation. More precisely,in the present sec-
tion we will show that the Wick formula (3.5) generalizes to forests in Fn,q of
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arbitrary height. Let us start by listing various straightforward properties of trees
and forests. A tree T with coalescence degree d has exactly (d + 1) leaves. A for-
est with coalescence degree d has at most d nontrivial trees, and the equality holds
if and only if all its nontrivial trees have coalescence degree 1. In particular, if
a forest in Fn,q has coalescence degree d , it has at most (2d) leaves belonging to
nontrivial trees so that, if d <

q
2 , there is at least one vertex at level n+1 belonging

to a trivial tree (i.e., a tree with coalescence number 0).
The same reasoning shows that, when d = q

2 , a forest in Fn,q with coalescence
degree d , and coalescence sequence r, does not contain a trivial tree of height
(n+1) if and only if it is the forest fr := T

r0
0 U

r0
0 · · ·T rn

n U
rn
n , where we write Tk for

the unique tree of coalescence degree 1 with a coalescence at level k and its two
leaves at level (n + 1), and where we write Uk for the trivial tree of height k.

We conclude this series of remarks by noting that, if f ∈ Fn,q can be written
as the product (or disjoint union) of a forest g in Fn,q−1 with Un+1, the trivial
tree of height (n + 1), then, for any F ∈ B

sym
b (E

q
n) we have, by definition of the

measures f

f
n,q(F ) = g

n,q(D1q−1 ⊗ γn)(F )

which is equal to 0 if F ∈ B
sym
0 (E

q
n).

We are now in position to derive the forest Wick formula using Theorem 1.5.

THEOREM 3.14. For any even integer q ≤ N and any symmetric function
F ∈ B

sym
0 (E

q
n), we have

∀k < q/2 ∂kQn,q(F ) = 0 and
(3.7)

∂q/2Qn,q(F ) = ∑
r<q,‖r‖= q

2

q!
2q/2r!

fr
n,qF.

For odd integers q ≤ N , the partial measure-valued derivatives ∂k are the null
measure on B

sym
0 (E

q
n), up to any order k ≤ �q/2�.

We close this section with a Gaussian field interpretation of the Wick for-
mula (3.7). We further assume that q is an even integer. We consider a collection
of independent Gaussian fields (Wk)0≤k≤n on the Banach spaces (Bb(Ek))0≤k≤n,
with for any (ϕk,ψk) ∈ Bb(Ek)

2, and 0 ≤ k ≤ n

E(Wk(ϕk)) = 0 and E(Wk(ϕk)Wk(ψk)) = γk(ϕkψk).

We also introduce the centered Gaussian field Vn on Bb(En) defined for any ϕ ∈
Bb(En) by the following formula:

Vn(ϕ) = ∑
0≤k≤n

√
γk(1)Wk(Qk,n(ϕ)).
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Let (ϕi)1≤i≤q ∈ Bb(En)
q be a collection of functions such that γn(ϕi) = 0, for

any 1 ≤ i ≤ q . For the tensor product function F = 1
q!
∑

σ∈Sq
(ϕσ(1) ⊗· · ·⊗ϕσ(q)),

one can check that

fr
n,q(F ) = 2q/2r!

q!
∑
I∈I

∏
0≤k≤n

∑
Jk∈Ik

{
γk(1)rk

∏
(i,j)∈Jk

γk(Qk,n(ϕi)Qk,n(ϕj ))

}
.

In the above displayed formula, the first sum is over the set I of all partitions
I = (Ik)0≤k≤n of [q] into (n + 1) blocks with cardinality |Ik| = (2rk), and the
second sum ranges over the set Ik of all partitions Jk of the sets Ik into pairs, with
0 ≤ k ≤ n. By definition of the Gaussian fields (Wk)0≤k≤n, and due to the classical
Wick formula, we find that

q!
2q/2r!

fr
n,q(Fn) = ∑

I∈I

∏
0≤k≤n

E

(∏
i∈Ik

√
γk(1)Wk(Qk,n(ϕi))

)

= E

(∑
I∈I

∏
0≤k≤n

∏
i∈Ik

√
γk(1)Wk(Qk,n(ϕi))

)

from which we arrive at

∑
r<q,‖r‖=q/2

q!
2q/2r!

fr
n,q(Fn) = E

( ∑
r:‖2r‖=q

∑
I

∏
0≤k≤n

∏
i∈Ik

√
γk(1)Wk(Qk,n(ϕi))

)
.

Recalling that all Gaussian fields (Wk)0≤k≤n are independent and centered, we get

∂q/2Qn,q(Fn) = E

( ∏
1≤i≤q

( ∑
0≤k≤n

√
γk(1)Wk(Qk,n(ϕi))

))
= E

( ∏
1≤i≤q

Vn(ϕi)

)
.

Written in a more synthetic way, we have proved the following formula:

∂q/2Qn,q(Fn) = E(V ⊗q
n (Fn)).

This result can alternatively be derived combining the Lq -mean error estimates
presented in [5], Theorem 7.4.2, with the multidimensional central limit theorems
presented in [5], Proposition 9.4.1. More precisely, the q-dimensional particle ran-
dom fields

(V N
n (ϕi

n))1≤i≤q := (√
Nγ N

n (ϕi
n)
)
1≤i≤q

converge in law to (Vn(ϕ
i
n))1≤i≤q . By the continuous mapping theorem, combined

with simple uniform integrability arguments, one checks that

Nq/2QN
n,q(Fn) = E((V N

n )⊗q(Fn))
N↑∞−→ ∂q/2Qn,q(Fn) = E(V ⊗q

n (Fn)).
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4. Extension to path-space models. In the present section, we extend our
previous analysis to the statistical study of path-spaces. Our goal is now to prove
Theorem 4.12 which states an expansion for measures PN

n,q (analog to Theorem 1.5
for measures QN

n,q ). It will appear in the proof of Theorem 4.12 that we need expan-

sions of tensor products of measures (of the type γ
⊗k1
1 ⊗ · · · ⊗ γ

⊗kn
n ). To this pur-

pose, we will introduce and study (in Sections 4.1–4.3) colored trees and forests.
We will also define Feynman–Kac semigroup on tensor products of measures (4.4)
and finally derive expansions of tensor products of measures (in Section 4.5). Un-
fortunately, Theorem 4.12 can only be written down after all these technicalities.

Let us make two general remarks about colored forests. First, the (two) colors
are used to distinguish between vertices that are authorized or not to have an in-
coming edge. Second, the statistical meaning of colored forests is similar to the
one of forests as far as the approximation measures γ N

n are concerned. Namely,
the introduction of colors on vertices is a natural consequence of the replacement
of γ N

n by the path-space measures (γ N
0 )⊗q0 ⊗ · · · ⊗ (γ N

n )⊗qn . However, a precise
understanding of the meaning of colors can hardly be obtained without entering the
details of the constructions, and we refer therefore to Section 4.5 and Theorem 4.2
for deeper insights.

4.1. Colored trees, forests and jungles.

DEFINITION 4.1. A colored tree is a tree in T with colored vertices, with two
distinguished colors, say black and white. Only black vertices may have an ingoing
edge. That is, equivalently, all white vertices are leaves—the converse being not
true in general. A colored forest is a multiset of colored trees. The sets of colored
trees and colored forests are denoted, respectively, by T and F .

As usual, a colored forest can also be viewed as a commutative monomial over
the set of colored trees. In this interpretation, the generating series techniques that
we have developed to deal with the enumeration of forests will apply to colored
forests. The computation of the corresponding series is left to the interested reader.

Most of the notions associated to trees and forests go over in a straightforward
way to colored forests and colored trees. As a general rule, we will write a line
over symbols associated to colored trees and colored forests. For instance, we
write vk(T ) = (vk(T ), v′

k(T )) for the number vk(T ), respectively v′
k(T ), of white,

respectively black, vertices in the colored tree T , at each level k ≥ 0.
We also let V be the set of all sequences of pairs of integers p = (pk)k≥0 ∈

(N2)N, with pk = (pk,p
′
k) for every k ≥ 0, satisfying the following property:

∃ht(p) ∈ N s.t.

inf
k≤ht(p)

pk + p′
k > 0, inf

k<ht(p)
p′

k > 0 and sup
k>ht(p)

pk + p′
k = 0.
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For any n ∈ N, we denote by Vn ⊂ V the subset of sequences p such that the
height of p, ht(p), is equal to n. Finally, we let T p be the set of colored trees T

with vk(T ) = pk white vertices, and v′
k(T ) = p′

k black vertices, at each level k ≥ 0.
Since T is a colored tree, this implies that p0 = 0 and p′

0 = 1, except if ht(p) = 0.
In that case, p0 may also be equal to 1 (and then p′

0 = 0).

DEFINITION 4.2. For p ∈ Vn+1, let us call, by analogy with the uncolored
case, colored jungles (resp. colored planar forests) of type p any sequence of maps
(resp. of weakly increasing maps) (α0, . . . , αn), where

αk = (αk,α
′
k) ∈ [p′

k][pk+1] × [p′
k][p

′
k+1].

The set of colored jungles is written J.

The permutation group analysis of jungles and forests can be extended to the
colored case. For that purpose, we write

S(p,p′) := Sp × Sp′ ;
the group is acting on [p] by (σ,β)(i) := σ(i) and on [p′] by (σ,β)(j) := β(j).

We can define colored planar forests in a graphic way by saying they are colored
jungles such that, at any level, edges starting from a fixed color (black or white) do
not cross each other. It is the case in Figure 4, although it should be noticed that
some vertices are crossing each other (so that the notion of planarity for colored
forests is not the intuitive one).

Once again, the notation we use on colored forests extends to colored jungles
in a self-explanatory way. For instance, Jp, p ∈ Vn+1, stands for the set of colored

jungles j with vk(j) = pk white vertices, and v′
k(j) = p′

k black vertices, at each
level 0 ≤ k ≤ (n+1). For any p ∈ Vn+1, we also have that Jp � Ap, where Ap :=
[p′

0][p1] × [p′
0][p

′
1] × · · · × [p′

n][pn+1] × [p′
n][p

′
n+1].

4.2. Automorphism groups on colored jungles. As for the expansion of mea-
sures in Section 2, we will need a definition of equivalence classes of colored
jungles, a parametrization of the classes and a computation of their cardinals. It
appears that most of the constructions in Sections 2 and 3 can be extended without

FIG. 4. A colored jungle which is a colored planar forest.
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further work to colored jungles. Since all constructions can be mimicked, we only
outline the main ideas of the generalization from jungles to colored jungles.

We let p ∈ V n+1 be a sequence of (n + 1) integer pairs pk = (pk,p
′
k), with

0 ≤ k ≤ (n + 1). We associate with p the product permutation group

Sp = Sp0 × Sp1 × · · · × Spn+1 .

This group acts naturally on sequences of maps a = (a0, a1, . . . , an) ∈ Ap, where

ai ∈ [p′
i][pi+1]×[p′

i][p
′
i+1], and on jungles J (a) in Jp by permutation of the colored

vertices at each level. More formally, for any s = (s0, . . . , sn+1) ∈ Sp this pair of
actions is given by

s(a) := (s0a0s
−1
1 , . . . , snans

−1
n+1) and sJ (a) := J (s(a)).

Two colored jungles in the same orbit under the action of Sp have the same un-
derlying colored forest. Conversely, if two colored jungles in Jp have the same
underlying colored forests, they differ only by a permutation of the vertices of
their colored graphs that preserves the colors of the vertices, and therefore are in
the same orbit under the action of Sp. In other terms, we have the following lemma.

LEMMA 4.3. Equivalence classes of colored jungles in Jp under the action

of the permutation groups Sp are in bijection with colored forests in F p.

As for usual trees and forests, we write B for the map from colored trees to
colored forests defined by removing the root of a colored tree, and we write also,
as in Section 3.2, B for the induced map from the set of colored forests into itself.

4.3. An inductive method for counting colored jungles. Let us conclude this
section by enumerating the number #(f) of colored jungles associated to a given
colored forest f ∈ F p, with p ∈ V n+1. The process is as in Section 3.2, and the
result follows ultimately from the class formula

#(f) = p!
|Stab(f)| .

In the above displayed formula, p! stands for the multi-index factorial p! =∏n+1
k=0 pk!p′

k!, and we have written abusively |Stab(f)|, for the cardinal of the stabi-
lizer in Sp of any representative pf of f, where f is viewed as an equivalence class
of colored jungles.

Let us assume that f can be written, as a monomial over the set of colored trees,
as

f =
k∏

i=1

Ti
mi

,
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where the T i ’s are pairwise distinct and m1 ≥ · · · ≥ mk . We write PT i for a set of
representatives of the Ti viewed as equivalence classes of colored jungles (beware
that, here, the prime exponent has no color meaning).

As in Section 3.3, we shall write s(B−1(f)) for the unordered k-uplet (m1, . . . ,

mk), called the symmetry multiset of the colored tree B−1(f), and extend the no-
tation to colored forests so that s(f) is the disjoint union of the s(Ti). The proof in
Section 3.3 goes then over without changes, except for the replacement of forests,
planar forests and planar trees by their colored analogues. For instance, we have
the recursion formula

|Stab(pf)| =
k∏

i=1

(mi !|StabB(PT i )|mi ).

Specifying the recursion, we deduce the following theorem.

THEOREM 4.4. The number of colored jungles with underlying colored forest
f ∈ F p, with p ∈ V n+1, is given by

#(f) = p!∏n
i=−1 s(Bi(f))! ,

where we use the usual multi-index notation to define s(Bi(f))!.

4.4. Feynman–Kac semigroups. In this section, the parameter n ≥ 0 repre-
sents a fixed time horizon. For any sequence of integers q = (q0, . . . , qn) ∈ Nn+1,
and any −1 ≤ m ≤ n, we set

q ′
m := ∑

m<k≤n

qk.(4.1)

Notice that, for m < n, q ′
m = qm+1 + q ′

m+1. We associate with q the unnormalized
Feynman–Kac measures

γ q
n = γ

⊗q0
0 ⊗ · · · ⊗ γ ⊗qn

n ∈ M(Eq
n) where Eq

n = E
q0
0 × · · · × Eqn

n

is equipped with the tensor product sigma field. Points in Eq
n are indexed as fol-

lows:

((x1
0 , . . . , x

q0
0 ), . . . , (x1

n, . . . , xqn
n )).

DEFINITION 4.5. We let (γ
q
p )0≤p≤n, and (Qq

p)0≤p≤n, be the collection of
measures and integral operators defined by

γ q
p = (γ

⊗q0
0 ⊗ · · · ⊗ γ

⊗qp−1
p−1 ) ⊗ γ

⊗(qp+q ′
p)

p

(= γ
(q0,...,qp−1,qp+q ′

p)
p

)
,

Qq
p = (D1q0

⊗ · · · ⊗ D1qp−2
) ⊗ Q

(qp−1,q
′
p−1)

p ,
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with the operators Q
(qp−1,q

′
p−1)

p from E
qp−1+q ′

p−1
p−1 into (E

qp−1
p−1 × E

q ′
p−1

p ) defined by
the tensor product formula

Q
(qp−1,q

′
p−1)

p = D1qp−1
⊗ Q

⊗q ′
p−1

p

(recall that the γp’s and Qp’s have been defined in Section 1).

Notice that, for any 0 ≤ p ≤ n, γ
q
p is a positive measure on the product space

Eq
p := E

q0
0 × · · · × E

qp−1
p−1 × E

qp+q ′
p

p

and Qq
p is a positive integral operator from Eq

p−1 into Eq
p .

LEMMA 4.6. For any sequence of integers q ∈ Nn+1, and any 0 ≤ p ≤ n, we
have

γ q
n = γ q

p Qq
p,n

with the semigroup (Qq
p1,p2)1≤p1≤p2≤n defined by

Qq
p1,p2

= Qq
p1+1(Q

q
p1+1,p2

) (= Qq
p1+1 · · ·Qq

p2−1Qq
p2

)

and the convention Qq
p1,p1 = Id, the identity operator, for p1 = p2.

PROOF. We start with observing that

γ q
n = γ

⊗q0
0 ⊗ γ

⊗q1
1 ⊗ · · · ⊗ γ

⊗qn−1
n−1 ⊗ (γ

⊗qn

n−1 Q⊗qn
n )

= γ
⊗q0
0 ⊗ γ

⊗q1
1 ⊗ · · · ⊗ γ

⊗qn−2
n−2 ⊗ (

γ
⊗(qn−1+qn)

n−1 (D1qn−1
⊗ Q⊗qn

n )
)
.

Therefore, we find that γ
q
n = γ

q
n−1Qq

n. Using a simple induction, the lemma fol-
lows. �

4.5. Unnormalized particle measures. In this section, we derive a functional
representation and a Laurent expansion of particle tensor product measures on the
path-space similar to the ones obtained in Theorem 1.5.

In the further development of this section, the time horizon n ≥ 0 is a fixed
parameter, and we let q = (q0, . . . , qn) ∈ Nn+1 be a given sequence of (n + 1)

integers. Before we turn to the study of the particle tensor product measures

γ q,N
n = (γ N

0 )⊗q0 ⊗ (γ N
1 )⊗q1 ⊗ · · · ⊗ (γ N

n )⊗qn

and the associated path-space measures Q
N

n,q ∈ M(Eq
n) defined by

Q
N

n,q :F ∈ Bb(Eq
n) 	−→ Q

N

n,q(F ) = E(γ q,N
n (F )) ∈ R,
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let us introduce some useful definitions. We associate with q the pair of se-
quences q and q′ defined by

q := (qk, q
′
k)−1≤k≤n and q′ := (q ′

k)−1≤k≤n

with the convention q−1 = 0, and the integer sequence q′ introduced in (4.1). No-
tice that q ′

n = 0, ‖q‖ = q0 + q ′
0, ht(q) = (n + 1), and

|q′| = ∑
−1≤k≤n

q ′
k = ∑

0≤k≤n

(qk + q ′
k) = ∑

0≤k≤n

(k + 1)qk.

Notice that [q ′
k−1][q

′
k−1] ∼= [q ′

k−1][qk] × [q ′
k−1][q

′
k]. We will identify the two sets

of maps throughout all the sequel.

DEFINITION 4.7. For ak ∈ [q ′
k−1][qk] × [q ′

k−1][q
′
k], we define the Markov tran-

sitions

Dq
k,ak

= D1q0
⊗ · · · ⊗ D1qk−1

⊗ Dak
.

For u a linear combination
∑

i∈I αia
(i)
k of a

(i)
k ∈ [q ′

k−1][qk] × [q ′
k−1][q

′
k], we extend

the definition of D by linearity and write

Dq
k,u =∑

i∈I

αiD
q

k,a
(i)
k

.

We let n,q be the nonnegative measure-valued functional on Aq defined by

n,q : a′ = (a0, a1, . . . , an)

	−→ a′
n,q := η

⊗|q|
0 Dq

0,a0
Qq

1Dq
1,a1

· · ·Qq
nDq

n,an
∈ M(Eq

n).

DEFINITION 4.8. We write B
sym
b (Eq

n) for the elements F of Bb(E
q
n) that are

symmetric in the first q0 variables, the next q1 variables, . . . , and the last qn vari-
ables. That is, we have that

∀(σ0, . . . , σn) ∈ (Sq0 × · · · × Sqn) F = (Dσ0 ⊗ · · · ⊗ Dσn)F.

We consider the subset B
sym
0 (Eq

n) ⊂ B
sym
b (Eq

n) of all functions F such that(
D1q0

⊗ · · · ⊗ D1qp−1
⊗ (D1qp−1 ⊗ γp) ⊗ D1qp+1

⊗ · · · ⊗ D1qn

)
F = 0

for any 0 ≤ p ≤ n.

Notice that B
sym
0 (Eq

n) contains the tensor product

(B
sym
0 (E

q0
0 ) ⊗ · · · ⊗ B

sym
0 (Eqn

n )) = {F0 ⊗ · · · ⊗ Fn :∀0 ≤ p ≤ nFp ∈ B
sym
0 (E

qp
p )}

of the sets B
sym
0 (E

qp
p ) introduced in the beginning of Section 3.6, with 0 ≤ p ≤ n.

For the same reasons as in (1.12), we also have the symmetry invariance property

∀F ∈ B
sym
b (Eq

n),∀s ∈ Sq,∀j ∈ Jq j
n,q(F ) = s(j)

n,q(F ),
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so that f
n,q is well defined for f a colored forest. By construction, we also have

that

∀F ∈ B
sym
0 (Eq

n) f
n,q(F ) = 0

as soon as the colored forest f contains at least one trivial colored tree with a white
leaf.

Recall that a tree or a colored tree is said to be trivial if its coalescence sequence
is the null sequence of integers. Notice also that for any l < q′, the set of colored
forests with exactly lk(∈ [0, q ′

k−1[) coalescent edges at level k is given by

F q[l] := {f ∈ F q : |f| = q′ − l}.
Thus, for any r < q′, the set of colored forests F q(r) with less than rk coalescent
edges at level k is given by

F q(r) :=⋃
l≤r

F q[l].

The coalescence degree of a colored forest f ∈ F q[l] is the sum |q′ − l| of the
coalescence orders of its vertices.

Notice that a colored forest with coalescence degree d has at most d nontrivial
colored trees. In addition, a colored forest with a coalescence degree d has at most
(2d) leaves belonging to nontrivial trees. Since a colored forest in F q has exactly
‖q‖ white leaves, if ‖q‖ > (2d), then it contains at least one trivial colored tree
with a white leaf.

Next, we discuss the situation where ‖q‖ is an even integer, and we characterize
the subset of forests (in F q), with a coalescence degree d = ‖q‖/2, without any
trivial colored tree with a white leaf. This characterization follows the same lines of
arguments as the ones presented on page 808. For any integers 0 ≤ k ≤ l ≤ m ≤ n,
we let T k,l,m be the unique colored tree, with a single coalescence at level k, and
white leaves at the levels (l +1) and (m+1). Notice that colored forests with (2rk)

white leaves, no black leaves, and coalescent degree rk , with rk different pairs of
coalescent edges at level k, are necessarily of the form

f
(tk)
k = ∏

k≤l≤m≤n

T
tk,l,m

k,l,m

for some families of integers tk = (tk,l,m)k≤l≤m≤n such that ‖tk‖ =∑
k,l,m tk,l,m =

rk . Therefore, a colored forest in F q, with coalescence degree ‖q‖/2, a coales-
cence sequence r such that ‖r‖ = ‖q‖/2, without a trivial tree with a white leaf,
has necessarily the following form:

f
(t) = f

(t0)

0 U
r0
0 · · · f

(tn)

n Urn
n

for some sequence of families of integers t = (tk)0≤k≤n, such that ‖tk‖ = rk , for
any 0 ≤ k ≤ n. In the above displayed formula, Uk denotes the unique trivial tree
with a single black leaf at level k, with 0 ≤ k ≤ n. We write t! for

∏
k≤l≤m≤n tk,l,m!.
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We are now ready to extend the Laurent expansions, and the Wick formula
presented in Theorem 3.14, to particle models in path-spaces.

THEOREM 4.9. For any q = (q0, . . . , qn), with ‖q‖ ≤ N and any F ∈
B

sym
b (Eq

n), we have the Laurent expansion

Q
N

n,q(F ) =
(
γ q
n + ∑

1≤k≤‖(q′−1)+‖

1

Nk
∂kQn,q

)
(F )(4.2)

with the signed measures ∂kQn,q defined by

∂kQn,q(F ) = ∑
r<q′,‖r‖=k

∑
f∈F q(r)

s(|f|,q′ − r)#(f)
(q′)|f|

f
n,q(F ).

In addition, for any even integer ‖q‖ ≤ N , and any symmetric function F ∈
B

sym
0 (Eq

n), we have

∀k < ‖q‖/2 ∂kQn,q(F ) = 0 and

∂‖q‖/2Qn,q(F ) = ∑
r<q′,‖r‖=‖q‖/2

∑
〈t〉=r

q!
2δ(t)t!

f
(t)

n,qF

with the integer sequence 〈t〉 := (‖tk‖)0≤k≤n, and the sum of the diagonal terms
δ(t) = ∑

0≤k≤l≤n tk,l,l . For odd integers ‖q‖ ≤ N , the partial measure-valued
derivatives ∂k are the null measure on B

sym
0 (Eq

n), up to any order k ≤ �‖q‖/2�.

Before getting into the details of the proof, we mention that the Wick formula
stated above has a natural interpretation in terms of the Gaussian fields (Vk)0≤k≤n

introduced in Section 3.6. Following the discussion given in that section, we get
that

∂‖q‖/2Qn,q(F ) = E((V
⊗q0
0 ⊗ · · · ⊗ V ⊗qn

n )(F ))

for any tensor product function F of the following form: F = F0,q0 ⊗ · · · ⊗ Fn,qn ,

with Fk,qk
= 1

qk !
∑

σk∈Sqk
(ϕ

σk(1)
k ⊗ · · · ⊗ ϕ

σk(qk)
k ), ϕi

k ∈ Bb(Ek) and γk(ϕ
i
k) = 0 for

any 1 ≤ i ≤ qk and any 0 ≤ k ≤ n.

PROOF OF THEOREM 4.9. By definition of the particle model, and arguing as
in the proof of (2.1), we find that

E
([(γ N

n−1)
⊗qn−1 ⊗ (γ N

n )⊗qn](ϕ)|ξ (N)
n−1

)
= [(γ N

n−1)
⊗qn−1 ⊗ {(γ N

n−1)
⊗qnQ⊗qn

n DLN
qn

}](ϕ)

= [
(γ N

n−1)
⊗(qn−1+qn)]Q(qn−1,qn)

n (D1qn−1
⊗ DLN

qn
)(ϕ)

= [
(γ N

n−1)
⊗(qn−1+q ′

n−1)
]
Q

(qn−1,q
′
n−1)

n (D1qn−1
⊗ DLN

q′
n−1

)(ϕ)
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for any ϕ ∈ B
sym
b (E

qn−1
n−1 × E

qn
n ). This yields that (recalling Definition 4.7)

E
(
γ q,N
n (F )|ξ (N)

n−1

)= γ
q,N
n−1 Qq

nDq
n,LN

q′
n−1

(F ),

from which we readily conclude that

E(γ q,N
n (F )) = E(γ

q,N
n−1 [Qq

nDq
n,LN

q′
n−1

(F )]).

A simple induction yields that

E(γ q,N
n (F )) = E(η

⊗q0+q ′
0

0 Dq
0,LN

q0+q′
0

Qq
1Dq

1,LN

q′
0

· · ·Qq
nDq

n,LN

q′
n−1

(F ))

= 1

N |q′|
∑

a∈Aq

(N)|a|
(q′)|a|

a
n,q(F ) = 1

N |q′|
∑

f∈F q

(N)|f|
(q′)|f|

#(f)f
n,q(F ),

from which we find the following formula:

Q
N

n,q(F ) = 1

N |q′|
∑

1≤p≤q′

(N)|p|
(q′)|p|

∑
f∈F q:|f|=p

#(f)f
n,q(F ).

Using the Stirling formula (2.2), we readily check that

Q
N

n,q = ∑
1≤l≤q′

∑
l≤p≤q′

s(p, l)
1

N |q′−l|
1

(q′)|p|
∑

f∈F q:|f|=p

#(f)f
n,q.

From previous computations, we conclude that

Q
N

n,q = ∑
r<q′

1

N |r|
∑

f∈F q(r)

s(|f|,q′ − r)
1

(q′)|f|
#(f)f

n,q.

Finally, we notice that F q(0) reduces to the single class of all sequences of bi-
jections in Aq. The end of the proof of the first assertion is now clear. To end the
proof of the theorem, we notice that [with t as in the expansion of ∂‖q‖/2Qn,q(F )]

#(f
(t)

) = q!∏
0≤k≤n[rk!(

∏
k≤l≤m≤n tk,l,m!)(∏k≤l≤n 2tk,l,l )] .

Since we have s(|f(t)|,q′ − r) = 1, and (q′)|f(t)| = ∏
−1≤k<n(q

′
k)q ′

k−rk+1
, for any

r = (rk)0≤k≤n, we conclude that

s(|f(t)|,q′ − r)
(q′)|f(t)|

#
(
f
(t))= q!

2δ(t)t!
with t! =∏

0≤k≤l≤m≤n tk,l,m!. The end of the proof of the theorem is now straight-
forward. �
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4.6. Propagations of chaos-type expansions. This section is essentially con-
cerned with applications of the differential forest expansion machinery devel-
oped earlier to propagations of chaos properties of interacting particle models.
In order to state and prove the main results of this section, we need to intro-
duce some notation. We shall work throughout with a fixed time horizon n ≥ 0,
and a constant particle block size q ≤ N . We let Nn+1

q be the set of integer
sequences p = (pk)0≤k≤n ∈ Nn+1 such that ‖p‖ = q . We associate to a given
p = (pk)0≤k≤n ∈ Nn+1 the pair of integer sequences p′ and p + q defined by

∀0 ≤ k ≤ n p′
k := ∑

k<l≤n

pl and p + q := (p0, . . . , pn−1,pn + q).

We also denote by (Gk)0≤k≤n and G
⊗p
n the collection of functions defined by

Gk := 1

γk(Gk)
× (

ηk(Gk) − Gk

)
and G

⊗p
n := G

⊗p0
0 ⊗ · · · ⊗ G

⊗pn

n

(recall the Gk’s have been defined in Section 1). Finally, we consider the inte-

gral operators Q
(p+q)

n from Ep+q
n into E

q
n+1, defined for any function Fn+1 ∈

Bb(E
q
n+1) by the following formula

Q
(p+q)

n (Fn+1) := G
⊗p0
0 ⊗ · · · ⊗ G

⊗pn−1
n−1 ⊗ (G

⊗pn

n ⊗ Q
⊗q
n+1Fn+1)sym

with

Fn := 1

γn(1)q

(
Fn − η⊗q

n (Fn)
)
.

The following proposition and lemma are technical results that will be needed
in the proof of Theorem 4.12.

PROPOSITION 4.10. For any q ≤ N and any n ≥ 0, we have the polynomial
decompositions

EN
q,n := E

((
1 − γ N

n (Gn)/γn(Gn)
)q)= ∑

q/2≤k≤(n+1)(q−1)

1

Nk
∂kEq,n.

The derivatives of order q/2 ≤ k ≤ (n + 1)(q − 1) are given by the following for-
mula:

∂kEq,n = ∑
p∈Nn+1

q

∑
k≤‖(p′−1)+‖

q!
p!∂

kQn,p(G
⊗p
n ).

PROOF. We first check the following decomposition:

1 − γ N
n (Gn)/γn(Gn) = ∑

0≤p≤n

γ N
p (Gp).(4.3)
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To prove this formula, we notice that

γ N
n (Gn) − γn(Gn) = ∏

0≤p≤n

ηN
p (Gp) − ∏

0≤p≤n

ηp(Gp)

= γ N
n

(
Gn − ηn(Gn)

)
+ [γ N

n−1(Gn−1) − γn−1(Gn−1)] × ηn(Gn) = · · ·

= ∑
0≤p≤n

γ N
p

(
Gp − ηp(Gp)

)×
[ ∏

p+1≤k≤n

ηk(Gk)

]

with the convention
∏

∅ = 1. Finally, combining the multinomial decomposition

(
1 − γ N

n (Gn)/γn(Gn)
)q = ∑

‖p‖=q

q!
p!γ

p,N
n (G

p
n)(4.4)

with the Wick expansion stated in Theorem 4.9 we conclude that

EN
q,n = ∑

p∈Nn+1
q

q!
p!Q

N

n,p(G
p
n) = ∑

p∈Nn+1
q

∑
q/2≤k≤‖(p′−1)+‖

1

Nk

q!
p!∂

kQn,p(G
p
n).

This completes the proof of the proposition. �

LEMMA 4.11. For any u ∈ R − {1}, and m ≥ 1, we have the decomposition

1

(1 − u)q+1 = ∑
0≤k≤m

(q + k)k
uk

k! + um
∑

1≤k≤q+1

(
(q + 1) + m

k + m

)((
u

1 − u

)k
)

with (q + k)k = (q + k)!/q!.
PROOF. This formula seems classical but we did not find it in the literature.

The proof is essentially based on the fact that for any n ≥ 0 and u �= 1, we have

f (u) = 1

1 − u
= ∑

0≤k≤n

uk + un+1

1 − u
and

∂nf

∂un
= n!f n+1.

This implies that for any m > n, we have

∂nf

∂un
= n!

(1 − u)n+1 = ∑
n≤k≤m

(k)nu
k−n + ∂n

∂un

(
um+1

1 − u

)
.

Applying the Leibniz binomial derivation formula for ∂n

∂un (fg) to the product
um+1 × 1

1−u
we find that

1

n!
∂n

∂un

(
um+1

1 − u

)
= um−n

∑
0≤k≤n

(
m + 1
n − k

)
uk+1

(1 − u)k+1 .

The lemma follows. �
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THEOREM 4.12. For any n ≥ 0, the sequence of probability measures
(PN

n+1,q)N≥q is differentiable up to any order with ∂0Pn+1,q = η
⊗q
n+1, and the par-

tial derivatives given by the following formula:

∂kPn+1,q = ∑
p∈⋃0≤l<2k Nn+1

l

((q − 1) + |p|)!
(q − 1)!p! ∂kQn,p+qQ

(p+q)

n .

At any order N ≥ q , we have the exact formula

PN
n+1,q = η

⊗q
n+1 + ∑

1≤k<�(N−q)/2�

1

Nk
∂kPn+1,q + RN

n+1,q

with a remainder measure RN
n+1,q such that supN≥1 N((N−q)+1)/2‖RN

n+1,q‖TV <

∞.

REMARK 4.13. Contrary to the expression in Theorem 1.5, where we have an
exact expansion as a sum of polynomial terms, the expansion above, though exact,
is the sum of a polynomial term plus a remainder term which is not polynomial.
This particular form comes from (4.5) appearing below in the proof of the theorem,
where we have to develop a fraction, whose expansion is an infinite sum.

PROOF OF THEOREM 4.12. We let Fn+1 be a bounded measurable symmetric
function on Eq

n+1, such that η
⊗q
n+1(Fn+1) = 0. By definition of the particle model,

we have that

E
(
(ηN

n+1)
�q(Fn+1)|ξ (N)

n

)= γ N
n (Gn)

−q × (γ N
n )⊗qQ

⊗q
n+1(Fn+1)

(4.5)
= (1 − uN

n )−q × (γ N
n )⊗qQ

⊗q
n+1(F n+1)

with the sequence of random variables uN
n := (1 − γ N

n (Gn)/γn(Gn)). Using
Lemma 4.11, we find that

E
(
(ηN

n+1)
�q(Fn+1)|ξ (N)

n

)= ∑
0≤k≤m

(
(q − 1) + k

)
k

1

k!
(

1 − γ N
n (Gn)

γn(Gn)

)k

× (γ N
n )⊗q(Q

⊗q
n+1Fn+1) + Rq,N

m,n (Fn+1)

with the remainder term

Rq,N
m,n (Fn+1) =

(
1 − γ N

n (Gn)

γn(Gn)

)m+1

(γ N
n )⊗q(Q

⊗q
n+1Fn+1)

× ∑
1≤k≤q

(
q + m

k + m

)(
1 − γ N

n (Gn)

γn(Gn)

)k−1/(
γ N
n (Gn)

γn(Gn)

)k

.

We also have from Proposition 4.10

supN≥1

√
NE

(|γ N
n (Gn) − γn(Gn)|m+1)1/m+1

< ∞.
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Using the regularity hypothesis (1.1) on the potential functions we conclude that

supN≥1 N(m+1)/2‖Rq,N
m,n ‖TV < ∞.

Finally, using the multinomial decomposition (4.4), we conclude that

∑
0≤k≤m

(
(q − 1) + k

)
k

1

k!
(

1 − γ N
n (Gn)

γn(Gn)

)k

(γ N
n )⊗q(Q

⊗q
n+1Fn+1)

= ∑
0≤k≤m

(
(q − 1) + k

)
k

∑
p∈Nn+1

k

1

p!γ
(p+q),N
n

(
Q

(p+q)

n (Fn+1)
)
.

This yields, for any m + q ≤ N , the functional expansion

PN
n+1,q = ∑

‖p‖≤m

((q − 1) + |p|)!
(q − 1)!p! Q

N

n,p+qQ
(p+q)

n + Rq,N
m,n

with a remainder measure R
q,N
m,n , such that supN≥1 N(m+1)/2‖Rq,N

m,n ‖TV < ∞. This
implies that for any k < (m + 1)/2 we have

∂kPn+1,q = ∑
‖p‖≤m

((q − 1) + |p|)!
(q − 1)!p! ∂kQn,p+qQ

(p+q)

n .

This proves the first assertion of the theorem. Notice that kth-order derivative mea-
sure ∂kQn,p+q only involves colored forests with less than k coalescent branches,
from the original root, up to the final level. If ‖p‖ ≥ (2k), then these colored forests
contain at least one elementary tree with a white leaf. By definition of the operator

Q
(p+q)

n we find that

∂kQn,p+qQ
(p+q)

n (Fn+1) = 0.

This yields the second part of the theorem. �

5. Consequences. We end this paper with a series of some direct conse-
quences of the above theorem. Some of the already known properties of particle
systems can be found in Section 1.

• The differential forest expansions presented in Theorem 4.12 allow us to deduce
precise strong propagation of chaos estimates. For instance, for any N ≥ (q +7)

[so that (�(N − q)/2� − 1) ≥ 2] we have

sup
N≥q+7

N2
∥∥∥∥PN

n+1,q − η
⊗q
n+1 − 1

N
∂1Pn+1,q

∥∥∥∥
TV

< ∞

with a first-order partial derivative given by the formula

∂1Pn+1,q(Fn+1) = ∂1Qn,qQ
⊗q
n+1(F n+1) + q

∑
0≤m≤n

∂1Qn,qm
Q

qm

n (Fn+1)
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with the sequence of integers qm = (1m(k) + q1n(k))0≤k≤n. The first term in
the right-hand side in the above displayed formula has been treated in Corol-
lary 3.13, and we have that

∂1Qn,qQ
⊗q
n+1(F n+1)

= q(q − 1)

2

∑
0≤k≤n


f1,k
n,qQ

⊗q
n+1(F n+1)

= q(q − 1)

2

∑
0≤k≤n

γk(1)

∫
E

q−1
k

γ
(q−1)
k (d(x2, . . . , xq))

× Q
⊗q
k,n+1(F n+1)(x

2, x2, x3, . . . , xq).

Each of the terms ∂1Qn,qm
Q

qm

n (Fn+1) only involves the colored forests

∀0 ≤ k ≤ m fk,m := UkTk,m,nU
q−1
n+1

associated with the trees Tk,m,n, and Ul , introduced on pages 816–817. After
some elementary manipulations, we find that

∂1Qn,qm
Q

qm

n (Fn+1)

= q
∑

0≤k≤m


fk,m
n,qmQ

qm

n (Fn+1)

= q
∑

0≤k≤m

γk(1)

∫
E

q
k

γ
⊗q
k (d(x1, . . . , xq))Qk,m(Gm)(x1)

×Q
⊗q
k,n+1(F n+1)(x

1, . . . , xq).

• A Wick formula derives from Theorem 4.9. More precisely, for any F ∈
B

sym
0 (E

q
n+1), the partial derivatives ∂kPn+1,q(F ) are null up to any order

k ≤ �q/2�, and for any even integer q , we have

∂q/2Pn+1,q(F ) = γn+1(1)−q∂q/2Qn,qQ
⊗q
n+1(F )(5.1)

as soon as N ≥ 2(q +2) [so that (�(N −q)/2�−1) ≥ q/2]. To prove this claim,
we notice that for any k < q/2, and any F ∈ B

sym
0 (E

q
n+1), we have

∀p ∈ ⋃
0≤l<2k

Nn+1
l , k < q/2 ≤ (‖p‖ + q)/2 and therefore

∂kQn,p+qQ
(p+q)

n (F ) = 0.

This yields that ∂kPn+1,q(F ) = 0, for any even integer q , and any k < q/2. In
the case k = q/2, we have k = q/2 = (‖p‖ + q)/2 if, and only if, p coincides
with the null sequence 0.
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• We let ‖μ‖B
sym
0,1

= supF∈B
sym
0,1

|μ(F)| be the Zolotarev seminorm on M(E
q
n+1)

associated with the collection of functions

B
sym
0,1 := {F ∈ B

sym
0 (E

q
n+1) :‖F‖ ≤ 1}.

For any even integer q such that (q + 2) ≤ N/2, we have

sup
N≥q+7

N1+q/2
∥∥∥∥PN

n+1,q − 1

Nq/2

1

γn+1(1)q
∂q/2Qn,qQ

⊗q
n+1

∥∥∥∥
B

sym
0,1

< ∞.(5.2)

• Combining the Wick formula stated above with the Borel–Cantelli lemma, we
obtain for all q ≥ 4 the almost sure convergence result

lim
N→∞(ηN

n )�q(F ) = 0 p.s.(5.3)

for any bounded symmetric function F ∈ B
sym
0 (E

q
n). This result is an exten-

sion of the law of large numbers for U -statistics obtained by Hoeffding [8] for
independent and identically distributed random variables to interacting particle
models. One can also look at [9] for a more modern reference.

• We mention that the same lines of arguments used in the proof of Theorem 4.12
show that the sequence of probability measures

P̃N
n+1,q :F ∈ Bb(E

q
n+1) 	→ P̃N

n+1,q(F ) := E((ηN
n+1)

⊗q(F ))

is differentiable up to order �(N − q)/2�, with ∂0P̃n+1,q = η
⊗q
n+1, and the partial

derivatives given for any 1 ≤ k < �(N − q)/2� by the following formula:

∂kP̃n+1,q(F ) = ∑
p∈⋃0≤l<2k Nn+1

l

((q − 1) + |p|)!
(q − 1)!p! ∂kQn+1,(p,q)(G

p
n ⊗ F).

In the same way, for any F ∈ B
sym
0 (E

q
n+1) and N ≥ 2(q + 2), the partial deriva-

tives ∂kQn+1,q(F ) are null up to any order k < q/2, and for any even integer q ,
we have that

∂q/2P̃n+1,q(F ) = γn+1(1)−q∂q/2Qn+1,q(F ).

• Finally, the Wick formula stated above allows to deduce sharp Lq -mean error
bound. To see this claim, we simply observe that

F = (
f − ηn+1(f )

)⊗q

with f ∈ Bb(En+1) �⇒ P̃N
n+1,q(F ) = E

([ηN
n+1(f ) − ηn+1(f )]q)

and for any even integer q such that (q + 2) ≤ N/2, we have the inequality

sup
N≥q+7

N1+q/2
∥∥∥∥P̃N

n+1,q − 1

Nq/2

1

γn+1(1)q
∂q/2Qn+1,q

∥∥∥∥
B

sym
0,1

< ∞.(5.4)
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