COEXISTENCE FOR RICHARDSON TYPE COMPETING SPATIAL GROWTH MODELS

By Christopher Hoffman
University of Washington

Abstract

We study a large family of competing spatial growth models. In these models the vertices in \mathbb{Z}^{d} can take on three possible states $\{0,1,2\}$. Vertices in states 1 and 2 remain in their states forever, while vertices in state 0 , which are adjacent to a vertex in state 1 (or state 2), can switch to state 1 (or state 2). We think of the vertices in states 1 and 2 as infected with one of two infections, while the vertices in state 0 are considered uninfected. In this way these models are variants of the Richardson model. We start the models with a single vertex in state 1 and a single vertex in state 2 . We show that with positive probability state 1 reaches an infinite number of vertices and state 2 also reaches an infinite number of vertices. This extends results and proves a conjecture of Häggström and Pemantle [J. Appl. Probab. 35 (1998) 683-692]. The key tool is applying the ergodic theorem to stationary first passage percolation.

1. First passage percolation. In this paper we study a class of competing spatial growth models by first studying stationary first passage percolation and then applying our results to the spatial growth models. In first passage percolation every edge in a graph is assigned a nonnegative number. This is interpreted as the time it takes to move across the edge. This model was introduced by Hammersley and Welsh [6]. See [7] for an overview of first passage percolation.

Let μ be a stationary measure on $[0, \infty)^{\operatorname{Edges}\left(\mathbb{Z}^{d}\right)}$ and let ω be a realization of μ. For any x and y we define the passage time from x to $y, \tau(x, y)$, by

$$
\tau(x, y)=\inf \sum \omega\left(v_{i}, v_{i+1}\right),
$$

where the sum is taken over all of the edges in the path and the inf is taken over all paths connecting x to y.

The most basic result from first passage percolation is the shape theorem. We let $\mathbf{0}=(0, \ldots, 0)$ and $\mathbf{1}=(1,0, \ldots, 0)$. Define

$$
S(t)=\{x: \tau(\mathbf{0}, x) \leq t\}
$$

and

$$
\bar{S}(t)=S(t)+\left[-\frac{1}{2}, \frac{1}{2}\right]^{d} .
$$

Received March 2004; revised April 2004.
AMS 2000 subject classifications. Primary 60K35; secondary 82B43.
Key words and phrases. First passage percolation, Richardson's model, competing growth.

The shape theorem says that there is a nonempty set S such that $\frac{\bar{S}(t)}{t}$ converges to S a.s.

THEOREM 1 (Boivin [1]). Let μ be stationary and ergodic, and let the distribution on any edge have finite $d+\varepsilon$ moment for $\varepsilon>0$. There exists a set S which is nonempty, convex and symmetric about reflection through the origin such that for every $\varepsilon>0$ there exists a T such that for all $t>T$,

$$
P\left((1-\varepsilon) S<\frac{\bar{S}(t)}{t}<(1+\varepsilon) S\right)>1-\varepsilon
$$

This theorem is a consequence of Kingman's subadditive ergodic theorem. It is the only property of first passage percolation that we need. In general, little is known about the shape of S other than it is convex and symmetric. Cox and Durrett showed that there are nontrivial product measures such that the boundary of S contains a flat piece [2]. However, for any compact nonempty convex set S there exist a stationary measure μ such that the shape for μ is S [4].

Another widely studied aspect of first passage percolation is geodesics. A geodesic is a path $G=\left\{v_{0}, v_{1}, \ldots\right\}$ such that

$$
\tau\left(v_{m}, v_{n}\right)=\sum_{i=m}^{n-1} \omega\left(v_{i}, v_{i+1}\right)
$$

for any $m<n$. We let $G^{\omega}(x, y)=G(x, y)$ be the union of all geodesics that connect x and y. Define

$$
\Gamma(x)=\bigcup_{y \in \mathbb{Z}^{d}}\left\{e: e \in \operatorname{Edges}\left(\mathbb{Z}^{d}\right) \text { and } e \in G(x, y)\right\}
$$

We refer to this as the tree of infection of x. We define $K(\Gamma(x))$ to be the number of topological ends in $\Gamma(x)$. This is also the number of infinite self-avoiding paths in $\Gamma(x)$ that start at x.

Newman [8] conjectured that for a large class of $\mu,|K(\Gamma(\mathbf{0}))|=\infty$ a.s. Häggström and Pemantle [5] proved that if $d=2$ and μ is the i.i.d with exponential distribution, then with positive probability $|K(\Gamma(\mathbf{0}))|>1$. Newman [8] proved that if μ is i.i.d. and S has certain properties, then $|K(\Gamma(\mathbf{0}))|=\infty$ a.s. Although these conditions are plausible, there are no known measures μ with S that satisfy these conditions.

Now we introduce some more notation which lets us list the conditions that we place on μ. We say that the configuration ω has unique geodesics if for all $x, y \in \mathbb{Z}^{d}$ there exists a unique geodesic from x to y. If there exists a unique geodesic between x and y, we denote it by $G(x, y)$. The configuration ω has unique passage times for all x and $y \neq z$:

$$
\tau(x, y) \neq \tau(x, z)
$$

For any ω we let $\mu_{\omega}^{(\mathbf{0}, \mathbf{1})}$ be the conditional distribution of μ on the edge $(\mathbf{0}, \mathbf{1})$ given that $\omega^{\prime}(v, w)=\omega(v, w)$ for all edges except $(\mathbf{0}, \mathbf{1})$. We say that μ has finite energy if for any set $A \subset \mathbb{R}$ such that $\mu\{\omega(\mathbf{0}, \mathbf{1}) \in A\}>0$ and almost every ω, $\mu_{\omega}^{(\mathbf{0}, 1)}\left\{\omega^{\prime}: \omega^{\prime}(0,1) \in A\right\}>0$.

Whereas μ is a stationary measure we can study its ergodic theoretical properties. For any $v \in \mathbb{Z}^{d}$ define the shift map $T^{v}:[0, \infty)^{\operatorname{Edges}\left(\mathbb{Z}^{d}\right)} \rightarrow[0, \infty)^{\operatorname{Edges}\left(\mathbb{Z}^{d}\right)}$ by

$$
T^{v}(\omega)(j)=\omega(j+v)
$$

for all $j \in \operatorname{Edges}\left(\mathbb{Z}^{d}\right)$. The measure μ is totally ergodic if, for all $v \in \mathbb{Z}^{d}$, the action (μ, T^{v}) is ergodic.

Now we are ready to define the class of measures that we work with. We say that μ is good if:

1. μ is totally ergodic;
2. μ has all the symmetries of \mathbb{Z}^{d};
3. the distribution of μ on any edge has finite $d+\varepsilon$ moment for some $\varepsilon>0$;
4. μ has finite energy;
5. $\mu_{\omega}^{(\mathbf{0}, \mathbf{1})}$ is an absolutely continuous measure with support $[0, \infty)$ a.s.;
6. μ produces a shape S which is bounded.

Note that conditions 2, 4 and 5 imply that μ has unique geodesics and unique passage times. These conditions were chosen to make the arguments as easy as possible and could be made more general. All that is essential for the argument to show that there are at least two disjoint infinite geodesics is that μ is totally ergodic and that Lemma 1 and Corollary 1 below are satisfied. Conditions 2, 4 and 5 are used to show that coexistence occurs with positive probability. Throughout the rest of the paper we assume that μ is good. Unfortunately there is no general necessary and sufficient condition to determine when the shape S is bounded. See [4] for examples.
2. Spatial growth models. Now we explain the relationship between first passage percolation and our competing growth models. For any $\omega \in[0, \infty)^{\operatorname{Edges}\left(\mathbb{Z}^{d}\right)}$ with unique passage times and any $x \neq y \in \mathbb{Z}^{d}$ we can project it to $\tilde{\omega}_{x, y} \in$ $\left(\{0,1,2\}^{\mathbb{Z}^{d}}\right)^{[0, \infty)}$ by

$$
\tilde{\omega}_{x, y}(z, t)= \begin{cases}2, & \text { if } \tau(x, z) \leq t \text { and } \tau(x, z)<\tau(y, z) \\ 1, & \text { if } \tau(y, z) \leq t \text { and } \tau(x, z)>\tau(y, z) \\ 0, & \text { else }\end{cases}
$$

If μ has unique passage times a.s., then μ projects onto a measure on $\left(\{0,1,2\}^{\mathbb{Z}^{d}}\right)^{[0, \infty)}$. It is clear that the models start with a single vertex state 1 and a single vertex in state 2 . Vertices in states 1 and 2 remain in their states forever, while vertices in state 0 , which are adjacent to a vertex in state 1 (or state 2), can
switch to state 1 (or state 2). We think of the vertices in states 1 and 2 as infected with one of two infections, while the vertices in state 0 are considered uninfected. In this way these models are variants of the Richardson model.

Whereas each $z \in \mathbb{Z}^{d}$ eventually changes to state 1 or 2 and then stays in that state for the rest of time, we can speak of the limiting configuration. There are two possible outcomes. The first is coexistence or mutual unbounded growth. If this occurs, then the limiting configuration has infinitely many z in state 1 and infinitely many z in state 2 . The other outcome is domination. If this happens, then in the limiting configuration there are only finitely many vertices in that state and all but finitely many vertices are in the other state.

For many measures μ (e.g., if μ is i.i.d. with nontrivial marginals), it is easy to prove that domination occurs with positive probability, but it is much more difficult to show that coexistence occurs with positive probability. More precisely we define $\mathrm{C}(x, y)$ to be the event that

$$
\left|\left\{z: \lim _{t \rightarrow \infty} \tilde{\omega}_{x, y}(z)=1\right\}\right|=\left|\left\{z: \lim _{t \rightarrow \infty} \tilde{\omega}_{x, y}(z)=2\right\}\right|=\infty .
$$

We refer to this event as coexistence or mutual unbounded growth. Our main result is that, with positive probability, coexistence occurs.

Theorem 2. If μ is good, then

$$
P(\mathrm{C}(\mathbf{0}, \mathbf{1}))>0 .
$$

This proves a conjecture of Häggström and Pemantle [5]. They proved this theorem in the case that $d=2$ and μ is i.i.d. with exponential distribution. Garet and Marchand [3] gave a different proof of Theorem 2. Their method follows more closely the approach taken by Häggström and Pemantle [5].
3. Outline. In this section we outline the proof of our main result. For any $x, y \in \mathbb{Z}^{d}$ and infinite geodesic $G=\left(v_{0}, v_{1}, v_{2}, \ldots\right)$ we can define

$$
B_{G}^{\omega}(x, y)=B_{G}(x, y)=\lim _{n \rightarrow \infty} \tau\left(x, v_{n}\right)-\tau\left(y, v_{n}\right)
$$

To see that the limit exists, first note that

$$
\begin{aligned}
B_{G}(x, y) & =\lim _{n \rightarrow \infty} \tau\left(x, v_{n}\right)-\tau\left(y, v_{n}\right) \\
& =\lim _{n \rightarrow \infty} \tau\left(x, v_{n}\right)-\tau\left(v_{0}, v_{n}\right)+\tau\left(v_{0}, v_{n}\right)-\tau\left(y, v_{n}\right) \\
& =\lim _{n \rightarrow \infty}\left(\tau\left(x, v_{n}\right)-\tau\left(v_{0}, v_{n}\right)\right)+\lim _{n \rightarrow \infty}\left(\tau\left(v_{0}, v_{n}\right)-\tau\left(y, v_{n}\right)\right) .
\end{aligned}
$$

Whereas G is a geodesic, the two sequences in the right-hand side of the last line are bounded and monotonic so they converge. Thus $B_{G}(x, y)$ is well defined. For
a given ω and all $x, y \in \mathbb{Z}^{d}$, if the function $B_{G}(x, y)$ is independent of the choice of infinite geodesic G, then we can define the Busemann function

$$
B(x, y)=B^{\omega}(x, y)=B_{G}^{\omega}(x, y)
$$

The main step in our proof is Lemma 4, which states that the probability that $\{B(x, y)\}_{x, y \in \mathbb{Z}^{d}}$ is well defined is 0 .

We work by contradiction to prove Lemma 4. In Lemmas 2 and 3 we assume that $\{B(x, y)\}_{x, y \in \mathbb{Z}^{d}}$ is well defined a.s. and then apply the ergodic theorem to $\{B(x, y)\}_{x, y \in \mathbb{Z}^{d}}$. Then in Lemma 4 we show that the conclusions of Lemma 3 generate a contradiction with the shape theorem. Thus with positive probability there are vertices x and y and distinct geodesics $G_{0}=G_{0}(\omega)$ and $G_{1}=G_{1}(\omega)$ such that

$$
B_{G_{0}}(x, y) \neq B_{G_{1}}(x, y) .
$$

From this point a short argument allows us to conclude that coexistence is possible with positive probability.
4. Proof. The heart of the proof is applying the ergodic theorem to the Busemann function. This is done in Lemmas 2 and 3. We start by showing that the symmetry of μ implies that the expected value of the Busemann function is 0 .

Lemma 1. If $\{B(x, y)\}_{x, y \in \mathbb{Z}^{d}}$ is well defined a.s., then for all $v \in \mathbb{Z}^{d}$,

$$
\mathbf{E}(B(\mathbf{0}, v))=0
$$

Proof. By symmetry of μ we have that $\mathbf{E}(B(\mathbf{0}, \mathbf{1}))=\mathbf{E}(B(\mathbf{1}, \mathbf{0}))$. Combining this with the fact that $B(\mathbf{0}, \mathbf{1})+B(\mathbf{1}, \mathbf{0})=0$ proves the lemma.

Now we apply the ergodic theorem to $B(\mathbf{0}, v)$.
Lemma 2. If $\{B(x, y)\}_{x, y \in \mathbb{Z}^{d}}$ is well defined a.s., then for all $v \in \mathbb{Z}^{d}$ and $\varepsilon>0$ there exists M such that

$$
P(|B(\mathbf{0}, m v)|<\varepsilon m \text { for all } m>M)>1-\varepsilon .
$$

Proof. First rewrite $B(\mathbf{0}, m v)$ as

$$
B(\mathbf{0}, m v)=B(\mathbf{0}, v)+B(v, 2 v)+\cdots+B((m-1) v, m v)
$$

$$
\begin{equation*}
B(\mathbf{0}, m v)=B^{\omega}(\mathbf{0}, v)+B^{T^{v}(\omega)}(\mathbf{0}, v)+\cdots+B^{T^{(m-1) v}(\omega)}(\mathbf{0}, v) \tag{1}
\end{equation*}
$$

$$
B(\mathbf{0}, m v)=\sum_{j=0}^{m-1} B^{T^{j v}(\omega)}(\mathbf{0}, v)
$$

Whereas μ is good, it is totally ergodic and the action $\left(T^{v}, \mu\right)$ is ergodic. Thus by (1) and Lemma 1 the claim is a consequence of the ergodic theorem.

We now strengthen this lemma by using the following corollary of the shape theorem. For $x \in \mathbb{Z}^{d}$ we let $|x|=\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{d}\right|$.

COROLLARY 1. There exist $0<k_{1}<k_{2}<\infty$ such that for every $\varepsilon>0$ there exists an N such that

$$
P\left(k_{1}<\frac{\tau(\mathbf{0}, x)}{|x|}<k_{2} \text { for all } x \text { such that }|x|>N\right)>1-\varepsilon
$$

Proof. The existence of k_{2} is due to the fact that the set S (from Theorem 1) is nonempty. The existence of k_{1} follows because one of the requirements of μ being good is that S is bounded.

LEmmA 3. If $\{B(x, y)\}_{x, y \in \mathbb{Z}^{d}}$ is well defined a.s., then for any $\varepsilon>0$ there exists N such that if $n>N$, then

$$
P\left(\frac{B(\mathbf{0}, x)}{|x|}<\varepsilon \text { for all } x \text { such that }|x|=n\right)>1-\varepsilon
$$

Proof. Given $\varepsilon>0$, pick vectors $v_{1}, v_{2}, \ldots, v_{j}$ such that $\left|v_{1}\right|=\left|v_{2}\right|=\cdots=$ $\left|v_{j}\right|$ and for all x sufficiently large there exists $i \in\{1,2, \ldots, j\}$ and $m \in \mathbb{N}$ such that

$$
\left|x-m v_{i}\right|<\varepsilon|x| \quad \text { and } \quad m\left|v_{i}\right| \leq|x| .
$$

For all x and y, we have that

$$
B(\mathbf{0}, x)=B(\mathbf{0}, y)+B(y, x)
$$

This implies that for any x and y,

$$
B(\mathbf{0}, x) \leq B(\mathbf{0}, y)+\tau(y, x)
$$

For any n let m be the largest integer such that $m\left|v_{i}\right| \leq n$. (This is independent of i.) Thus if there exists x with $|x|=n$ and $\frac{B(0, x)}{|x|} \geq \varepsilon$, then there exists i such that one of the following statements holds:

1. $B\left(\mathbf{0}, m v_{i}\right) \geq \varepsilon n / 2=\varepsilon|x| / 2$;
2. $\left|x-m v_{i}\right|<\varepsilon|x| / 2 k_{2}$ and $\tau\left(x, m v_{i}\right) \geq \varepsilon|x| / 2$.
(The constant k_{2} is from Corollary 1.)
By Lemma 2 there exists M such that

$$
\begin{aligned}
& P(\text { there exists } m>M \text { and } i \in\{1,2, \ldots, j\} \\
& \left.\quad \text { such that } B\left(\mathbf{0}, m v_{i}\right)>2 \varepsilon m\left|v_{i}\right| / 3>\varepsilon n / 2\right)<2 \varepsilon / 3 .
\end{aligned}
$$

Thus the probability of the first event is less than $2 \varepsilon / 3$ if n is sufficiently large.
By Corollary 1 there exists L such that for any $l>L$,

$$
P\left(\text { there exists } z \text { with }|z| \leq l \text { and } \tau(\mathbf{0}, z) \geq k_{2} l\right)<\varepsilon / 3 j .
$$

Applying this with each $m v_{i}$ in place of $\mathbf{0}$ and $\varepsilon n / 2 k_{2}$ in place of l we get that the probability of the second event is less than $\varepsilon / 3$ if n is sufficiently large. Thus for any $\varepsilon>0$ we get N, so that if $n>N$, we get that

$$
P\left(\text { there exists } x \text { such that }|x|=n \text { and } \frac{B(\mathbf{0}, x)}{|x|} \geq \varepsilon\right)<\varepsilon
$$

which proves the lemma.
Next we show that this generates a contradiction with the shape theorem.
Lemma 4. $\quad P\left(\{B(x, y)\}_{x, y \in \mathbb{Z}^{d}}\right.$ is well defined $)=0$.
Proof. We work by contradiction. Suppose that with positive probability, $\{B(x, y)\}_{x, y \in \mathbb{Z}^{d}}$ is well defined. The Busemann function being well defined is a shift invariant event which, by the ergodicity of μ, implies that $\{B(x, y)\}_{x, y \in \mathbb{Z}^{d}}$ is well defined a.s. and the conclusions of Lemma 3 apply. Pick $\varepsilon<\frac{1}{3} \min \left(k_{1}, 1\right)$, where k_{1} comes from Corollary 1 . By the choice of ε and Corollary 1 we have that there exists N such that for all $n>N$,

$$
\begin{equation*}
P\left(\frac{\tau(\mathbf{0}, x)}{|x|}>2 \varepsilon \text { for all } x \text { such that }|x|=n\right)>\frac{2}{3} \tag{2}
\end{equation*}
$$

By Lemma 3 there exists $n>N$ such that

$$
\begin{equation*}
P\left(\frac{B(\mathbf{0}, x)}{|x|}<\varepsilon \text { for all } x \text { such that }|x|=n\right)>\frac{2}{3} . \tag{3}
\end{equation*}
$$

However, there exists at least one infinite geodesic $G=\left(\mathbf{0}, v_{1}, v_{2}, \ldots\right)$ which begins at $\mathbf{0}$. (The choice of G is immaterial.) For all n there exists k such that $\left|v_{k}\right|=n$. For any k we have that $B\left(\mathbf{0}, v_{k}\right)=\tau\left(\mathbf{0}, v_{k}\right)$. This shows that (2) and (3) cannot both be true. Thus the lemma is proven.

Note that the lack of a well defined Busemann function implies that there exist at least two disjoint infinite geodesics. Now we show that the lack of a well defined Busemann function also implies that coexistence has positive probability. Coexistence is implied if there exist two infinite geodesics $G_{0}=\left(v_{0}, v_{1}, v_{2}, \ldots\right)$ and $G_{1}=\left(w_{0}, w_{1}, w_{2}, \ldots\right)$ such that

$$
B_{G_{0}}(\mathbf{0}, \mathbf{1})<0<B_{G_{1}}(\mathbf{0}, \mathbf{1})
$$

We show coexistence is possible by showing that we have two such geodesics with positive probability.

Proof of Theorem 2. By Lemma 4 we get an event \tilde{A} of positive probability and $x, y \in \mathbb{Z}^{d}$ such that for all $\omega \in \widetilde{A}$ we have two geodesics $G_{0}=$ $G_{0}(\omega)=\left(v_{0}, v_{1}, v_{2}, \ldots\right)$ and $G_{1}=G_{1}(\omega)=\left(w_{0}, w_{1}, w_{2}, \ldots\right)$ with

$$
B_{G_{0}}(x, y)<B_{G_{1}}(x, y) .
$$

(If there is more than one pair of geodesics which satisfy this equation, we can choose G_{0} and G_{1} in any measurable manner.) It causes no loss of generality to assume that $|x-y|=1$. Thus by the symmetry of μ we can assume that $x=\mathbf{0}$ and $y=\mathbf{1}$. Whereas $B_{G_{0}}(\mathbf{0}, \mathbf{1})$ and $B_{G_{1}}(\mathbf{0}, \mathbf{1})$ do not depend on any finite number of edges in the geodesics, it causes no loss of generality to assume that $\mathbf{0}, \mathbf{1}$ are not endpoints of any of the edges in G_{0} or G_{1}. By restricting to a smaller event $A \subset \widetilde{A}$ of positive probability we get a nonrandom $r>0$ such that for all $\omega \in A$,

$$
\begin{equation*}
B_{G_{0}}(\mathbf{0}, \mathbf{1})<r<B_{G_{1}}(\mathbf{0}, \mathbf{1}) \tag{4}
\end{equation*}
$$

By the symmetry of μ we can assume $r \geq 0$. From the definition of $B_{G_{1}}(\mathbf{0}, \mathbf{1})$ we get that $B_{G_{1}}(\mathbf{0}, \mathbf{1}) \leq \tau(\mathbf{0}, \mathbf{1})$.

Now we form a new event A^{\prime}. Given $\omega \in A$ define ω^{\prime} by

$$
\omega^{\prime}(v, w)= \begin{cases}\omega(v, w)+r, & \text { if } \mathbf{1} \in\{v, w\} \\ \omega(v, w), & \text { else. }\end{cases}
$$

The event A^{\prime} consists of all ω^{\prime} that can be formed in this way from some $\omega \in A$. By conditions 2, 4 and 5 of the definition of μ being good, the event A^{\prime} also has positive measure. We let τ^{\prime} indicate the passage times in ω^{\prime} and let τ indicate the passage times in ω. It is easy to check that for any $z \neq \mathbf{1}$,

$$
\tau^{\prime}(\mathbf{1}, z)=\tau(\mathbf{1}, z)+r .
$$

Also if $\mathbf{1}$ is not an endpoint of any of the edges in the geodesic $G^{\omega}(\mathbf{0}, z)$, then

$$
\tau^{\prime}(\mathbf{0}, z)=\tau(\mathbf{0}, z) .
$$

Whereas $B_{G_{0}}(\mathbf{0}, \mathbf{1})<B_{G_{1}}(\mathbf{0}, \mathbf{1}) \leq \tau(\mathbf{0}, \mathbf{1})$, we have that for all large n the vertex $\mathbf{1}$ is not an endpoint of any of the edges in the geodesic $G^{\omega}\left(\mathbf{0}, v_{n}\right)$. Thus $\tau^{\prime}\left(\mathbf{0}, v_{n}\right)=\tau\left(\mathbf{0}, v_{n}\right)$ for all large n. Also note that since neither $\mathbf{0}$ nor $\mathbf{1}$ is an endpoint of any of the edges $G_{0}(\omega)$ or $G_{1}(\omega)$, we have that $G_{0}(\omega)$ and $G_{1}(\omega)$ are both geodesics for ω^{\prime}.

Thus for any $\omega^{\prime} \in A^{\prime}$ we have that

$$
\begin{aligned}
B_{G_{0}(\omega)}^{\omega^{\prime}}(\mathbf{0}, \mathbf{1}) & =\lim _{n \rightarrow \infty} \tau^{\prime}\left(\mathbf{0}, v_{n}\right)-\tau^{\prime}\left(\mathbf{1}, v_{n}\right) \\
& =\lim _{n \rightarrow \infty} \tau\left(\mathbf{0}, v_{n}\right)-\left(\tau\left(\mathbf{1}, v_{n}\right)+r\right) \\
& =B_{G_{0}(\omega)}^{\omega}(\mathbf{0}, \mathbf{1})-r \\
& <0
\end{aligned}
$$

The last step follows from (4). We also get that

$$
\begin{aligned}
B_{G_{1}(\omega)}^{\omega^{\prime}}(\mathbf{0}, \mathbf{1}) & =\lim _{n \rightarrow \infty} \tau^{\prime}\left(\mathbf{0}, w_{n}\right)-\tau^{\prime}\left(\mathbf{1}, w_{n}\right) \\
& \geq \lim _{n \rightarrow \infty} \tau\left(\mathbf{0}, w_{n}\right)-\left(\tau\left(\mathbf{1}, w_{n}\right)+r\right) \\
& \geq B_{G_{1}(\omega)}^{\omega}(\mathbf{0}, \mathbf{1})-r \\
& >0 .
\end{aligned}
$$

The last step follows from (4). Thus we have coexistence for all $\omega^{\prime} \in A^{\prime}$.
Acknowledgments. I thank Itai Benjamini, Yuval Peres and Oded Schramm for helpful conversations. I also thank an anonymous referee for pointing out an error in a previous version.

REFERENCES

[1] Boivin, D. (1990). First passage percolation: The stationary case. Probab. Theory Related Fields 86 491-499.
[2] Durrett, R. and Liggett, T. M. (1981). The shape of the limit set in Richardson's growth model. Ann. Probab. 9 186-193.
[3] Garet, O. and Marchand, R. (2005). Coexistence in two-type first-passage percolation models. Ann. Appl. Probab. 15 298-330.
[4] Häggström, O. and Meester, R. (1995). Asymptotic shapes for stationary first passage percolation. Ann. Probab. 23 1511-1522.
[5] Häggström, O. and Pemantle, R. (1998). First passage percolation and a model for competing spatial growth. J. Appl. Probab. 35 683-692.
[6] Hammersley, J. M. and Welsh, D. J. A. (1965). First-passage percolation, subadditive processes, stochastic networks, and generalized renewal theory. In Proceedings of the International Research Seminar 61-110. Springer, New York.
[7] Kesten, H. (1993). On the speed of convergence in first-passage percolation. Ann. Appl. Probab. 3 296-338.
[8] Newman, C. M. (1995). A surface view of first-passage percolation. In Proceedings of the International Congress of Mathematicians (S. D. Chatterji, ed.) 2 1017-1023. Birkhäuser, Basel.

Department of Mathematics
UNIVERSITY OF WASHINGTON
Box 354350
Seattle, Washington 98195
USA
E-MAIL: hoffman@math.washington.edu
URL: www.math.washington.edu/hoffman/

