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STATISTICAL ROMBERG EXTRAPOLATION: A NEW VARIANCE
REDUCTION METHOD AND APPLICATIONS

TO OPTION PRICING

BY AHMED KEBAIER

Université de Marne-La-Vallée

We study the approximation of Ef (XT ) by a Monte Carlo algorithm,
where X is the solution of a stochastic differential equation and f is a
given function. We introduce a new variance reduction method, which can be
viewed as a statistical analogue of Romberg extrapolation method. Namely,
we use two Euler schemes with steps δ and δβ,0 < β < 1. This leads to an
algorithm which, for a given level of the statistical error, has a complexity
significantly lower than the complexity of the standard Monte Carlo method.
We analyze the asymptotic error of this algorithm in the context of general
(possibly degenerate) diffusions. In order to find the optimal β (which turns
out to be β = 1/2), we establish a central limit type theorem, based on a result
of Jacod and Protter for the asymptotic distribution of the error in the Euler
scheme. We test our method on various examples. In particular, we adapt it to
Asian options. In this setting, we have a CLT and, as a by-product, an explicit
expansion of the discretization error.

1. Introduction. In many numerical problems—in particular, in mathemat-
ical finance—one has to compute, using the Monte Carlo method, Ef (XT ),
where XT is a diffusion process. The advantage of using a probabilistic approach
instead of a PDE approach is that one may solve problems in high dimension. But
on the other hand, the Monte Carlo algorithms are much slower and their practical
efficiency highly depends on the variance of the random variables at hand. This is
why variance reduction plays a crucial role in the practical implementation.

There are several classes of methods which are used to reduce variance: the con-
trol variate approach, the antithetic variate method, moment matching, importance
sampling, conditional Monte Carlo methods. . . . (For more details about variance
reduction methods, see [3].) In this paper we introduce a new variance reduction
method which we will call statistical Romberg method. This method can be viewed
as a control variate method. Roughly speaking, the idea is as follows: use many
sample paths with a coarse time discretization step and few additional sample paths
with a fine time discretization step. More precisely, in order to construct our con-
trol variate, we discretize the diffusion (Xt)0≤t≤T by two Euler schemes with time
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steps T/n and T/m (m � n). Suppose for a while that Mm := Ef (Xm
T ) is known.

Then we construct

Q = f (Xn
T ) − f (Xm

T ) + Mm.

Clearly, we have Ef (Xn
T ) = EQ and we wish to simulate Q instead of f (Xn

T ).
Standard arguments show that for f Lipschitz continuous, we have

Var(Q) = O(1/m)

(see Proposition 3.1). So the variance of Q tends to zero as m tends to infinity
and, consequently, in order to achieve a given accuracy, we need a much smaller
sample. This significantly reduces the complexity of the algorithm. But, on the
other hand, we have to compute the quantity Mm, and this is done again by Monte
Carlo sampling. This will increase the complexity of the algorithm and we need
to find a good balance which guarantees that the global complexity decreases.
Let Nm be the number of Monte Carlo simulations used for the evaluation of Mm

and Nn be the number of Monte Carlo simulations used for the evaluation of EQ.
The question is how to choose m, Nm and Nn.

In the classical Monte Carlo method, one needs to choose the number n of
intervals in the discretization and the number N of simulations. The parameter n

drives the so-called discretization error due to discretization, whereas the num-
ber N controls the statistical error. For a rational choice of N versus n, one may
try to minimize the error for a given computational time (see [5]) or, equivalently,
to minimize the computational time for a given total error (see [12]).

An optimal choice of the number of Monte Carlo samples must be based on a
precise evaluation of the discretization error. This requires some kind of regularity:
in [2], the regularizing effect of the diffusion process allows to prove that the rate
of convergence is 1/n for measurable functions. A Hörmander type assumption is
needed. In the case of general diffusions, the same order of convergence can be
proved for regular functions only. (See the pioneering paper [16] for C 6-functions
and for C 3-functions, see [12]. For stochastic differential equations driven by a
Lévy process, see [8].)

Our first result shows that, in the context of possibly degenerate diffusions, the
discretization error for C 1-functions is at least o(1/

√
n ) (see Proposition 2.2). For

such functions, we give an example for which the discretization error is of order
1/nα for any α ∈ (1/2,1] (see Proposition 2.3).

Our second result is a central limit theorem for the statistical Romberg method
(see Theorem 3.2). This theorem uses the weak convergence of the normalized
error of the Euler scheme for diffusions proved by Kurtz and Protter [11] (and
strengthened by Jacod and Protter [9]).

Based on this central limit theorem, we are able to fix the optimal balance be-
tween m, Nm and Nn. It turns out that, for a given error level ε = 1/nα , we obtain
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m = √
n, Nm = n2α and Nn = n2α−1/2. With this choice, the complexity of our al-

gorithm is CSR = C ×n2α+1/2, C > 0, while the complexity in the standard Monte
Carlo is CMC = C × n2α+1. So we have a clear gain.

Our approach can also be used for the Monte Carlo approximation of expecta-
tions of functionals of the whole path of a diffusion. In particular, we investigate
the application to the pricing of Asian options. In this setting, the approxima-
tion relies on the discretization of the integral of the price process over a time
interval. It was shown in [17] that the trapezoidal rule is one of the most ef-
ficient methods for this discretization. We analyze the error process, which is
of the order 1/n. We prove a stable functional central limit theorem in the
spirit of Jacod and Protter [9]. As a consequence of this result, we give an ex-
pansion of the analytical error, which, in contrast with Temam’s [17] result, does
not use the associated PDE We also use our result in order to optimize the choice
of the parameters, which are different from the ones in the Euler scheme.

The organization of the paper is the following. We first recall essential facts
about the Euler scheme, including error evaluations. In Section 3 we describe our
statistical Romberg method for the Euler scheme. In Section 4 we apply the idea
of statistical Romberg approximation to the discretization of path integrals of a
diffusion in the context of Asian option pricing. Section 5 is devoted to numerical
tests and comparisons. In the last section we give conclusions and remarks.

2. On the discretization error of the Euler scheme. Let (Xt)0≤t≤T be the
process with values in R

d , solution to

dXt = b(Xt) dt + σ(Xt) dWt, X0 = x ∈ R
d,(1)

where W = (W 1, . . . ,Wq) is a q-dimensional Brownian motion on some given
filtered probability space B = (�,F , (Ft )t≥0,P ). (Ft )t≥0 is the standard Brown-
ian filtration. The functions b : Rd −→ R

d and σ : Rd −→ R
d×q are continuously

differentiable and satisfy ∃CT > 0; ∀x, y ∈ R
d , we have

|b(x) − b(y)| + |σ(x) − σ(y)| ≤ CT |y − x|.
We consider the Euler continuous approximation Xn with step δ = T/n given by

dXn
t = b

(
Xηn(t)

)
dt + σ

(
Xηn(t)

)
dWt, ηn(t) = [t/δ]δ.

It is well known that the Euler scheme satisfies the following properties (see,
e.g., [6]):

∀p > 1 E sup
t∈[0,T ]

|Xt − Xn
t |p ≤ Kp(T )

np/2 , Kp(T ) > 0.(2)

∀p > 1 E sup
t∈[0,T ]

|Xt |p + E sup
t∈[0,T ]

|Xn
t |p ≤ K ′

p(T ), K ′
p(T ) > 0.(3)
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2.1. Stable convergence and the Euler scheme error. We first recall basic facts
about stable convergence. In the following we adopt the notation of Jacod and Prot-
ter [9]. Let Xn be a sequence of random variables with values in a Polish space E,
all defined on the same probability space (�,F ,P ). Let (�̃, F̃ , P̃ ) be an exten-
sion of (�,F ,P ), and let X be an E-valued random variable on the extension.

We say that (Xn) converges in law to X stably and write Xn
stably
⇒ X, if

E (Uh(Xn)) → Ẽ (Uh(X)),

for all h :E → R bounded continuous and all bounded random variable U

on (�,F ). This convergence, introduced by Rényi [15] and studied by Aldous
and Eaglson [1], is obviously stronger than convergence in law. The following
lemma will be crucial:

If V is another variable with values in another Polish space F , we have the
following result:

LEMMA 2.1. Let Vn and V be defined on (�,F ) with values in another met-
ric space E′.

If Vn
P→ V,Xn

stably
⇒ X, then (Vn,Xn)
stably
⇒ (V ,X).

This result remains valid when Vn = V .

For a proof of this lemma, see [9].
Note that all this applies when Xn, X are R

d -valued càdlàg processes, with
E = D([0, T ],R

d). Now assume that

ϕ(Xt) =




b1(Xt) σ11(Xt) . . . σ1q(Xt)

b2(Xt) σ21(Xt) . . . σ2q(Xt)
...

...
...

bd(Xt) σd1(Xt) . . . σdq(Xt)


 and dYt :=




dt

dW 1
t

...

dW
q
t


 ,

then the SDE (1) becomes

dXt = ϕ(Xt) dYt .(2)

The Euler continuous approximation Xn with step δ = T/n is given by

dXn
t = ϕ

(
Xηn(t)

)
dYt , ηn(t) = [t/δ]δ.

The following result proven by Jacod and Protter [9] is an improvement on the
result given by Kurtz and Protter [11].

THEOREM 2.1. With the above notation we have
√

nUn =: √n(Xn − X)
stably
⇒ U,
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with U a d-dimensional process satisfying

dUi
t =

q+1∑
j=1

d∑
k=1

ϕ
′ij
k (Xt )

[
Uk

t dY
j
t −

q+1∑
l=1

ϕkl (Xt) dN
lj
t

]
, Ui

0 = 0(3)

(ϕ′ij
k is the partial derivative of ϕij with respect to the kth coordinate), and N is

given by

N1i = 0, 1 ≤ i ≤ q + 1,

Nj1 = 0, 1 ≤ j ≤ q + 1,

Nij = Bij√
2
, 2 ≤ i, j ≤ q + 1,

where (Bij )1≤i,j≤q is a standard (q)2-dimensional Brownian motion defined on
an extension B̃ = (�̃, F̃ , (F̃t )t≥0, P̃ ) of the space (�,F , (Ft )t≥0,P ), which is
independent of W .

We will need the following property of the process U .

PROPOSITION 2.1. Under the assumptions of the above theorem, we have

Ẽ(UT /FT ) = 0.

PROOF. Consider the unique solution of the d-dimensional linear equation

ET = Id +
q+1∑
j=1

∫ T

0
ϕ′j (Xt )Et dY

j
t ,(4)

where ϕ′j is a d × d matrix with (ϕ′j )ik = ϕ
′ij
k . From Theorem 56, page 271,

in [14], it follows that

UT = −
q+1∑
j=1

ET

∫ T

0
E−1

t ϕ′j (Xt )ϕ(Xt) dN
j
t .(5)

If Z is a bounded FT -measurable r.v., we have

E (UT Z) = −
q+1∑
j=1

E

(
ZET

∫ T

0
E−1

t ϕ′j (Xt )ϕ(Xt) dN
j
t

)
= 0,

as can be seen by representing ZET as a stochastic integral w.r.t. W . �



2686 A. KEBAIER

2.2. The discretization error. In the following we focus on the discretization
error given by the bias

εn := Ef (Xn
T ) − Ef (XT ),(6)

where f is a given function. Talay and Tubaro [16] prove that if f is sufficiently
smooth, then εn ∼ c/n with c a given constant. A similar result was proven by
Kurtz and Protter [12] for a function f ∈ C 3. The same result was extended
in [2] for a measurable function f , but with a nondegeneracy condition of Hör-
mander type on the diffusion. In the context of possibly degenerate diffusions,
the discretization error for functions which are not C 3 is not yet completely un-
derstood. For a Lipschitz-continuous function f , the estimate |εn| ≤ c√

n
follows

easily from (2). The following proposition and the example below focus on the
rate of convergence of εn for C 1 functions.

PROPOSITION 2.2. Let f be an R
d -valued function satisfying

|f (x) − f (y)| ≤ C(1 + |x|p + |y|p)|x − y| for some C,p > 0.(7)

Assume that P(XT /∈ Df ) = 0, where Df := {x ∈ R
d |f is differentiable at x},

then

lim
n→∞

√
nεn = 0.

PROOF. We have, with probability 1,
√

n
(
f (Xn

T ) − f (XT )
) = √

n∇f (XT ) · Un
T + Rn,

with

Rn = √
n|Un

T |ε(XT ,Un
T ) and ε(XT ,Un

T )
P→ 0.

It follows that Rn
P→ 0, since (

√
n|Un

T |) is tight. Consequently, we deduce, using
(13), (2), (3) and Theorem 2.1, that

√
nεn → Ẽ

(∇f (XT ) · UT

)
,

and using Proposition 2.1, it follows that

Ẽ
(∇f (XT ) · UT

) = 0,

which completes the proof. �

The following example proves that, for α ∈ (1/2,1], there exists a C 1 function
with bounded derivatives and a diffusion X such that

nαεn → Cf (T ,α),(7)

where Cf (T ,α) is positive. In other words, the rate of convergence can be 1/nα

for all values of α ∈ (1/2,1].
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EXAMPLE 2.1. Consider the bi-dimensional diffusion Z = (X,Y ) satisfying
the following SDE:

dXt = −Xt/2dt − Yt dWt,
(8)

dYt = −Yt/2dt + Xt dWt

and the map fα : z = (x, y) �→ ||z|2 − 1|2α . The solution of (8), subject to Z0 =
(cos θ, sin θ), is given by Zt = (cos(θ + Wt), sin(θ + Wt)). We assume that θ ∈
[0,2π], so the diffusion Z lives on the unit circle.

PROPOSITION 2.3. Let Zn be the Euler scheme associated with Z. For
α ∈ [1/2,1], we have

nα
E

(
fα(Zn

t ) − fα(Zt)
) → (2t)αE|G|2α, t ≥ 0,(9)

where G is a standard normal r.v.

PROOF. We have, since fα vanishes on the unit circle,

nα
E

(
fα(Zn

t ) − fα(Zt )
) = nα

E
∣∣|Zn

t |2 − 1
∣∣2α

= nα
E|[Zt + Zn

t ] · [Zn
t − Zt ]|2α.

Using Theorem 2.1,

nα
E

(
fα(Zn

t ) − fα(Zt)
) → 22α

E|Zt · Ũt |2α,(10)

where Ũ = (Ũ1, Ũ2) is given by

dŨ1
t = −1

2 Ũ1
t dt − Ũ2

t dWt + 1√
2
Xt dB̃t

(11)
dŨ2

t = −1
2 Ũ2

t dt + Ũ1
t dWt + 1√

2
Yt dB̃t

and B̃ is a standard Brownian motion independent of W . The solution of (11) is
given by

Ũ1
t = 1√

2
XtB̃t

(12)
Ũ2

t = 1√
2
Yt B̃t ,

which completes the proof. �

3. The statistical Romberg method. Before introducing our algorithm, we
recall some essential facts about the Monte Carlo method. In many applications
(in particular, for the pricing of financial securities), the effective computation
of Ef (XT ) is crucial (see, e.g. [13]). The Monte Carlo method consists of the
following steps:
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• Approximate the process (Xt)0≤t≤T by the Euler scheme (Xn
t )0≤t≤T , with step

T/n, which can be simulated.
• Evaluate the expectation on the approximating process f (Xn

T ) by the Monte
Carlo method.

In order to evaluate Ef (Xn
T ) by the Monte Carlo method, N independent copies

f (Xn
T,i)1≤i≤N of f (Xn

T ) are sampled and the expectation is approximated by the
following quantity:

f̂ n,N := 1

N

N∑
i=1

f (Xn
T,i).

The approximation is affected by two types of errors. The discretization error εn,
studied in the above section, and the statistical error f̂ n,N − Ef (XT ), controlled
by the central limit theorem and which is of order 1/

√
N . An interesting problem

(studied in [5] and [12]) is to find N as a function of n so that both errors are of
the same order.

The following result highlights the behavior of the global error in the classical
Monte Carlo method. It can be proved in the same way as the limit theorem given
in [5].

THEOREM 3.1. Let f be an R
d -valued function satisfying

|f (x) − f (y)| ≤ C(1 + |x|p + |y|p)|x − y| for some C,p > 0.(13)

Assume that P(XT /∈ Df ) = 0, where Df := {x ∈ R
d |f is differentiable at x}, and

that for some α ∈ [1/2,1], we have

lim
n→∞nαεn = Cf (T ,α).(14)

Then

nα

(
1

n2α

n2α∑
i=1

f (Xn
T,i) − Ef (XT )

)

⇒ σḠ + Cf (T ,α),

with σ 2 = Var(f (XT )) and Ḡ a standard normal.

A functional version of this theorem, with α = 1, was proven by Kurtz and
Protter [12] for a function f of class C 3. We can interpret the theorem as follows.
For a total error of order 1/nα , the minimal computation effort necessary to run
the Monte Carlo algorithm is obtained for N = n2α . This leads to an optimal time
complexity of the algorithm given by

CMC = C × (nN) = C × n2α+1 with C some positive constant.(13)

Recall that the time complexity of an algorithm A is proportional to the maximum
number of basic computations performed by A.
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3.1. The Euler scheme and the statistical Romberg method. It is well known
that the rate of convergence in the Monte Carlo method depends on the variance
of f (Xn

T ), where Xn
T is the Euler scheme of step T/n. This is a crucial point in

the practical implementation. A large number of reduction of variance methods are
used in practice. Our algorithm proposes a control variate reduction of variance.
Its specificity is that the control variate is constructed itself using the Monte Carlo
method, applied to the same discretization scheme, but with a step m which is
specifically lower than the approximation step n (using two discretization steps is
an idea which already appears in Romberg’s method). Let us be more precise. We
fix m � n and we denote

Q = f (Xn
T ) − f (Xm

T ) + Mm,

where Mm = Ef (Xm
T ) and we suppose for a while that Mm is known. Note that

E (Q) = Ef (Xn
T ),

so that f (Xm
T ) − Mm appears as a control variate.

Consider a function f : Rd −→ R
d which is Lipschitz continuous of constant

[f ]lip, that is, [f ]lip = supu �=v
|f (u)−f (v)|

|u−v| .

PROPOSITION 3.1. Under the above assumptions, we have

σ 2
Q

:= Var(Q) = O(1/m).(14)

PROOF. We have

σQ = ‖Q − EQ‖2

≤ ‖f (Xn
T ) − f (Xm

T )‖2

≤ [f ]lip

[
sup

t∈[0,T ]
‖Xt − Xn

t ‖2 + sup
t∈[0,T ]

‖Xt − Xm
t ‖2

]
.

Using (2), we deduce that ∃K ′ > 0 such that

σQ ≤ K ′
(

1√
m

)
,

which completes the proof. �

Inequality (14) shows that the variance of Q is significantly smaller than the
variance of f (Xn

T ), so that Q appears as a good candidate for the reduction of
variance method. However, computing EQ supposes to compute Mm = Ef (Xm

T )

in the first place, and this is also done by the Monte Carlo method. So there is a
certain extra quantity of computation to be done. In practice, the sample paths used
for the computation of Mm will be independent of those used for the computation
of Q.
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In the following we make a complexity analysis which permits to choose m as
a function of n in order to minimize the complexity of the algorithm which leads
to EQ. We will prove that, with such a choice of m, the complexity of the algorithm
for EQ is significantly smaller than the complexity of the standard Monte Carlo
method for Ef (Xn

T ).
Let us present the algorithm for EQ.

3.2. Central limit theorem. In the following we assume that the parameters of
the statistical Romberg method depend only on n. That is,

m = nβ, β ∈ (0,1), Nm = nγ1, γ1 > 1, Nn = nγ2, γ2 > 1.

We can now state the analogue of Theorem 3.1 in our setting. The statistical
Romberg method approximates Ef (XT ) by

Vn := 1

nγ1

nγ1∑
i=1

f
(
X̂nβ

T ,i

) + 1

nγ2

nγ2∑
i=1

f (Xn
T,i) − f

(
Xnβ

T,i

)
,

where X̂nβ

T is a second Euler scheme with step T/nβ and such that the Brownian

paths used for Xn
T and Xnβ

T have to be independent of the Brownian paths used in

order to simulate X̂nβ

T . Here the quantity 1
nγ1

∑nγ1
i=1 f (X̂nβ

T ,i) must be viewed as an
approximation for Mm.

THEOREM 3.2. Let f be an R
d -valued function satisfying

|f (x) − f (y)| ≤ C(1 + |x|p + |y|p)|x − y| for some C,p > 0.(15)

Assume that P(XT /∈ Df ) = 0, where Df := {x ∈ R
d;f is differentiable at x},

and that for some α ∈ [1/2,1], we have

lim
n→∞nαεn = Cf (T ,α).(16)

Then, for γ1 = 2α and γ2 = 2α − β , we have

nα(
Vn − Ef (XT )

) 
⇒ σ2G̃ + Cf (T ,α),

with σ 2
2 = Var(f (XT )) + Ṽar(∇f (XT )UT ) and G̃ a standard normal.

LEMMA 3.1. Under the assumptions of Theorem 3.2, for all γ > 0,

1

n(γ−β)/2

nγ∑
i=1

f
(
Xnβ

T,i

) − f (XT,i) − E
(
f

(
Xnβ

T

) − f (XT )
) 
⇒ N (0, σ 2

1 ),(15)

where

σ 2
1 = Ṽar

(∇f (XT ) · UT

)
(16)

and U the process on B̃ given by (3).
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PROOF. If we set

Znβ

T = f
(
Xnβ

T

) − f (XT ) − E
(
f

(
Xnβ

T

) − f (XT )
)
,

then we have

E

[
exp

(
iu

n((γ−β)/2)

nγ∑
k=1

Znβ

T ,k

)]
=

[
1 + 1

nγ

(−u2

2
nβ

E
∣∣Znβ

T

∣∣2 + nγ
ECn(ω)

)]nγ

,

where

|ECn(ω)| ≤ u3

6n(3/2)(γ−β)
E

∣∣Znβ

T

∣∣3.
Property (2) ensures the existence of a constant K3 > 0 such that

|ECn(ω)| ≤ K3u
3

6n3γ /2 .

We have, with probability 1,

nβ/2(
f

(
Xnβ

T

) − f (XT )
) = nβ/2∇f (XT ) · Unβ

T + Rn,

with

Rn = nβ/2∣∣Unβ

T

∣∣ε(
XT ,Unβ

T

)
and ε

(
XT ,Unβ

T

) P→ 0.

From the tightness of (nβ/2|Unβ

T |)n, it follows that Rn
P→ 0, then, according to

Lemma 2.1 and to Theorem 2.1,

nβ/2(
f

(
Xnβ

T

) − f (XT )
) 
⇒ ∇f (XT ) · UT .(17)

Using (13), it follows from property (2) that

∀ ε > 0 sup
n

E
∣∣nβ/2(

f
(
Xnβ

T

) − f (XT )
)∣∣2+ε

< ∞.

Since P(XT /∈ Df ) = 0, we deduce, using (17), that

E
(
nβ/2(

f
(
Xnβ

T

) − f (XT )
))k → Ẽ

(∇f (XT ) · UT

)k
< ∞ with k ∈ {1,2}.

Consequently,

nβ
E

∣∣Znβ

T

∣∣2 −→ Ṽar
(∇f (XT ) · UT

)
< ∞.(18)

Since γ > 0, we see that nγ
ECn(ω) → 0 and we conclude that

E

[
exp

(
iu

n((γ−β)/2)

nγ∑
k=1

Znβ

T ,k

)]
−→ exp

[−u2

2
Ṽar

(∇f (XT ) · UT

)]
,

which completes the proof. �
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LEMMA 3.2. Under the assumptions of Theorem 3.2, for all γ > 0,

1

n((γ−β)/2)

nγ∑
k=1

f (Xn
T,k) − f

(
Xnβ

T,k

) − E
(
f (Xn

T ) − f
(
Xnβ

T

)) 
⇒ N (0, σ 2
1 ),

where σ 2
1 = Ṽar(∇f (XT ) · UT ).

PROOF. We have

1

n((γ−β)/2)

nγ∑
k=1

f (Xn
T,k) − f

(
Xnβ

T,k

) − E
(
f (Xn

T ) − f
(
Xnβ

T

))

= 1

n((γ−β)/2)

nγ∑
k=1

Zn
T,k − 1

n((γ−β)/2)

nγ∑
k=1

Znβ

T ,k.

By (18), it follows that

E

[
1

n((γ−β)/2)

nγ∑
k=1

Zn
T,k

]2

= nβ
E [Zn

T ]2 → 0.(19)

The announced result follows from the above lemma. �

PROOF OF THEOREM 3.2. For γ1 = 2α,γ2 = 2α − β , we have

nα(
Vn − Ef (XT )

) = V 1
n + V 2

n + V 3
n ,

where

V 1
n = 1

nα

n2α∑
i=1

f
(
X̂nβ

T ,i

) − Ef
(
X̂nβ

T

)
,(20)

V 2
n = 1

nα−β

n2α−β∑
i=1

f (Xn
T,i) − f

(
Xnβ

T,i

) − E
(
f (Xn

T ) − f
(
Xnβ

T

))
,(21)

V 3
n = nα(

Ef (Xn
T ) − Ef (XT )

)
.(22)

Properties (2) and (3) guarantee that the Lindeberg–Feller theorem applies here
(same argument as in [5]). That is,

V 1
n 
⇒ N

(
0,Var(f (XT ))

)
.

On account of Lemma 3.2, it is obvious that

V 2
n 
⇒ N

(
0, Ṽar

(∇f (XT ) · UT

))
.

Finally, by using the assumption (14), we complete the proof. �
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3.3. Complexity analysis. As in the Monte Carlo case, we can interpret Theo-
rem 3.2 as follows. For a total error of order 1/nα , the minimal computational ef-
fort necessary to run the statistical Romberg algorithm applied to the Euler scheme
(with step numbers n and m = nβ ) is obtained for

Nm = n2α and Nn = n2α−β.(23)

Since the only constraint on β is that β ∈ (0,1), we will choose the optimal β


minimizing the complexity of the statistical Romberg algorithm. The time com-
plexity in the statistical Romberg method is given by

CSR = C × (
mNm + (n + m)Nn

)
with C > 0

= C × (
nβ+2α + (n + nβ)n2α−β)

.

Simple calculations show that β
 = 1/2 is the optimal choice which minimizes the
time complexity.

So the optimal parameters in this case are the following:

m = n1/2, Nm = n2α and Nn = n2α−1/2,

and the optimal complexity of the statistical Romberg method is given by

CSR � C × n2α+1/2.

However, for the same error of order 1/nα , we have shown that the optimal com-
plexity of a Monte Carlo method was given by

CMC = C × n2α+1,

which is clearly larger than CSR. So we deduce that the statistical Romberg method
is more efficient.

4. Statistical Romberg method and Asian options. The payoff of an Asian
option is related to the integral of the asset price process. Computing the price
of an Asian option requires the discretization of the integral. The purpose of this
section is to apply statistical Romberg extrapolation to the approximation of the
integral and to carry on a complexity analysis in this context. This will lead us to
prove a central limit theorem for the discretization error, which can be viewed as
the analogue of Theorem 2.1 (see Theorem 4.1).

4.1. Trapezoidal scheme. Let S be the process on the stochastic basis
B = (�,F , (Ft )t≥0,P ) satisfying

dSt

St

= r dt + σ dWt with t ∈ [0, T ], T > 0,(24)
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where σ and r are real constants, with σ > 0 and (Wt)t∈[0,T ] is a standard Brown-
ian motion on B. The solution of the last equation is given by

St = S0 exp
((

r − σ 2

2

)
t + σWt

)
.(25)

We set

IT = 1

T

∫ T

0
Su du.

Let f be a given real valued function. Our aim will be to evaluate

�(S,T ) = e−rT
Ef (ST , IT ).

In a financial setting, if f (x, y) = (y − K)+, �(S,T ) is the price of an Asian call
option with fixed strike K . In this case there is no explicit formula that gives the
real price. So, the computation of this price, by a probabilistic method, requires a
discretization of the integral IT . There are several approximation schemes used in
practice. One of the most efficient is the trapezoidal scheme defined by

In
T = δ

T

n∑
k=1

Stk−1

(
1 + rδ

2
+ σ

Wtk − Wtk−1

2

)
,(26)

where δ = T
n

and tk = T k
n

= δk. We call it trapezoidal because it is closely related
to the trapezoidal approximation of the integral

E

(
In
T − δ

T

n∑
k=1

Stk−1 + Stk

2

)2

= O

(
1

n3

)
.

Note that Stk has an explicit expression so we can simulate it without discretizing
the SDE. The following result is proved in [17].

PROPOSITION 4.1. With the above notation, there exists a nondecreasing
map K(T ) such that, ∀p > 0,[

E

(
sup

t∈[0,T ]
|In

t − It |2p

)]1/(2p)

≤ K(T )

n
.

4.2. Stable convergence of the trapezoidal scheme error. In the following we
prove a functional CLT analogous to Jacod and Protter’s theorem (see Theorem 2.1
above).

THEOREM 4.1. Let Jt = 1
T

∫ t
0 Su du, t ∈ [0, T ], and Jn be the trapezoidal dis-

cretization associated with J :

Jn
t := δ

T

[t/δ]∑
k=1

Stk−1

(
1 + rδ

2
+ σ

Wtk − Wtk−1

2

)
.
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We have

n(J − Jn)
stably
⇒ χ,(27)

where χ is the process defined by

χt = σ

2
√

3

∫ t

0
Ss dB ′

s,

where B ′ is a standard Brownian motion on an extension B̂ of B, which is inde-
pendent of W .

We have the following elementary lemma.

LEMMA 4.1. If H is deterministic satisfying
∫ t

0 H 2
s ds < ∞, then we have

∫ t

0

τδ (s)

δ
Hs ds −→ 1

2

∫ t

0
Hs ds

and

∫ t

0

(
2
τ δ (s)

δ
− 1

)2

Hs ds −→ 1

3

∫ t

0
Hs ds,

with τδ (s) = t ∧ ([s/δ]δ + δ) − s.

PROOF. We sketch the proof for completeness. By a density argument, we
may assume that H is piecewise constant: Hs = ci for Ti−1 < s < Ti , where 0 =
T0 < · · · < Tk = T and (ci) are constants for i = 0, . . . , k. It follows that

∫ t

0

τδ (s)

δ
Hs ds =

k∑
i=1

ci

δ

∫ Ti+1

Ti

τδ (s) ds →
k∑

i=1

ci

2
(Ti+1 − Ti) =

∫ t

0

Hs

2
ds,

since it is easy to check that

1

δ

∫ y

x
τδ (s) ds −→ y − x

2
as n −→ ∞.

The second assertion is obtained in the same way, but by using that

1

δ2

∫ y

x

(
2
τδ (s)

δ
− δ

)2

ds −→ y − x

3
as n −→ ∞,

which completes the proof. �
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PROOF OF THEOREM 4.1. We have

n(Jt − Jn
t ) = n

T

∫ t

0
Su du − n

(
δ

T

[t/δ]∑
k=1

Stk−1 + δ2r

2T

[t/δ]∑
k=1

Stk−1

+ δσ

2T

[t/δ]∑
k=1

Stk−1

(
Wtk − Wtk−1

))
(28)

+ nδ

T
S[t/δ]δ

(
1 + r

2
(t − [t/δ]δ) + σ

2

(
Wt − W[t/δ]δ

))
.

It follows that

n(Jt − Jn
t ) = Aδ

t − r

2

∫ t

0
S[u/δ]δ du − σ

2

∫ t

0
S[u/δ]δ dWu,(29)

with

Aδ
t = 1

δ

∫ t

0

(
Su − S[u/δ]δ

)
du.

Note that, by using (24), we obtain

Aδ
t = A

δ,1
t + A

δ,2
t ,

with

A
δ,1
t = r

δ

∫ t

0

∫ u

[u/δ]δ
Ss ds du

and

A
δ,2
t = σ

δ

∫ t

0

∫ u

[u/δ]δ
Ss dWs du,

and we have

A
δ,1
t = r

δ

[t/δ]∑
k=1

∫ tk

tk−1

∫ u

tk−1

Ss ds du + r

δ

∫ t

[t/δ]δ

∫ u

[t/δ]δ
Ss ds du,

= r

δ

∫ t

0

(
t ∧ ([s/δ]δ + δ) − s

)
Ss ds,

= r

δ

∫ t

0
τδ (s)Ss ds.

In the same manner we can see that

A
δ,2
t = σ

δ

[t/δ]∑
k=1

∫ tk

tk−1

∫ u

tk−1

Ss dWs du + σ

δ

∫ t

[t/δ]δ

∫ u

[t/δ]δ
Ss dWs du.
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The integration by parts formula gives∫ tk

tk−1

∫ u

tk−1

Ss dWs du = (tk − tk−1)

∫ tk

tk−1

Ss dWs −
∫ tk

tk−1

(s − tk)Ss dWs

=
∫ tk

tk−1

([s/δ]δ + δ − s)Ss dWs

and ∫ t

[t/δ]δ

∫ u

[t/δ]δ
Ss dWs du = (t − [t/δ]δ)

∫ t

[t/δ]δ
Ss dWs

−
∫ t

[t/δ]δ
(s − [t/δ]δ)Ss dWs

=
∫ t

[t/δ]δ
(t − s)Ss dWs.

We deduce that

A
δ,2
t = σ

δ

[t/δ]∑
k=1

∫ tk

tk−1

([s/δ]δ + δ − s)Ss dWs + σ

δ

∫ t

[t/δ]δ
(t − s)Ss dWs,

= σ

δ

∫ t

0

(
t ∧ ([s/δ]δ + δ) − s

)
Ss dWs,

= σ

δ

∫ t

0
τδ (s)Ss dWs.

It follows that

n(Jt − Jn
t ) = r

δ

∫ t

0
τδ (s)Ss ds + σ

δ

∫ t

0
τδ (s)Ss dWs

− r

2

∫ t

0
S[s/δ]δ ds − σ

2

∫ t

0
S[s/δ]δ dWs.

We deduce that

n(Jt − Jn
t ) = Bδ

t + χδ
t

+ Cδ
t ,

with

Bδ
t = r

2

∫ t

0

(
2
τδ (s)

δ
− 1

)
Ss ds,

χδ
t

= σ

2

∫ t

0

(
2
τδ (s)

δ
− 1

)
Ss dWs,

Cδ
t = r

2

∫ t

0

(
Ss − S[s/δ]δ

)
ds + σ

2

∫ t

0

(
Ss − S[s/δ]δ

)
dWs.
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According to the above lemma, we obtain that supt∈[0,T ] Bδ
t → 0 a.s. It is obvious

that supt∈[0,T ] Cδ
t

L2→ 0. The only point remaining concerns the behavior of χδ .
In virtue of Theorem 2.1 of [7], if we prove that, for all t ∈ [0, T ], we have

〈χδ,χδ〉t P→ σ 2

12

∫ t

0
S2

s ds, 〈χδ,W 〉t P→ 0,

then the process χδ will converge stably in law to the process χ of (27). According
to the above lemma, we have

〈χδ,χδ〉t = σ 2

4

∫ t

0

(
2
τδ (s)

δ
− 1

)2

S2
s dWs −→ σ 2

12

∫ t

0
S2

s ds a.s.

and

〈χδ,W 〉t = σ

2

∫ t

0

(
2
τδ (s)

δ
− 1

)
Ss ds −→ 0 a.s.,

which completes the proof. �

4.3. Statistical Romberg method and CLT. In order to evaluate e−rT
Ef (ST ,

IT ), we use the idea of statistical Romberg approximation:

• compute an approximation E1
n of e−rT

Ef (ST , Î nβ

T ) by a Monte Carlo method

E1
n = e−rT

nγ1

nγ1∑
i=1

f
(
ŜT ,i , Î

nβ

T ,i

)
,

• compute

E2
n = e−rT

nγ2

nγ2∑
i=1

f (ST,i, I
n
T ,i) − f

(
ST,i, I

nβ

T ,i

)
.

Recall that the samples used, in order to construct(
ŜT ,i , Î

nβ

T ,i

)
and

(
(ST,i , I

n
T ,i),

(
ST,i, I

nβ

T ,i

))
,

are independent. The question now is how to choose β,γ1 and γ2. Admittedly,
we can choose the optimal parameters given in the Euler scheme case, but the
following result proves that, in the specific case of the trapezoidal scheme, the
optimal parameters are different.

THEOREM 4.2. Let f be an R
2-valued function satisfying

|f (x, y1) − f (x, y2)| ≤ C(1 + |x|p + |y1|p + |y2|p)|y1 − y2|
(30)

for some C,p > 0.
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Assume that P((ST , IT ) /∈ Df ) = 0, with

Df := {(x, y) ∈ R
+ × R

+ | ∂2f (x, y) exists},
where ∂2f denotes the partial derivative of f w.r.t. y. Then for all β ∈ (0,1), if
γ1 = 2 and γ2 = 2 − 2β , we have

n
(
En − Ef (ST , IT )

) 
⇒ σ̂2Ĝ + Ê
(
∂2f (ST , IT )χT

)
,

where σ̂ 2
2 = Var(f (ST , IT )) + V̂ar(∂2f (ST , IT )χ

T
), χ is the limit process on B̂

given in Theorem 4.1, and Ĝ a standard normal.

REMARK 4.1. The assumptions on f in the above theorem are satisfied in the
case of typical Asian options:

f (x, y) = (y − K)+, f (x, y) = (K − y)+, f (x, y) = (y − x)+.

LEMMA 4.2. Under the assumptions of Theorem 4.2, for all γ > 0,

1

n((γ /2)−β)

nγ∑
k=1

f (ST,k, IT ,k) − f
(
ST,k, I

nβ

T ,k

)

−E
(
f (ST , IT ) − f

(
ST , Inβ

T

)) 
⇒ N (0, σ̂ 2
1 ),

where σ̂ 2
1 = V̂ar(∂2f (ST , IT )χ

T
).

PROOF. If we set

Hnβ

T := f (ST , IT ) − f
(
ST , Inβ

T

) − E
(
f (ST , IT ) − f

(
ST , Inβ

T

))
,

then we have

E

[
exp

(
iu

n((γ /2)−β)

nγ∑
k=1

Hnβ

T,k

)]

=
[
1 + 1

nγ

(−u2

2
Var

[
nβ(

f (ST , IT ) − f
(
ST , Inβ

T

))]
(30)

+ nγ
EC′

n(ω)

)]nγ

,

with

|EC′
n(ω)| ≤ u3

6n3((γ /2)−β)
E

∣∣Hnβ

T

∣∣3.
Proposition 4.1 ensures the existence of a constant K(T ) > 0 such that

|EC′
n(ω)| ≤ K(T )u3

6n3γ /2 .
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We have, with probability 1,

nβ(
f

(
ST , Inβ

T

) − f (ST , IT )
) = nβ∂2f (ST , IT )

(
Inβ

T − IT

) + Rn,

with

Rn = nβ
∣∣Inβ

T − IT

∣∣ε(
ST , IT , Inβ

T

)
and ε

(
ST , IT , Inβ

T

) P→ 0.

From the tightness of (nβ |Inβ

T − IT |)n, it follows that Rn
P→ 0. Consequently, ac-

cording to Lemma 2.1 and to Theorem 4.1, we obtain that

nβ(
f

(
ST , Inβ

T

) − f (ST , IT )
) 
⇒ ∂2f (ST , IT )χ

T
.(31)

With our assumption (30) on f , it follows from Proposition 4.1 that

sup
n

E
∣∣nβ(

f (ST , IT ) − f
(
ST , Inβ

T

))∣∣2+ε
< ∞ with ε > 0,

so we obtain

E
(
nβ(

f (ST , IT ) − f
(
ST , Inβ

T

)))k
(32)

→ Ê
(
∂2f (ST , IT )χ

T

)k
< ∞ ∀0 < k ≤ 2.

Hence, we deduce that

E

[
exp

(
iu

n((γ /2)−β)

nγ∑
k=1

Hnβ

T,k

)]
−→ exp

[−u2

2
V̂ar

(
∂2f (ST , IT )χ

T

)]
,

which completes the proof. �

REMARK 4.2. It follows from the proof of the above lemma that

lim
n→∞nE

(
f (ST , In

T ) − f (ST , IT )
) = Ê

(
∂2f (ST , IT )χT

)
.(33)

This gives us an expansion of the discretization error in our setting. Note that
similar expansions are given in [17] for less regular functions. The advantage of
our approach is that we do not need the associate PDE, so that our expansion is
more explicit.

The proof of the following result is a consequence of the above lemma.

LEMMA 4.3. Under the assumptions of Theorem 4.2 and for all γ > 0, we
have

1

n((γ /2)−β)

nγ∑
k=1

f (ST,k, I
n
T ,k) − f

(
ST,k, I

nβ

T ,k

)

−E
(
f (ST , In

T ) − f
(
ST , Inβ

T

)) 
⇒ N (0, σ̂ 2
1 ),

with σ̂ 2
1 = Ṽar(∂2f (ST , IT )χ

T
).
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Using Lemma 4.3, Theorem 4.2 can be proved in much the same way as Theo-
rem 3.2. Equality (33) will be used instead of the assumption (14) on limn→∞ nαεn

in Theorem 3.2.

4.4. Complexity analysis. As in the Euler scheme case, one can interpret the
above theorem in the following way. For a total error of order 1/n, the minimal
computational effort necessary to run the statistical Romberg method applied to
the trapezoidal scheme (with step numbers n and m = nβ ) is obtained for

Nm = n2 and Nn = n2−2β.(34)

Since the only restriction on β is that β ∈ (0,1), we will choose the optimal β


minimizing the complexity of the statistical Romberg algorithm. In this case the
time complexity in the statistical Romberg method is given by

CSR = C × (
mNm + (n + m)Nn

)
with C > 0,

= C × (
nβ+2 + (n + nβ)n2−2β)

.

Simple calculations show that β
 � 1/3 is the optimal choice which minimizes the
time complexity.

So the optimal parameters in this case are

m = n1/3, Nm = 2 and Nn = n4/3,

and the optimal complexity of the statistical Romberg method is given by

CSR � C × n7/3.

But according to Proposition 4.1, Theorem 3.1 remains valid if we change the
Euler scheme by the trapezoidal one. Hence, for the same error of order 1/n, the
optimal complexity of a Monte Carlo method applied to the trapezoidal scheme
with step number n is given by

CMC = C × n3,

which is clearly larger than CSR. So we deduce that the statistical Romberg method
is more efficient.

5. Numerical tests and results. We test the efficiency of the statistical
Romberg method to reduce the time complexity for the degenerate two-
dimensional diffusion given in the example of Section 2 (tests concerning Asian
options are given in [10]).

Consider the bi-dimensional diffusion

Zt = (
cos(θ + Wt), sin(θ + Wt)

)
, θ ∈ [0,2π],

and the map

fα : z = (x, y) �→ ∣∣|z|2 − 1
∣∣2α

, α ∈ [1/2,1],
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given in the example of Section 2. Note that in this case

Var(fα(ZT )) = 0,

and this is because the bi-dimensional diffusion Z = (X,Y ) lives on the unit
circle. Consequently, in order to obtain the optimal parameters given by Theo-
rems 3.1 and 3.2, we consider gα(x, y) = fα(x, y) + x, instead of fα(x, y). This
choice leads us to a nonvanishing variance of gα(ZT ) and to a discretization error
which is of order 1/nα , α ∈ [1/2,1]. In the following we set

• MC method: the algorithm using a Monte Carlo method to approximate
E (gα(ZT )) by

1

N

N∑
i=1

gα(Z
n

T ,i).

• SR method: the algorithm using a statistical Romberg method to approximate
E (gα(ZT )) by

1

Nn

Nn∑
i=1

[gα(Zn
T,i) − gα(Zm

T,i)] + 1

Nm

Nm∑
i=1

gα(Ẑm
T,i).(35)

To compare both methods, we use the methodology proposed by Broadie and
Detemple [4]. Their idea is that, for a given set of parameters of the concerned
diffusion, one of both algorithms will give better results. So they propose to test
the algorithm on a large set of parameters chosen randomly. Proceeding along this
line, we produce randomly M = 200 values for Z0 = (X0, Y0). Then, for each
method, we compute the speed and an error measure. Speed is measured by the
number of simulated values computed per second (the computations were done on
a PC with a 2.00 GHz Pentium 4 processor). The error measure is given by the
root-mean-squared error, which is defined by

RMS =
√√√√ 1

M

M∑
i=1

(Real value−Simulated value)2,(36)

and the real value is given by the formula E(gα(ZT )) = cos(θ − T/2).

Our algorithm proceeds as follows. We fix the number of steps, say, n = 80, in
the Euler scheme. We compute by the Monte Carlo method (resp., the statistical
Romberg method) the 200 simulated values. Then, we produce according to (36)
RMS(MC,n=200) and we compute Speed(MC,n=200), so we have a couple of points(

RMS(MC,n=200),Speed(MC,n=200)).
This point is plotted on Figure 1. So, each given n produces a couple of points:
(MC(MC,n), Speed(MC,n)). This gives the continuous curve in Figure 1. The line
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FIG. 1. Speed versus RMS-error.

marked by squares is produced in the same way, using the statistical Romberg
method.

Tests are done for α = 1/2. Note that, although gα is not C 1 in that case, Theo-
rem 3.2 can be extended to this specific example, as we can handle the difference

g1/2(Z
√

n

T ) − g1/2(ZT ).
Let us now interpret the curves. The fact that the SR curve is higher than the

MC one means that, given an error ε, the number of values computed in one sec-
ond (with this error) by the statistical Romberg algorithm is larger than the number
of values computed by the Monte Carlo method. Note anyway that, for a large ε

(which corresponds to a small number of steps n), the differences between the two
methods is less important. But as ε becomes small (n becomes large), the differ-
ence becomes more significant. In Table 1 we compare the speed of the Monte
Carlo method and the speed of the statistical Romberg one, for a fixed RMS-error.
We note that, by using the statistical Romberg method and for an RMS-error fixed
at 10−1, one increases the speed by a factor of 2.26. For a small RMS-error fixed
at 6 · 10−2, the speed gain reaches a factor of 4.96.
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TABLE 1
Time complexity reduction for α = 1/2

RMS relative error MC method speed SR method speed

10−1 45.405 102.718
9 · 10−2 23.599 85.876
8 · 10−2 18.647 70.712
7 · 10−2 9.219 49.179
6 · 10−2 5.883 29.234

6. Conclusion. The statistical Romberg algorithm is a method that can be
used in a general framework: as soon as we use a discretization scheme for the
diffusion (Xt)0≤t≤T in order to compute quantities such as Ef (XT ), we can im-
plement the statistical Romberg algorithm. And this is worth it because it is more
efficient than a classic Monte Carlo method.

In financial applications, it is sometimes essential to be able to price a given
product on the market as soon as possible and this by setting a margin of error
that one can tolerate. In this case the statistical Romberg method equipped with its
parameters allowing complexity reduction is faster than the standard Monte Carlo
one.
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