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In this paper we lay the foundation for a numerical algorithm to simu-
late high-dimensional coupled FBSDEs under weak coupling or monotonic-
ity conditions. In particular, we prove convergence of a time discretization
and a Markovian iteration. The iteration differs from standard Picard itera-
tions for FBSDEs in that the dimension of the underlying Markovian process
does not increase with the number of iterations. This feature seems to be in-
dispensable for an efficient iterative scheme from a numerical point of view.
We finally suggest a fully explicit numerical algorithm and present some nu-
merical examples with up to 10-dimensional state space.

1. Introduction. Motivated by the aim to simulate high-dimensional coupled
forward–backward stochastic differential equations (FBSDEs) we study a time dis-
cretization and a Markovian iteration for equations of the form⎧⎪⎪⎨

⎪⎪⎩
Xt = x +

∫ t

0
b(s,Xs,Ys) ds +

∫ t

0
σ(s,Xs,Ys) dWs,

Yt = g(XT ) +
∫ T

t
f (s,Xs,Ys,Zs) ds −

∫ T

t
Zs dWs,

(1.1)

where b,σ,f, g are deterministic and Lipschitz continuous functions of lin-
ear growth which are additionally supposed to satisfy some weak coupling or
monotonicity condition. The solution consists of a triplet (X,Y,Z) of adapted
processes, which are called the “forward part,” the “backward part” and the “con-
trol part” respectively. The presence of the control part Z is crucial to find a nonan-
ticipative solution. It often has an intuitive interpretation, for example, as an invest-
ment strategy in financial applications; see El Karoui, Peng and Quenez [12]. Note
that (1.1) is not in its most general form, since Z does not couple into the forward
SDE.

Most of the numerical algorithms for coupled FBSDEs, with the notable ex-
ception of Delarue and Menozzi [10], exploit the relation to quasi-linear parabolic
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PDEs via the Ma–Protter–Yong four-step-scheme [17]. Under appropriate condi-
tions, (X,Y,Z) are connected by

Yt = u(t,Xt), Zt = v(t,Xt) � ux(t,Xt)σ (t,Xt , u(t,Xt)),(1.2)

where u is a classical solution of the PDE⎧⎨
⎩

ut + 1
2 trace(σσ ∗(t, x, u)uxx)

+ uxb(t, x, u) + f (t, x, u,uxσ (t, x, u)) = 0,

u(T , x) = g(x).

(1.3)

The main focus in these approaches is on the numerical solution of the PDE (1.3);
see Douglas, Ma and Protter [11], Milstein and Tretyakov [20] and Ma, Shen
and Zhao [18]. Since the PDE approach requires existence of a classical solution
to (1.3), there is typically need for some smoothness, boundedness and regular-
ity conditions, such as uniform ellipticity of the differential operator. For low-
dimensional problems, under such regularity conditions, the PDE approach may
generally be regarded as superior to Monte Carlo simulation concerning accuracy
and speed. However, solving (1.3) numerically by standard PDE techniques be-
comes more difficult, if not impossible, with increasing spatial dimension. Hence,
it seems necessary to tackle the FBSDE (1.1) directly by probabilistic means in
order to solve (1.1) numerically in situations which are beyond the limitations of
the PDE approach.

A natural time discretization of equation (1.1) is⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Xn
0 � x,

Xn
i+1 � Xn

i + b(ti,X
n
i , Y n

i )h + σ(ti,X
n
i , Y n

i )�Wi+1,

Y n
n � g(Xn

n),

Ẑn
i � 1

h
Eti {Yn

i+1�Wi+1},
Y n

i � Eti {Yn
i+1 + f (ti,X

n
i , Y n

i+1, Ẑ
n
i )h},

(1.4)

where h � T
n

and ti � ih, i = 0,1, . . . , n, and �Wi+1 � Wti+1 − Wti . Here, of
course, Eti denotes the conditional expectation E{·|Fti }. This time discretization
was investigated in detail by Zhang [25] for decoupled FBSDEs. Note that Z in
(1.2) and Ẑn in (1.4) may be considered analogous to each other. Indeed, the ex-
pression for Z can be rewritten as the Malliavin derivative DtYt of Y and, applying
integration by parts under the conditional expectation,

Ẑn
i = 1

h
Eti

{∫ ti+1

ti

DtY
n
ti+1

dt

}

is a natural discretization of the Malliavin derivative of Yn. Concerning the itera-
tion (1.4), it is crucial to notice that X is discretized forwardly and Y is discretized
backwardly. Hence, (1.4) is by no means an explicit discretization in the present
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situation due to the coupling and therefore cannot be implemented directly. Note,
however, that one can rewrite

Yn
i = un

i (X
n
i ), Ẑn

i = vn
i (Xn

i ),(1.5)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

un
n(x) � g(x),

X
n,i,x
i+1 � x + b(ti, x, un

i (x))h + σ(ti, x, un
i (x))�Wi+1,

Y
n,i,x
i+1 � un

i+1(X
n,i,x
i+1 ),

vn
i (x) � 1

h
E{Yn,i,x

i+1 �Wi+1},
un

i (x) � E{Yn,i,x
i+1 + f (ti, x, Y

n,i,x
i+1 , vn

i (x))h}.

(1.6)

Equation (1.6) is still implicit in un
i , but truly backward in time. Combined with

a local updating technique, it serves as starting point for the probabilistic scheme
in Delarue and Menozzi [10]. This type of scheme requires, however, apart from
estimating the expectations, a discretization of the state space. Such space dis-
cretization may again become prohibitive, when the dimension increases.

We, hence, propose to combine the time discretization (1.4) with an iterative
scheme. It is known from results by Antonelli [1] and Pardoux and Tang [22]
that, under weak coupling or monotonicity conditions, (1.1) has a unique solution
(X,Y,Z) which can be constructed via a Picard iteration

⎧⎪⎪⎨
⎪⎪⎩

X̌m
t = x +

∫ t

0
b(s, X̌m

s , Y̌ m−1
s ) ds +

∫ t

0
σ(s, X̌m

s , Y̌ m−1
s ) dWs,

Y̌m
t = g(X̌m

T ) +
∫ T

t
f (s, X̌m

s , Y̌ m
s , Žm

s ) ds −
∫ T

t
Žm

s dWs,

(1.7)

starting at Y̌ 0 = 0. The drawback of (1.7) is that the dimension of the underlying
Markovian process increases with the number of iterations m. Precisely, one can
easily see that Y̌ 1 is a function of X̌1 and, hence, the right-hand side of the SDE
for X̌2 depends on X̌1 (through Y̌ 1) and X̌2. Proceeding this way, one observes
that X̌m generally is not Markovian, but only the extended system (X̌1, . . . , X̌m)

is. Consequently, Y̌ m
t is a function ǔm of time and (X̌1, . . . , X̌m), and therefore, the

computational effort to estimate ǔm rapidly increases with the number of Picard
iterations. This renders a combination of (1.4) with a Picard iteration like (1.7),
which was recently suggested by Riviere [23] in theory, impractical from a nu-
merical point of view. The stochastic control approach in Cvitanić and Zhang [8],
which iterates over Z, faces the same kind of difficulty.

In this paper we introduce an alternative iteration in a way that the dimension
of the underlying Markovian process does not change in the number of iterations.
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It reads, in discretized form, u
n,0
i (x) = 0, and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X
n,m
0 � x,

X
n,m
i+1 � X

n,m
i + b(ti,X

n,m
i , u

n,m−1
i (X

n,m
i ))h

+ σ(ti,X
n,m
i , u

n,m−1
i (X

n,m
i ))�Wi+1,

Y n,m
n � g(Xn,m

n ),

Ẑ
n,m
i � 1

h
Eti {Yn,m

i+1 �Wi+1},
Y

n,m
i � Eti {Yn,m

i+1 + f (ti,X
n,m
i , Y

n,m
i+1 , Ẑ

n,m
i )h},

u
n,m
i (X

n,m
i ) = Y

n,m
i .

(1.8)

The main advantage is that here Y
n,m
i is a function of time and X

n,m
i , but does

not depend on (X
n,μ
i , μ = 1, . . . ,m − 1). Establishing the convergence of this

new “Markovian” iteration turns out to be more involved than for the standard
Picard iteration, because controlling the Lipschitz constant and the linear growth
of u

n,m
i (x) uniformly in i, n,m becomes crucial. This is indeed the reason why we

cannot allow Z to couple in the forward SDE at the current state of our research.
We also indicate how this discretized Markovian iteration may be transformed

into a viable numerical scheme, replacing the conditional expectations by simula-
tion based least squares regression and estimating un,m this way. Such an estimator
was introduced by Carrière [6], Longstaff and Schwartz [16] and Clement, Lam-
berton and Protter [7] in the context of American options and is applied by Gobet,
Lemor and Warin [14] and Bender and Denk [3] for decoupled FBSDEs. Although
a convergence analysis for this estimator in the present context of a coupled FB-
SDE is beyond the scope of this paper, we illustrate by some examples with up to
10-dimensional state space that the proposed numerical algorithm works in prac-
tice.

The paper is organized as follows: In Section 2 we state the main results on
convergence of the discretized Markovian iteration. The proof is given in several
steps in Sections 3–5, where we establish the control of the Lipschitz constant,
of the linear growth and the convergence of un,m to un respectively. In Section 6
we investigate the error due to the time discretization. To the best of our knowl-
edge, our convergence theorem is the first of this type for coupled FBSDEs which
also holds for a degenerate diffusion coefficient σ . In Section 7 we spell out the
proposed numerical scheme and present some numerical examples in Section 8.

2. Notation and main results. The main results of this paper estimate the
error of the discretized Markovian iteration (1.8) as the number of time steps n

and the number of iterations m tend to infinity. Before we can state these results,
we need to fix some notation and discuss some assumptions. From now on we
suppose, in the theoretical part, that all processes are one-dimensional. This is
only to ease the notation and the attentive reader will easily see that all results hold
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true for the multi-dimensional case as well. The augmented filtration generated by
the Brownian motion is denoted by F = {Ft , 0 ≤ t ≤ T }.

The first assumption concerns the Lipschitz continuity and monotonicity of the
coefficients. It will be in force throughout the whole paper without further notice.
Denote

�x � x1 − x2, �y � y1 − y2, �z � z1 − z2.

ASSUMPTION 2.1. (i) There exist (possibly negative) constants kb, kf such
that

[b(t, x1, y) − b(t, x2, y)]�x ≤ kb|�x|2,
[f (t, x, y1, z) − f (t, x, y2, z)]�y ≤ kf |�y|2.

(ii) b,σ,f, g are uniformly Lipschitz continuous with respect to (x, y, z). In
particular, there are constants K , by , σx , σy , fx , fz and gx such that

|b(t, x1, y1) − b(t, x2, y2)|2 ≤ K|�x|2 + by |�y|2,
|σ(t, x1, y1) − σ(t, x2, y2)|2 ≤ σx |�x|2 + σy |�y|2,

|f (t, x1, y1, z1) − f (t, x2, y2, z2)|2 ≤ fx |�x|2 + K|�y|2 + fz|�z|2,
|g(x1) − g(x2)|2 ≤ gx |�x|2.

(iii) b(t,0,0), σ(t,0,0), f (t,0,0,0) are bounded. In particular, there are con-
stants b0, σ0, f0 and g0 such that

|b(t, x, y)|2 ≤ b0 + K|x|2 + by |y|2,
|σ(t, x, y)|2 ≤ σ0 + σx |x|2 + σy |y|2,

|f (t, x, y, z)|2 ≤ f0 + fx |x|2 + K|y|2 + fz|z|2,
|g(x)|2 ≤ g0 + gx |x|2.

We emphasize that here by et al. are constants, not partial derivatives. Indeed,
we will not assume any differentiability conditions throughout this paper. For con-
venience, we also suppose that K is an upper bound for all the constants above.

For results concerning the error due to the time discretization, we require the
following assumption.

ASSUMPTION 2.2. The coefficients (b, σ, f ) are uniformly Hölder- 1
2 contin-

uous with respect to t .

If Assumption 2.2 is in force, we use the same constant K to denote an upper
bound of the square of the Hölder constants.

To ensure that a solution of (1.1) exists and the iteration converges, we further
impose conditions which guarantee that we are in one of the following five cases:
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1. Small time duration, that is, T is small.
2. Weak coupling of Y into the forward SDE, that is, by and σy are small. In

particular, if by = σy = 0, then the forward equation in (1.1) does not depend
on the backward one and, thus, (1.1) is decoupled.

3. Weak coupling of X into the backward SDE, that is, fx and gx are small. In
particular, if fx = gx = 0, then the backward equation in (1.1) does not depend
on the forward one and, thus, (1.1) is also decoupled. In fact, in this case Z = 0
and (1.1) reduces to a decoupled system of a forward SDE and an ODE.

4. f is strongly decreasing in y, that is, kf is very negative.
5. b is strongly decreasing in x, that is, kb is very negative.

The above conditions will be made precise later.

REMARK 2.1. We emphasize that Assumptions 2.1 and 2.2 alone are not suf-
ficient to guarantee existence of a solution to the FBSDE (1.1). For instance, the
one-dimensional linear FBSDE,

dXt = Ytdt, dYt = −Xt dt + Zt dWt, 0 ≤ t ≤ 3π

4
,

X0 = x �= 0, Y3π/4 = −X3π/4,

does not admit a solution; see Ma and Yong [19].

We next present two examples from finance, in which we expect one of the
conditions 1–5 to hold. For more details on both examples, we refer to Ma and
Yong [19], Chapters 8.3 and 8.4.

EXAMPLE 2.1. (i) Consol rate models: In interest rate modeling the term
structure can be determined by a so-called short rate r ; see, for example, Brigo
and Mercurio [5]. This short rate may depend on a long rate Y−1 (also called con-
sol rate), which in turn is influenced by the short rate via the relation

Yt = Et

{∫ T

t
exp

(
−

∫ s

t
ru du

)
ds

}
.

This problem can be cast into the FBSDE framework as

drt = b(t, rt , Yt ) dt + σ(t, rt , Yt ) dWt ,

dYt = (rtYt − 1) dt + Zt dWt,

r0 = R, YT = 0.

In generalization of the Hull–White model [15] one can choose

b(t, r, y) = κ
(
θ(t, y) − r

)
, σ (t, r, y) = η(t, y) > 0.
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Here the drift b contains a mean reverting force κ > 0, which pushes the short rate
to a level which may depend on the long rate. The mean reverting force implies
that b is monotonically decreasing in r , and so we expect condition 5 to hold.

(ii) Stock coupled with an option: In this example the forward SDE describes a
system of stock prices, and the backward SDE describes the price of an option on
the stocks, leading in a complete market to the FBSDE

dSt = b(t, Yt )St dt + σ(t, Yt )St dWt ,

dYt = (
rYt + Ztθ(t, Yt )

)
dt + Zt dWt,

S0 = s, YT = g(ST ),

where r denotes the riskless interest rate, θ the premium of risk, and the drift b

and volatility σ of the stocks are influenced by the price Y of an option on S with
pay-off function g. As the drift and the volatility of a stock fluctuate only slightly,
we can expect that Y weakly couples into the forward part.

Generically, we will derive the following theorems. The first theorem concerns
the convergence of the iteration as m tends to infinity.

THEOREM 2.1. Under Assumption 2.1, let one of the conditions 1–5 hold true.
Then, for sufficiently small h, (1.6) has an “essentially” unique solution un with
linear growth and there are constants C > 0 and 0 < c < 1 such that

max
0≤i≤n

|un,m
i (x) − un

i (x)|2 ≤ C(|x|2 + m)cm,

where un,m is given by (1.8).

We will see from the proof that the constant c, which determines the rate of
convergence, depends on the conditions 1–5. Roughly speaking, the stronger the
monotonicity (resp. the weaker the coupling, the smaller the time horizon), the
smaller one can choose c and, hence, the faster the iteration converges.

Concerning the error due to the time discretization, we obtain the following:

THEOREM 2.2. Suppose Assumptions 2.1, 2.2 hold true, and one of the con-
ditions 1–5 is in force. Then equation (1.3) admits a viscosity solution u(t, x) with
linear growth and there is a constant C > 0 such that, for sufficiently small h,

max
0≤i≤n

|un
i (x) − u(ti, x)|2 ≤ C(1 + |x|2)h.

Note that the forward part in (1.6) is discretized by an Euler scheme. Hence, the
stated convergence of order 1/2 for the time discretization is the best rate one can
hope for.

Combining these two theorems, one can derive the following with a little extra
effort:



150 C. BENDER AND J. ZHANG

THEOREM 2.3. Under the assumptions of Theorem 2.2 FBSDE (1.1) has a
unique solution (X,Y,Z) and there are constants C > 0 and 0 < c < 1 such that,
for sufficiently small h,

sup
1≤i≤n

E

{
sup

t∈[ti−1,ti ]
[|Xt − X

n,m
i−1|2 + |Yt − Y

n,m
i−1 |2]

}

+
n∑

i=1

E

{∫ ti

ti−1

|Zt − Ẑ
n,m
i−1 |2 dt

}

≤ C(1 + |x|2)[mcm + h].

These generic results will be made precise in Theorems 5.1, 6.3 and 6.5 below.
We emphasize that none of the above theorems requires nondegeneracy of σ and,
in principle, X and W can have different dimensions. Moreover, we do not suppose
any smoothness or boundedness conditions. However, we also underline again that
FBSDE (1.1) does not allow coupling through the control part Z.

The proof of convergence for the Markovian iteration, which will be given in
Sections 3–5, is rather technical. We therefore briefly outline its proof.

Strategy of proof. In a standard Picard iteration, like (1.7), one estimates
|Y̌ m+1 − Y̌ m| in terms of |X̌m+1 − X̌m| and then |X̌m+1 − X̌m| in terms of
|Y̌ m − Y̌ m−1|. However, applying similar techniques to (1.8) yields only esti-
mates of |Xn,m+1 − Xn,m| in terms of |un,m(Xn,m+1) − un,m−1(Xn,m)|. Since
Yn,m = un,m(Xn,m), it seems unavoidable to control the Lipschitz constant of un,m

to obtain estimates in terms of |Yn,m − Yn,m−1|.
More precisely, suppose, for the moment, that the step size n is fixed, and

u
n,m
i (x) are bounded functions for all m and i. Then one can derive estimates of

|Xn,m+1
i − X

n,m
i | in terms of supx |un,m

i (x) − u
n,m−1
i (x)| and a uniform (in time)

Lipschitz constant L(un,m) of un,m by applying Lemma 3.2 below. Combining
this with estimates for supx |un,m+1

i (x) − u
n,m
i (x)| in terms of |Xn,m+1

i − X
n,m
i |

(derived from Lemma 3.3 below), one obtains

sup
x

|un,m+1
i (x) − u

n,m
i (x)|2

(2.1)
≤ c(L(un,m)) sup

x
|un,m

i (x) − u
n,m−1
i (x)|2

for some constant c(L(un,m)) which depends on the coefficients of the equation
and the Lipschitz constant of un,m. Now we wish to iterate the above estimate. To
this end, we need a uniform control L of L(un,m) and conditions on the coefficients
which ensure that c(L) < 1. Section 3 is devoted to deriving such uniform control
of the Lipschitz constants.

In general, the conditions imposed in this paper do not guarantee that un,m is
bounded, and therefore, the use of the sup-norm becomes meaningless. However,
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one can easily see that un,m is of linear growth. Given linear growing functions ϕi ,
there are constants G(ϕ) and H(ϕ) such that

|ϕi(x)|2 ≤ G(ϕ)|x|2 + H(ϕ) ∀(i, x).

We consider linearly growing functions ϕ1 and ϕ2 close to each other, if we
can choose G(ϕ1 − ϕ2) and H(ϕ1 − ϕ2) small. Following similar, but slightly
more intricate considerations than the ones leading to (2.1), we can estimate
G(un,m+1 − un,m) and H(un,m+1 − un,m) in terms of G(un,m − un,m−1) and
H(un,m − un,m−1); see Theorem 5.2 below. However, the constant, which re-
places the above c(L(un,m)) in these estimates, depends on the Lipschitz constant
of un,m and additionally on the linear growth of un,m−1 through G(un,m−1) and
H(un,m−1). Hence, for the general case a uniform control for the linear growth of
un,m is required as well. Such control will be given in Section 4. Then, iterating
the above estimates yields the convergence of the Markovian iteration under each
of the conditions 1–5, as will be demonstrated in Section 5.

In order to study the behavior of the functions un,m, as outlined above, we
introduce an important operator Fn for each n. For any measurable functions
ϕ = {ϕi}0≤i≤n−1, define ψ and 
 as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩


n(x) � g(x),

X
ϕ,i,x
i+1 � x + b(ti, x, ϕi(x))h + σ(ti, x, ϕi(x))�Wi+1,

Y
ϕ,i,x
i+1 � 
i+1(X

ϕ,i,x
i+1 ),

ψi(x) � 1

h
E{Yϕ,i,x

i+1 �Wi+1},

i(x) � E{Yϕ,i,x

i+1 + f (ti, x, Y
ϕ,i,x
i+1 ,ψi(x))h}.

(2.2)

We finally set Fn(ϕ) � 
. It is then obvious that un,m = Fn(u
n,m−1), and Fn(u

n) =
un if (1.6) has a solution un. We also point out that Yn,m, given by (1.8), can be
expressed in the form

Y
n,m
i = Y

n,m
i+1 + f (ti,X

n,m
i , Y

n,m
i+1 , Ẑ

n,m
i )h −

∫ ti+1

ti

Z
n,m
t dWt ,(2.3)

thanks to the martingale representation theorem. The analogous expression holds
for Yn defined in (1.4).

3. Lipschitz continuity. In this section we obtain a Lipschitz constant of
u

n,m
i (x), uniformly in (i, n,m). To this end, we first investigate the Lipschitz con-

tinuity of Fn(ϕ). Given Lipschitz continuous ϕ, let L(ϕi) denote the square of a
Lipschitz constant of ϕi , and L(ϕ) � supi L(ϕi). Denote

L0 � [by + σy][gx + fxT ]T e[by+σy ][gx+fxT ]T +[2kb+2kf +2+σx+fz]T ,
(3.1)

L1 � [gx + fxT ][e[by+σy ][gx+fxT ]T +[2kb+2kf +2+σx+fz]T +1 ∨ 1
]
.

Our aim is to derive the following theorem:
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THEOREM 3.1. If

L0 < e−1,(3.2)

then for any L̄ > L1 and for h small enough, we have

L(un,m) ≤ L̄ ∀m.

Notice that (3.2) holds true in all five cases of Section 2.
We prepare the proof of Theorem 3.1 with two lemmas. For constants λj >

0, j = 1,2,3, denote

A1 � 2kb + σx + 1 + Kh,

A2 � by + σy + Kh,

A3 � λ2 + λ3 + (1 + λ−1
2 )Kh,(3.3)

A4 � 2kf + 1 + λ−1
3 fz + (1 + λ−1

2 )Kh,

A5 � fx + (1 + λ−1
2 )Kh.

LEMMA 3.2. Fix i and for l = 1,2, let

Xl
i+1 � Xl

i + b(ti,X
l
i, ϕ

l(Xl
i))h + σ(ti,X

l
i, ϕ

l(Xl
i))�Wi+1,

where Xl
i is Fti -measurable. Assume ϕ1 is uniformly Lipschitz continuous. Then

for any λ1 > 0,

Eti {|X1
i+1 − X2

i+1|2} ≤ [1 + A1h + (1 + λ1)A2hL(ϕ1)]|X1
i − X2

i |2

+ (1 + λ−1
1 )A2h|ϕ1(X2

i ) − ϕ2(X2
i )|2.

This lemma can be easily proved by some standard estimates and its proof is
therefore omitted.

LEMMA 3.3. Fix i and for l = 1,2, let

Y l
i = Y l

i+1 + f (ti,X
l
i, Y

l
i+1, Ẑ

l
i )h −

∫ ti+1

ti

Zl
t dWt ,

where

Ẑl
i � 1

h
Eti {Y l

i+1�Wi+1}.
Then for any λ2, λ3 > 0,

|�Yi |2 + (1 − A3)h|�Ẑi |2 ≤ (1 + A4h)Eti {|�Yi+1|2} + A5h|�Xi |2,
where

�X � X1 − X2, �Y � Y 1 − Y 2, �Ẑ � Ẑ1 − Ẑ2.
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PROOF. Denote

�Z � Z1 − Z2, �f � f (ti,X
1
i , Y

1
i+1, Ẑ

1
i ) − f (ti,X

2
i , Y

2
i+1, Ẑ

2
i ).

Then

�Yi +
∫ ti+1

ti

�Zt dWt = �Yi+1 + �f h.(3.4)

Squaring both sides and taking conditional expectation, we have

|�Yi |2 + Eti

{∫ ti+1

ti

|�Zt |2dt

}
(3.5)

= Eti {|�Yi+1|2 + 2�Yi+1�f h + |�f |2h2}.
Note that

Eti

{∫ ti+1

ti

|�Zt |2 dt

}
≥ 1

h

∣∣∣∣Eti

{∫ ti+1

ti

�Zt dt

}∣∣∣∣
2

.

By (3.4), we have

Eti

{∫ ti+1

ti

�Zt dt

}
= Eti

{∫ ti+1

ti

�Zt dWt �Wi+1

}

= Eti {[�Yi+1 + �f h]�Wi+1}
= h[�Ẑi + Eti {�f �Wi+1}].

Hence,

Eti

{∫ ti+1

ti

|�Zt |2 dt

}

≥ h|�Ẑi |2 + 2h�ẐiEti {�f �Wi+1}
≥ (1 − λ2)h|�Ẑi |2 − λ−1

2 h|Eti {�f �Wi+1}|2

≥ (1 − λ2)h|�Ẑi |2 − λ−1
2 h2Eti {|�f |2}.

Thus, (3.5) implies that

|�Yi |2 + (1 − λ2)h|�Ẑi |2
(3.6)

≤ Eti {|�Yi+1|2 + 2�Yi+1�f h + (1 + λ−1
2 )h2|�f |2}.

By Assumption 2.1(ii), we have

|�f |2 ≤ K[|�Xi |2 + |�Yi+1|2 + |�Ẑi |2].(3.7)

Moreover,

�f = �f1 + �f2 + �f3,
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where

�f1 � f (ti,X
1
i , Y

1
i+1, Ẑ

1
i ) − f (ti,X

2
i , Y

1
i+1, Ẑ

1
i ),

�f2 � f (ti,X
2
i , Y

1
i+1, Ẑ

1
i ) − f (ti,X

2
i , Y

2
i+1, Ẑ

1
i ),

�f3 � f (ti,X
2
i , Y

2
i+1, Ẑ

1
i ) − f (ti,X

2
i , Y

2
i+1, Ẑ

2
i ).

Then by Assumption 2.1(i) and (ii), we get

2�Yi+1�f = 2�Yi+1�f1 + 2�Yi+1�f2 + 2�Yi+1�f3

≤ |�Yi+1|2 + |�f1|2 + 2kf |�Yi+1|2
+ λ−1

3 fz|�Yi+1|2 + λ3f
−1
z |�f3|2(3.8)

≤ |�Yi+1|2 + fx |�Xi |2 + 2kf |�Yi+1|2
+ λ−1

3 fz|�Yi+1|2 + λ3|�Ẑi |2.
Plugging (3.7) and (3.8) into (3.6), the lemma is proved. �

With these lemmas at hand, we can study the Lipschitz continuity of Fn(ϕ)

given Lipschitz continuous ϕ.

THEOREM 3.4. For any Lipschitz continuous ϕ, we have

L(Fn(ϕ)) ≤ [gx +A5T ][exp
([A1 +A4 +A1A4h]T +[A2 +A2A4h]T L(ϕ)

)∨ 1
]
,

where λ1 = 0 and λ2, λ3 > 0 are chosen such that

A3 ≤ 1.(3.9)

PROOF. Recall (2.2). Fix i and x1, x2. Denote

�x � x1 − x2, �X � Xϕ,i,x1 − Xϕ,i,x2, �Y � Yϕ,i,x1 − Yϕ,i,x2,

�
i � 
i(x1) − 
i(x2), �ψi � ψi(x1) − ψi(x2).

We apply Lemmas 3.2 and 3.3, setting λ1 = 0, and obtain

E{|�Xi+1|2} ≤ [1 + A1h + A2hL(ϕ)]|�x|2,
|�
i |2 + (1 − A3)h|�ψi |2 ≤ (1 + A4h)E{|�Yi+1|2} + A5h|�x|2.

By (3.9), we have

|�
i |2 ≤ [1 + A4h]L(
i+1)E{|�Xi+1|2} + A5h|�x|2
≤ [1 + A4h][1 + A1h + A2hL(ϕ)]L(
i+1)|�x|2 + A5h|�x|2.
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Thus,

L(
i) ≤ [1 + A4h][1 + A1h + A2hL(ϕ)]L(
i+1) + A5h
(3.10)

� [1 + Ãh]L(
i+1) + A5h ≤ [1 + Ã+h]L(
i+1) + A5h,

where Ã+ � Ã ∨ 0 and

Ã � A1 + A4 + A1A4h + [A2 + A2A4h]L(ϕ).(3.11)

Note that L(
n) = gx . Hence, we can apply the discrete Gronwall inequality to
(3.10) and get

L(
) ≤ eÃ+T [gx + A5T ] = [gx + A5T ][eÃT ∨ 1],
which, combined with (3.11), yields the assertion. �

We are now in position to give the proof of Theorem 3.1.

PROOF OF THEOREM 3.1. First, by induction, one can easily show that Lm �
L(un,m) < ∞ for each (n,m). Due to Theorem 3.4, we have

Lm ≤ [gx + A5T ][exp([A1 + A4 + A1A4h]T + [A2 + A2A4h]T Lm−1) ∨ 1
]
,

for λ1 = 0 and any λ2, λ3 > 0 satisfying (3.9).
Introducing

L̃m � [A2 + A2A4h]T Lm,

we get

L̃m ≤ [A2 + A2A4h][gx + A5T ]T [
e[A1+A4+A1A4h]T eL̃m−1 ∨ 1

]
(3.12)

≤ [A2 + A2A4h][gx + A5T ]T [
e[A1+A4+A1A4h]T eL̃m−1 + 1

]
.

Denote

L0(λ,h) � [A2 + A2A4h][gx + A5T ]T e[A2+A2A4h][gx+A5T ]T +[A1+A4+A1A4h]T .

Obviously, L̃0 = 0. If

L0(λ,h) ≤ e−1,(3.13)

then, by induction, one can easily show that

L̃m ≤ [A2 + A2A4h][gx + A5T ]T + 1 ∀m.

We plug this into the right-hand side of (3.12) to obtain

L̃m ≤ [A2 + A2A4h][gx + A5T ]T [
e[A1+A4+A1A4h]T +[A2+A2A4h][gx+A5T ]T +1 ∨ 1

]
.
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Thus,

Lm ≤ [gx + A5T ][e[A1+A4+A1A4h]T +[A2+A2A4h][gx+A5T ]T +1 ∨ 1
]

(3.14)
� L1(λ,h).

So we want to choose λ2, λ3 and h which satisfy (3.9) and minimize L0(λ,h).
Recall again that λ1 = 0. In dependence of h we set, for small h,

λ2(h) �
√

h, λ3(h) � 1 − [1 + K]√h − Kh.(3.15)

Then A3 = 1 and

lim
h↓0

L0(λ(h), h) = L0, lim
h↓0

L1(λ(h), h) = L1.

Suppose that (3.2) holds true. Then for any L̄ > L1, we obtain L0(λ(h), h) ≤ e−1

and L1(λ(h), h) ≤ L̄, provided h is small enough. In view of (3.14), the theorem
is proved. �

4. Linear growth. This section is devoted to studying the linear growth of the
functions u

n,m
i (x). Given linearly growing functions ϕi , assume

|ϕi(x)|2 ≤ G(ϕi)|x|2 + H(ϕi) ∀x,

and let

G(ϕ) � sup
i

G(ϕi), H(ϕ) � sup
i

H(ϕi).

To state the main result of this section, we first introduce the functions

�0(x) � ex − 1

x
, �1(x, y) � sup

0<θ<1
θeθx�0(θy) ∀x, y ∈ R;(4.1)

and for G > 0,

c0(G) � T
[
gx�1([2kf + 1 + fz]T , [2kb + 1 + σx]T + [by + σy]GT )

+ fxT �0([2kf + 1 + fz]T )�0([2kb + 1 + σx]T + [by + σy]GT )
];

c1(G) � [by + σy]c0(G);
L2(G) � e[2kf +1+fz]+T g0 + f0T �0([2kf + 1 + fz]T ) + [b0 + σ0]c0(G).

THEOREM 4.1. Assume (3.2) holds true and

c1(L1) < 1.(4.2)

For any Ḡ > L1, c1(L1) < c1 < 1, L2 > L2(L1), and for h small enough, we have

G(un,m) ≤ Ḡ, H(un,m) ≤ L2

1 − c1
∀m.
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Notice that

lim
x→−∞�0(x) = 0,

lim
x→−∞�1(x, y) = 0,(4.3)

lim
y→−∞�1(x, y) = 0.

Hence, (4.2) is satisfied in cases 1–5 of Section 2.
Again we start with some a-priori estimates whose proofs are fairly straightfor-

ward and hence omitted. Denote

B1 � b0 + σ0 + Kb0h,
(4.4)

B2 � f0 + Kf0h.

LEMMA 4.2. Assume

Xi+1 = Xi + b(ti,Xi, ϕ(Xi))h + σ(ti,Xi, ϕ(Xi))�Wi+1.

Then,

Eti {|Xi+1|2} ≤ [1 + A1h + A2hG(ϕ)]|Xi |2 + [B1 + A2H(ϕ)]h.

LEMMA 4.3. Assume

Yi = Yi+1 + f (ti,Xi, Yi+1, Ẑi)h −
∫ ti+1

ti

Zt dWt ,

where

Ẑi = 1

h
Eti {Yi+1�Wi+1}.

Then, for any λ2, λ3 > 0,

|Yi |2 + (1 − A3)h|Ẑi |2 ≤ [1 + A4h]Eti {|Yi+1|2} + A5h|Xi |2 + B2h.

To derive bounds for the linear growth of Fn(ϕ), we define discrete time ver-
sions of �0 and �1 by

�i
0(x) � (1 + xh)i − 1

x
,

(4.5)
�n

1 (x, y) � sup
0≤i≤n

(1 + xh)i�i
0(y)

and discrete time versions of c0(G), c1(G),L2(G) by

c0(λ,h,G) � gx�
n
1 (A4,A1 + A2G) + A5�

n
0 (A4)�

n
0 (A1 + A2G),

c1(λ,h,G) � A2c0(λ,h,G),(4.6)

L2(λ,h,G) � B1c0(λ,h,G) + [eA4T ∨ 1]g0 + B2�
n
0 (A4).
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THEOREM 4.4. For any linearly growing ϕ,

G(Fn(ϕ)) ≤ [gx + A5T ][e[A1+A4+A1A4h]T +[A2+A2A4h]T G(ϕ) ∨ 1
]
,(4.7)

H(Fn(ϕ)) ≤ c1(λ,h,G(ϕ))H(ϕ) + L2(λ,h,G(ϕ)),(4.8)

where λ2, λ3 > 0 are supposed to fulfill (3.9).

PROOF. Denote 
 � Fn(ϕ). Fix (i0, x) and define, for i = i0, . . . , n − 1,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xi0 � x,

Xi+1 � Xi + b(ti,Xi, ϕi(Xi))h + σ(ti,Xi, ϕi(Xi))�Wi+1,

Yn � g(Xn),

Ẑi � 1

h
Eti {Yi+1�Wi+1},

Yi � Yi+1 + f (ti,Xi, Yi+1, Ẑi)h −
∫ ti+1

ti

Zt dWt .

(4.9)

Obviously Yi0 = 
i0(x). We obtain from Lemma 4.2 that

E{|Xi+1|2} ≤ [1 + A1h + A2hG(ϕ)]E{|Xi |2} + [B1 + A2H(ϕ)]h.

Then

E{|Xi |2} ≤ [1 + A1h + A2hG(ϕ)]i−i0E{|Xi0 |2}

+ [B1 + A2H(ϕ)]h
i−1∑
j=i0

[1 + A1h + A2hG(ϕ)]j−i0

(4.10)
= [1 + A1h + A2hG(ϕ)]i−i0 |x|2

+ [B1 + A2H(ϕ)]�i−i0
0

(
A1 + A2G(ϕ)

)
.

Next, applying Lemma 4.3 and by (3.9), we have

E{|Yi |2} ≤ [1 + A4h]E{|Yi+1|2} + A5hE{|Xi |2} + B2h.

Note that

|Yn|2 ≤ g0 + gx |Xn|2.
Then

|
i0(x)|2 = |Yi0 |2 ≤ (1 + A4h)n−i0[g0 + gxE{|Xn|2}]

+ A5h

n−1∑
i=i0

(1 + A4h)i−i0E{|Xi |2} + B2�
n−i0
0 (A4).
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This, together with (4.10), implies

G(
i0) ≤ (1 + A4h)n−i0gx[1 + A1h + A2hG(ϕ)]n−i0

+ A5h

n−1∑
i=i0

(1 + A4h)i−i0[1 + A1h + A2hG(ϕ)]i−i0,

H(
i0) ≤ (1 + A4h)n−i0g0 + B2�
n−i0
0 (A4)

+ [B1 + A2H(ϕ)]
[
gx(1 + A4h)n−i0�

n−i0
0

(
A1 + A2G(ϕ)

)

+ A5h

n−1∑
i=i0

(1 + A4h)i−i0�
i−i0
0

(
A1 + A2G(ϕ)

)]
.

Note that, for 0 ≤ i ≤ n,

(1 + xh)i ≤ exT ∨ 1, �i
0(x) ≤ �n

0 (x),
(4.11)

(1 + xh)i�i
0(y) ≤ �n

1 (x, y).

Then

G(
i0) ≤ [gx + A5T ][e[A1+A4+A1A4h]T +[A2+A2A4h]T G(ϕ) ∨ 1
]
,

H(
i0) ≤ [eA4T ∨ 1]g0 + B2�
n
0 (A4) + c0(λ,h,G)[B1 + A2H(ϕ)].

Since the right-hand side does not depend on i0, the assertion is proved. �

After these preparations we give the proof of Theorem 4.1.

PROOF OF THEOREM 4.1. Denote Gm � G(un,m),Hm � H(un,m). Obvi-
ously, G0 = H0 = 0. We may now conclude from Theorem 4.4 that, under (3.9),

Gm ≤ [gx + A5T ][e[A1+A4+A1A4h]T +[A2+A2A4h]T Gm−1 ∨ 1
]
,(4.12)

Hm ≤ c1(λ,h,Gm−1)Hm−1 + L2(λ,h,Gm−1).(4.13)

We now choose λ3(h) and λ4(h) as in (3.15) for small h. Since (3.2) holds true,
for any Ḡ > L1, we can follow the same arguments as in Theorem 3.1 and get
G(un,m) ≤ Ḡ from (4.12). Note that

lim
n→∞�n

0 (x) = T �0(xT ), lim
n→∞�n

1 (x, y) = T �1(xT , yT ),

lim
h↓0

c1(λ(h),h,G) = c1(G), lim
h↓0

L2(λ(h),h,G) = L2(G).

For any c1, c1(L1) < c1 < 1, and L2, L2(L1) < L2, we can choose Ḡ > L1 such
that c1(Ḡ) < c1 and L2(Ḡ) < L2. Then, for sufficiently small h, it holds that
c1(λ(h), h, Ḡ) ≤ c1 and L2(λ(h), h, Ḡ) ≤ L2. Now, by (4.13), we get

Hm ≤ c1Hm−1 + L2,

which implies the result. �
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5. Convergence of the Markovian iteration. We now make the assumptions
of Theorem 2.1 precise and prove convergence of the Markovian iteration as the
number of iteration steps tends to infinity.

To this end, we first introduce

c2(λ1,L,G) �
[
e[2kb+1+σx+[by+σy ]G]T ∨ 1

]
(1 + λ−1

1 )[by + σy]T
× [

gx�1
([2kf + 1 + fz]T ,[

2kb + 1 + σx + (1 + λ1)[by + σy]L]
T

)
+ fxT �0([2kf + 1 + fz]T )

× �0
([

2kb + 1 + σx + (1 + λ1)[by + σy]L]
T

)];
c2(L,G) � inf

λ1>0
c2(λ1,L,G).

We will prove the following theorem:

THEOREM 5.1. Assume (3.2) and

c2(L1,L1) < 1.(5.1)

(i) For any L̄ > L1, Ḡ > L1,L2 > L2(L1), c1(L1) < c1 < 1, there exists a
solution un to (1.6) such that

L(un) ≤ L̄, G(un) ≤ Ḡ, H(un) ≤ H̄ � L2

1 − c1
,(5.2)

if h is small enough.
(ii) For any c2(L1,L1) < c2 < 1 and for h small enough,

max
0≤i≤n

|un,m
i (x) − un

i (x)|2

≤ 3Ḡ

(1 − √
c2)2 |x|2cm

2(5.3)

+ 3

(1 − √
c2)4

[
H̄

m
+ [b0 + σ0 + (by + σy)H̄ ]T Ḡ

]
mcm

2 .

(iii) Fix G > 0 and suppose ũn is another solution to (1.6) with linear growth
such that G(ũn) ≤ G. Then ũn = un, if h (depending on G) is small enough.

REMARK 5.1. (i) In view of (4.3), it is straightforward to see that (5.1) is also
satisfied in cases 1–5 of Section 2.

(ii) One can check directly that c1(L) ≤ c2(L,L), and thus, condition (5.1) im-
plies (4.2).
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Again we first study the operator Fn to prepare the proof of Theorem 5.1.

THEOREM 5.2. Assume ϕ1, ϕ2 have linear growth and ϕ1 is Lipschitz contin-
uous. Then, for any λ1 > 0,

G
(
Fn(ϕ

1) − Fn(ϕ
2)

)
≤ c2(λ1, h,L(ϕ1),G(ϕ2))G(ϕ1 − ϕ2),

H
(
Fn(ϕ

1) − Fn(ϕ
2)

)
≤ c2(λ1, h,L(ϕ1),G(ϕ2))H(ϕ1 − ϕ2)

+ c2(λ1, h,L(ϕ1),G(ϕ2))[B1 + A2H(ϕ2)]T G(ϕ1 − ϕ2),

where λ2, λ3 are chosen such that (3.9) holds, and

c2(λ1, h,L,G) �
[
e[A1+A2G]T ∨ 1

]
(1 + λ−1

1 )A2

× [
gx�

n
1
(
A4,A1 + (1 + λ1)A2L

)
(5.4)

+ A5�
n
0 (A4)�

n
0
(
A1 + (1 + λ1)A2L

)]
.

PROOF. For l = 1,2, denote 
l � Fn(ϕ
l). Fix (i0, x) and define (Xl, Y l, Ẑl)

analogously to (4.9). Then obviously Y l
i0

= 
l
i0
(x). Denote L � L(ϕ1), and

�X � X1 − X2, �Y � Y 1 − Y 2, �Ẑ � Ẑ1 − Ẑ1,

�ϕ � ϕ1 − ϕ2, �
 � 
1 − 
2.

Application of Lemma 3.2 yields

E{|�Xi+1|2}
(5.5)

≤ E{[1 + A1h + (1 + λ1)A2hL]|�Xi |2 + (1 + λ−1
1 )A2h|�ϕ(X2

i )|2}.
Note that

|�ϕ(X2
i )|2 ≤ G(�ϕ)|X2

i |2 + H(�ϕ).

By the first inequality in (4.10) and (4.11),

sup
i0≤i≤n

E{|X2
i |2} ≤ [|x|2 + [B1 + A2H(ϕ2)]T ][

e[A1+A2G(ϕ2)]T ∨ 1
]
� Ã.(5.6)

Then (5.5) implies

E{|�Xi+1|2} ≤ [1 + A1h + (1 + λ1)A2hL]E{|�Xi |2}
+ (1 + λ−1

1 )A2h[G(�ϕ)Ã + H(�ϕ)].
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Since �Xi0 = 0, we get

sup
i0≤i≤n

E{|�Xi |2}

≤ (1 + λ−1
1 )A2h[G(�ϕ)Ã + H(�ϕ)]

(5.7)

×
n−1∑
i=i0

[1 + A1h + (1 + λ1)A2hL]i−i0

= (1 + λ−1
1 )A2[G(�ϕ)Ã + H(�ϕ)]�n−i0

0

(
A1 + (1 + λ1)A2L

)
.

Furthermore, we obtain from Lemma 3.3 and (3.9),

E{|�Yi |2} ≤ [1 + A4h]E{|�Yi+1|2} + A5hE{|�Xi |2}.
Hence, by (5.7) and (4.11),

|�
i0(x)|2 = |�Yi0 |2

≤ (1 + A4h)n−i0E{|�Yn|2} + A5�
n−i0
0 (A4) sup

i0≤i≤n

E{|�Xi |2}

≤ [(1 + A4h)n−i0gx + A5�
n−i0
0 (A4)] sup

i0≤i≤n

E{|�Xi |2}

≤ (1 + λ−1
1 )A2

[
gx(1 + A4h)n−i0�

n−i0
0

(
A1 + (1 + λ1)A2L

)
+ A5�

n−i0
0 (A4)�

n−i0
0

(
A1 + (1 + λ1)A2L

)]
× [G(�ϕ)Ã + H(�ϕ)]

≤ (1 + λ−1
1 )A2[G(�ϕ)Ã + H(�ϕ)]

× [
gx�

n
1
(
A4,A1 + (1 + λ1)A2L

)
+ A5�

n
0 (A4)�

n
0
(
A1 + (1 + λ1)A2L

)]
,

which, together with (5.6), implies the theorem. �

We can apply this theorem to estimate the distance between un,m and un,m−1.

THEOREM 5.3. Assume that L(un,m) ≤ L̄, G(un,m) ≤ Ḡ and H(un,m) ≤ H̄

for all m ∈ N and sufficiently small h. Moreover, assume

c2(L̄, Ḡ) < 1.

Then for any c2(L̄, Ḡ) < c2 < 1 and for h small enough,

G(un,m+1 − un,m) ≤ Ḡcm
2 ;(5.8)

H(un,m+1 − un,m) ≤ [
H̄ + [(b0 + σ0) + (by + σy)H̄ ]T Ḡm

]
cm

2 .(5.9)
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PROOF. Choose λ2, λ3 depending on h as in (3.15). Note that with this choice

lim
h→0

�n
1 (x, y) = T �1(xT , yT ), lim

h→0
c2(λ1, h,L,G) = c2(λ1,L,G).

Hence, we may find an appropriate λ1 such that, for h small enough,

c2(λ1, h, L̄, Ḡ) ≤ c2,

c2(λ1, h, L̄, Ḡ)[B1 + A2H̄ ] ≤ c2
[[b0 + σ0] + [by + σy]H̄ ]

.

Denote

�un,m � un,m − un,m−1.

Applying Theorem 5.2, we get, for small h,

G(�un,m+1) ≤ c2G(�un,m),(5.10)

H(�un,m+1) ≤ c2H(�un,m) + c2
[
b0 + σ0 + [by + σy]H̄ ]

T G(�un,m).(5.11)

Note that

G(�un,1) = G(un,1) ≤ Ḡ,

H(�un,1) = H(un,1) ≤ H̄ .

By (5.10), we get (5.8). Moreover, together with (5.8), (5.11) implies (5.9) imme-
diately. The proof is complete now. �

Theorem 5.1 can now be proved by iterating the above theorem.

PROOF OF THEOREM 5.1. Assume Ḡ, L̄, L2, c1, c2 satisfy the conditions
specified in the theorem. Without loss of generality, we assume c2(L̄, Ḡ) < c2.
Recall that (5.1) implies (4.2). Hence, by Theorems 3.1 and 4.1, we get, for h

small enough,

L(un,m) ≤ L̄, G(un,m) ≤ Ḡ, H(un,m) ≤ H̄ .

Hence, (i) will follow directly from (ii).
To prove (ii), we denote

L̃ �
[[b0 + σ0] + [by + σy]H̄ ]

T Ḡ.

Applying Theorem 5.3, we get

|un,m+1
i (x) − u

n,m
i (x)|2 ≤ [Ḡ|x|2 + H̄ + L̃m]cm

2 .

Then

|un,m+1
i (x) − u

n,m
i (x)| ≤ [√

Ḡ|x| +
√

H̄ +
√

L̃m
]
c
m/2
2 .
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Thus, for any m1 > m,

|un,m
i (x) − u

n,m1
i (x)| ≤

∞∑
j=m

[√
Ḡ|x| +

√
H̄ +

√
L̃

m
j

]
c
j/2
2

≤ [√
Ḡ|x| + H̄

] c
m/2
2

1 − √
c2

+
√

L̃

m

m(1 − √
c2) + √

c2

(1 − √
c2)2 c

m/2
2 .

Note that the right-hand side above converges to 0 as m → ∞. Then u
n,m
i (x) is a

Cauchy sequence and hence converges to some un
i (x). Moreover,

|un,m
i (x) − un

i (x)|2 ≤ 3[Ḡ|x|2 + H̄ + L̃m] cm
2

(1 − √
c2)4 ,

which leads to (5.3) and thus proves (ii).
It remains to prove (iii). For any G > 0, assume ũn is another solution to (1.6)

with linear growth such that G(ũn) ≤ G. Then Fn(ũ
n) = ũn. Note that ũn

n = g =
un

n. Assume ũn
i+1 = un

i+1. We now apply a local version of Theorem 5.2. That is,
we consider (2.2) only on the interval [ti , ti+1] with terminal condition 
i+1(x) �
un

i+1(x) (instead of on [0, T ] with terminal condition g(x)). We note that in this
case there is only one time subinterval. One can check directly that

�1
0(x) = h, �1

1(x, y) = (1 + xh)h.

Then (5.4) becomes

c̃2(h) �
[
e[A1+A2G]h ∨ 1

]
(1 + λ−1

1 )A2[L̄(1 + A4h)h + A5h
2].

Set ϕ1 � un,ϕ2 � ũn. We note that, for given ϕ, G(ϕ) and H(ϕ) are not unique.
So, in general, Theorem 5.2 does not lead to

G(un
i − ũn

i ) ≤ c̃2(h)G(un
i − ũn

i ),

H(un
i − ũn

i ) ≤ c̃2(h)H(un
i − ũn

i ) + c̃2(h)[B1 + A2H(ũn)]T G(un
i − ũn

i ).

To get around this difficulty, we use the definitions of G(ϕ),H(ϕ). Let G0,H0 be
some constants satisfying

|un
i (x) − ũn

i (x)|2 ≤ G0|x|2 + H0.

For ν = 1,2, . . . , denote

Gν � c̃2(h)Gν−1, Hν � c̃2(h)Hν−1 + c̃2(h)[B1 + A2H(ũn)]T Gν−1.

Now applying Theorem 5.2 repeatedly for ν = 1,2, . . . , we get

|un
i (x) − ũn

i (x)|2 ≤ Gν |x|2 + Hν ∀ν.(5.12)

Note that

Gν = G0c̃2(h)ν, Hν = H0c̃2(h)ν + [B1 + A2H(ũn)]T νc̃2(h)ν.
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For h small enough, we have c̃2(h) < 1. Then

lim
ν→∞Gν = lim

ν→∞Hν = 0.

Sending ν → ∞ in (5.12), we get ũn
i = un

i . Repeating the arguments backwardly,
we prove that ũn = un. �

6. Convergence of the time discretization. We now study the error due to
the time discretization. We first introduce a continuous time version of the operator
Fn. Suppose ϕ is a function on [0, T ] × R which is Lipschitz in the space variable
and let (Xϕ,r,x, Y ϕ,r,x,Zϕ,r,x) be the unique solution to the decoupled FBSDE
(0 ≤ r ≤ t ≤ T )⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

X
ϕ,r,x
t = x +

∫ t

r
b(s,Xϕ,r,x

s , ϕ(s,Xϕ,r,x
s )) ds

+
∫ t

r
σ (s,Xϕ,r,x

s , ϕ(s,Xϕ,r,x
s )) dWs,

Y
ϕ,r,x
t = g(X

ϕ,r,x
T ) +

∫ T

t
f (s,Xϕ,r,x

s , Y ϕ,r,x
s ,Zϕ,r,x

s ) ds −
∫ T

t
Zϕ,r,x

s dWs.

We then define 
(t, x) � Y
ϕ,t,x
t and F(ϕ) � 
. It is known from Pardoux and

Peng [21] that, under Assumption 2.2 and if ϕ is additionally continuous as a
function in time and space, 
 is a viscosity solution to the following semilinear
PDE:{


t + 1
2σ 2(t, x, ϕ)
xx + b(t, x,ϕ)
x + f (t, x,
,
xσ(t, x,ϕ)) = 0,


(T , x) = g(x).

We now define recursively ū0 � 0 and ūm � F(ūm−1). Then the following theorem
can be proved similarly to, actually more easily than, Theorem 5.1. A detailed
proof can be found in the appendix of the preprint version, which is available from
the authors upon request.

THEOREM 6.1. Assume (3.2) and (5.1) hold true.

(i) ūm converges to some function u uniformly on compacts.
(ii) |u(t, x1) − u(t, x2)|2 ≤ L1|x1 − x2|2; |u(t, x)|2 ≤ L1|x|2 + L2(L1)

1−c1(L1)
.

(iii) |u(t, x) − u(s, x)|2 ≤ C(1 + |x|2)|t − s| for some constant C.
(iv) F(u) = u. Moreover, if F(ũ) = ũ and ũ has linear growth, then ũ = u.
(v) Under Assumption 2.2, u is a viscosity solution to (1.3).

From now on we denote by C a generic constant which may depend on the
coefficients b,σ,f, g, but is independent of n,h and x. The value of C may vary
from line to line.
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We next consider the following decoupled FBSDE:⎧⎪⎪⎨
⎪⎪⎩

Xt = x +
∫ t

0
b(s,Xs, u(s,Xs)) ds +

∫ t

0
σ(s,Xs, u(s,Xs)) dWs,

Yt = g(XT ) +
∫ T

t
f (s,Xs,Ys,Zs) ds −

∫ T

t
Zs dWs,

(6.1)

and its time discretization:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

X̃n
0 � x,

X̃n
i+1 � X̃n

i + b(ti, X̃
n
i , u(ti, X̃

n
i ))h + σ(ti, X̃

n
i , u(ti, X̃

n
i ))�Wi+1,

Ỹ n
n � g(X̃n

n),

Z̃n
i � 1

h
Eti {Ỹ n

i+1�Wi+1},
Ỹ n

i � Eti {Ỹ n
i+1 + f (ti, X̃

n
i , Ỹ n

i+1, Z̃
n
i )h}.

(6.2)

Denote u0
i (x) � u(ti, x) and ũn � Fn(u

0). It is obvious that Ỹ n
i = ũn

i (X̃
n
i ). Note

again that (6.1) is decoupled. By Theorem 6.1, and applying nowadays standard
arguments for decoupled FBSDEs (see, e.g., Delarue [9] and Zhang [26] for (i),
and Zhang [25] and Bouchard and Touzi [4] for (ii)), we can derive the following
corollary. A detailed proof is again given in the appendix of the preprint version.

COROLLARY 6.2. Assume all the conditions in Theorem 6.1 hold true.

(i) FBSDE (1.1) has a unique solution (X,Y,Z), which also solves (6.1), and
it holds that Yt = u(t,Xt).

(ii) Moreover, we have the following estimates:

|ũn
i (x) − u(ti, x)|2 ≤ C(1 + |x|2)h,(6.3)

sup
1≤i≤n

E

{
sup

t∈[ti−1,ti ]
[|Xt − X̃n

i−1|2 + |Yt − Ỹ n
i−1|2]

}

+
n∑

i=1

E

{∫ ti

ti−1

|Zt − Z̃n
i−1|2dt

}
(6.4)

≤ C(1 + |x|2)h.

Applying the above decoupling relation, Yt = u(t,Xt), and the convergence
results for decoupled FBSDEs, stated in (6.3)–(6.4), we can establish the conver-
gence of un, as the time grid becomes finer.

THEOREM 6.3. Suppose Assumption 2.2 is in force, and (3.2) and (5.1) hold
true. Then

|un
i (x) − u(ti, x)|2 ≤ C[1 + |x|2]h.
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PROOF. For any L̄ > c1(L1) and Ḡ > c1(L1), when h is small, we have

L(un) ≤ L̄, G(un) ≤ Ḡ.

Moreover, we know from Theorem 6.1(ii) that

L(u0) ≤ L1, G(u0) ≤ L1, H(u0) ≤ H̄ � L2(L1)

1 − c1(L1)
.

Note that Fn(u
n) = un. Applying Theorem 5.2 on un and u0, we get

G(un − ũn) ≤ c2(λ1, h, L̄, Ḡ)G(un − u0),

H(un − ũn) ≤ c2(λ1, h, L̄, Ḡ)H(un − u0)

+ c2(λ1, h, L̄, Ḡ)[B1 + A2H̄ ]T G(un − u0).

For any ε > 0, we obtain, thanks to (6.3),

|un
i (x) − u0

i (x)|2 ≤ (1 + ε)|un
i (x) − ũn

i (x)|2 + Cε|ũn
i (x) − u(ti, x)|2

≤ (1 + ε)[G(un − ũn)|x|2 + H(un − ũn)] + Cε(1 + |x|2)h
≤ [(1 + ε)c2(λ1, h, L̄, Ḡ)G(un − u0) + Cεh]|x|2

+ (1 + ε)c2(λ1, h, L̄, Ḡ)

× [
H(un − u0) + [B1 + A2H̄ ]T G(un − u0)

] + Cεh.

Now for any c2(L1,L1) < c2 < 1, we can choose L̄, Ḡ and ε appropriately such
that, for h small enough,

(1 + ε)c2(λ1, h, L̄, Ḡ) ≤ c2.

Then we get

|un
i (x) − u0

i (x)|2 ≤ [c2G(un − u0) + Cεh]|x|2
(6.5)

+ c2H(un − u0) + CεG(un − u0) + Cεh.

We now follow the arguments in the proof of Theorem 5.1(iii). Fix some G0,H0
such that

|un
i (x) − u0

i (x)|2 ≤ G0|x|2 + H0.

For ν = 1,2, . . . , denote

Gν � c2Gν−1 + Cεh, Hν � c2Hν−1 + CεGν−1 + Cεh.

Then (6.5) implies that

|un
i (x) − u0

i (x)|2 ≤ Gν |x|2 + Hν ∀ν.(6.6)
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Note that

Gν = G0c
ν
2 + Cεh

1 − cν
2

1 − c2
,

Hν = H0c
ν
2 + CεG0νcν

2 + Cεh

1 − c2

[
1 − cν

2

1 − c2
− νcν

2

]
+ Cεh

1 − cν
2

1 − c2
.

Since c2 < 1, and sending ν → ∞ in (6.6), we get

|un
i (x) − u0

i (x)|2 ≤ Cεh

1 − c2
|x|2 + Cεh

(1 − c2)2 .

The proof is complete. �

As a direct consequence of Theorems 5.1 and 6.3, we have the following:

THEOREM 6.4. Under the assumptions of Theorem 6.3 we have, for any
c2(L1,L1) < c2 < 1 and for h small enough,

|un,m
i (x) − u(ti, x)|2 ≤ C(1 + |x|2)[mcm

2 + h].

We close the theoretical part of this paper with a precise version of the generic
Theorem 2.3.

THEOREM 6.5. Under the assumptions of Theorem 6.3 we have, for any
c2(L1,L1) < c2 < 1 and for h small enough,

sup
1≤i≤n

E

{
sup

t∈[ti−1,ti ]
[|Xt − X

n,m
i−1|2 + |Yt − Y

n,m
i−1 |2]

}

+
n∑

i=1

E

{∫ ti

ti−1

|Zt − Ẑ
n,m
i−1 |2 dt

}
≤ C(1 + |x|2)[mcm

2 + h].

PROOF. By (6.4), it suffices to prove

sup
0≤i≤n

E{|�Xi |2 + |�Yi |2} + h

n−1∑
i=0

E{|�Zi |2} ≤ C(1 + |x|2)[mcm
2 + h],(6.7)

where

�Xi � X̃n
i − X

n,m
i , �Yi � Ỹ n

i − Y
n,m
i , �Zi � Z̃n

i − Ẑ
n,m
i .

First, by Lemma 3.2 with λ1 = 1, we get

E{|�Xi+1|2} ≤ E{(1 + Ch)|�Xi |2 + Ch|u(ti,X
n,m
i ) − u

n,m
i (X

n,m
i )|2}

≤ (1 + Ch)E{|�Xi |2} + C(1 + |x|2)[mcm
2 + h]h.
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Since �X0 = 0, we have∑
0≤i≤n

E{|�Xi |2} ≤ C(1 + |x|2)[mcm
2 + h].

Next, choose λ2 = λ3 = 1
5 and h small enough so that A3 ≤ 1

2 . Applying
Lemma 3.3, we obtain

E
{|�Yi |2 + 1

2h|�Zi |2} ≤ E{(1 + Ch)|�Yi+1|2 + Ch|�Xi |2}.
Since

|�Yn|2 = |g(X̃n
n) − g(Xn,m

n )|2 ≤ C|�Xn|2,
we can easily get

sup
0≤i≤n

E{|�Yi |2} + h

n−1∑
i=0

E{|�Zi |2}

≤ C sup
0≤i≤n

E{|�Xi |2} ≤ C(1 + |x|2)[mcm
2 + h].

This proves (6.7) and hence the theorem. �

7. A numerical algorithm. We now briefly explain how the discretized
Markovian iteration above can be transformed into a numerical algorithm which is
viable also for high-dimensional problems. To this end, we replace the conditional
expectations by a simulation based least squares regression estimator, as was sug-
gested, for example, by Gobet, Lemor and Warin [14] and Bender and Denk [3]
in the context of decoupled FBSDEs. An alternative estimator based on Malliavin
calculus is discussed in Bouchard and Touzi [4] for decoupled FBSDEs. A quanti-
zation algorithm for reflected BSDEs is presented in Bally and Pagès [2].

For the reader’s convenience, we spell out our algorithm for the coupled case.
While a convergence analysis is out of the scope of the present paper, we will
illustrate the algorithm by some numerical examples in the next section.

We assume that the number of time steps n is fixed for the remainder of this
section. In the algorithm conditional expectations are first replaced by orthogonal
projections on K basis functions. Then the orthogonal projections are approxi-
mated by simulating � trajectories. Hence, the algorithm can be described for the
one-dimensional case iteratively as follows. It is straightforward how this extends
to the multi-dimensional case:

• Fix some x0. Set ū
n,0,K,�
i (x) � 0.

• Sample � independent copies of the time discretized Brownian motion Wλ
ti

, i =
0, . . . , n, λ = 1, . . . ,�, starting in 0 and denote the corresponding increments
by �Wλ

i .
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• Suppose ū
n,m−1,K,�
i (x) is already constructed. Let X̄

n,m,λ
0 � x0 and

X̄
n,m,λ
i+1 � X̄

n,m,λ
i + b(ti, X̄

n,m,λ
i , ū

n,m−1,K,�
i (X̄

n,m,λ
i ))h

+ σ(ti, X̄
n,m,λ
i , ū

n,m−1,K,�
i (X̄

n,m,λ
i ))�Wλ

i+1,

where—for notational convenience—we suppress the dependence of X̄
n,m,λ
i

on K through ūn,m−1,K,�. Note, X̄
n,m,λ0
i depends on all Brownian increments

�Wλ
i , i = 1, . . . , n, λ = 1, . . . ,�, through ū

n,m−1,K,�
i . While we expect that

this dependence will make a convergence analysis difficult, the examples below
indicate that the algorithm works without re-simulating the Brownian paths in
every iteration step.

• Choose a set of Lipschitz continuous basis functions

Bn,m,K
i � {ηn,m,k

i (x), k = 1, . . . ,K}
such that

{ηn,m,k
i (X̄

n,m,λ
i ), k = 1, . . . ,K}(7.1)

forms a subset of L2(�). From the construction below, it will become evident
that ū

n,m,K,�
i (x) inherits the Lipschitz continuity from the basis functions. This

feature seems to be important to ensure that the discretized forward equations
for X̄n,m+1,λ do not explode.

• Define, for i = n − 1, . . . ,1,

ūn,m,K,�
n (x) � g(x), v̄n,m,K,�

n (x) � 0,

Ȳ
n,m,K,λ
i+1 � ū

n,m,K,�
i+1 (X̄

n,m,λ
i+1 ),

v̄
n,m,K,�
i (x) � arg inf

{
1

�

�∑
λ=1

∣∣∣∣ 1

h
Ȳ

n,m,K,λ
i+1 �Wλ

i+1 − V (X̄
n,m,λ
i )

∣∣∣∣
2

;

V ∈ span(Bn,m,K
i )

}
,

Z̄
n,m,K,λ
i � v̄

n,m,K,�
i (X̄

n,m,λ
i ),

ū
n,m,K,�
i (x) � arg inf

{
1

�

�∑
λ=1

|f (ti, X̄
n,m,λ
i , Ȳ

n,m,K,λ
i+1 , Z̄

n,m,K,λ
i )h

+ Ȳ
n,m,K,λ
i+1 − U(X̄

n,m,λ
i )|2;

U ∈ span(Bn,m,K
i )

}
.

Note that the minimization problems are linear least squares problems, which
can be easily implemented.
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• Let

Ȳ
n,m,K,λ
1 � ū

n,m,K,�
1 (X̄

n,m,λ
1 ),

Z̄
n,m,K,λ
0 � 1

�

�∑
λ̄=1

1

h
Ȳ

n,m,K,λ̄
1 �Wλ̄

1 ,

Ȳ
n,m,K,λ
0 � 1

�

�∑
λ̄=1

Ȳ
n,m,K,λ̄
1 + f (0, x0, Ȳ

n,m,K,λ̄
1 , Z̄

n,m,K,λ̄
0 )h.

We expect that the thus constructed (X̄n,m,λ, Ȳ n,m,K,λ, Z̄n,m,K,λ) are “close” to
(Xn,m,λ, Y n,m,λ, Ẑn,m,λ), the solution of the discretized Markovian iteration (1.8)
with the Brownian motion W replaced by Wλ, if the basis functions are chosen
appropriately and the number � of simulated paths is sufficiently large. While an
analysis of the error by estimating the conditional expectations is left to future
research, the numerical examples in the next section support this conjecture.

8. Numerical examples. For the simulations, we consider the example
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xd,t = xd,0 +
∫ t

0
σYu dWd,u,

Yt =
D∑

d=1

sin(Xd,T ) +
∫ T

t
−rYu + 1

2e−3r(T −u)σ 2

(
D∑

d=1

sin(Xd,u)

)3

du

−
∫ T

t

D∑
d=1

Zd,u dWd,t ,

where Wd,t , d = 1, . . . ,D, is a D-dimensional Brownian motion and σ > 0, r ,
xd,0 are constants. Note that the corresponding differential operator degenerates at
y = 0.

By Itô’s formula, one can easily check that this FBSDE decouples via the rela-
tion

Yt = e−r(T −t)
D∑

d=1

sin(Xd,t ).(8.1)

Note that for small σ the weak coupling condition of Y into X is satisfied, while,
for large σ , the monotonicity condition of f can be fulfilled by choosing r large
enough.

In the simulations we replace conditional expectations by least squares regres-
sion as explained above with the “canonical” basis functions

1, xd, 1 ≤ d ≤ D, (−R) ∨ (xdxq) ∧ R, 1 ≤ d ≤ q ≤ D,
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that is, monomials up to order two in x = (x1, . . . , xD). The truncation constant R

guarantees that the basis functions are Lipschitz continuous. We set

R � 10, Xd,0 � π

2
, 1 ≤ d ≤ D,

T � 1, � � 50000, n � 50,

unless otherwise stated. With this initial condition, we get Y0 = De−r(T −t). Recall
also that the estimator Ȳ

n,m,K,λ
0 of Y0 does not depend on λ and is denoted by

Ȳ
n,m,K
0 from now on.

Figure 1 illustrates the convergence of the iteration in the case of a four-
dimensional state space (D = 4). Both figures display the absolute error |Ȳ n,m,K

0 −
Y0| as a function of the number of iterations m. In Figure 1(a) the case r = 0 (no
monotonicity) is considered for several values of σ which represent different in-
fluences of the coupling. In Figure 1(b) the coupling parameter σ = 0.4 is fixed,
while the strength of the monotonicity varies by different values of r . In general,
we observe that the iteration converges extremely fast, as could be expected in
view of Theorem 2.1 which states mcm, for some c, 0 < c < 1, as rate of conver-
gence. From the proof of this theorem we know that c is the smaller, the weaker the
coupling or the stronger the monotonicity is. This explains the faster convergence
observed for small values of σ and large values of r .

The influence of the time partition is displayed in Figure 2. It shows the ab-

solute error |Ȳ n,mstop,K

0 − Y0| as a function of the number of time points n. We

stop the iteration when two consecutive estimates Ȳ
n,m,K
0 are within a distance of

10−4. This iteration level is denoted mstop. The observed convergence rate is in
accordance with 1/

√
n as derived in Theorem 2.2.

Finally, we demonstrate that the space dimension four is no limitation for the
proposed algorithm. To this end, we consider the 10-dimensional case with the
parameter values r = 0, σ = 0.1 in Figure 3. Under the same stopping criterion as
above, the iteration terminates after 12 steps. Recall that, from (8.1), we can also
approximate the true value of X via the usual Euler scheme (applying the same
simulated Brownian increments �Wλ

i ). The corresponding approximation along
the λth path is denoted X̌

n,λ
i , and hence,

Y̌
n,λ
i = e−r(T −ti )

D∑
d=1

sin(X̌
n,λ
d,i )

may be considered a close approximation of Yti . In Figure 3 we display, for the
10-dimensional case, a comparison between a typical path of Y̌

n,λ0
i (dashed line)

and Ȳ
n,mstop,K,λ0
i (solid line), as well as the (absolute) empirical mean square error
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(a)

(b)

FIG. 1. Convergence of the iteration for different choices of σ and r .
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FIG. 2. Convergence as the time partition becomes finer for r = 0, σ = 0.4, D = 4.

between Y̌
n,λ
i and Ȳ

n,mstop,K,λ

i , λ = 1, . . . ,�. Precisely, Figure 3(b) shows

1

�

�∑
λ=1

|Ȳ n,mstop,K,λ

i − Y̌
n,λ
i |2

as function of time.

REMARK 8.1. Figure 3 shows a larger mean square error close to terminal
time than close to initial time. This is a rather typical feature, when conditional
expectations are estimated by the above least squares method. It can be explained
by interpreting this method as creating a stochastic mesh (see Glasserman [13]) and
observing that this mesh is typically much finer close to initial time than close to
terminal time. Hence, the error close to terminal time, observed in Figure 3, cannot
be diminished by solely increasing the number of iterations, but by improving the
quality of the conditional expectation estimator. A generic trick to improve the
quality close to terminal time is to add the terminal function g to the basis.
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(a)

(b)

FIG. 3. Typical path of Ȳ
n,mstop,K,λ

i and mean square error for σ = 0.1, r = 0, D = 10.
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