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For a genetic locus carrying a strongly beneficial allele which has just
fixed in a large population, we study the ancestry at a linked neutral locus.
During this “selective sweep” the linkage between the two loci is broken up
by recombination and the ancestry at the neutral locus is modeled by a struc-
tured coalescent in a random background. For large selection coefficients α

and under an appropriate scaling of the recombination rate, we derive a sam-
pling formula with an order of accuracy of O((logα)−2) in probability. In
particular we see that, with this order of accuracy, in a sample of fixed size
there are at most two nonsingleton families of individuals which are identical
by descent at the neutral locus from the beginning of the sweep. This refines
a formula going back to the work of Maynard Smith and Haigh, and comple-
ments recent work of Schweinsberg and Durrett on selective sweeps in the
Moran model.

1. Introduction. Assume that part of a large population of size 2N carries, on
some fixed genetic locus (henceforth referred to as the selective locus), an allele
with a certain selective advantage. If the population reproduction is described by
a classical Fisher–Wright model or, more generally, a Cannings model with indi-
vidual offspring variance σ 2 per generation, and time is measured in units of 2N

generations, the evolution of the fraction carrying the advantageous allele is ap-
proximately described by the Fisher–Wright stochastic differential equation (SDE)

dP =
√

σ 2P(1 − P)dW + αP (1 − P)dt,(1.1)

where W is a standard Wiener process and s = α/2N is the selective advantage of
the gene per individual per generation [6, 8].

Assume at a certain time a sample of size n is drawn from the subpopulation
carrying the advantageous allele. Conditioned on the path P , the ancestral tree of
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the sample at the selective locus is described by Kingman’s coalescent with pair
coalescence rate σ 2/P (see, e.g., [14] and Remark 4.6 below).

Now consider a neutral locus in the neighborhood of the selective one, with a
recombination probability r per individual per generation between the two loci.
From generation to generation, there is a small probability r per individual that
the gene at the neutral locus is broken apart from its selective partner and recom-
bined with another one, randomly chosen from the population. In the diffusion
limit considered here, this translates into the recombination rate ρ. Depending
on P , only a fraction of these recombination events will be effective in changing
the status of the selective partner from “advantageous” to “nonadvantageous” or
vice versa. Given P , the genealogy of the sample at the neutral locus can thus be
modeled by a structured coalescent of the neutral lineages in background P as
in [2]: Backward in time, a neutral lineage currently linked to the advantageous al-
lele recombines with a nonadvantageous one at rate ρ(1−P), and a neutral lineage
currently linked to a nonadvantageous gene recombines with the advantageous one
at rate ρP , where ρ = 2Nr . Moreover, two neutral lineages currently both linked
to the advantageous allele coalesce at rate σ 2/P , and two neutral lineages currently
both linked to a nonadvantageous allele coalesce at rate σ 2/(1 − P).

Two individuals sampled at time t > 0 are said to be identical by descent at the
neutral locus from time 0 if their neutral ancestral lineages coalesce between times
0 and t . This defines an ancestral sample partition at the neutral locus at time t

from time 0.
We are interested in a situation in which at a certain time (say time 0) a single

copy of the advantageous gene enters into the population and eventually fixates.
For large N , the time evolution of the size of the subpopulation carrying the advan-
tageous allele can be thought of as a random path X governed by an h-transform
of (1.1), entering from x = 0 and conditioned to hit x = 1.

The parameters α, ρ and σ 2, the random path X, its fixation time T and the
structured n-coalescent in background X from time T back to time 0 are the prin-
cipal ingredients in the first part of our analysis. Our central object of interest is
the ancestral sample partition at the neutral locus at time T from time 0.

For simplicity we put σ 2 = 2. This not only simplifies some formulae, but also
allows a direct comparison with the results of Schweinsberg and Durrett [21], who
considered the finite population analog in which the population evolves according
to a Moran model, leading to σ 2 = 2 in the diffusion approximation.

We focus on large coefficients α and refer to X as the random path in a selec-
tive sweep. The expected duration of the sweep is approximately (2 logα)/α (see
Lemma 3.1). Heuristically, the sweep can be divided into several phases. Phases
that must certainly be considered are: the time intervals which X takes:

• to reach a small level ε (phase 1);
• to climb from ε to 1 − ε (phase 2);
• to fixate in 1 after exceeding the level 1 − ε (phase 3).
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Whereas the expected durations of phases 1 and 3 both are � logα/α, that of
phase 2 is only � 1/α. The analysis of hitchhiking has in the past often concen-
trated on the second phase [15, 22]. For large population size and large selective
advantage, the frequency path of the beneficial allele in phase 2 can be approxi-
mately described by a deterministic logistic growth curve (see, e.g., [17]). How-
ever, this approximation is only good for fixed ε > 0. In [15] the frequency path
under a selective sweep is described by a logistic growth curve that model phase 2
with ε = 5/α (recall that α stands for 2Ns), whereas in [22] ε = 1/(2N) is con-
sidered. In both cases, ε decreases with population size. As Barton pointed out in
[1], the logistic model fails to include the randomness of the frequency path at the
very beginning of the selective sweep. Consequently he further subdivided phase
1 so as to study the onset of the sweep in more detail.

No matter how the phases of a sweep are chosen, we have seen that the first
phase as given above takes � logα/α. So, to see a nontrivial number of recombi-
nation events along a single lineage between t = 0 and t = T , the recombination
rate ρ should be on the order of α/ logα. Henceforth, we therefore assume

ρ = γ
α

logα
, 0 < γ < ∞.(1.2)

With this recombination rate, it will turn out that, asymptotically as α → ∞, effec-
tively no recombinations happen in phase 2, since this phase is so short; neither do
they occur in phase 3, since then 1 − X is so small. Consequently, the probability
that a single ancestral lineage is not hit by a recombination is approximately given
by

p = e−γ .(1.3)

Since for large α the subpopulation carrying the advantageous allele is expand-
ing quickly near time t = 0, a first approximation to the sample genealogy at the
selective locus is given by a star-shaped tree, that is, n lineages all coalescing at
t = 0. Hence, ignoring possible back-recombinations (which can be shown to have
small probability; see Proposition 3.4), a first approximation to the sampling dis-
tribution at the neutral locus is given by a Binomial(n,p) number of individuals
stemming from the founder of the sweep; the rest of the individuals are recombi-
nants that all have different neutral ancestors at the beginning of the sweep (see
Remark 2.6 and cf. [21], Theorem 1.1). This approximate sampling formula goes
back to the pioneering work of Maynard Smith and Haigh [18], who also coined
the term hitchhiking: the allele which the founder of the sweep carried at the neu-
tral locus gets a lift into a substantial part of the population (and the sample) in the
course of the sweep. Apart from the hitchhikers, there are also a few free riders
who jump on the sweep when it is already under way and make it as singletons
into the sample.

We will see that the sampling formula just described is accurate with probability
1 − O( 1

logα
). In a spirit similar to [21], but with a somewhat different strategy, we
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will improve the order of accuracy up to O( 1
(logα)2 ). A common technical theme is

an approximation of the genealogy of the advantageous allele in the early phase of
the sweep by a supercritical branching process [1, 21], an idea which can be traced
back to Fisher [9] (see [8], page 27ff ). It is this early phase of the sweep which is
relevant for the deviations from the Maynard Smith and Haigh sampling distribu-
tion. This higher-order approximation allows for the possibility of the occurrence
of recombination events during this early phase that affect our sample and thus,
potentially, lead to nonsingleton families associated to a neutral type other than
the original hitchhiker.

Our main result is the derivation of a sampling formula for the ancestral par-
tition at the end of the sweep which is accurate up to an error O(1/(logα)2) in
probability.

2. Model and main result.

2.1. The model.

DEFINITION 2.1 (Random path of a selective sweep). For α > 0, let X =
(Xt)0≤t≤T be a random path in [0,1] following the SDE

dX = √
2X(1 − X)dW + αX(1 − X) coth

(
α

2
X

)
dt, 0 < t,(2.1)

and entering from 0 at time t = 0. Here, W is a standard Wiener process and T

denotes the time when X hits 1 for the first time.

Note that 0 is an entrance boundary for (2.1) and that X given by (2.1) arises as
an h-transform of the solution of (1.1). Indeed, since the latter has generator

Gf (x) = x(1 − x)f ′′(x) + αx(1 − x)f ′(x)

and the G harmonic function h : [0,1] → [0,1] with boundary conditions h(0) = 0,
h(1) = 1 is

h(x) = 1 − e−αx

1 − e−α
,

the h-transformed generator is

Ghf (x) = 1

h(x)
G(hf )(x)

= x(1 − x)f ′′(x) + αx(1 − x) coth
(

α

2
x

)
f ′(x);

see also [11], page 245. As described in the Introduction, X models the evolution
of the size of the subpopulation that consists of all those individuals which carry an



SAMPLING FORMULA UNDER GENETIC HITCHHIKING 689

advantageous allele (called B) on a selective locus. At time t = 0, a single mutant
that carries the (then novel) allele B enters into the population, corresponding to
X0 = 0, and X is conditioned to eventually hit 1, which happens at the random
time T . We will refer to X given by (2.1) as the random path of the sweep (or
random sweep path for short).

DEFINITION 2.2 (n-coalescent in background X). Let n ≥ 2. Given a random
sweep path X, we construct a tree Tn = T X

n with n leaves as follows. Attach the
n leaves of T X

n at time t = T and work backward in time t from t = T to t = 0
(or equivalently, forward in time β = T − t from β = 0 to β = T ) with pair co-
alescence rate 2/Xt [i.e., starting from the tree top (β = 0), the current number
of lineages in T X

n decreases at rate 2
Xt

(n
2

)
]. Finally, attach the root of T X

n at time
t = 0.

Note that T X
n corresponds to a time-changed Kingman coalescent (see [12]).

This time change transforms the one single lineage of infinite length, which can be
thought to follow the ultimate coalescence in Kingman’s coalescent, into a single
lineage ending at β = T . We will refer to the tree T X

n as the n-coalescent in back-
ground X; it describes the genealogy at the selective locus of a sample of size n

taken from the population at the instant of completion of the sweep.

DEFINITION 2.3 (Coalescing Markov chains in background X). Let ρ > 0.
Given a random sweep path X, let (ξβ)0≤β≤T be a {B,b}-valued Markov chain
with time inhomogeneous jump rates

(1 − XT −β)ρ = (1 − Xt)ρ from B to b,
(2.2)

XT −βρ = Xtρ from b to B.

The process ξ describes to which type at the selective locus (either B or b) an
ancestral lineage of the neutral locus is currently linked in its journey back into the
past, indexed by the backward time β . Recall that each neutral gene (i.e., each gene
at the neutral locus) is linked at any time to a selective gene (i.e., at the selective
locus), the latter being either of type B or of type b, and that for the neutral lineages
which are currently in state B , only a fraction 1 − Xt of the recombination events
is effective in taking them into state b.

DEFINITION 2.4 (Structured n-coalescent in background X; see [2]). Given
X, consider n independent copies of the Markov chain ξ (see Definition 2.3), all
of them starting in state B at time β = 0. Let any two ξ -walkers who are currently
(say at time β = T − t) in state B coalesce at rate 2/XT −β = 2/Xt and let any
two ξ -walkers in state b coalesce at rate 2/(1 − Xt). The resulting (exchangeable)
system �n of coalescing Markov chains will be called the structured n-coalescent
in background X.
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We now define a labeled partition P �n of {1, . . . , n} induced by the structured
coalescent �n.

DEFINITION 2.5 (Ancestral sample partition at the neutral locus). In the situ-
ation of Definition 2.4, we will say that i and j , 1 ≤ i < j ≤ n, belong to the same
family if the ξ -chains numbered i and j in �n coalesce before time β = T .

1. A family will be labeled nonrecombinant if none of the ancestral lineages of
the family back to time β = T ever left state B . (Thus the neutral ancestor of a
nonrecombinant family at time t = 0 is necessarily linked to the single selective
founder of the sweep.)

2. A family will be labeled early recombinant if none of its ancestral lineages ever
left state B before the first (looking backward from t = T ) coalescence in the
sample genealogy happened, but if nonetheless the family’s ancestor at time
t = 0 is in state b.

3. A family will be labeled late recombinant if at least one of its ancestral lin-
eages left state B before the first (looking backward from T ) coalescence in
the sample genealogy happened and if the family’s ancestor at time t = 0 is in
state b.

4. In all other cases (e.g., if two lineages on their way back first leave B , then
coalesce and return to B afterward), the family will be labeled exceptional.

The labeled partition resulting in this way will be called P �n .

For large selection coefficients and moderately large recombination rates
[see (1.2)] it turns out that, up to an error in probability of O(logα)−2, all late
recombinant families are singletons, there is no more than one early recombinant
family and there are no exceptional families. In fact, the probability that there is
an early recombinant family at all is of the order (logα)−1. Given there is an early
recombinant family, however, its size may well be a substantial fraction of n. Our
main result (Theorem 1) clarifies the approximate distribution of the number of
late recombinants and of the size of the early recombinant family.

2.2. Main result. Recall that P �n (introduced in Definition 2.5) describes the
ancestral partition of an n-sample drawn from the population at the time of com-
pletion of the sweep, where the partition is induced by identity by descent at the
neutral locus at the beginning of the sweep.

THEOREM 1 (Approximate distribution of the ancestral sample partition). Fix
a sample size n. For a selection coefficient α � 1 and a recombination rate ρ

obeying (1.2) for fixed γ , the random partition P �n introduced in Definition 2.5
consists, with probability 1 − O((logα)−2), of the following parts:

• L late recombinant singletons.
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• One family of early recombinants of size E.
• One nonrecombinant family of size n − L − E.

More precisely, a random labeled partition of {1, . . . , n}, whose distribution ap-
proximates that of P �n up to a variation distance of order O((logα)−2), is given
by random numbers L and E constructed as follows:

Let F be an N-valued random variable with

P[F ≤ i] = (i − (n − 1)) · · · (i − 1)

(i + (n − 1)) · · · (i + 1)
,(2.3)

and, given F = f , let L be a binomial random variable with n trials and success
probability 1 − pf , where

pf = exp

(
− γ

logα

�α	∑
i=f

1

i

)
.(2.4)

Independently of all this, let S be a {0,1, . . . , n}-valued random variable with

P[S = s] =




γ n

logα

n−1∑
i=2

1

i
, s = 1,

γ n

logα

1

s(s − 1)
, 2 ≤ s ≤ n − 1,

γ n

logα

1

n − 1
, s = n.

(2.5)

Given S = s and L = l, the random variable E is hypergeometric, choosing n − l

out of n = s + (n − s), that is,

P[E = e] =
(s
e

)( n−s
n−l−e

)
( n
n−l

) .(2.6)

Sections 3 and 4 will be devoted to the proof of Theorem 1. Figure 1 explains
the concepts which appear in our theorem and points to the strategy of the proof as
explained in Section 3.2. In the figure, the sample size is n = 7, and the ×’s indicate
effective recombination events that occur along the lineages. The early phase ends
when the number of lines in the sample tree has increased from six to seven. At the
end of the early phase there is one family of size S = 3 of early recombinants. One
member of this family is then kicked out by a late recombination. In the sample
there are L = 2 late recombinant singletons, one early recombinant family of size
E = 2 and one nonrecombinant family of size 3.

REMARK 2.6. (a) From (2.5) we see that

P[S ≥ 2] = γ n

logα
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FIG. 1.

and

P[S > 0] = γ n

logα

n−1∑
i=1

1

i
.

In particular, this shows that the probability that there are early recombinants at all
is O( 1

logα
).

(b) Barton [1] reported simulations in which several nonsingleton recombinant
families arise. This is not, in fact, incompatible with our theorem since the con-
stant in the O in the error estimate of Theorem 1 depends on (γ n)2. [See, e.g.,

Section 3.4, where for each pair in our n-sample we encounter an error C
γ 2

(logα)2 .]
In, for example, the simulation described on page 130 of [1], in which eight early
recombinant families are seen, this factor γ n is ≈ 120, while logα ≈ 13, which
explains the occurrence of several nonsingleton recombinant families.

As a corollary to Theorem 1 we obtain an approximate sampling formula under
the model for genetic hitchhiking. This means that we can now derive the probabil-
ity of having l late recombinants (which produce singletons), e early recombinants,
which form a family of size e, and n − l − e lineages that go back to the founder
of the sweep and also form a family on their own.

COROLLARY 2.7 (Approximate sampling formula). Under the assumptions
of Theorem 1 the common distribution of the number of early recombinants E and
the number of late recombinants L is, with probability 1 − O((logα)−2), given
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by

P[E = e,L = l]

= E[pn−l
F (1 − pF )l] ·




nγ

logα

(n − 1)
(n−2
e−2

)
1{l + e = n} + (n−1

l

)
e(e − 1)

,

e ≥ 2,

nγ

logα

(
1{l + 1 = n}

+
(

n − 1
l

) n−1∑
i=2

1

i
+

n∑
s=2

( n−s
l−s+1

)
s − 1

)
,

e = 1,(
n

l

)(
1 − nγ

logα

(
1 − l

n

n−1∑
i=2

1

i

))

+ nγ

logα

(
1

n
1{l = n}

+
n∑

s=2

(
n − s

n − l

)
1

s(s − 1)

)
,

e = 0.

(2.7)

Necessarily given L = l and E = e, the number of lineages going back to the
founder of the sweep is n − l − e.

This corollary will be proved in Section 4.5.

2.3. Comparison with Schweinsberg and Durrett’s work. Our research has
been substantially inspired by recent work of Schweinsberg and Durrett [4, 21].
Let us point out briefly how the main results of [21] and of the present paper com-
plement each other.

Schweinsberg and Durrett [21] considered a two-locus Moran model with pop-
ulation size 2N , selective advantage s of the advantageous allele and individual
recombination probability r = O(1/ logN). Their main result is (in our terminol-
ogy) about the approximate distribution of the ancestral distribution of an n-sample
at the neutral locus as N → ∞. In preparing their Theorem 1.2, Schweinsberg and
Durrett [21] specified (in terms of a stick-breaking scheme made up by a sequence
of Beta variables) a random paintbox with parameters L = �2Ns	 and r/s. They
denoted the (labeled) distribution of an n-sample drawn from the paintbox (where
the class belonging to the first draw is tagged) by Qr/s,L. The assertion of their
Theorem 1.2 then is that Qr/s,L approximates the ancestral sample distribution at
the neutral locus with probability 1 − O(1/(logN)2). Notably, s remains fixed,
that is, does not scale with N .

A priori, this strong selection limit does not lend itself to a diffusion approxi-
mation. However, interestingly enough, certain aspects do: in particular, the ones



694 A. ETHERIDGE, P. PFAFFELHUBER AND A. WAKOLBINGER

studied in the present context. More precisely, our results show that the approx-
imate distribution of the ancestral sample partition in the strong selection limit
of [21] arises also in a two-stage way, first passing to the diffusion limit and then
letting the selection coefficient tend to infinity. This is made precise in the follow-
ing proposition, which will be proved at the end of Section 4.4.

PROPOSITION 2.8. Let Qr/s,L be as in [21], Theorem 1.2. Then, with the
choice

α = 2Ns, ρ = 2Nr, γ = r

s
logα,(2.8)

the distribution specified in Theorem 1 and further described in Corollary 2.7 ap-
proximates Qr/s,L up to an error of O(1/(logN)2).

Hence our results (Theorem 1 and Corollary 2.7) also give an approximate sam-
pling formula for the random partition that appears in Theorem 1.2 of [21] and
enters as an input to the coalescent with simultaneous multiple mergers described
in [5]. In particular, our results reveal that this random partition has more than one
nonsingleton class with a probability of only O(1/(logN)2), a result which is less
explicit in the proofs of [21].

Let us emphasize once again that in [21] the error is controlled in a specific
“large but finite population” model, whereas in our approach the error is controled
after having performed a diffusion approximation. Proposition 2.8 together with
Theorem 1.2 of [21] reveals that our diffusion approximation has the order of ap-
proximation O(1/(logN)2) in the strong selection limit of the Moran model. This
might be seen as one more indication for the strength and robustness of the diffu-
sion approximation in the context of population genetics.

Numerical results. One can now still ask how large are the constants which are
lurking behind the O’s. To shed some light on this and to see how well our approx-
imations perform, let us present some numerics. We compare the approximation of
Theorem 1 with numerical examples given in [21]. The examples deal with sam-
ples of size n = 1 and n = 2. We distinguish the number and types of ancestors of
the sample at the beginning of the sweep. For a single individual the probability
that the ancestor is of type b (an event called pinb in [21]) can be approximated by

pinb ≈ P[L = 1],
as there is no early phase in our theorem in this case. For a sample of size 2,
either there are two ancestors and both have type b (denoted p2inb), there are
two ancestors, one of type B and one of type b (denoted p1B1b), or there is one
ancestor with either a b allele (denoted p2cinb) or a B allele (which happens in all
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TABLE 1
Numerical results comparing Theorem 1 with Theorem 2 from [21] and a logistic model. The

numbers in brackets are relative errors with respect to the Moran model

pinb p2inb p2cinb p1B1b

n = 104 s = 0.1 r = 0.001064
Moran 0.08203 0.00620 0.01826 0.11513
Logistic 0.09983(21%) 0.00845(36%) 0.03365(84%) 0.11544(0.3%)
DS, Thm. 2 0.08235(0.4%) 0.00627(1.1%) 0.01765(−3.4%) 0.11687(1.5%)
Thm. 1 0.08249(0.6%) 0.00659(6.3%) 0.01867(2.2%) 0.11515(0.0%)

n = 104 s = 0.1 r = 0.005158
Moran 0.33656 0.10567 0.05488 0.35201
Logistic 0.39936(18%) 0.13814(31%) 0.09599(75%) 0.32646(−7.3%)
DS, Thm. 2 0.34065(1.2%) 0.10911(3.2%) 0.05100(−7.1%) 0.36112(2.6%)
Thm. 1 0.32973(−2.0%) 0.10857(2.7%) 0.05662(3.2%) 0.34157(−3.0%)

other cases). Using Theorem 1 we approximate

p2inb ≈ P[L = 2 or S = 2,L = 1],
p2cinb ≈ P[L = 0, S = 2],
p1B1b ≈ P[L = 1, S = 0].

In [21] simulations were performed for three models: (i) in a Moran model, (ii)
in a model where the frequency of the B allele follows a deterministic logistic
growth curve, and (iii) for the approximate result obtained in [21], Theorem 1.2.
Results for a more extensive range of parameters can be found in [4]. In Table 1, we
have added the approximations of our Theorem 1 to those of [21]. In all cases we
find that the approximation given by our Theorem 1 performs comparably to the
approximation of Schweinsberg and Durrett. Both approximations are significantly
better than the logistic model.

3. Outline of the proof of Theorem 1. We start by calculating the expected
duration of the sweep.

3.1. The duration of the sweep. Let Tδ be the time at which X reaches the
level δ for the first time.

LEMMA 3.1. For all fixed ε ∈ (0,1), as α → ∞,

E[Tε] = logα

α
+ O

(
1

α

)
, E[T − T1−ε] = logα

α
+ O

(
1

α

)
,(3.1)

E[T1−ε − Tε] = O

(
1

α

)
,(3.2)
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Var[T ] = O

(
1

α2

)
.(3.3)

This lemma will be proved in Section 4. Notice in particular that ET =
2 logα/α + O(α−1). Thus, to see a nontrivial number of recombination events
along a single line between t = 0 and t = T (β = T and β = 0), the recombination
rate ρ should be on the order of α/ logα. Henceforth, we therefore assume that ρ

obeys equation (1.2).

3.2. Three approximation steps. In a first approximation step we will show
that all events (both coalescences and recombinations) that happen along the lin-
eages of the structured coalescent while dwelling in state b have a negligible ef-
fect on the sampling distribution. Thus once a lineage has recombined away from
state B , we can assume that it experiences no further recombination or coalescence
events in the remaining time to β = T . This motivates us to couple the structured
n-coalescent (at the neutral locus) with the n-coalescent (at the selective locus),
and to study the ancestral partition at the neutral locus by marking effective re-
combination events that happen along the selective lineages.

DEFINITION 3.2. For a given sweep path X, consider the coalescent Tn in
background X together with a Poisson process with intensity measure (1−Xt)ρ dt

along the lineages of Tn. Say that two leaves of Tn belong to the same family if
and only if the path in Tn which connects them is not hit by a mark. Call a mark
early if it occurs between time 0 and the time when Tn increases from n − 1 to n

and call it late otherwise. Label a family as early-marked (late-marked) if it traces
back to an early (late) mark; otherwise label it as nonmarked. In this way we arrive
at what we call the labeled partition P Tn .

Note that the nonlabeled version of P Tn arises from the marked tree Tn in the
same way as the sample partition in the infinite-alleles model emerges from the
marked coalescent. Also note that late-marked families in P Tn are necessarily
singletons. It will turn out (see Corollary 3.5) that P Tn approximates P �n with
probability 1 − O((logα)−2).

The second approximation step consists of replacing P Tn by a labeled parti-
tion P Yn generated by a marked Yule tree.

DEFINITION 3.3. Let Y be an (infinite) Yule tree with branching rate α and let
Yn be the random tree which arises by sampling n lineages from Y (which come
down from infinity). Up to the time when the number of lines extant in Y reaches
the number �α	, mark the lines of Yn by a Poisson process with homogeneous
intensity ρ = γα/ logα. Families, early and late marks, early-marked families and
so forth are specified in complete analogy to Definition 3.2. The resulting labeled
partition of {1, . . . , n} will be denoted by P Yn .
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Again, we will show (see Proposition 3.6) that P Yn approximates P Tn with
probability 1 − O((logα)−2).

The third approximation step exploits the fact that the probability for more than
one early mark is O((logα)−2). The random variable F specified in Theorem 1
stands for the number of lines extant in the full tree Y at the time of the most recent
coalescence in the sample tree Yn. The number pf is the approximate probability
that, given F = f , a single lineage is not hit by a late mark (or equivalently, does
not experience a late recombination); note that this probability is larger than the
probability p given by (1.3). The number of late-marked families (corresponding
to late recombinants) is approximated by a mixed Binomial random variable L

with random success probability 1 − pF . In the dominating case that Yn in its
early phase (when it has less than n lines) is hit by at most one mark, the random
variable S approximates the size of the early-marked family which arises if we
“cut off” Yn at the time of its most recent coalescence (i.e., when its number
of lines increases from n − 1 to n). This size is thinned out by late marks; in
other words, the final size of the early-marked family arises as a hypergeometric
random variable, by randomly distributing the n−L lineages which have not been
knocked out by late marks onto the S + (n − S) potential ancestors at the most
recent coalescence time of Yn.

3.3. First step: From the structured to a marked coalescent. The key result for
the first approximation step is the following:

PROPOSITION 3.4. (i) The probability that a neutral ancestral lineage of our
sample recombines out of B and then recombines back into B and (ii) the proba-
bility that a pair of neutral ancestral lineages coalesces in b are both O( 1

(logα)2 ).

The previous proposition allows us [within the accuracy of O( 1
(logα)2 )] to dis-

pense with the structured coalescent and work instead with the marked coalescent
in background X as described in Definition 3.2. Indeed, the following statement is
immediate from Proposition 3.4.

COROLLARY 3.5. The variation distance between the distributions of P �n

and P Tn is O( 1
(logα)2 ).

3.4. Second step: From the marked coalescent to a marked Yule tree. A key
tool will be a time transformation which takes the random sweep path into a
(stopped) supercritical Feller diffusion. Because the early phase of the sweep is
the most relevant one and because a Fisher–Wright diffusion entering from zero
looks similar to a Feller diffusion entering from zero as long as both are close to
zero, we will be able to control the error in the sample partition that results from
replacing X by the path of a Feller diffusion. Under this time transformation the
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mark (recombination) rate will become a constant. By exchangeability, we can
(without loss of generality) sample only from individuals in our Feller diffusion
with infinite line of descent (provided of course that there are enough such) and
it is well known that such “immortal particles” form a Yule tree with branching
rate α [7]. This means that we sample from a Poisson number of individuals with
parameter α, but we shall see that it suffices to consider the Yule tree stopped when
it has precisely �α	 extant individuals.

PROPOSITION 3.6. Let Y, Yn and P Yn be as in Definition 3.3. The variation
distance between the distributions of P Tn and P Yn is O( 1

(logα)2 ).

3.5. Third step: Approximating sample partitions in marked Yule trees. Be-
cause of Corollary 3.5 and Proposition 3.6, the proof of Theorem 1 will be com-
plete if we can show that the representation given there applies, within the accuracy
of O( 1

(logα)2 ), to the random labeled partition P Yn . Thus, the remaining part of the
proof takes place in the world of marked Yule processes, where matters are greatly
simplified and many exact calculations are possible.

Let I = I (t) be the number of lines of Y extant at time t and let Ki be the
number of lines extant in Yn while I = i. The process K = (Ki) will play a major
role in our analysis below. Viewing the index i as time, referred to below as Yule
time, we will see that K is a Markov chain.

We denote by Mi the number of marks that hit Yn while Y has i lines. Since
the latter period is exponentially distributed with parameter iα and marks appear
along lines according to a Poisson process with rate γα/ logα, we arrive at the
following observation:

REMARK 3.7. Given Ki = k, Mi is distributed as G − 1, where G has a geo-
metric distribution with parameter

iα

iα + kγ α/ logα
= 1

1 + (k/i)γ /logα
.

Consequently, the conditional expectation of Mi given Ki = k is k
i

γ
logα

.

We will distinguish two phases of the process Y. The early phase will consist
of all Yule times i when Ki < n and the late phase will consist of the Yule times i

with Ki = n.
We define

F := min{i :Ki = n},
that is, F is the number of lines in the full tree Y when the number of lines in the
sample tree Yn reaches its final size n. This is when the late phase begins.
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PROPOSITION 3.8. The distribution of F is given by (2.3).

By analogy with Definition 3.2, we call those marks which hit Yn in the early
(late) phase the early (late) marks.

The labeled partition P Yn introduced in Definition 3.3 is generated by early and
late marks. Let us treat the early marks first. We will find in Proposition 3.9 that
up to our desired accuracy, there is at most one early mark.

We write

M = ∑
i : i<F

Mi

for the number of early marks. Let us denote by SY the number of leaves in Yn

whose ancestral lineage is hit by an early mark. On the event {M = 1}, that is, in
the case of a single early mark, the leaves of Tn are partitioned into two classes,
one (of size SY) whose ancestry is hit by this single early mark and one whose
ancestry is not hit by an early mark.

The next proposition gives an approximation for the joint distribution of
(M,SY).

PROPOSITION 3.9. Up to an error of O( 1
(logα)2 ),

P[M = 1, SY = s] =




nγ

logα

n−1∑
k=2

1

k
, s = 1,

nγ

logα

1

s(s − 1)
, 2 ≤ s ≤ n − 1,

nγ

logα

1

n − 1
, s = n.

(3.4)

Furthermore,

P[M ≥ 2] = O

(
1

(logα)2

)
.(3.5)

For fixed f ≤ �α	, the probability that a randomly chosen line is not hit by a
mark between i = f and i = �α	, is (cf. Remark 3.7)

�α	∏
i=f

1

1 + (1/i)γ /logα
= exp

( �α	∑
i=f

log

(
1 − γ

logα

1

i + γ /logα

))

= exp

(
− γ

logα

�α	∑
i=f

1

i + γ /logα

)
+ O

(
1

(logα)2

)
(3.6)

= pf + O

(
1

(logα)2

)
,
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where pf was defined in (2.4). The last step follows from the Taylor expansion

1

i + γ /logα
= 1

i
+ 1

i2 O

(
1

logα

)
.

Write LY for the number of lineages in Yn that are hit by late marks. For dis-
tinct lineages of Yn, the events that they are hit by late marks are asymptotically
independent, which allows us to approximate the distribution of LY.

PROPOSITION 3.10. The distribution of LY is approximately mixed Binomial.
More precisely,

P[LY = l] =
�α	∑
f =n

(
n

l

)
pn−l

f (1 − pf )lP[F = f ] + O

(
1

(logα)2

)
(3.7)

=
(

n

l

)
E[pF

l(1 − pF )n−l] + O

(
1

(logα)2

)
, l = 0, . . . , n.

Based on the previous two propositions, we will be able to show that up to our
desired accuracy the random variables SY and LY can be treated as independent.

PROPOSITION 3.11. The random variables SY and LY are approximately
independent, that is,

P[SY = s,LY = l] = P[SY = s] · P[LY = l] + O

(
1

(logα)2

)
.

Given M = 1, SY = s and LY = l, the size (call it EY) of the (single) early-
marked family in P Yn (see Definition 3.3) is hypergeometric, choosing n− l out of
two classes, one of size s, the other of size n−s. Hence from Propositions 3.9, 3.10
and 3.11 the labeled partition P Yn consists, with probability 1 − O((logα)−2),
of L late-marked singletons, one early-marked family of size E and one non-
marked family of size n−L−E, where the joint distribution of (L,E) is specified
in Theorem 1. Combining this with Proposition 3.6 and Corollary 3.5, the proof of
Theorem 1 is complete.

4. Proofs.

4.1. The duration of the sweep: Proof of Lemma 3.1. We use standard theory
about one-dimensional diffusions. (See, e.g., [8] and [16].) Primarily we need the
Green’s function G(·, ·) that corresponds to the solution of the SDE (2.1), this time
with X0 = x ∈ [0,1].

The Green’s function G(·, ·) satisfies

Ex

[∫ T

0
g(Xs) ds

]
=

∫ 1

0
G(x, ξ)g(ξ) dξ,(4.1)
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where Ex[·] is the expectation with respect to the process X started in x (and
E[·] = E0[·]).

If X is a solution of (2.1), then (see [16], Chapter 15, formula (9.8))

x ≤ ξ :G(x, ξ) = (1 − e−α(1−ξ))(1 − e−αξ )

αξ(1 − ξ)(1 − e−α)
,

(4.2)

x ≥ ξ :G(x, ξ) = (e−αx − e−α)(eαξ − 1)(1 − e−αξ )

αξ(1 − ξ)(1 − e−α)(1 − e−αx)
.

Observe that G(x, ξ) is decreasing in x.

PROOF OF (3.1) AND (3.2). In the proofs there will appear some con-
stants C,C′ which might change from occurrence to occurrence.

Observe that

E[Tε] = E[T ] − Eε[T ] =
∫ ε

0
G(0, ξ) dξ −

∫ ε

0
G(ε, ξ) dξ,(4.3)

where we have used that G(0, ξ) = G(ε, ξ) as long as ξ ≥ ε. Since

1

ξ(1 − ξ)
= 1

ξ
+ 1

1 − ξ

and using the symmetry in G(0, ξ) = G(0,1 − ξ), we see that for the first term
in (4.3),∫ ε

0
G(0, ξ) dξ − logα

α
= 1

α

(∫ ε

0
+

∫ 1

1−ε

(1 − e−αξ )(1 − e−α(1−ξ))

(1 − e−α)ξ
dξ − logα

)

= 1

α

(
C +

∫ αε

0

(1 − e−ξ )(1 − e−α+ξ )

ξ
dξ −

∫ αε

1

1

ξ
dξ

)

= 1

α

(
C −

∫ αε

1

e−ξ + e−α+ξ − e−α

ξ
dξ

)
= O

(
1

α

)
.

For the second term, as 1 − e−αξ ≤ 1 − e−αε for ξ ≤ ε,∫ ε

0
G(ε, ξ) dξ ≤ e−αε

α(1 − ε)

∫ ε

0

eαξ − 1

ξ
dξ = e−αε

α(1 − ε)

∫ αε

0

eξ − 1

ξ
dξ

≤ Ce−αε

α

(
1 +

∫ αε

1
eξ dξ

)
= O

(
1

α

)
.

A similar calculation leads to the second statement of (3.1), and from these two
equalities and as E[T ] = E[T1/2] + E[T − T1/2], also (3.2) follows. �

PROOF OF (3.3). To compute the variance of T we use the following identity,
which is a consequence of the Markov property (and can be checked by induction
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on k):

Ex

[∫ T

0

∫ T

t1

· · ·
∫ T

tk−1

gk

(
Xtk

) · · ·g1
(
Xt1

)
dtk · · ·dt1

]
(4.4)

=
∫ 1

0
· · ·

∫ 1

0
G(x,x1) · · ·G(xk−1, xk)g1(x1) · · ·gk(xk) dxk · · ·dx1.

From this we obtain

Var[T ] = 2
∫ 1

0

∫ 1

0
G(0, ξ)G(ξ, η) dη dξ − 2

∫ 1

0

∫ 1

ξ
G(0, ξ)G(0, η) dη dξ

= 2
∫ 1

0

∫ ξ

0
G(0, ξ)G(ξ, η) dη dξ

= 2

α2(1 − e−α)2

×
∫ 1

0

∫ ξ

0

(1 − e−α(1−ξ))(e−αξ − e−α)

ξ(1 − ξ)

(eαη − 1)(1 − e−αη)

η(1 − η)
dη dξ

ξ→1−ξ≤ 2e−α

α2(1 − e−α)2

∫ 1

0

∫ 1−ξ

0

eαξ − 1

ξ(1 − ξ)

eαη − 1

η(1 − η)
dη dξ

= 2

α2(1 − e−α)2

((
e−α/2

∫ 1/2

0

eαξ − 1

ξ(1 − ξ)
dξ

)2

+ 2
∫ 1/2

0

∫ ξ

0

e−αξ − e−α

ξ(1 − ξ)

eαη − 1

η(1 − η)
dη dξ

)

by a decomposition of the area {(ξ, η) :η ≤ 1 − ξ} in {(ξ, η) : ξ, η ≤ 1/2},
{(ξ, η) : ξ ≤ 1/2,1/2 ≤ η ≤ 1 − ξ} and {(ξ, η) : ξ ≥ 1/2, η ≤ 1 − ξ}, and the sym-
metry of the integrand. From this we see

Var[T ] ≤ 2

α2

(
C + 8

∫ 1/2

0

∫ ξ

0

e−αξ − e−α

ξ

eαη − 1

η
dη dξ

)

and (3.3) follows as∫ 1/2

0

∫ ξ

0

e−αξ − e−α

ξ

eαη − 1

η
dη dξ

ξ→αξ=
η→αη

∫ α/2

0

e−ξ − e−α

ξ

∫ ξ

0

eη − 1

η
dη dξ

≤
∫ α/2

1

e−ξ − e−α

ξ

(∫ ξ

1

eη − 1

η
dη + C

)
dξ + C′

≤ C

∫ α

1

1

ξ2 dξ + C′ = O(1).
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Here we have used
∫ α/2

0

∫ ξ
0 dη dξ = ∫ 1

0
∫ ξ

0 dη dξ + ∫ α/2
1 (

∫ 1
0 dη + ∫ ξ

1 dη)dξ to ob-

tain the penultimate and
∫ ξ

1 dη = ∫ ξ/2
1 dη + ∫ ξ

ξ/2 dη to obtain the last inequality.
�

4.2. From the structured to a marked coalescent.

PROOF OF PROPOSITION 3.4. (i) Given (Xt)0≤t≤T , we are looking for the
probability that tracing backward from time T to time 0 a lineage escapes the
sweep (which happens with rate ρ(1 − Xt)) and then recombines back into B

(which happens then with rate ρXt ). The required probability then follows by in-
tegrating over path space and is given by

E
[∫ T

0

(
1 − exp

(
−

∫ t

0
ρXs ds

))
ρ(1 − Xt) exp

(
−

∫ T

t
ρ(1 − Xs)ds

)
dt

]

≤ ρ2E
[∫ T

0
(1 − Xt)

∫ t

0
Xs ds dt

]
(4.5)

≤ ρ2
∫ 1

0

∫ ξ

0
G(0, ξ)G(ξ, η) dη dξ

+ ρ2
∫ 1

0

∫ 1

ξ
G(0, ξ)G(0, η)(1 − η)ξ dη dξ,

where we have used that G(ξ,η) = G(0, η) for ξ ≤ η and (4.4). The first term is
ρ2

2 Var[T ] = O( 1
(logα)2 ) by (3.1). The second term gives

ρ2

α2(1 − e−α)2

∫ 1

0

∫ 1

ξ

(1 − e−αξ )(1 − e−α(1−ξ))

1 − ξ

× (1 − e−αη)(1 − e−α(1−η))

η
dη dξ

≤ ρ2

α2

∫ 1

0

∫ η

0

1

(1 − ξ)η
dξ dη = ρ2

α2

∫ 1

0

∫ 1

1−η

1

ξ

1

η
dξ dη

= ρ2

α2

∫ 1

0
− log(1 − η)

η
dη = O

(
1

(logα)2

)

and we are done.
(ii) To prove the second assertion of the proposition, we split the event that two

lineages coalesce in b into two events. Recall that Tδ denotes the time when X first
hits δ. Whenever two lineages coalesce in b, then either there must have been two
recombination events between T1/2 and T or there must have been a coalescence
in b between 0 and T1/2. Both events only have small probabilities as we now
show.
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First consider the event that two recombinations occur in [T1/2, T ]. We see here
as in (4.5) that the probability for this event is at most

ρ2E1/2

[∫ T

0

∫ t

0
(1 − Xt)(1 − Xs)ds dt

]

= ρ2
∫ 1

0

∫ 1

0
G

(1
2 , ξ

)
G(ξ,η)(1 − η)(1 − ξ) dη dξ

≤ ρ2
∫ 1

0

∫ ξ

0
G(0, ξ)G(ξ, η) dη dξ

+ ρ2
∫ 1/2

0

∫ 1

ξ
G

(1
2 , ξ

)
G(0, η)(1 − ξ)(1 − η)dη dξ

+ ρ2
∫ 1

1/2

∫ 1

1/2
G(0, ξ)G(0, η)(1 − ξ)(1 − η)dη dξ,

where we have used that G(x, ξ) is decreasing in x. The first term is ρ2

2 Var[T ] =
O( 1

(logα)2 ). The second is bounded by

ρ2

α2

∫ 1/2

0

∫ 1

ξ

e−α/2(eαξ − 1)

ξ

1 − e−αη

η
dη dξ

= γ 2e−α/2

(logα)2

∫ α

0

∫ α/2∧η

0

eξ − 1

ξ

1 − e−η

η
dξ dη

≤ γ 2e−α/2

(logα)2

(
C +

∫ α

1

eη∧α/2

η
dη

)
= O

(
1

(logα)2

)
,

where we have split the integral
∫ α

1 dη in
∫ α/2

1 dη + ∫ α
α/2 dη to obtain the final

estimate. The third term is small, as it is the square of

ρ

∫ 1

1/2
G(0, ξ)(1 − ξ) dξ ≤ γ

logα

∫ 1

1/2

1

ξ
dξ = O

(
1

logα

)
.

The second event we have to consider is coalescence in b between time 0 and T1/2.
The probability for this event is, again as in (4.5), at most

E
[∫ T1/2

0

2

1 − Xt

dt

]
≤ E

[∫ T

0

2

1 − Xt

1
(
Xt ≤ 1

2

)
dt

]
=

∫ 1/2

0
G(0, ξ)

2

1 − ξ
dξ

≤ 2

α

∫ 1/2

0

1 − e−αξ

ξ(1 − ξ)2 dξ ≤ 8

α

∫ α/2

0

1 − e−ξ

ξ

≤ 8

α
(C + logα) = O

(
logα

α

)
.

So both events are improbable and Proposition 3.4(ii) is proved. �
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4.3. From the coalescent to the Yule tree.

PROOF OF PROPOSITION 3.6. We have to show that the error we make when
using Yule trees instead of coalescent trees in a random background is small. This
involves two approximation steps. The first is an approximation of the coales-
cent in the random background of a Wright–Fisher diffusion by a coalescent in
an α-supercritical Feller background. The second step is an approximation of the
latter coalescent by Yule trees.

For the first approximation step we need to time-change our coalescent. This
relies on the following proposition, whose proof consists of an application of [6],
Chapter 6, Section 1.

PROPOSITION 4.1. Under the random time change t → τ given by dτ =
(1 − Xt) dt , the random path X = (Xt)0≤t≤T is taken into a random path Z =
(Zτ )0≤τ≤T̃

, which is an α-supercritical Feller diffusion governed by

dZ = √
2Z dW + αZ dτ,

starting in Z0 = 0, conditioned on nonextinction and stopped at the time T̃ when
it first hits 1.

Under the time change t → τ , the n-coalescent Tn described in Definition 2.2
is taken into the n-coalescent Cn whose pair coalescence rate conditioned on Z

is 2
Zτ (1−Zτ )

dτ . Under this time change, the marking rate ρ(1 − Xt) dt be-

comes ρ dτ . Let P Cn be the sample partition generated along Cn in the same way
as P Tn was generated along Tn, but now with the uniform marking rate ρ dτ . Note
that P Cn and P Tn have the same distribution.

Let us denote by Dn the n-coalescent whose pair coalescence rate conditioned
on Z is 2/Zτ dτ , T̃ ≥ τ ≥ 0.

PROPOSITION 4.2. The labeled sample partitions P Cn and P Dn generated
by a marking with rate ρ dτ along Cn and Dn, respectively, coincide with proba-
bility 1 − O(

logα
α

).

We need a lemma for the proof of this proposition. Denote by T Z
ε the time when

Z hits level ε for the first time and denote by T
Cn
c the time when the number of

lines in Cn increases from n − 1 to n.

LEMMA 4.3. Assume α is large enough such that (logα)2 ≥ 2. Let ε(α) =
(logα)2

α
. Then

P0
[
T Z

ε(α) < T Cn
c

] = O

(
1

(logα)2

)
.(4.6)
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PROOF. Our proof rests on a Green’s function calculation analogous to those
in the proof of Proposition 3.4 and so, since we already have an expression for the
Green’s function for the process X, it is convenient to “undo” our time change. If
we denote by T X

ε the time when X hits level ε for the first time and denote by T
Cn
c

(resp. T
Tn
c ) the time of the first coalescence in Cn (resp. Tn), then

P0
[
T Z

ε(α) < T Cn
c

] = P0
[
T X

ε(α) < T Tn
c

]
.

It is enough to consider the coalescence time of a sample of size 2, because as the
probability that any pair in the sample coalesces is bounded by the sum over all
pairs of lineages.

With (4.2),

P0
[
T X

ε(α) < T C2
c

] = 1 − Eε(α)

[
exp

(
−

∫ T

0

2

Xs

)]

≤ Eε(α)

[∫ T

0

2

Xs

ds

]

=
∫ 1

0
G

(
ε(α), ξ

)2

ξ
dξ.

Define g(α) := (logα)2. We split the last integral into three parts. We have, for
constants C which change from line to line,

∫ ε(α)

0
G

(
ε(α), ξ

)2

ξ
dξ = 2

∫ ε(α)

0

(e−g(α) − e−α)(eαξ − 1)(1 − e−αξ )

αξ2(1 − ξ)(1 − e−g(α))(1 − e−α)
dξ

≤ 2e−g(α)

(1 − e−g(α))(1 − ε(α))

∫ g(α)

0

(eξ − 1)(1 − e−ξ )

ξ2 dξ

≤ C

(
e−g(α) + e−g(α)/2

∫ g(α)/2

1
dξ +

∫ g(α)

g(α)/2

1

ξ2 dξ

)

≤ C

g(α)
,

∫ 1/2

ε(α)
G

(
ε(α), ξ

)2

ξ
dξ = 2

∫ 1/2

ε(α)

(1 − e−αξ )(1 − e−α(1−ξ))

αξ2(1 − ξ)(1 − e−α)
dξ

≤ 4
∫ α/2

g(α)

1

ξ2 dξ ≤ 4

g(α)
,

∫ 1

1/2
G

(
ε(α), ξ

)2

ξ
dξ ≤ 4

∫ 1

1/2
G(0, ξ) dξ ≤ C logα

α

as g(α) ≥ 2 and so ε(α) ≤ 1
2 , where we have used (3.1) in the third term. �
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REMARK 4.4. It is immediate from Lemma 4.3 that still writing ε(α) =
(logα)2

α
we will have

P0
[
T Z

ε(α) < T Dn
c

] = O

(
1

(logα)2

)
.(4.7)

PROOF OF PROPOSITION 4.2. Let T Z
ε(α) be as in Lemma 4.3. Looking back-

ward from the time T Z
ε(α), assume we take the marked n-coalescent with pair

coalescence rate 2
Z

as an approximation for the marked n-coalescent with pair
coalescence rate 2

Z(1−Z)
. Sources of error in constructing the labeled partition are

the recombination events that occur at a time when the two coalescents have dif-
ferent numbers of extant lines. We will call such an event a bad recombination
event.

First we couple the two coalescent trees. We write T k
Z , T k

Z(1−Z) for the times at
which the coalescents with rates 2/Z and 2/Z(1 − Z) per pair, respectively, have
a transition from k to k − 1 extant lineages. We shall call our coupling successful
if we have

T n
Z(1−Z) > T n

Z > T n−1
Z(1−Z) > T n−1

Z > · · · > T k
Z(1−Z) > T k

Z > · · · > T 2
Z(1−Z) > T 2

Z.

Let S1, . . . , Sn be independent exponentially distributed random variables with
Sk ∼ exp(

(k
2

)
). The idea is simply to use the same random variable Sk to gener-

ate the kth coalescence for both processes. Thus, writing V for Z or Z(1 − Z),
T n

V , . . . , T 1
V are defined recursively by

∫ T Z
ε(α)

T n
V

2

Vs

ds = Sn and
∫ T k+1

V

T k
V

2

Vs

ds = Sn, k = 1, . . . , n − 1.

Notice that our first inequality, T n
Z(1−Z) > T n

Z , is automatically satisfied. At
time T n

Z(1−Z) we have

∫ T Z
ε(α)

T n
Z(1−Z)

2

Zs

ds ≥ (
1 − ε(α)

)
Sn.

Thus

P
[
T n−1

Z(1−Z) > T n
Z

] = P
[∫ T Z

ε(α)

T n−1
Z(1−Z)

2

Zs

ds <

∫ T Z
ε(α)

T n−1
Z

2

Zs

ds

]

≤ P
[(

1 − ε(α)
)
(Sn−1 + Sn) < Sn

]
= O(ε(α)).

Suppose then that T n−1
Z(1−Z) < T n

Z . Automatically then T n−1
Z < T n−1

Z(1−Z) and at

time T n−1
Z(1−Z), there is at most a further ε(α)(Sn−1 + Sn) to accumulate in the
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integral defining T n−1
Z as

P
[
T n−2

Z(1−Z) > T n−1
Z

] = P
[∫ T Z

ε(α)

T n−2
Z(1−Z)

2

Zs

ds <

∫ T Z
ε(α)

T n−1
Z

2

Zs

ds

]

≤ P
[(

1 − ε(α)
)
(Sn−2 + Sn−1 + Sn) < Sn−1 + Sn

]
= O(ε(α)).

Continuing in this way we see that the chance of failing to achieve a successful
coupling is O(ε(α)).

Now consider the chances of a bad recombination event on the tree when we
have a successful coupling. We have to consider the lengths of the intervals when
there are different numbers of lineages extant in the two coalescents, but these
are the times T k

Z(1−Z) − T k
Z . We know that these are time intervals during which

the 2/Z integral must accumulate on the order of ε(α). Since Z < ε(α), the
time taken for this is O(ε(α)2). A bad recombination event then has probabil-
ity O( α

logα
ε(α)2).

The errors that we have so far are the following:

• Failure to couple: an error of O(ε(α)).
• Coupling but bad recombinations: an error of O( α

logα
ε(α)2).

Since, by Lemma 4.3, the additional error coming from a coalescence of
Cn or Dn between T Z

ε(α) and T̃ is O((1/ logα)2), the proof of Proposition 4.2
is complete. �

LEMMA 4.5. Let Z = (Zτ )0≤τ<∞ be an α-supercritical Feller process gov-
erned by

dZ = √
2Z dW + αZ dτ,

started in 0 and conditioned on nonextinction, and let Y = YZ be the tree of indi-
viduals with infinite lines of descent. Then the following statements are true:

(a) When averaged over Z, Y is a Yule tree with birth rate α.
(b) The number of lines in YZ extant at time T̃ (the time when Z first hits the

level 1) has a Poisson distribution with mean α.
(c) Given Z, the pair coalescence rate of YZ viewed backward from time ∞

is 2/Zτ .

PROOF. Statement (a) is Theorem 3.2 of [19]. Statement (b) follows from [7]
and the strong Markov property. Statement (c) derives from the fact that the pair
coalescence rate of ancestral lineages in a continuum branching process (be it su-
percritical or not), conditioned on the total mass path Z, is a variant of Perkins’
disintegration result, compare the discussion following Theorem 1.1 in [3]. �
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REMARK 4.6. Part (c) of Lemma 4.5 also reveals that Kingman’s coalescent
with pair coalescence rate σ 2/P describes the genealogy behind (1.1). Indeed,
represent P as

Pt = Z
(1)
τ

Z
(1)
τ + Z

(2)
τ

,

where Z(1) is an α-subcritical Feller process, Z(2) is a critical Feller process and
the time change from τ to t is given by

dt = dτ

Z
(1)
τ + Z

(2)
τ

.

Lemma 4.5(c) says that, conditional on Z(1), the pair coalescence rate in the ge-
nealogy of Z(1) is σ 2 dτ/Z

(1)
τ , which equals

σ 2 dt
Z

(1)
τ + Z

(2)
τ

Z
(1)
τ

= σ 2 dt
1

Pt

.

PROPOSITION 4.7. The variation distance between the distributions of the
labeled partitions P Yn (introduced in Definition 3.3) and P Dn is O(1/(logα)2).

PROOF. Our proof proceeds in two steps. First we account for the error that
we make in assuming that there is no coalescence in the sample from the leaves
of the Yule tree after time T̃ . Second we account for the error in considering the
process of marks on our Yule tree not up until time T̃ when there are a Poisson(α)
number of extant individuals, but until the time when there are exactly �α	 extant
individuals.

(i) Given Z, take a sample of size n from the leaves of YZ . Write YZ
n for the

ancestral tree of this sample and call YZ

n,T̃
the cutoff of YZ

n between times τ = 0

and τ = T̃ . Assume there are N lines at time T̃ . Since their lines of ascent agglom-
erate like in a Pólya urn, the proportions of their offspring in the leaves of YZ are
uniformly distributed on the simplex {(p1, . . . , pN)|ph ≥ 0,p1 + · · · + pN = 1}.
(See [10] and [13] for more background on Pólya urn schemes.) Writing Dh,
h = 1, . . . ,N , for the number of all descendants of individual number h which
belong to the sample, one therefore obtains that (D1, . . . ,DN) is uniformly dis-
tributed on

BN,n := {(d1, . . . , dN)|d1, . . . , dN ∈ N0, d1 + · · · + dN = n},
the set of occupation numbers of N boxes with n balls. (This distribution is also
called the Bose–Einstein distribution with parameters N and n.) Under this distri-
bution the probability for multiple hits is

1 −
(N
n

)
(N+n−1

n

) = O

(
1

N

)
as N → ∞.(4.8)
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Denote by En the event that there is no coalescence of the ancestral lineages of
the sample between times ∞ and T̃ . Because of Lemma 4.5(b), the probability
of En arises by averaging (4.8) over a Poisson(α)-distributed N . Consequently the
probability of En when averaged over Z is O( 1

α
).

(ii) Next we estimate the difference which it makes for the labeled partitions if
we mark the branches of YZ

n at rate γα/ logα (1) between the real times τ = 0 and
τ = T̃ or (2) between the “Yule times” i = 1 and i = �α	. Since by Lemma 4.5(b)
the number of lines extant in YZ at time τ = T̃ is Poisson(α), to complete the
proof of the proposition it suffices to show that the probability that n chosen lines
are hit by some mark between Yule times �α	 and J is O(1/(logα)2), where J has
a Poisson(α) distribution.

Now on the one hand, by the Chebyshev inequality,

P[|J − α| > α3/4] ≤ α

(α3/4)2 = α−1/2.(4.9)

On the other hand, from (3.6) we see that the probability that n lines are hit by a
mark between Yule times i = �α − α3/4	 and i = �α + α3/4� is bounded by

1 − exp

(
− nγ

logα

�α+α3/4�∑
i=�α−α3/4	

1

i

)
+ O

(
1

(logα)2

)
≤ nγ

logα

Cα3/4

α
+ O

(
1

(logα)2

)

for a suitable C > 0.
Combining this with (4.9) and step (i), the assertion of Proposition 4.7 follows.

�

Because of Corollary 3.5 and Propositions 4.2 and 4.7, and since the distribu-
tions of P Tn and P Cn coincide, Proposition 3.6 is now immediate. �

4.4. Within the Yule world: Proofs of Propositions 3.8–3.11 and 2.8.

PROOF OF PROPOSITION 3.8. All the results we are going to prove in this
section deal with a sample of size n taken from the leaves of an infinite Yule tree.
As a key result we first obtain the “split times” in the sample genealogy as time
evolves forward from t = 0. Recall from Section 3 that I = I (t) is the number of
lines of Y extant at time t and that Ki is the number of lines extant in Yn while
I = i.

LEMMA 4.8. Ki , i = 1,2, . . . , starts in K1 = 1 and is a time-inhomogeneous
Markov chain with transition probabilities

P[Ki+1 = k + 1|Ki = k] = n − k

n + i
, P[Ki+1 = k|Ki = k] = k + i

n + i
.(4.10)
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Its backward transition probabilities are

P[Ki = k|Ki+1 = k + 1] = k(k + 1)

i(i + 1)
.(4.11)

The one-time probabilities and the more-step forward and backward transition
probabilities of K are given by

P[Ki = k] =
(n−1
n−k

)(i
k

)
(n+i−1

n

) (
1 ≤ k ≤ min(i, n)

)
,(4.12)

P[Kj = l|Ki = k] =
(n−k
n−l

)(j+k−1
i+l−1

)
(n+j−1
n+i−1

) ,(4.13)

P[Ki = k|Kj = l] =
(j+k−1
i+l−1

)(i
k

)( l−1
k−1

)
(j−1
i−1

)(j
l

) (
1 ≤ i, l ≤ j ;k ≤ min(i, l)

)
.(4.14)

PROOF. (i) We begin by deriving the one-step transition probabilities (4.10).
At each Yule time i, attach to each line of Y the label 1+d , where d is the number
of the line’s descendants at infinity which belong to the sample. Call a line of Y
fertile if it belongs to Yn, that is, if its attached label is larger than 1.

Passing from i = 1 to i = 2, this induces a split of the sample into subgroups
of sizes D1 and D2 = n − D1, where D1 is uniform on {0,1, . . . , n} (see the argu-
ment in the proof of Proposition 4.7). Given (D1,D2), the proportion of the pop-
ulation at infinity in the tree Y that is descended from the line labeled 1 + D1 is
Beta(1 + D1,1 + n − D1)-distributed, the posterior of a Beta(1,1) with D1 suc-
cesses in n trials. Hence the birth in Y at Yule time i = 2 is to the line labeled
1 + D1 with probability 1+D1

n+2 . If this is the case, D1 is split uniformly into two
subgroups, where a uniform split of 0 is understood as (0,0).

At the ith stage of our construction there will be i lines and an associated parti-
tion of n + i into i subsets with sizes denoted by

1 + Di
1,1 + Di

2, . . . ,1 + Di
i ,

where Di
1, . . . ,D

i
i are nonnegative integers that sum to n. The (i + 1)st split is

of the j th subset with probability 1+Dj

i+n
. At Yule time i, the probability of a “true

split,” that is, a split leading to two fertile successors of the fertile line labeled
1 + Dj , is

1 + Dj

i + n

Dj − 1

Dj + 1
= Dj − 1

i + n
.

Hence, given that the number Ki of fertile lines at Yule time i equals k, the proba-
bility of an increase of the number of fertile lines by 1 is

n − k

i + n
.
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Thus, the process (Ki)i=1,2,... is a pure birth process in discrete time, starting in
K1 = 1, with time inhomogeneous transition probability given by (4.10).

Formula (4.11) follows from (4.10) and (4.12), which will be derived in the next
step.

(ii) Next we derive the one-time probabilities (4.12). For this, take a sample
of size n from the leaves of the Yule tree Y and look at Yule time i, which is
the period when there are i individuals extant in Y. Number these individuals
by h = 1, . . . , i and let Dh, h = 1, . . . , i, be the number of all descendants of
individual number h which belong to the sample. Then, by the argument given
in the proof of Proposition 4.7, (D1, . . . ,Di) is uniformly distributed on

Bi,n := {(d1, . . . , di)|d1, . . . , di ∈ N0, d1 + · · · + di = n},
the set of occupation numbers of i boxes with n balls. This distribution is also
called the Bose–Einstein distribution with parameters i and n.

The event “there are k fertile lines at time i” thus has the same distribution as
the event “k of the i boxes are occupied and the remaining i − k are empty” under
the Bose–Einstein distribution with parameters i and n.

Let

B+
k,n := {(d1, . . . , dk)|d1, . . . , dk ∈ N, d1 + · · · + dk = n}.

It is easy to see that #Bi,n = (n+i−1
n

)
and #B+

k,n = #Bk,n−k = (n−1
n−k

)
. Hence,

(4.12) arises as the probability under the uniform distribution on Bi,n that k of
the i boxes are occupied and the remaining i − k are empty.

(iii) From (i) we see that our Markov chain can be represented in the following
way: At Yule time i there are i real individuals in the Yule tree. Additionally, there
are n virtual individuals, corresponding to the sample of size n, each of which is
attached to one of the real individuals. In this way, the n virtual individuals are split
in k blocks; imagine that each block has one of its virtual individuals as its own
block leader. Then evolve the Markov chain by choosing at each time one of the
n + i (real or virtual) individuals at random. When a real individual is chosen, it
splits into two real individuals (leaving the number of fertile lines constant). When
a virtual individual is chosen, then it is either a block leader or not. If it is a block
leader, we find a split of a fertile line into one fertile and one infertile line (again
leaving the number of blocks constant). When a non-block leader is picked, this
gives rise to a new block and the chosen individual becomes a block leader. This
then increases the number of blocks by 1.

We now proceed to prove (4.13). We start the Yule tree when it has i lines, as-
suming there are currently k blocks of virtual individuals. Thus there are currently
k block leaders and n− k virtual individuals that are eligible to become new block
leaders by time j . To distribute the additional j − i individuals that enter the Yule
tree between Yule times i and j , note that these can choose among i + n individu-
als as potential ancestors at time i. Thus the number of ways to distribute the j − i
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additional individuals on i + n ancestors is

#Bj−i,n+i =
(

n + j − 1
j − i

)
=

(
n + j − 1
n + i − 1

)

and all of them have the same probability since the additional individuals arrive
as in a Pólya scheme. To obtain l blocks at Yule time j , having k block leaders at
Yule time i, we must calculate the probability of having added l − k blocks up to
Yule time j . At Yule time i, there are already k block leaders and the number of
ways to choose l − k additional ones from the remaining n− k potential new block
leaders is (

n − k

l − k

)
.

To realize these new block leaders, we already have to use l − k individuals. The
remaining j − i − (l − k) individuals must be distributed among the i + n indi-
viduals present at Yule time i. However, to obtain l blocks at Yule time j , these
individuals must avoid the n− l nonblock leaders (because this would result in new
blocks). The number of ways to distribute j − i − (l − k) balls on i + n − (n − l)

boxes is

#Bi+l,j−i−(l−k) =
(

j + k − 1
j − i − (l − k)

)
=

(
j + k − 1
i + l − 1

)
.

Altogether we arrive at (4.13).
(iv) The more-step backward transition probabilities (4.14) follow from (4.12),

(4.13) and Bayes’ formula. �

REMARK 4.9. (i) Here is a self-contained derivation of the more-step back-
ward transition probabilities (4.14). For i, l ≤ j , k ≤ min(i, l), consider the classi-
cal Pólya model with i ancestors and j − i newcomers, leading to j people after
the successive arrivals of the newcomers. Each of these j − i newcomers joins the
family of one of the i ancestors by randomly choosing one of the extant individ-
uals. The joint distribution of the numbers of newcomers in each family is then
Bose–Einstein with parameters i and j − i. There are now j people in our popula-
tion. Sample l at random (without replacement). Then the conditional probability
P[Ki = k|Kj = l] equals the probability that these l people belong to exactly k

families. We can now decompose with respect to the number U of individuals in
the l-sample which are among the original i ancestors. This number is hypergeo-
metric, choosing l out of j = i + (j − i) [see (2.6)].

Given U = u, the probability that the sample forms exactly k distinct families is
the probability that exactly k −u of the available i −u ancestors have descendants
among the l − u newcomers in the sample. There are

(i−u
k−u

)
possible choices of

the additional ancestors and, conditional on that choice, there are
(l−u−(k−u)+k−1

l−u−(k−u)

)
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ways to distribute the remaining newcomers. Hence the conditional probability
that the sample forms exactly k distinct families is(i−u

k−u

)(l−u−(k−u)+k−1
l−u−(k−u)

)
(l−u+i−1

l−u

) =
(i−u
i−k

)(l−1
l−k

)
(l−u+i−1

i−1

) .

We thus conclude that

P[Ki = k|Kj = l] =
k∑

u=0

( i
u

)(j−i
l−u

)
(j
l

)
(i−u
i−k

)(l−1
l−k

)
(l−u+i−1

i−1

) .(4.15)

The fact that the right-hand sides of (4.14) and (4.15) are equal can be checked
by an elementary but tedious calculation (or by your favorite computer algebra
package).

(ii) Since (4.12) follows from (4.14) by putting l = n and letting j tend
to infinity, (4.13) follows from (4.14) and (4.12) by the Bayes formula, and
(4.10) and (4.11) specialize from (4.13) and (4.14).

With Lemma 4.8 it is now easy to complete the proof of Proposition 3.8:

P[F ≤ i] = P[Ki = n]

=
(i
n

)
(n+i−1

n

) = i!(i − 1)!
(i − n)!(n + i − 1)!

= (i − 1) · · · (i − n + 1)

(i + n − 1) · · · · · (i + 1)
. �

PROOF OF PROPOSITION 3.9. As a preparation, we prove the following
lemma:

LEMMA 4.10. For the first Yule time F when there are n fertile lines we have,
for k < n,

P[F = f |Ki = k] = (f − i − 1) · · · · · (f − i − (n − k) + 1)

(f + n − 1) · · · · · (f + k − 1)

× (n − k)(n + i − 1), k < n − 1,(4.16)

P[F = f |Ki = n − 1] = 1

(f + n − 1)(f + n − 2)
(n + i − 1)

and

P[F = f |Ki = k] ≤ Ci

f 2 ,(4.17)

where C depends only on n.
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PROOF. Equation (4.16) follows by

P[F = f |Ki = k]
= P[F > f − 1|Ki = k] − P[F > f |Ki = k]
= P[Kf = n|Ki = k] − P[Kf −1 = n|Ki = k]

=
(f +k−1
i+n−1

)
(n+f −1
n+i−1

) −
(f +k−2
i+n−1

)
(n+f −2
n+i−1

)
= (f + k − 1)!(f − i)!

(f − i + k − n)!(n + f − 1)! − (f + k − 2)!(f − i − 1)!
(f − i + k − n − 1)!(n + f − 2)!

= {
(f + k − 2)!(f − i − 1)!
× (

(f + k − 1)(f − i) − (f − i + k − n)(n + f − 1)
)}

× {(f − i + k − n)!(n + f − 1)!}−1

= (f + k − 2)!(f − i − 1)!(n − k)(n + i − 1)

(f − i + k − n)!(n + f − 1)! ,

where we have used

(f + k − 1)(f − i) − (f − i + k − n)(n + f − 1)

= (f − i)(k − n) − (k − n)(n + f − 1)

= (k − n)(f − i − n − f + 1) = (n − k)(n + i − 1).

If k < n − 1, the terms (f − i − 1)! and (f − i + k − n)! cancel partially, leading
to

P[F = f |Ki = k] = (f − i − 1) · · · · · (f − i − (n − k) + 1)

(f + n − 1) · · · · · (f + k − 1)
(n − k)(n + i − 1).

In the case k = n − 1, these two terms cancel completely, which proves (4.16).
To see (4.17), note that the fraction in (4.16) is bounded by 1/f 2 and (n−k)(n+

i − 1) ≤ n2i. �

Recall the definitions of Mi , M = ∑F
i=1 Mi and SY from Section 3. We first

turn to the proof of (3.5).
First observe that since {M ≥ 2} requires either that the tree is hit by marks

during two distinct Yule times in the early phase or at least twice during a single
Yule time (during the early phase), we may estimate

P[M ≥ 2] ≤
�α	∑
i=n

�α	∑
j=i+1

P[Mi ≥ 1,Mj ≥ 1,Kj < n] +
�α	∑
i=n

P[Mi ≥ 2].



716 A. ETHERIDGE, P. PFAFFELHUBER AND A. WAKOLBINGER

For the first term we use (4.17) to see that there is some constant C that depends
only on n such that, for k < n,

P[F > j |Ki = k] ≤ C
i

j
.

With this we approximate (recall Remark 3.7) for constants C which depend only
on n and can change from occurrence to occurrence:

�α	∑
i=1

�α	∑
j=i+1

P[Mi ≥ 1,Mj ≥ 1,Kj < n]

≤
�α	∑
i=1

�α	∑
j=i+1

n−1∑
k1,k2=1

P[Mj = 1|Kj = k2] · P[Mi = 1|Ki = k1]

× P[Ki = k1,Kj = k2]

≤
�α	∑
i=1

�α	∑
j=i+1

n−1∑
k1,k2=1

γ 2n2

(logα)2

1

ij
P[Ki = k1,Kj = k2]

= γ 2n2

(logα)2

�α	∑
i=1

�α	∑
j=i+1

n−1∑
k1=1

1

ij
P[Kj ≤ n − 1|Ki = k1] · P[Ki = k1]

≤ C

(logα)2

�α	∑
i=1

�α	∑
j=i+1

1

ij

n−1∑
k1=1

P[F > j |Ki = k1] · P[Ki = k1]

≤ C

(logα)2

�α	∑
i=1

�α	∑
j=i+1

1

ij

i

j
P[F > i]

≤ C

(logα)2

�α	∑
i=1

�α	∑
j=i+1

1

ij2

≤ C

(logα)2

�α	∑
i=1

1

i2 ≤ C

(logα)2 .

For the second term, again by Remark 3.7,

�α	∑
i=1

P[Mi ≥ 2] ≤
�α	∑
i=1

C

i2(logα)2 ≤ C

(logα)2 ,

which proves (3.5).
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Consequently, we can now concentrate on the event {M = 1}. The proof of (3.4)
consists of two steps. First we will show that

P[SY = s,M = 1]

= O

(
1

(logα)2

)
+




γ

logα

�α	∑
i=1

(n−s+i−2
n−s

)
(n+i−1

n

) , s ≥ 2,

γ

logα

�α	∑
i=1

(n+i−3
n−1

) − (i−1
n−1

)
(n+i−1

n

) , s = 1.

(4.18)

Second we will approximate these probabilities to obtain (3.4).
Given that the sample genealogy is hit by exactly one mark, and given that

this happens when there are k fertile lines (1 ≤ k ≤ n − 1), then the (conditional)
probability that SY = s (1 ≤ s ≤ n − k + 1) is (in the notation of the proof of
Lemma 4.8)

P[SY = s|Ki = k,M = Mi = 1] = #Bk−1,n−k−(s−1)

#Bk,n−k
(4.19)

=
(n−k−(s−1)+(k−1)−1

n−k−(s−1)

)
(n−k+k−1

n−k

) =
( n−s−1
n−s−(k−1)

)
(n−1
n−k

) .

[Indeed, the one line which is hit by a mark during period i must spawn s − 1
offspring and the other k − 1 lines must spawn n − k − (s − 1) offspring.]

The probability that the sample genealogy is hit by a mark during period i and
there are k fertile lines [k ≤ i ∧(n−1)] during period i is, according to Remark 3.7
and (3.6),

P[Mi = 1,Ki = k] =
(

γ

logα

k

i
+ O

(
1

i2(logα)2

))
P[Ki = k]

= γ

logα

k

i

(i
k

)(n−1
n−k

)
(n+i−1

n

) + O

(
1

i2(logα)2

)
(4.20)

= γ

logα

(i−1
k−1

)(n−1
n−k

)
(n+i−1

n

) + O

(
1

i2(logα)2

)
.

To now show (4.18), we need some approximations.

LEMMA 4.11. For constants C1 and C2 which only depend on n,

�α	∑
i=1

i∧(n−1)∑
k=1

(log i)P[Ki = k,Mi = 1] ≤ C1

logα
,(4.21)

P[M ≥ 2|Mi = 1,Ki = k] ≤ C2(1 + log i)

logα
.(4.22)
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PROOF. We will use the integral∫ logx

x2 = −1 + logx

x
,(4.23)

which will give us finiteness of some constants.
For (4.21), we have, from (4.20),

�α	∑
i=1

i∧(n−1)∑
k=1

(log i)P[Ki = k,Mi = 1]

= O

(
1

(logα)2

)
+ γ

logα

�α	∑
i=1

log i

i∧(n−1)∑
k=1

(i−1
k−1

)(n−1
n−k

)
(n+i−1

n

)

= O

(
1

(logα)2

)
+ γ

logα

�α	∑
i=1

log i

(n+i−2
n−1

) − (i−1
n−1

)
(n+i−1

n

) .

Now, for some constants C and C′ which are bounded in i (and may change from
appearance to appearance),(

n + i − 2
n − 1

)
−

(
i − 1
n − 1

)
= [(i + n − 2) · · · i] − [(i − 1) · · · (i − (n − 1))]

(n − 1)!

≤ in−1 + Cin−2 − in−1 + C′in−2

(n − 1)! ≤ Cin−2

and, because for i ≥ 2 (
n + i − 1

n

)
≥ Cin,

we see that
�α	∑
i=1

i∧(n−1)∑
k=1

(log i)P[Ki = k,M = Mi = 1]

≤ O

(
1

(logα)2

)
+ γ

logα

�α	∑
i=1

Cin−2 log i

Cin
≤ C′

logα
,

where we have used (4.23).
For (4.22), using (4.17) and (4.23), we write, for some constant C depending

only on n which can change from instance to instance,

P[M ≥ 2|Mi = 1,Ki = k]

=
�α	∑
j=i

P[M ≥ 2|Mi = 1,Ki = k,F = j ] · P[F = j |Ki = k](4.24)

≤
�α	∑
j=i

j∑
l=1

n

l

γ

logα

Ci

j2 ≤ C

logα

�α	∑
j=i

i log j

j2 ≤ C(1 + log i)

logα
. �
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We now return to the proof of (4.18). The probability that the sample genealogy
is hit by a unique early mark and that SY = s ≤ n is

P[SY = s,M = 1]
(4.25)

=
i∧(n−1)∑

k=1

�α	∑
i=1

P[SY = s,M = Mi = 1,Ki = k]

=
i∧(n−1)∑

k=1

�α	∑
i=1

P[SY = s|M = Mi = 1,Ki = k]
(4.26)

× P[Mi = 1,Ki = k](1 − P[M ≥ 2|Mi = 1,Ki = k]).
For this sum, the event {M ≥ 2} does not play a role, because by (4.21) and (4.22),

i∧(n−1)∑
k=1

�α	∑
i=1

P[Mi = 1,Ki = k] · P[M ≥ 2|Mi = 1,Ki = k]
(4.27)

≤
�α	∑
i=1

C log i

logα
P[Mi = 1,Ki ≤ n − 1] ≤ C

(logα)2 .

So, combining (4.19) and (4.20), we have

P[SY = s,M = 1]

= O

(
1

(logα)2

)
+

i∧(n−1)∑
k=1

�α	∑
i=1

P[SY = s|M = Mi = 1,Ki = k]

× P[Mi = 1,Ki = k]

= O

(
1

(logα)2

)
+ γ

logα

�α	∑
i=1

i∧(n−1)∑
k=1

( n−s−1
n−s−(k−1)

)(i−1
k−1

)
(n+i−1

n

)(4.28)

= O

(
1

(logα)2

)
+ γ

logα

�α	∑
i=1

(n−s+i−2
n−s

) − (i−1
n−1

)(n−s−1
1−s

)
(n+i−1

n

)

= O

(
1

(logα)2

)
+




γ

logα

�α	∑
i=1

(n−s+i−2
n−s

)
(n+i−1

n

) , s ≥ 2,

γ

logα

�α	∑
i=1

(n+i−3
n−1

) − (i−1
n−1

)
(n+i−1

n

) , s = 1,

which proves (4.18).
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We now approximate these probabilities further to obtain (3.4). First observe
that, since

1

(n + i − 1) · · · i = 1

n − 1

(
1

(n + i − 2) · · · i − 1

(n + i − 1) · · · (i + 1)

)
for s = n and n ≥ 2, we may write

�α	∑
i=1

1(n+i−1
n

) = n!
�α	∑
i=1

1

(n + i − 1) · · · · · i
(4.29)

= n!
(n − 1) · (n − 1)! + O

(
1

α

)
= n

n − 1
+ O

(
1

α

)
,

which gives (3.4) in the case s = n.
Now define

A(n, s,α) :=
�α	∑
i=1

(n−s+i−2
n−s

)
(n+i−1

n

) .(4.30)

For s ≤ n − 1, the summand vanishes for i = 1 and so

A(n, s,α) =
�α	−1∑
i=1

(n−s+i−1
n−s

)
(n+i

n

) =
�α	−1∑
i=1

n!i!(n − s + i − 1)!
(n + i)!(n − s)!(i − 1)!

= n!
(n − s)!

�α	−1∑
i=1

i

(i + n) · · · (i + n − s)
(4.31)

= n!
(n − s)!

�α	−1∑
i=1

(
1

(i + n) · · · (i + n − s + 1)

− n − s

(i + n) · · · (i + n − s)

)
.

We treat the two sums separately and rewrite each as a telescoping sum as in the
derivation of (4.29) to see that, for 2 ≤ s ≤ n − 1, this gives

A(n, s,α) = n!
(n − s)!

(
1

s − 1

1

n · · · (n − s + 2)
− n − s

s

1

n · · · (n − s + 1)

)

+ O

(
1

α

)

= n − s + 1

s − 1
− n − s

s
+ O

(
1

α

)

= (n − s + 1)s − (s − 1)(n − s)

(s − 1)s
+ O

(
1

α

)

= n

(s − 1)s
+ O

(
1

α

)
,
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so (3.4) is also proved for 2 ≤ s ≤ n − 1. For s = 1, the above gives

A(n,1, α) = n

�α	−1∑
i=1

1

i + n
− n(n − 1)

�α	−1∑
i=1

(
1

i + n − 1
− 1

i + n

)

= n

�α	∑
i=n+1

1

i
− n(n − 1)

1

n
+ O

(
1

α

)
(4.32)

= 1 − n + n

�α	∑
i=n+1

1

i
+ O

(
1

α

)
.

For s = 1, we also have to deal with the second term in (4.18). We write
�α	∑
i=1

(i−1
n−1

)
(n+i−1

n

) =
�α	∑
i=1

(i − 1)!(i − 1)!n!
(n − 1)!(i − n)!(n + i − 1)! = n

�α	∑
i=1

(i − 1) · · · (i − n + 1)

(i + n − 1) · · · i .

Define

Am,n :=
�α	∑
i=1

(i − 1) · · · (i − m + 1)

(i + n − 1) · · · i , m > 1,

A1,n :=
�α	∑
i=1

1

(i + n − 1) · · · i , An := An,n.

Our goal then is to find an approximation of An. Observe that we have a recursive
structure:

Am,n =
�α	∑
i=1

(i − 1) · · · (i − m + 2)

(i + n − 2) · · · i

− (m + n − 2)

�α	∑
i=1

(i − 1) · · · (i − m + 2)

(i + n − 1) · · · i(4.33)

= Am−1,n−1 − (m + n − 2)Am−1,n.

From this equation it also follows that

Am,n = A1,n−m+1 +
m−2∑
k=0

(Am−k,n−k − Am−k−1,n−k−1)

(4.34)

= A1,n−m+1 −
m−2∑
k=0

(m + n − 2k − 2)Am−1−k,n−k.

First we show that for 1 ≤ m < n,

Am,n = (m − 1)!(m − 1)!(n − m − 1)!
(n − 1)!(n − 1)! + O

(
1

α

)
.(4.35)
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We proceed by induction on m. For m = 1, we have, up to an error of O( 1
α
) (here

n > 1 is important),

A1,n =
�α	∑
i=1

1

(i + n − 1) · · · i

= 1

n − 1

�α	∑
i=1

1

(i + n − 2) · · · i − 1

(i + n − 1) · · · (i + 1)

= 1

(n − 1)(n − 1)! + O

(
1

α

)

= (n − 2)!
(n − 1)!(n − 1)! + O

(
1

α

)

and, by (4.33),

Am+1,n = Am,n−1 − (m + n − 1)Am,n

= (m − 1)!(m − 1)!(n − m − 2)!
(n − 2)!(n − 2)!

− (m + n − 1)
(m − 1)!(m − 1)!(n − m − 1)!

(n − 1)!(n − 1)!

= (m − 1)!(m − 1)!(n − m − 2)!((n − 1)2 − (n − 1 + m)(n − 1 − m))

(n − 1)!(n − 1)!
= m!m!(n − (m + 1) − 1)!

(n − 1)!(n − 1)! ,

which proves (4.35).
From (4.35) and (4.34), we see, because

A1 =
�α	∑
i=1

1

i
+ O

(
1

α

)
,(4.36)

that

An = A1 − 2
n−2∑
k=0

(n − k − 1)
(n − k − 2)!(n − k − 2)!
(n − k − 1)!(n − k − 1)! + O

(
1

α

)

= A1 − 2
n−2∑
k=0

1

n − k − 1
+ O

(
1

α

)
= A1 − 2

n−1∑
i=1

1

i
+ O

(
1

α

)
(4.37)

= 1

n
− 1 +

�α	∑
i=n+1

1

i
−

n−1∑
i=2

1

i
+ O

(
1

α

)
.
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Now (3.4) follows in the case s = 1 from (4.18), (4.32) and (4.37) as

�α	∑
i=1

(n+i−3
n−1

) − (i−1
n−1

)
(n+i−1

n

) = 1 − n + n

�α	∑
i=n+1

1

i

− n

(
1

n
− 1 +

�α	∑
i=n+1

1

i
−

n−1∑
i=2

1

i

)
+ O

(
1

α

)

= n

n−1∑
i=2

1

i
+ O

(
1

α

)
.

�

PROOF OF PROPOSITION 3.10. Let L denote the random subset that consists
of all those ancestral lineages of the sample which are hit by a late mark. For a fixed
subset A of the n ancestral lineages of the sample, we conclude from Remark 3.7
and (3.6) that, for all f ∈ {1, . . . , �α	},

P[L ∩ A = ∅|F = f ] =
�α	∏
i=f

iα

iα + aγα/logα

= exp

(
− aγ

logα

�α	∑
i=f

1

i

)
+ O

(
1

(logα)2

)
(4.38)

= (pf )a + O

(
1

(logα)2

)
,

where a = #A and the error term is uniform in f . Consequently, if we consider the
random subset M of the sample which results from the successes of coin tossing
with random success probability pF , we observe that

P[L ∩ A = ∅] = E[(pF )a] + O

(
1

(logα)2

)
(4.39)

= P[M ∩ A = ∅] + O

(
1

(logα)2

)
.

By inclusion–exclusion, (4.38) extends to the desired approximate equality of the
distributions of L and M. �

PROOF OF PROPOSITION 3.11. It remains to prove the approximate indepen-
dence of the random variables SY and LY. It is enough to show that, with the
desired accuracy, SY is independent of the event of a late recombination of a ran-
domly chosen line.

For convenience, we abuse notation, and write S and L instead of SY and LY.
The approximate independence of the distributions of S and L relies on two crucial
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observations. First, because S > 0 only has a probability of order O( 1
logα

) (see

Proposition 3.9), we can allow for a multiplicative error of order O( 1
logα

) for the
probability of L = l. The second observation is that the two probabilities P[L = l]
and P[L = l|Ki = k] are C log i

logα
apart, which is the content of (4.41).

LEMMA 4.12. There are constants C1 and C2 that depend only on n such that

∣∣P[L = l|F = f ] − P[L = l|F = f ′]∣∣ ≤ C1(1 + logf )(1 + logf ′)
logα

,(4.40)

∣∣P[L = l|Ki = k] − P[L = l]∣∣ ≤ C2(1 + log i)

logα
(k < n).(4.41)

PROOF. We start by proving (4.40). Given F = f , the number of late recom-
binants is approximately binomially distributed with parameters n and 1−pf (see
Proposition 3.10). Thus, for f,f ′ ≤ α,

∣∣P[L = l|F = f ] − P[L = l|F = f ′]∣∣
=

(
n

l

)
|(1 − pf )lpn−l

f − (1 − pf ′)lpn−l
f ′ | + O

(
1

(logα)2

)

≤
l∑

k=0

(
n

l

)(
l

k

)
|pn−l+k

f − pn−l+k
f ′ | + O

(
1

(logα)2

)
,

where we have used that (1 − p)l = ∑l
k=0

( l
k

)
pk . Now (4.40) follows, since for

0 ≤ m ≤ 2n and (w.l.o.g.) f ≤ f ′,

|pm
f − pm

f ′ | =
∣∣∣∣∣exp

(
− mγ

logα

�α	∑
i=f

1

i

)
− exp

(
− mγ

logα

�α	∑
i=f ′

1

i

)∣∣∣∣∣

≤
∣∣∣∣∣1 − exp

(
− mγ

logα

f ′∑
i=f

1

i

)∣∣∣∣∣

≤ mγ

logα

f ′∑
i=f

1

i

≤ C(1 + logf ′)
logα

.

To show (4.41), we calculate directly. For some C (which may change from occur-
rence to occurrence) we obtain, noting that P[F > �α	] = O( 1

α
) from (4.17) and,
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for i ≤ f , Ki and L are conditionally independent given F = f ,

|P[L = l|Ki = k] − P[L = l]|

=
∣∣∣∣∣
�α	∑
f =i

(P[L = l|F = f ] · P[F = f |Ki = k] − P[L = l] · P[F = f |Ki = k])
∣∣∣∣∣

+ O

(
1

α

)

=
∣∣∣∣∣
�α	∑
f =i

�α	∑
f ′=n

P[F = f |Ki = k]

× P[F = f ′](P[L = l|F = f ] − P[L = l|F = f ′])
∣∣∣∣∣ + O

(
1

α

)

≤ C

�α	∑
f =i

�α	∑
f ′=n

i

f 2

1

f ′2
1(1 + logf )(1 + logf ′)

logα

= C

logα

�α	∑
f =i

i(1 + logf )

f 2 = C(1 + log i)

logα
,

where we have used again (4.17) and the integral (4.23). �
With the help of the previous lemma, we can now complete the proof of Propo-

sition 3.11. First take s > 0. Then the assertion follows from the above statements,
since by (3.5),

P[L = l, S = s] = P[L = l, S = s,M = 1] + O

(
1

(logα)2

)

=
�α	∑
i=1

i∧(n−1)∑
k=1

P[L = l|S = s,Ki = k,M = Mi = 1]

× P[S = s,Ki = k,M = Mi = 1] + O

(
1

(logα)2

)

=
�α	∑
i=1

i∧(n−1)∑
k=1

P[L = l|Ki = k]P[S = s,Ki = k,M = Mi = 1]

+ O

(
1

(logα)2

)

(4.41)=
�α	∑
i=1

i∧(n−1)∑
k=1

(
P[L = l] + C log i

logα

)

× P[S = s,Ki = k,M = Mi = 1] + O

(
1

(logα)2

)
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(4.21)= P[L = l] · P[S = s] + O

(
1

(logα)2

)
.

Also for s = 0 the assertion is true, since by the above

P[L = l, S = 0] = P[L = l] − P[L = l, S > 0]
= P[L = l](1 − P[S > 0]) + O

(
1

(logα)2

)

= P[L = l] · P[S = 0] + O

(
1

(logα)2

)
. �

PROOF OF PROPOSITION 2.8. Schweinsberg and Durrett [21] also used Yule
processes to obtain an approximate scenario for the genealogy under hitchhiking.
In fact, the third step in the approximation in our paper (see Sections 3.2 and 3.5)
leads to the very same Yule process that appeared in [21]. To be exact about this,
note that by Remark 3.7, one line in our Yule tree is hit by a mark during Yule
time i with probability

ρ

iα + ρ
= γ

logα

1

i + γ /logα

= γ

logα

(
1

i
+ O

(
1

i2 logα

))
.

In the model of Schweinsberg and Durrett [21] as given in their (7.2), a line is hit
during Yule time i, as ρ = 2Nr,α = 2Ns, with probability

r

is + r(1 − s)
= ρ

iα + ρ(1 − s)

= γ

logα

(
1

i
+ O

(
1

i2 logα

))
,

which proves the proposition. �

4.5. The sampling formula.

PROOF OF COROLLARY 2.7. Using Theorem 1, we calculate, because
L and S are independent,

P[E = e,L = l] =
n∑

s=e

P[E = e|L = l, S = s] · P[L = l, S = s]

= P[L = l]
n∑

s=e

(s
e

)( n−s
n−l−e

)
(n
l

) P[S = s]

= E[pn−l
F (1 − pF )l]

n∑
s=e

(
s

e

)(
n − s

n − l − e

)
P[S = s].
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Let us now distinguish the three cases e ≥ 2, e = 1 and e = 0. By a calcula-
tion using binomial coefficients (or using a computer algebra program or by [20],
page 7, (2)),

n∑
s=e

(
s − 2
e − 2

)(
n − s

n − l − e

)
=

(
n − 1

l

)
1{l + e ≤ n}.

With this we can calculate for e ≥ 2, as long as l + e ≤ n,

n∑
s=e

(
s

e

)(
n − s

n − l − e

)
P[S = s]

= nγ

logα

(
1

n

(
n

e

)
1{l + e = n} +

n∑
s=e

(
s

e

)(
n − s

n − l − e

)
1

s(s − 1)

)

= nγ

logα

(
n − 1

e(e − 1)

(
n − 2
e − 2

)
1{l + e = n}

+ 1

e(e − 1)

n∑
s=e

(
s − 2
e − 2

)(
n − s

n − l − e

))

= nγ

logα

(n − 1)
(n−2
e−2

)
1{l + e = n} + (n−1

l

)
e(e − 1)

,

where we have used 1
n−1 = 1

n(n−1)
+ 1

n
for the case s = n. This gives (2.7) in the

case e ≥ 2. For e = 1, we have

n∑
s=1

(
s

1

)(
n − s

n − l − 1

)
P[S = s]

= nγ

logα

(
1{l + 1 = n} +

(
n − 1

l

) n−1∑
i=2

1

i
+

n∑
s=2

( n−s
l−s+1

)
s − 1

)
,

which gives the result for e = 1. For the case e = 0, we first calculate

P[S = 0] = 1 −
n∑

s=1

P[S = s]

= 1 − nγ

logα

(
1

n
+

n−1∑
i=2

1

i
+

n∑
s=2

1

s(s − 1)

)

= 1 − nγ

logα

n−1∑
i=1

1

i
.
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With this we see
n∑

s=0

(
n − s

n − l

)
P[S = s]

=
(

n

l

)(
1 − nγ

logα

n−1∑
i=1

1

i

)

+ nγ

logα

(
1

n
1{l = n} +

(
n − 1
l − 1

) n−1∑
i=2

1

i
+

n∑
s=2

(
n − s

n − l

)
1

s(s − 1)

)

=
(

n

l

)(
1 − nγ

logα

(
1 − l

n

n−1∑
i=2

1

i

))

+ nγ

logα

(
1

n
1{l = n} +

n∑
s=2

(
n − s

n − l

)
1

s(s − 1)

)
,

which completes the proof. �
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