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University of Washington

We study a large family of competing spatial growth models. In these
models the vertices inZd can take on three possible states{0,1,2}. Vertices
in states 1 and 2 remain in their states forever, while vertices in state 0,
which are adjacent to a vertex in state 1 (or state 2), can switch to state 1
(or state 2). We think of the vertices in states 1 and 2 as infected with one
of two infections, while the verticesin state 0 are considered uninfected.
In this way these models are variants of the Richardson model. We start the
models with a single vertex in state 1 and a single vertex in state 2. We show
that with positive probability state 1 reaches an infinite number of vertices
and state 2 also reaches an infinite number of vertices. This extends results
and proves a conjecture of Häggström and Pemantle [J. Appl. Probab. 35
(1998) 683–692]. The key tool is applying the ergodic theorem to stationary
first passage percolation.

1. First passage percolation. In this paper we study a class of competing
spatial growth models by first studying stationary first passage percolation and
then applying our results to the spatial growth models. In first passage percolation
every edge in a graph is assigned a nonnegative number. This is interpreted as the
time it takes to move across the edge. This model was introduced by Hammersley
and Welsh [6]. See [7] for an overview of first passage percolation.

Let µ be a stationary measure on[0,∞)Edges(Zd ) and letω be a realization ofµ.
For anyx andy we define thepassage time from x to y, τ (x, y), by

τ (x, y) = inf
∑

ω(vi, vi+1),

where the sum is taken over all of the edges in the path and the inf is taken over all
paths connectingx to y.

The most basic result from first passage percolation is the shape theorem. We
let 0 = (0, . . . ,0) and1 = (1,0, . . . ,0). Define

S(t) = {x : τ (0, x) ≤ t}
and

�S(t) = S(t) + [−1
2, 1

2

]d
.
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The shape theorem says that there is a nonempty setS such that
�S(t)

t
converges

to S a.s.

THEOREM 1 (Boivin [1]). Let µ be stationary and ergodic, and let the
distribution on any edge have finite d + ε moment for ε > 0. There exists a set S

which is nonempty, convex and symmetric about reflection through the origin such
that for every ε > 0 there exists a T such that for all t > T ,

P

(
(1− ε)S <

�S(t)

t
< (1+ ε)S

)
> 1− ε.

This theorem is a consequence of Kingman’s subadditive ergodic theorem. It is
the only property of first passage percolation that we need. In general, little is
known about the shape ofS other than it is convex and symmetric. Cox and Durrett
showed that there are nontrivial product measures such that the boundary ofS

contains a flat piece [2]. However, for any compact nonempty convex setS there
exist a stationary measureµ such that the shape forµ is S [4].

Another widely studied aspect of first passage percolation is geodesics.
A geodesic is a pathG = {v0, v1, . . . } such that

τ (vm, vn) =
n−1∑
i=m

ω(vi, vi+1)

for any m < n. We let Gω(x, y) = G(x,y) be the union of all geodesics that
connectx andy. Define

�(x) = ⋃
y∈Zd

{e : e ∈ Edges(Zd) ande ∈ G(x,y)}.

We refer to this as thetree of infection of x. We defineK(�(x)) to be the number
of topological ends in�(x). This is also the number of infinite self-avoiding paths
in �(x) that start atx.

Newman [8] conjectured that for a large class ofµ, |K(�(0))| = ∞ a.s.
Häggström and Pemantle [5] proved that ifd = 2 andµ is the i.i.d with exponential
distribution, then with positive probability|K(�(0))| > 1. Newman [8] proved that
if µ is i.i.d. andS has certain properties, then|K(�(0))| = ∞ a.s. Although these
conditions are plausible, there are no known measuresµ with S that satisfy these
conditions.

Now we introduce some more notation which lets us list the conditions that
we place onµ. We say that the configurationω hasunique geodesics if for all
x, y ∈ Z

d there exists a unique geodesic fromx to y. If there exists a unique
geodesic betweenx and y, we denote it byG(x,y). The configurationω has
unique passage times for all x andy �= z:

τ (x, y) �= τ (x, z).
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For anyω we let µ
(0,1)
ω be the conditional distribution ofµ on the edge(0,1)

given thatω′(v,w) = ω(v,w) for all edges except(0,1). We say thatµ hasfinite
energy if for any setA ⊂ R such thatµ{ω(0,1) ∈ A} > 0 and almost everyω,

µ
(0,1)
ω {ω′ :ω′(0,1) ∈ A} > 0.
Whereasµ is a stationary measure we can study its ergodic theoretical proper-

ties. For anyv ∈ Z
d define the shift mapT v : [0,∞)Edges(Zd ) → [0,∞)Edges(Zd) by

T v(ω)( j) = ω(j + v)

for all j ∈ Edges(Zd). The measureµ is totally ergodic if, for all v ∈ Z
d , the action

(µ,T v) is ergodic.
Now we are ready to define the class of measures that we work with. We say

thatµ is good if:

1. µ is totally ergodic;
2. µ has all the symmetries ofZd ;
3. the distribution ofµ on any edge has finited + ε moment for someε > 0;
4. µ has finite energy;
5. µ

(0,1)
ω is an absolutely continuous measure with support[0,∞) a.s.;

6. µ produces a shapeS which is bounded.

Note that conditions 2, 4 and 5 imply thatµ has unique geodesics and unique
passage times. These conditions were chosen to make the arguments as easy as
possible and could be made more general. All that is essential for the argument to
show that there are at least two disjoint infinite geodesics is thatµ is totally ergodic
and that Lemma 1 and Corollary 1 below are satisfied. Conditions 2, 4 and 5 are
used to show that coexistence occurs with positive probability. Throughout the rest
of the paper we assume thatµ is good. Unfortunately there is no general necessary
and sufficient condition to determine when the shapeS is bounded. See [4] for
examples.

2. Spatial growth models. Now we explain the relationship between first
passage percolation and our competing growth models. For anyω ∈ [0,∞)Edges(Zd )

with unique passage times and anyx �= y ∈ Z
d we can project it toω̃x,y ∈

({0,1,2}Z
d
)[0,∞) by

ω̃x,y(z, t) =



2, if τ (x, z) ≤ t andτ (x, z) < τ(y, z),

1, if τ (y, z) ≤ t andτ (x, z) > τ(y, z),

0, else.

If µ has unique passage times a.s., thenµ projects onto a measure on
({0,1,2}Z

d
)[0,∞). It is clear that the models start with a single vertex state 1 and

a single vertex in state 2. Vertices in states 1 and 2 remain in their states forever,
while vertices in state 0, which are adjacent to a vertex in state 1 (or state 2), can



742 C. HOFFMAN

switch to state 1 (or state 2). We think of the vertices in states 1 and 2 as infected
with one of two infections, while the vertices in state 0 are considered uninfected.
In this way these models are variants of the Richardson model.

Whereas eachz ∈ Z
d eventually changes to state 1 or 2 and then stays in that

state for the rest of time, we can speak of the limiting configuration. There are
two possible outcomes. The first is coexistence or mutual unbounded growth. If
this occurs, then the limiting configuration has infinitely manyz in state 1 and
infinitely manyz in state 2. The other outcome is domination. If this happens, then
in the limiting configuration there are only finitely many vertices in that state and
all but finitely many vertices are in the other state.

For many measuresµ (e.g., ifµ is i.i.d. with nontrivial marginals), it is easy to
prove that domination occurs with positive probability, but it is much more difficult
to show that coexistence occurs with positive probability. More precisely we define
C(x, y) to be the event that∣∣∣∣

{
z : lim

t→∞ ω̃x,y(z) = 1
}∣∣∣∣ =

∣∣∣∣
{
z : lim

t→∞ ω̃x,y(z) = 2
}∣∣∣∣ = ∞.

We refer to this event ascoexistence or mutual unbounded growth. Our main result
is that, with positive probability, coexistence occurs.

THEOREM 2. If µ is good, then

P
(
C(0,1)

)
> 0.

This proves a conjecture of Häggström and Pemantle [5]. They proved this
theorem in the case thatd = 2 andµ is i.i.d. with exponential distribution. Garet
and Marchand [3] gave a different proof of Theorem 2. Their method follows more
closely the approach taken by Häggström and Pemantle [5].

3. Outline. In this section we outline the proof of our main result. For any
x, y ∈ Z

d and infinite geodesicG = (v0, v1, v2, . . . ) we can define

Bω
G(x, y) = BG(x, y) = lim

n→∞ τ (x, vn) − τ (y, vn).

To see that the limit exists, first note that

BG(x, y) = lim
n→∞ τ (x, vn) − τ (y, vn)

= lim
n→∞ τ (x, vn) − τ (v0, vn) + τ (v0, vn) − τ (y, vn)

= lim
n→∞

(
τ (x, vn) − τ (v0, vn)

) + lim
n→∞

(
τ (v0, vn) − τ (y, vn)

)
.

WhereasG is a geodesic, the two sequences in the right-hand side of the last line
are bounded and monotonic so they converge. ThusBG(x, y) is well defined. For
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a givenω and allx, y ∈ Z
d , if the functionBG(x, y) is independent of the choice

of infinite geodesicG, then we can define the Busemann function

B(x, y) = Bω(x, y) = Bω
G(x, y).

The main step in our proof is Lemma 4, which states that the probability that
{B(x, y)}x,y∈Zd is well defined is 0.

We work by contradiction to prove Lemma 4. In Lemmas 2 and 3 we assume
that {B(x, y)}x,y∈Zd is well defined a.s. and then apply the ergodic theorem to
{B(x, y)}x,y∈Zd . Then in Lemma 4 we show that the conclusions of Lemma 3
generate a contradiction with the shape theorem. Thus with positive probability
there are verticesx andy and distinct geodesicsG0 = G0(ω) andG1 = G1(ω)

such that

BG0(x, y) �= BG1(x, y).

From this point a short argument allows us to conclude that coexistence is possible
with positive probability.

4. Proof. The heart of the proof is applying the ergodic theorem to the
Busemann function. This is done in Lemmas 2 and 3. We start by showing that
the symmetry ofµ implies that the expected value of the Busemann function is 0.

LEMMA 1. If {B(x, y)}x,y∈Zd is well defined a.s., then for all v ∈ Z
d ,

E
(
B(0, v)

) = 0.

PROOF. By symmetry ofµ we have thatE(B(0,1)) = E(B(1,0)). Combining
this with the fact thatB(0,1) + B(1,0) = 0 proves the lemma.�

Now we apply the ergodic theorem toB(0, v).

LEMMA 2. If {B(x, y)}x,y∈Zd is well defined a.s., then for all v ∈ Z
d and

ε > 0 there exists M such that

P
(|B(0,mv)| < εm for all m > M

)
> 1− ε.

PROOF. First rewriteB(0,mv) as

B(0,mv) = B(0, v) + B(v,2v) + · · · + B
(
(m − 1)v,mv

)
,

B(0,mv) = Bω(0, v) + BT v(ω)(0, v) + · · · + BT (m−1)v(ω)(0, v),(1)

B(0,mv) =
m−1∑
j=0

BT jv(ω)(0, v).



744 C. HOFFMAN

Whereasµ is good, it is totally ergodic and the action(T v,µ) is ergodic. Thus
by (1) and Lemma 1 the claim is a consequence of the ergodic theorem.�

We now strengthen this lemma by using the following corollary of the shape
theorem. Forx ∈ Z

d we let |x| = |x1| + |x2| + · · · + |xd |.

COROLLARY 1. There exist 0 < k1 < k2 < ∞ such that for every ε > 0 there
exists an N such that

P

(
k1 <

τ(0, x)

|x| < k2 for all x such that |x| > N

)
> 1− ε.

PROOF. The existence ofk2 is due to the fact that the setS (from Theorem 1)
is nonempty. The existence ofk1 follows because one of the requirements ofµ

being good is thatS is bounded. �

LEMMA 3. If {B(x, y)}x,y∈Zd is well defined a.s., then for any ε > 0 there
exists N such that if n > N , then

P

(
B(0, x)

|x| < ε for all x such that |x| = n

)
> 1− ε.

PROOF. Givenε > 0, pick vectorsv1, v2, . . . , vj such that|v1| = |v2| = · · · =
|vj | and for allx sufficiently large there existsi ∈ {1,2, . . . , j} andm ∈ N such
that

|x − mvi | < ε|x| and m|vi | ≤ |x|.
For allx andy, we have that

B(0, x) = B(0, y) + B(y, x).

This implies that for anyx andy,

B(0, x) ≤ B(0, y) + τ (y, x).

For anyn let m be the largest integer such thatm|vi | ≤ n. (This is independent
of i.) Thus if there existsx with |x| = n and B(0,x)

|x| ≥ ε, then there existsi such
that one of the following statements holds:

1. B(0,mvi) ≥ εn/2 = ε|x|/2;
2. |x − mvi | < ε|x|/2k2 andτ (x,mvi) ≥ ε|x|/2.

(The constantk2 is from Corollary 1.)
By Lemma 2 there existsM such that

P
(
there existsm > M andi ∈ {1,2, . . . , j}
such thatB(0,mvi) > 2εm|vi |/3 > εn/2

)
< 2ε/3.
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Thus the probability of the first event is less than 2ε/3 if n is sufficiently large.
By Corollary 1 there existsL such that for anyl > L,

P
(
there existsz with |z| ≤ l andτ (0, z) ≥ k2l

)
< ε/3j.

Applying this with eachmvi in place of0 andεn/2k2 in place ofl we get that the
probability of the second event is less thanε/3 if n is sufficiently large. Thus for
anyε > 0 we getN , so that ifn > N , we get that

P

(
there existsx such that|x| = n and

B(0, x)

|x| ≥ ε

)
< ε,

which proves the lemma.�

Next we show that this generates a contradiction with the shape theorem.

LEMMA 4. P ({B(x, y)}x,y∈Zd is well defined ) = 0.

PROOF. We work by contradiction. Suppose that with positive probability,
{B(x, y)}x,y∈Zd is well defined. The Busemann function being well defined is a
shift invariant event which, by the ergodicity ofµ, implies that{B(x, y)}x,y∈Zd

is well defined a.s. and the conclusions of Lemma 3 apply. Pickε < 1
3 min(k1,1),

wherek1 comes from Corollary 1. By the choice ofε and Corollary 1 we have that
there existsN such that for alln > N ,

P

(
τ (0, x)

|x| > 2ε for all x such that|x| = n

)
>

2

3
.(2)

By Lemma 3 there existsn > N such that

P

(
B(0, x)

|x| < ε for all x such that|x| = n

)
>

2

3
.(3)

However, there exists at least one infinite geodesicG = (0, v1, v2, . . . ) which
begins at0. (The choice ofG is immaterial.) For alln there existsk such that
|vk| = n. For anyk we have thatB(0, vk) = τ (0, vk). This shows that (2) and (3)
cannot both be true. Thus the lemma is proven.�

Note that the lack of a well defined Busemann function implies that there exist
at least two disjoint infinite geodesics. Now we show that the lack of a well
defined Busemann function also implies that coexistence has positive probability.
Coexistence is implied if there exist two infinite geodesicsG0 = (v0, v1, v2, . . . )

andG1 = (w0,w1,w2, . . . ) such that

BG0(0,1) < 0 < BG1(0,1).

We show coexistence is possible by showing that we have two such geodesics with
positive probability.
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PROOF OF THEOREM 2. By Lemma 4 we get an event̃A of positive
probability andx, y ∈ Z

d such that for allω ∈ Ã we have two geodesicsG0 =
G0(ω) = (v0, v1, v2, . . . ) andG1 = G1(ω) = (w0,w1,w2, . . . ) with

BG0(x, y) < BG1(x, y).

(If there is more than one pair of geodesics which satisfy this equation, we can
chooseG0 andG1 in any measurable manner.) It causes no loss of generality to
assume that|x − y| = 1. Thus by the symmetry ofµ we can assume thatx = 0
andy = 1. WhereasBG0(0,1) andBG1(0,1) do not depend on any finite number
of edges in the geodesics, it causes no loss of generality to assume that0,1 are not
endpoints of any of the edges inG0 or G1. By restricting to a smaller eventA ⊂ Ã

of positive probability we get a nonrandomr > 0 such that for allω ∈ A,

BG0(0,1) < r < BG1(0,1).(4)

By the symmetry ofµ we can assumer ≥ 0. From the definition ofBG1(0,1) we
get thatBG1(0,1) ≤ τ (0,1).

Now we form a new eventA′. Givenω ∈ A defineω′ by

ω′(v,w) =
{

ω(v,w) + r, if 1 ∈ {v,w},
ω(v,w), else.

The eventA′ consists of allω′ that can be formed in this way from someω ∈ A.
By conditions 2, 4 and 5 of the definition ofµ being good, the eventA′ also has
positive measure. We letτ ′ indicate the passage times inω′ and letτ indicate the
passage times inω. It is easy to check that for anyz �= 1,

τ ′(1, z) = τ (1, z) + r.

Also if 1 is not an endpoint of any of the edges in the geodesicGω(0, z), then

τ ′(0, z) = τ (0, z).

WhereasBG0(0,1) < BG1(0,1) ≤ τ (0,1), we have that for all largen the
vertex1 is not an endpoint of any of the edges in the geodesicGω(0, vn). Thus
τ ′(0, vn) = τ (0, vn) for all large n. Also note that since neither0 nor 1 is an
endpoint of any of the edgesG0(ω) or G1(ω), we have thatG0(ω) andG1(ω)

are both geodesics forω′.
Thus for anyω′ ∈ A′ we have that

Bω′
G0(ω)(0,1) = lim

n→∞ τ ′(0, vn) − τ ′(1, vn)

= lim
n→∞ τ (0, vn) − (

τ (1, vn) + r
)

= Bω
G0(ω)(0,1) − r

< 0.
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The last step follows from (4). We also get that

Bω′
G1(ω)(0,1) = lim

n→∞ τ ′(0,wn) − τ ′(1,wn)

≥ lim
n→∞ τ (0,wn) − (

τ (1,wn) + r
)

≥ Bω
G1(ω)(0,1) − r

> 0.

The last step follows from (4). Thus we have coexistence for allω′ ∈ A′. �
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