
The Annals of Applied Probability
2004, Vol. 14, No. 4, 1766–1801
DOI 10.1214/105051604000000927
© Institute of Mathematical Statistics, 2004
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We formulate the insurance risk process in a general Lévy process
setting, and give general theorems for the ruin probability and the asymptotic
distribution of the overshoot of the process above a high level, when the
process drifts to−∞ a.s. and the positive tail of the Lévy measure, or of
the ladder height measure, is subexponential or, more generally, convolution
equivalent. Results of Asmussen and Klüppelberg [Stochastic Process. Appl.
64 (1996) 103–125] and Bertoin and Doney [Adv. in Appl. Probab. 28
(1996) 207–226] for ruin probabilities and the overshoot in random walk and
compound Poisson models are shown to have analogues in the general setup.
The identities we derive open the way to further investigation of general
renewal-type properties of Lévy processes.

1. Introduction. Various recent studies of insurance risk processes and
associated random walks and Lévy processes have paid particular attention to the
heavy-tailed case, when downward jumps of the process—claims—may be very
large. Such models are now thought to be quite realistic, especially in view of a
recent tendency to large-claim events in the insurance industry.

To give some intuition for the much more general framework of this paper, we
briefly recall theclassical insurance risk model,where all quantities are explicit.
In the classical model, the claims arriving within the interval(0, t], t > 0, are
modelled as a compound Poisson process, yielding the risk process

Rt = u + γ t −
Nt∑
i=1

Yi, t ≥ 0,(1.1)

whereu is the initial risk reserve andγ > 0 is the premium rate (as usual, we
set

∑0
i=1 ai = 0). Denote byF the claim size distribution function (d.f.), that is,

the d.f. of the independent and identically distributed (i.i.d.) almost surely (a.s.)
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positive random variables (r.v.’s)Yi , assumed to have finite meanµ > 0. Letλ > 0
be the intensity of the Poisson process, assumeγ > λµ, and letρ = λµ/γ < 1.
The probability of ultimate ruin is then

ψ(u) = P (Rt < 0 for somet > 0)

= P

(
Nt∑
i=1

Yi − γ t > u for somet > 0

)

= P

(
n∑

i=1

(Yi − γ Ti) > u for somen ∈ N

)
(1.2)

= (1− ρ)

∞∑
n=1

ρnF ∗n
I (u).(1.3)

We have used the following notation and facts:

(i) In this model, ruin can occur only when a claim occurs. This, jointly
with the fact that the interarrival times{Ti : i ∈ N} of a Poisson process are i.i.d.
exponential r.v.’s, leads to (1.2).

(ii) Equation (1.3) follows from a ladder height analysis; in this classical case,
theintegrated tail distribution

FI (x) := 1

µ

∫ x

0
F(y) dy, x ≥ 0,(1.4)

is the d.f. associated with the increasing ladder height process of the process
Xt = ∑Nt

i=1 Yi − γ t , t ≥ 0, andF ∗n
I is the tail of itsn-fold convolution.

(iii) The conditionρ < 1 guarantees that the processX has negative drift.
(iv) The infinite sum in (1.3) constitutes a renewal measure, which is defective

with killing rateρ.

All this standard theory can be found in various textbooks, for example,
[20] and [2], to mention just the classic and the most recent one.

In analyzing (1.3), two regimes can be recognized. The first is called theCramér
case, when there exists aν > 0 satisfyingρ

∫ ∞
0 eνuFI (dx) = 1. The defectρ in the

renewal function (1.3) can then be removed by an exponential tilting, and, using
Smith’s key renewal lemma (see, e.g., [16], Section 1.2), the ruin probability can
be shown to decrease exponentially fast, in fact, proportional toe−νu, asu → ∞.
This result has been extended to a Lévy process setting by Bertoin and Doney [6].

If such a “Lundberg coefficient”ν does not exist, as is the case for subexponen-
tial and other “convolution equivalent” distributions (see Section 3), estimates of
the ruin probability have been derived by Embrechts, Goldie and Veraverbeke [15],
Embrechts and Veraverbeke [18] and Veraverbeke [35]; see [16], Section 1.4.

It is also of prime interest to understand the way ruin happens. This question
has been addressed by Asmussen [1] for the Cramér case, and more recently by
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Asmussen and Klüppelberg [3] for the subexponential case. They describe the
sample path behavior of the process along paths leading to ruin via various kinds
of conditional limit theorems. As expected, the Cramér case and the non-Cramér
case are qualitatively quite different; see, for example, [2] and [16], Section 8.3.

Our aim is to investigate the non-Cramér case in a general Lévy process
setting, which clearly reveals the roles of the various assumptions. Our Lévy
processX will start at 0 and be assumed to drift to−∞ a.s., but otherwise is
quite general. Upward movement ofX represents “claim payments,” and the drift
to −∞ reflects the fact that “premium income” should outweigh claims. “Ruin”
will then correspond to passage ofX above a specified high level,u, say. In this
scenario, heavy-tailedness of the positive side of the distribution of upward jumps
models the occurrence of large, possibly ruinous, claims, and has previously been
studied in connection with the assumption of a finite mean for the process. But
in general we do not want to restrict the process in this way. A higher rate of
decrease of the process to−∞ is more desirable from the insurer’s point of view,
while allowing a heavier tail for the positive part is in keeping with the possibility
of even more extreme events, which indeed are observed in recent insurance data.

This leads to the idea of considering processes for which the only assumption
is of a drift to −∞ a.s., possibly at a linear rate, as is the case when the mean
is finite and negative, but possibly much faster. This kind of analysis is aided by
results going back to [19] which allow us to quantify such behavior, as is done,
for example, via easily verified conditions for drift to±∞ given in [11]. We also
make essential use of important fluctuation identities given in [4] and [36]. Our
results can thus be seen as adding to an understanding of renewal and fluctuation
properties of Lévy processes which drift to−∞, with application to passage time
and overshoot behavior at high levels.

The paper is organized as follows. In the next two sections we introduce
some basic notation, definitions and results for later use in the study. These
consist of some renewal-theoretic aspects of Lévy processes (drifting to−∞)
in Section 2, together with definitions and properties of subexponential and
related classes of distributions in Section 3. In Section 4 we present our main
results, which concern the asymptotic analyses of first passage times and the ruin
probability, asymptotic conditional overshoot distributions and some ladder height
and ladder time considerations. Section 5 establishes some useful asymptotic
relations between the Lévy measures ofX and its ladder height process, while
Section 6 offers some examples of the results presented in Section 4. Proofs of the
main results are given in Section 7.

2. Some renewal theory for Lévy processes.Let us suppose thatX =
{Xt : t ≥ 0} is a general Lévy process with lawP and Lévy measure�X. That is
to say,X is a Markov process with paths that are right continuous with left limits
such that the increments are stationary and independent and whose characteristic
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function at each timet is given by the Lévy–Khinchine representation

E(eiθXt ) = e−t�(θ), θ ∈ R,

where

�(θ) = iθa + σ 2θ2/2+
∫
(−∞,+∞)

(
1− eiθx + iθx1{|x|<1}

)
�X(dx).(2.1)

We havea ∈ R, σ 2 ≥ 0 and�X is a measure supported onR with �X({0}) = 0 and∫
R
(x2 ∧ 1)�X(dx) < ∞ ([4], page 13, and [32], Chapter 2). The natural filtration

generated byX is assumed to satisfy the usual assumptions of right continuity and
completeness.

Throughout we impose three essential restrictions:

(i) X0 = 0 and the process drifts to−∞: lim t→∞ Xt = −∞ a.s;
(ii) �X{(0,∞)} > 0, so the process is not spectrally negative;
(iii) we consider the non-Cramér case [see (4.3) and Proposition 5.1].

Further discussion of these points is given below. Otherwise, the only require-
ment will be on the asymptotic tail behavior (convolution equivalence, see
Definition 3.2) which we assume for the right tail of�X.

The following are standard tools of fluctuation theory for Lévy processes; see,
for example, [4], Chapter VI.

DEFINITION 2.1.

Supremum. Let X = {Xt = sups∈[0,t] Xs : t ≥ 0} be the process of the last
supremum.

Local time and inverse local time. Let L = {Lt : t ≥ 0} denote thelocal time in
the time period[0, t] thatX − X spends at zero. ThenL−1 = {L−1

t : t ≥ 0} is the
inverse local time such that

L−1
t = inf{s ≥ 0 :Ls > t}.

We shall also understand

L−1
t− = inf{s ≥ 0 :Ls ≥ t}.

In both cases and in the following text, we take the infimum of the empty set
as∞. Note that the previous two inverse local times are both stopping times with
respect to the natural filtration ofX. SinceX drifts to −∞, it follows that, with
probability 1,L∞ < ∞ and hence there exists at > 0 such thatL−1

t = ∞, again
with probability 1.
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Increasing and decreasing ladder height processes. The processH defined
by {Ht = X

L−1
t

: t ≥ 0} is the increasing ladder height process, that is to say, the
process of new maxima indexed by local time at the maximum. We callL−1

the (upwards) ladder time process. The processesL−1 andH are both defective
subordinators. It is understood thatHt = ∞ whenL−1

t = ∞.
We shall defineĤ = {Ĥt : t ≥ 0} to be thedecreasing ladder height process

in an analogous way. Note that this means thatĤ is a process which is negative
valued (this is unconventional, as the usual definition of decreasing ladder height
process would correspond to−Ĥ here).

Bivariate ladder process. Given the event{0 ≤ t < L∞}, the joint process
(L−1,H) behaves on[0, t) like a bivariate subordinator which is independent
of L∞. Also there exists a constantq > 0 such thatL∞ d= eq , whereeq is an
exponential variable with mean 1/q; compare [4], Lemma VI.2. Throughout the
paper we shall distinguish between the nondefective processes, denoted byL
(with L∞ = ∞), L−1 andH , and their defective versionsL, L−1 andH . The
corresponding nondefective bivariate ladder process is then(L−1,H). It is a
bivariate subordinator, independent ofeq , with the property

{(L−1
t ,Ht ) : t < L∞} Law= {(L−1

t ,Ht ) : t < eq}.(2.2)

Note that, by contrast, the decreasing ladder height process is not defective in
this sense because we have assumed thatX drifts to −∞.

DEFINITION 2.2 (Lévy measures and their tails). In addition to the measure
�X, we shall denote by�H and �

Ĥ
the Lévy measures ofH and Ĥ , with

supports in(0,∞) and(−∞,0), respectively. Further, foru > 0,

�
+
X(u) = �X{(u,∞)},

�
−
X(u) = �X{(−∞,−u)},
�X = �

+
X(u) + �

−
X(u)

represent the positive, negative and combined tails of�X. We use analogous
notation for the tails of�H and�

Ĥ
.

In our applications, the first passage time

τ (u) = inf{t ≥ 0 :Xt > u}, u > 0,

corresponds to ruin occurring at levelu, and major objects of interest are the
probability that this occurs in a finite time, and the behavior of this probability
as the reserve levelu is increased to∞. Following [3] and [15], a natural
way to proceed is by placing subexponential or, more generally, “convolution
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equivalence” assumptions (see Section 3) on�H or on�
+
X. We are then able to

follow in outline the program of [3], finding the limiting conditional distribution
asu → ∞ of the overshootXτ(u) −u above levelu (when it occurs), and of further
quantities in our general setup. This gives quite a clear picture of how and when
first passage over a high level happens for general Lévy processes.

The following development is essentially based on appropriate sections of [4]
and [36], but adapted and extended in part for our requirements.

DEFINITION 2.3 (Ladder height renewal measure). We define the renewal
measure,V , of the defective processH in the usual way. Its connection to the
nondefective processH with exponential killing time is as follows:

dV (y) =
∫ ∞

0
dt · P (Ht ∈ dy) =

∫ ∞
0

dt · e−qtP (Ht ∈ dy), y ≥ 0.(2.3)

We shall also be interested in the renewal measure,V̂ , of Ĥ , the downward ladder
height process, satisfying

dV̂ (y) =
∫ ∞

0
dt · P (Ĥt ∈ dy), y ≤ 0.

The next theorem gives an identity from which we can calculate the distributions
of Xτ(u), L

−1
Lτ(u)− andX

L−1
Lτ(u)−

. Although notationally rather complicated, the latter

two objects are nothing more than the time corresponding to the ladder time prior
to the first passage time (i.e., to the ruin time), and the position of this ladder
height, respectively.

THEOREM 2.4. Fix u > 0. Suppose that f , g and h are bounded, positive and
measurable, and that g(u) = 0. Define

dV h(y) =
∫ ∞

0
dt · e−qt

∫
[0,∞)

h(φ)P (Ht− ∈ dy,L−1
t ∈ dφ), y ≥ 0.

Then

E
(
f

(
X

L−1
Lτ(u)−

)
g
(
Xτ(u)

)
h
(
L−1

Lτ(u)−

)
; τ (u) < ∞

)

=
∫
(0,u]

dV h(y)f (y)

∫
(u−y,∞)

g(y + s)�H (ds).
(2.4)

PROOF. Define T (u) = inf{t ≥ 0 :Ht > u} and recall thatX experiences
first passage atτ (u) if and only if H experiences first passage atT (u). The
quantityX

L−1
Lτ(u)−

can alternatively be written asHT (u)− . On {T (u) < ∞}, H is a

subordinator andL∞ has an Exponential(q) distribution. Start from the left-hand
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side of the statement of the theorem, and decompose according to{T (u) = t} to
get

E
(
f

(
X

L−1
T (u)−

)
g
(
HT (u)

)
h
(
L−1

T (u)−
);T (u) < L∞

)

= E
∑

0<t<L∞

(
f (Ht−)g(Ht− + �Ht)h(L−1

t− );Ht− ≤ u < Ht− + �Ht

)

= E

∫ ∞
0

dy · qe−qy
∑

0<t<y

(
f (Ht−)g(Ht− + �Ht )h(L−1

t− );

Ht− ≤ u < Ht− + �Ht

)
= E

∑
t>0

e−qt
(
f (Ht−)g(Ht− + �Ht )h(L−1

t− );Ht− ≤ u < Ht− + �Ht

)
.

Use the compensation formula for the Poisson point process{�Ht : t ≥ 0}
([4], page 7) to get that the last expression is equal to∫ ∞

0
dt · e−qtE

(
f (Ht−)h(L−1

t− )1{Ht−≤u}
∫
(0,∞)

�H (ds)g(Ht− + s)1{Ht−+s>u}
)

=
∫
(0,u]

{∫ ∞
0

dt · e−qt
∫
[0,∞)

h(φ)P (Ht− ∈ dy,L−1
t− ∈ dφ)

}

× f (y)

∫
(u−y,∞)

�H (ds)g(y + s)

=
∫
(0,u]

dV h(y)f (y)

∫
(u−y,∞)

�H (ds)g(y + s). �

The proof of Theorem 2.4 is similar to calculations appearing in Proposi-
tion III.2, page76, [4] (see also [37]). The seemingly curious conditiong(u) = 0
functions as a way of excluding from the calculation the fact that there is possibly
an atom atu in the distribution ofXτ(u) which is a result of crossingu continuously
or “creeping upwards” (see Remark 2.8).

The next result, giving a formula for the ruin probability, is the continuous time
version of the Pollacek–Khinchine formula (see [4], page 172, and [6], page 364).

PROPOSITION2.5. P (τ(u) < ∞) = qV (u,∞) := qV (u), u > 0.

DEFINITION 2.6 (Wiener–Hopf factors). The Wiener–Hopf factorization
theorem (see, e.g., [4], page 166), together with the downward drift assumption
on our Lévy process, tells us that we can write, for some constantk > 0,

k�(θ) = −k logEeiθX1 = [− logEeiθH1
][− logEeiθĤ1

]
= κ(θ) × κ̂(θ), θ ∈ R.

(2.5)
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The constantk is determined by the choice of normalization of the local timeL.
We may and will assume without loss of generality thatk = 1. A different value
of k would simply modify the choices ofL, H andq. We have, forν > 0 and
somec ≥ 0, ĉ ≥ 0,

κ(iν) = − logEe−νH1 =
∫
(0,∞)

(1− e−νy)�H (dy) + νc + q(2.6)

and, recalling thatĤ is negative,

κ̂(−iν) = − logEeνĤ1 =
∫
(−∞,0)

(1− eνy)�
Ĥ

(dy) + νĉ.(2.7)

The factorsκ(·) and κ̂(·) are the Lévy–Khinchine exponents ofH and−Ĥ ,
which are subordinators, and accordingly the integrals in the definitions ofκ andκ̂

converge. The nonnegative constantsc and ĉ are the drift coefficients of these
subordinators andq is the same killing rate that appears in the definition ofH
[see (2.2)]. The convention thateiθH1 = 0 = e−νH1 when H1 = ∞ is used in
(2.5) and (2.6).

REMARK 2.7. SinceEe−νH1 = e−qEe−νH1 for ν > 0, (2.6) implies

− logEe−νH1 =
∫
(0,∞)

(1− e−νy)�H (dy) + νc, ν > 0,(2.8)

and, as a consequence of (2.5), (2.6) and (2.8), we have, forν > 0,

q − logEe−νH1 = �(iν)

κ̂(iν)
,

and hence

q = lim
ν↓0

�(iν)

κ̂(iν)
.(2.9)

The limit in (2.9) exists, and can be easily calculated, for example, whenX1 has
finite mean, in which case� and κ̂ are differentiable at 0; see the examples in
Section 6.

REMARK 2.8 (Creeping). X is said to creep upward if P (Xτ(u) = u,

τ (u) < ∞) > 0 for some (hence every)u > 0; equivalently, if thec defined in (2.6)
is positive ([4], pages 174 and 175).X creeps downward if−X creeps upward;
equivalently, if theĉ defined in (2.7) is positive. Supposec > 0. Then we have

P
(
Xτ(u) = u, τ (u) < ∞) = P

(
T ′(u) < L∞

) = E
(
e−qT ′(u)), u > 0,

whereT ′(u) = inf{t ≥ 0 :Ht = u}. A similar proof as in Theorem 5, page 79,
of [4], applied to the defective subordinatorH , then shows that the derivative
dV (u)/du exists and is continuous and positive on(0,∞), and that

P
(
Xτ(u) = u, τ (u) < ∞) = c

dV

du
(u) =: cV ′(u), u > 0.(2.10)
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Whenc = 0, V ′ is not defined, but the next corollary (to Theorem 2.4), which lists
the main formulae that we will use, shows that we do not need it then.

COROLLARY 2.9. We have the following four convolution identities for
u > 0:

(i) P (Xτ(u) − u > x, τ (u) < ∞) = ∫
(0,u] dV (y)�H (u + x − y);

(ii) P (τ(u) < ∞) = ∫
(0,u) dV (y)�H (u − y) + cV ′(u), with the convention

that the term containing V ′(u) is absent when V ′ is not defined, that is, when
c = 0;

(iii) P (Xτ(u) > u,L−1
Lτ(u)− > ψ,τ(u) < ∞) = ∫

(0,u) V (dy;ψ)�H (u − y),

where V (dy;ψ) = ∫ ∞
0 dt · e−qtP (Ht ∈ dy,L−1

t > ψ);
(iv) P (X

L
−1
Lτ(u)−

> φ,τ(u) < ∞) = ∫
(φ,u) V (dy)�H (u − y) + cV ′(u),φ ∈

[0, u), again with the convention that the term containing V ′(u) is absent when
V ′ is not defined.

PROOF. (i) Just choosef = h = 1 andg = 1{·>x+u} in Theorem 2.4.
(ii) Multiply each side of the equation in (ii) bye−νu, with ν > 0, and integrate

overu ∈ [0,∞), making use of Proposition 2.5 and the identities∫
[0,∞)

e−νyV (dy) = 1

q − logEe−νH1
(2.11)

[obtained by integrating (2.3)], and

νc + ν

∫
(0,∞)

e−νy�H (y) dy

= νc +
∫
(0,∞)

(1− e−νy)�H (dy) = − logEe−νH1

(2.12)

[from (2.8)] to see that (ii) holds as stated. [Note that by taking the limit asx tends
to zero in (i), and combining the result with (ii), we recover (2.10).]

(iii) Choosingf = 1,g = 1{·>x+u} andh = 1{·>ψ} in (2.4), and taking the limit
asx tends to zero, gives (iii).

(iv) Choosingf = 1{·>φ}, g = 1{·>x+u} andh = 1 in (2.4), then lettingx tend
to zero, gives an expression forP (X

L−1
Lτ(u)−

> φ,τ(u) < ∞,Xτ(u) > u). Since

{X
L−1

Lτ(u)−
= u} on {Xτ(u) = u} almost surely, by adding oncV ′ we have (iv). �

Further convolution identities that will be of use can be found in Proposition 3.3
of [36].

THEOREM 2.10 (Vigon [36]). We have, for u ∈ (0,∞):
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(i) �
+
X(u) = ∫

(u,∞) �Ĥ
(u − y) d�H (y) + ĉ�′

H (u), where �′
H is the density

of �H , which exists if and only if ĉ, the drift coefficient of −Ĥ , is positive;

(ii) �H (u) = − ∫
(−∞,0) �

+
X(u − y) dV̂ (y).

REMARK 2.11. Note that by our convention̂V (y) is positive and nonincreas-
ing ony ∈ (−∞,0), with V̂ (0) = 0.X drifts to−∞ a.s. in our analysis, so we can
and will exclude the case whenX is a subordinator. This means thatĤ , V̂ andκ̂

are not identically zero.
We say thatX is spectrally positive if �X{(−∞,0)} = 0. We then have

Ĥt = −t and henceV̂ (dy) = −dy and ĉ = 1, and the expressions in Vigon’s
theorem simplify considerably. In particular, (i) and (ii) both say that

�H (u) =
∫ ∞
u

�
+
X(y) dy =

∫ ∞
u

�X(y) dy, u > 0(2.13)

[further implying that the integral in (2.13) is finite, and thus also thatE|X1| is
finite]. See [4], Chapter VII, for other useful results concerning spectrally one-
sided processes.

3. Convolution equivalence and infinite divisibility. Each infinitely divisi-
ble d.f. generates a Lévy process in the sense that it may serve as the d.f. ofX1.
For the most part we shall restrict ourselves to those infinitely divisible d.f.’s which
belong to one of the following classes.

DEFINITION 3.1 (ClassL(α)). Take a parameterα ≥ 0. We shall say that a
d.f. G on [0,∞) with tail G := 1 − G belongs to classL(α) if G(x) > 0 for
eachx ≥ 0 and

lim
u→∞

G(u − x)

G(u)
= eαx for eachx ∈ R, if G is nonlattice;(3.1)

lim
n→∞

G(n − 1)

G(n)
= eα if G is lattice (then assumed of span 1).(3.2)

(There should be no confusion of the classL(α) with our notationLt for the local
time.)

DEFINITION 3.2 (Convolution equivalence and classS(α)). With ∗ denoting
convolution,G is said to beconvolution equivalent if G ∈ L(α) for someα ≥ 0,
and if in addition, for someM < ∞, we have

lim
u→∞

G∗2(u)

G(u)
= 2M,(3.3)
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whereG∗2(u) = 1 − G∗2(u). We say thatG belongs toS(α). The classS(0) is
called thesubexponential distributions. The parameterα is referred to as theindex
of the classS(α) (or L(α)). We will often writeG ∈ L(α) rather thanG ∈ L(α), and
similarly for S(α).

A number of useful properties flow from these definitions. The limit rela-
tion (3.1) holds locally uniformly. In [14] it is shown that, whenG ∈ S(α), then
any d.f.F which is tail equivalent toG [i.e., F(x) ∼ G(x) asx → ∞, equiva-
lently limx→∞ F(x)/G(x) = 1] is also inS(α). The tail of any (Lévy or other)
measure, finite and nonzero on(x0,∞) for somex0 > 0, can be renormalized to
be the tail of a d.f., and, by extension, then is said to be inL(α) or S(α) if the
appropriate conditions in Definitions 3.1 or 3.2 are satisfied. For these results and
others, see, for example, [14, 15], and their references.

We follow Bertoin and Doney [7] in (3.1) and (3.2). They drew attention to
the need, whenα > 0, to distinguish the lattice and nonlattice cases; under (3.1),
the geometric distribution, for example, would not be inL(α). For α = 0, no
distinction is necessary. Having noted this distinction forα > 0, we will confine
our proofs to the nonlattice case by considering (3.1) to be the defining property
of L(α).

DEFINITION 3.3 (Moment generating function). For a finite d.f.G on [0,∞),
the moment generating function is defined (for alla ∈ R such that the following
integral is finite) as

δa(G) =
∫
[0,∞)

eauG(du).

Of course,δ0(G) < ∞. WhenG ∈ S(α) for an α > 0, Fatou’s lemma applied
to (3.3), using (3.1), shows thatδα(G) < ∞. Furthermore, the constantM in (3.3)
must then equalδα(G) (cf. [9, 10, 31]). Moreover,δα+ε(G) = ∞ for all ε > 0.
For the classS(0) of subexponential d.f.’s, the latter property means that the
moment generating function does not exist for anyε > 0—these distributions are
“heavy-tailed” in this sense. Typical examples are Pareto, heavy-tailed Weibull and
lognormal d.f.’s. Distributions with regularly varying tails are in this class. Note
that while the Exponential(α) distribution itself is inL(α) (for the same indexα),
it is not in S(β) for any indexβ ≥ 0; the convolution of two Exponential(α)
distributions is a Gamma(2, α) distribution for which (3.3) does not hold.
Distributions in the classS(α) for α > 0 are, however, “near to exponential” in
the sense that their tails are only slightly modified exponential; see [27]. The slight
modification, however, results in a moment generating function which is finite for
argumentα, as observed above. An important class of d.f.’s which are convolution
equivalent or subexponential for some values of the parameters is the generalized
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inverse Gaussian distributions, having densities

f (x) =
(

b

a

)d/2(
2Kd

(√
ab

))−1
xd−1 exp

(
−1

2
(ax−1 + bx)

)
, x > 0,

whereKd is the modified Bessel function of the third kind with indexd . The
following parameter sets are possible:{a ≥ 0, b > 0} for d ≥ 0; {a > 0, b > 0} for
d = 0; {a > 0, b ≥ 0} for d < 0. (Fora = 0 orb = 0, the respective limits are to be
taken in the norming constants.) For this distribution,F ∈ L(b/2) for eachb ≥ 0,
and, whend < 0, F ∈ S(b/2) for eachb ≥ 0; see [13] and [28].

Extending (3.3), whenG ∈ S(α) for anα ≥ 0, it is in fact true that, for allk ∈ N,

lim
u→∞

G∗k(u)

G(u)
= kδk−1

α (G).(3.4)

Also, the following uniform bound due to Kesten holds: for eachε > 0, there is
aK(ε) such that, uniformly inu > 0 for eachk ∈ N,

G∗k(u)

G(u)
≤ K(ε)

(
δα(G) + ε

)k
.(3.5)

An important property ofS(α) relates these classes to infinitely divisible
distributions, and hence to Lévy processes.

PROPOSITION3.4. Fix an α ≥ 0. If G is infinitely divisible with Lévy measure
�G(·) 
= 0, whose tail is �G(u) = �G{(u,∞)}, u > 0, then the following are
equivalent:

(i) G ∈ S(α);
(ii) �G ∈ S(α);

(iii) �G ∈ L(α) and lim
u→∞

G(u)

�G(u)
= δα(G).

(3.6)

For a proof of Proposition 3.4 in the caseα = 0, see Embrechts, Goldie
and Veraverbeke [15]; they restrict themselves to distributions on[0,∞), while
Pakes [30] gives the result for distributions on(−∞,∞), and forα ≥ 0. For more
detailed information on the classesS(α), and in particular on the subexponential
class, we refer to [16] and the review paper [24].

The next lemma applies Proposition 3.4 to get some basic asymptotic relations
for the tail of the ladder height processHt and for the ruin probability.

LEMMA 3.5. Fix an α ≥ 0. Suppose P (H1 > u) ∈ S(α), or, equivalently, by
Proposition 3.4,�H ∈ S(α). Then for each t > 0,

P (Ht > u) ∼ tδt
α(H)�H (u) ∼ tδt−1

α (H)P (H1 > u), u → ∞,(3.7)
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and hence, by tail equivalence, P (Ht > u) ∈ S(α) for each t > 0. Suppose further
that e−qδα(H) < 1. Then

lim
u→∞

P (τ(u) < ∞)

�H (u)
= q

(q − logδα(H))2
= qδ2

α(V ).(3.8)

[Here and throughout, we writeδα(H) for δα(H1).]

PROOF. Apply (3.6) to the infinitely divisible r.v.Ht with Lévy measure
�Ht (·) = t�H (·) to get, for eacht > 0,

P (Ht > u) ∼ δα(Ht )�Ht (u) = tδt
α(H)�H (u), u → ∞,

then apply (3.6) again to complete (3.7). Next, use the fact thatP (Ht > u) does
not decrease int (for eachu > 0) and the discrete uniform bound (3.5) to see that
for eachε > 0, there is aK(ε) such that, for allt > 0 andu > 0,

P (Ht > u) ≤ P
(
H�t�+1 > u

)
≤ K(ε)

(
δα(H) + ε

)�t�+1
P (H1 > u), u > 0.

(3.9)

Proposition 2.5 gives

P (τ(u) < ∞)

�H (u)
= qV (u)

�H (u)
= q

�H (u)

∫ ∞
0

e−qtP (Ht > u)dt, u > 0.

Then (3.7) and the uniform bound (3.9), together with dominated convergence, and
assuming thate−qδα(H) < 1, give

lim
u→∞

P (τ(u) < ∞)

�H (u)
= q

∫ ∞
0

e−qt tδt
α(H) dt = q

(q − logδα(H))2 .

The final equality in (3.8) follows from (2.11), as we can putν = −α when
e−qδα(H) < 1. �

4. Main results. Throughout the entire paper we assume

X0 = 0, lim
t→∞Xt = −∞ a.s., �X{(0,∞)} > 0.(4.1)

[The spectrally negative case, when�X{(0,∞)} = 0, is easily dealt with
separately in our context; see Remark 4.6.]

Our main assumption throughout this section will be

�H ∈ S(α),(4.2)

for a specifiedα ≥ 0.
For the specifiedα, thenon-Cramér condition,

e−qδα(H) < 1,(4.3)
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will also be assumed in our main results. This condition has force only whenα > 0;
for α = 0, condition (4.3) is automatically satisfied when (4.1) holds, sinceq > 0
then.

We start with the asymptotics of the first passage timeτ (u) in Theorem 4.1,
which extends Lemma 3.5 by showing that (3.8) can only hold if the ruin
probability is inS(α).

THEOREM 4.1 (Limiting first passage time,α ≥ 0). Fix an α ≥ 0 and assume
(4.1)–(4.3)hold. Then, as u → ∞,

P
(
τ (u) < ∞) ∼ q

(q − logδα(H))2
�H (u)

∼ q

(q − logδα(H))2δα(H)
P (H1 > u),

(4.4)

and thus C(u) := P (τ(u) < ∞), u > 0, is in S(α). Conversely, suppose that (4.1)
holds and C(·) is in S(α). Then (4.2)and (4.3),and hence (4.4),hold.

To be practically useful, we need to replace the quantities depending on the
ladder variables in Theorem 4.1 (and similarly in our other results) with quantities
defined as far as possible in terms of the marginal distributions ofX or, better, in
terms of�X. Section 5 is devoted to results like this so we defer discussion until
then.

THEOREM 4.2 (Overshoot, local time at ruin, last ladder height before ruin,
α ≥ 0). Fix an α ≥ 0 and assume (4.1)–(4.3)hold. Then:

(i) for all x > 0,

lim
u→∞P

(
Xτ(u) − u > x | τ (u) < ∞) = G(x),(4.5)

where G is the tail of a ( possibly improper) distribution function:

G(x) = e−αx

q

(
q − logδα(H) +

∫
(x,∞)

(eαy − eαx)�H (dy)

)
, x ≥ 0;(4.6)

(ii) for all t ≥ 0,

lim
u→∞ P

(
Lτ(u) > t | τ (u) < ∞)

= e−(q−logδα(H))t
(
1+ t

(
q − logδα(H)

)
logδα(H)/q

);(4.7)

(iii) for all φ ≥ 0,

lim
u→∞ P

(
X

L−1
Lτ(u)−

≤ φ
∣∣τ (u) < ∞

)
= (q − logδα(H))2

q

(∫
(0,φ]

eαyV (dy)

)
.(4.8)
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REMARK 4.3. (i) In the last result, whenα = 0, the limiting distribution is
proper. This follows by virtue of the fact that

V (∞) =
∫ ∞

0
e−qt dt = 1/q.

On the other hand, whenα > 0, the limiting distribution is improper, having mass
at infinity

1− δα(V )
(q − logδα(H))2

q
= 1− 1

qδα(V )
> 0.

(ii) When α > 0, we can letx → 0+ in (4.6) to see thatG(0+) = 1 − αc/q;
thus we can also conclude that the asymptotic conditional probability of creeping
over the barrieru, asu → ∞, is equal toαc/q. When ruin occurs, the process has
positive probability of crossing the boundary by creeping or jumping.

(iii) When α = 0, the distributionG in Theorem 4.2 is degenerate, placing all
its mass at infinity. Ruin thus occurs asymptotically only by a jump.

For the caseα = 0, we have the following sharper result:

THEOREM 4.4 (Sharper limiting overshoot distribution,α = 0). Suppose
that (4.1)holds and �H ∈ S(0). Then, for all x > 0,

lim
u→∞

∣∣∣∣P (
Xτ(u) − u > x | τ (u) < ∞) − �H (u + x)

�H (u)

∣∣∣∣ = 0,(4.9)

and the convergence is uniform in x ≥ η for each η > 0.

The remaining result in this section concerns the last ladder time before ruin.
For this, we only show tightness:

PROPOSITION 4.5 (Last ladder time before ruin,α = 0). Assume (4.1) and
�H ∈ S(0). Then

lim
φ→∞ lim sup

u→∞
P

(
L−1

Lτ(u)− > φ
∣∣ τ (u) < ∞) = 0.

REMARK 4.6 (Spectrally negative case). In this case,�X{(0,∞)} = 0, and
there are no upward jumps, so we haveXτ(u) = u on τ (u) < ∞, for all u > 0,
X creeps up, and the overshoot is a.s. zero at all levels. The ladder height process
Ht is simply the unit driftt ([4], page 191). The passage timeτ (u) has Laplace
transform

E
(
e−λτ(u); τ (u) < ∞) = e−u�(λ),

where� is the right inverse function to−�(−iλ) ([4], page 189). Thus the ruin
probability is P (τ(u) < ∞) = e−au, wherea > 0 satisfies�(−ia) = 0. In the
classical risk model, this setup is taken to describe annuities in life insurance ([25],
page 9).
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5. Relations between�X, �H and q. In this section we give some useful
connections between the m.g.f.’s and the Lévy measures ofX andH , and related
quantities.

PROPOSITION 5.1 [Criteria for (4.3)]. Assume (4.1). For any ν > 0, the
following equivalences are true:

E(eνX1) (is finite and ) < 1

⇐⇒ e−qδν(H) < 1 ⇐⇒ δν(V ) < ∞
⇐⇒ logδν(H) = νc +

∫
[0,∞)

(eνy − 1)�H (dy) < q

⇐⇒ νa − σ 2ν2/2−
∫
(−∞,∞)

(
eνx − 1− νx1{|x|<1}

)
�X(dx) > 0,

(5.1)

and if any of the conditions holds then

1

δν(V )
= q − logδν(H) = − logEeνX1

− logEeνĤ1
.(5.2)

REMARK 5.2. In the caseα > 0, Proposition 5.1 shows that our results in
Section 4 apply to the class of Lévy processes for whichEeαX1 < 1. By contrast,
suppose there is aν0 > 0 such thatEeν0X1 = 1. This forcesX to drift to −∞
a.s., and, without further assumptions, Bertoin ([4], page 183) and Bertoin and
Doney [6] then prove Cramér’s estimate:P (τ(u) < ∞) ∼ Ce−ν0u, asu → ∞,
whereC < ∞, and C > 0 if and only if the Lévy processX# with exponent
�#(λ) = �(λ − iν0) hasE|X#

1| < ∞.
Furthermore,Eeν0X1 = 1 implies (by [32], Theorem 25.17) that

∫
|x|>1 eν0x ×

�(dx) < ∞ and thus (by differentiation)−�(−iν) is finite and strictly convex
for ν < ν0. This rules out the possible existence of anα > 0 with EeαX1 < 1 and
�

+
X ∈ S(α), because the latter impliesEe(α+ε)X1 = ∞ for all ε > 0, while the

convexity of−�(−iν) means thatα < ν0. Thus the situation in [6] and ours are
mutually exclusive.

PROPOSITION 5.3 (Relation between�X and �H , α > 0). Assume (4.1).
Then �

+
X belongs to L(α) for a given α > 0 if and only if �H does, in which

case �
+
X(u) ∼ κ̂(−iα)�H (u), as u → ∞.

Define

A−(x) = �
−
X(1) +

∫ x

1
�

−
X(y) dy, x ≥ 1,

and let “�” in a relationship denote that ratio of the two sides is bounded away
from zero and infinity, over the indicated range of the variable.



1782 C. KLÜPPELBERG, A. E. KYPRIANOU AND R. A. MALLER

PROPOSITION5.4 (Relation between�X and�H , α = 0). Assume (4.1)and
�

+
X ∈ L(0).

(i) If
∫ ∞
1 �

−
X(y) dy = ∞, then

�H (u) �
∫
(1,∞)

(
y

A−(y)

)
�X(u + dy), u → ∞.(5.3)

(ii) If
∫ ∞
1 �

−
X(y) dy < ∞, then

�H (u) �
∫
(u,∞)

�
+
X(y) dy, u → ∞.(5.4)

REMARK 5.5. (i) By [11], limt→∞ Xt = −∞ a.s. if and only if∫ ∞
1

�
−
X(y) dy = ∞ and

∫
(1,∞)

(
y

A−(y)

)
�X(dy) < ∞,

or 0< −EX1 ≤ E|X1| < ∞.

(5.5)

Thus the integral on the right-hand side of (5.3) is finite under (4.1).
(ii) We can apply (4.9), (5.3) and (5.4) as follows. Denote the right-hand side

of (5.3) or (5.4) byB0(u), a finite, nonincreasing function on(0,∞). Suppose
there are functionsa(u) → ∞ asu → ∞ andb(x) → 0 asx → ∞ such that, for
eachx > 0,

B0(u + xa(u))

B0(u)
� b(x), u → ∞.(5.6)

Note thata(u) and b(x) are defined in terms of the Lévy characteristics ofX,
rather than ofH . Assume�

+
X ∈ L(0). Then by (5.3) or (5.4) and (4.9), and using

the uniformity of convergence in (4.9), we have, for eachx > 0,

P
(
Xτ(u) − u > xa(u) | τ (u) < ∞) � b(x), u → ∞.(5.7)

This gives the asymptotic order of magnitude of the overshoot, when normalized
by a(u); it tells us that(Xτ(u) − u)/a(u) is tight asu → ∞, conditional on
τ (u) < ∞. It is the counterpart of the corresponding result in (1.5) of [3], except
that [3] obtains a limit rather than an order of magnitude estimate, as a result
of its more restrictive (finite mean and maximum domain of attraction) but more
informative assumptions. We can likewise strengthen (5.3), replacing “�” by “ ∼,”
under stronger assumptions, using methods such as those of [34], for example.
We omit further details of this here. When�

+
X ∈ L(0), it is shown in the proof of

Proposition 5.4 that�H (u)/�
+
X(u) → ∞ asu → ∞, so we cannot replace the

hypothesis�H ∈ L(0) by �
+
X ∈ L(0) in Theorem 4.4.
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(iii) Theorems 4.1, 4.2 and 4.4 generalize corresponding results of Asmussen
and Klüppelberg [3] concerning the classical insurance risk process. In their
case the limit d.f.G reduces to a generalized Pareto distribution: forα = 0,
the normalizing functiona(u) from (5.7) is the well-knownauxiliary function
in extreme value theory (see [16], Chapter 3), andG is a Pareto distribution;
for α > 0, the normalizing function degenerates to the constantα, andG is the
standard exponential d.f.

6. Examples. In this section we shall consider examples, all of which have
the feature thatX is spectrally positive; that is to say, we assume�

−
X = 0. This

case is very tractable and allows us to derive quite explicit expressions which
generalize well-known results in collective risk theory. It is the case of most direct
interest in insurance applications. As before,X also drifts to−∞ a.s. For such
processes, from Remark 2.11 we have that the downward ladder height process is
simply a negative linear drift,̂Ht = −t , �H (u) = ∫ ∞

u �
+
X(y) dy (finite), foru > 0,

E|X1| < ∞, andEX1 < 0.

ASSUMPTION 6.1. Fix anα ≥ 0. Whenα > 0, assume that�
+
X ∈ S(α), and

when α = 0, assume that�H belongs toS(0). (Thus in either case we have
�H ∈ S(α).)

Suppose thatX has Laplace exponentφ(θ) for θ ∈ R such that

E(eθXt ) = eφ(θ)t .

The introduction ofφ conveniently connects with existing literature on one-sided
Lévy processes. Whenφ is finite, φ and � are related through the identity
φ(θ) = −�(−iθ). Under Assumption 6.1,φ(θ) is finite for θ ∈ (−∞, α] and
infinite for θ ∈ (α,∞). Noting that−X is spectrally negative, we can extract the
following facts from [4], Chapter VII, [5] and [32]: the functionφ(θ) is strictly
convex on(−∞, α], passes though the origin, has limθ→−∞ φ(θ) = +∞, and the
drift of X is given by the left-hand derivativeφ′(0−) = EX1, which is finite and
strictly negative.

Using (2.9) and taking advantage of the fact that the downward ladder height
process is simply a linear drift, we can identifyq as

q = lim
θ↓0

�(iθ)

κ̂(iθ)
= lim

θ↓0

−φ(−θ)

− logE(e−θĤ1)
= lim

θ↓0

φ(−θ)

θ
.

We thus deduce thatq = −φ′(0−) = |EX1| < ∞. Next note from (5.2) that,
whenα > 0,

q − logδα(H) = −φ(α)

α
,
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and hence the conditione−qδα(H) < 1 reduces to the requirement thatφ(α) < 0.
(Recall that whenα = 0, the requiremente−qδα(H) < 1 is automatically
satisfied.)

We can now read off the following conclusions from (2.13) and Theorems
4.1 and 4.2.

THEOREM 6.2. Suppose that X is spectrally positive, drifts to −∞ a.s.,
satisfies Assumption 6.1 for a given α ≥ 0, and has φ(α) < 0 if α > 0. With the
understanding that −φ(α)/α = −φ′(0−) = |EX1| when α = 0, we have:

(i) P
(
τ (u) < ∞) ∼ |EX1|

(
α

φ(α)

)2 ∫ ∞
u

�
+
X(y) dy as u → ∞;

(ii) lim u→∞ P (Xτ(u) − u > x|τ (u) < ∞) = G(x), where

G(x) = e−αx

|EX1|
(−φ(α)

α
+

∫
(x,∞)

(eαy − eαx)�
+
X(y) dy

)
;

(iii) lim
u→∞ P

(
Lτ(u) > t|τ (u) < ∞) = eφ(α)t/α

(
1− tφ(α)

α

(
1+ φ(α)

α|EX1|
))

.

Let us proceed to examine some specific spectrally positive models in more
detail.

6.1. Jump diffusion process. Suppose Assumption 6.1 is in force and, further,
thatXt is of the form

Xt = σBt +
Nt∑
i=1

Yi − γ t, t ≥ 0,(6.1)

whereγ > 0 andσ > 0 are constants,Bt is a standard Brownian motion,Nt is
a Poisson process of rateλ, theYi are a.s. positive i.i.d. r.v.’s with d.f.F and all
processes are independent. In the context of insurance risk theory, this process is
called arisk process perturbed by Brownian motion; see [12] and [22].Xt can drift
to −∞ only if EY1 = µ < ∞, so assume this. For this process we have

φ(θ) = −θγ + σ 2θ2/2+ λ

∫
[0,∞)

(eθx − 1)F (dx),(6.2)

and this is finite forθ ≤ α by Assumption 6.1. Also,�
+
X(x) = λF(x), so∫ ∞

u
�

+
X(y) dy = λ

∫ ∞
u

F(y) dy = λµFI (u), u ≥ 0,(6.3)

whereFI is the integrated tail d.f. as defined in (1.4).
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(i) Take α > 0. By Assumption 6.1,�
+
X ∈ S(α) for the specifiedα, so

F ∈ S(α); thus we haveF ∈ L(α), or, equivalently,F ◦ log is regularly varying
with index −α. Then by Karamata’s theorem (see [8], page 28), we have
limu→∞ F(u)/

∫ ∞
u F (y) dy = α. Hence by tail equivalence alsoF I ∈ S(α) and

δα(FI ) = (δα(F ) − 1)/(µα) < ∞. It follows from (6.2) that

−φ(α) = γ α − σ 2α2/2− λ

∫
[0,∞)

(eαx − 1)F (dx)

= γ α − σ 2α2/2− λ
(
δα(F ) − 1

)
= γ α − σ 2α2/2− λµαδα(FI ),

and this is positive if and only if (recall thatρ = µλ/γ )

ρδα(FI ) + σ 2

2

α

γ
< 1,(6.4)

which we will assume to be the case. Note that this impliesρ < 1 and hence
lim t→∞ Xt = −∞ a.s., because Wald’s lemma and (6.1) show that−EX1 =
γ − λµ = γ (1 − ρ) > 0. Finally we have via substitution in Theorem 6.2(i) with
the help of (6.3) and (6.4) that, asu → ∞,

P
(
τ (u) < ∞) ∼ (1− ρ)ρ

(1− σ 2α/(2γ ) − ρδα(FI ))2
F I (u)

∼ (1− ρ)ρ

µα(1− σ 2α/(2γ ) − ρδα(FI ))2F(u).

(6.5)

This holds under Assumption 6.1 and (6.4). Similarly, we can obtain a quite
explicit expression for the overshoot limit distribution from Theorem 6.2(ii),
calculable once the (incomplete) moment generating function is calculated.

(ii) Takeα = 0. Our assumption is now that

�H (·) = λ

∫ ∞
·

F(y) dy ∈ S(0).

Assumingρ = µλ/γ < 1 and again applying Theorem 6.2(i), we get

P
(
τ (u) < ∞) ∼ ρ

1− ρ
F I (u), u → ∞,(6.6)

in which the effect of the Brownian component has washed out. Equation (6.6)
is the same as for the classical case; see [18] and [16], Section 1.4. In this case
α = 0, (4.6) simply tells us that the overshoot aboveu tends to∞ in probability
asu → ∞, as we expect from the heavy-tailedness in the positive direction. To
sharpen the result we use Theorem 4.4 and the arguments in Remark 5.5. With
B0(u) = λ

∫ ∞
u F(y) dy, choosea(u) to satisfy (5.6), so that (5.7) holds. This

parallels the development of Asmussen and Klüppelberg [3] for essentially the
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same model (without the Brownian component). They require a maximum domain
of attraction condition, which gives “→” in (5.7), whereas our more general
analysis only gives “�.”

REMARK 6.3. The last result can be viewed as a robustness result in the sense
of suggesting how far we can move away from a specific model without changing
the asymptotic ruin probability: to a random walk with subexponential claims, we
can add a diffusion term without changing the ruin probability. This effect has been
investigated in a more general framework by Embrechts and Samorodnitsky [17].
See also [29]. Our next example also has an interpretation in this sense.

6.2. Stable process with jumps and drift. In this example we supposeXt is of
the form

Xt = S
(p)
t +

Nt∑
i=1

Yi − γ t, t ≥ 0,(6.7)

whereγ > 0, S(p)
t is a stable Lévy motion with indexp ∈ (1,2), and the variables

{Yi : i ≥ 1} are as before (thus, withEY1 = µ < ∞). It follows from [38] that

φ(θ) = −γ θ +
∫
[0,∞)

(eθx − 1− θx)
p(p − 1)

�(2− p)x1+p
dx + λ

∫
[0,∞)

(eθx − 1)F (dx)

= −γ θ + (−θ)p + λ

∫
[0,∞)

(eθx − 1)F (dx), θ ≤ 0.

For this example the mgfφ(θ) is finite only if θ ≤ 0, so we only consider the case
α = 0; that is, we assume�H ∈ S(0). The process has no downward jumps (β = 1
in the notation of [4], Chapter VIII, page 217). This model has been considered
by Furrer [21] and Schmidli [33] and is in the ruin context called arisk process
perturbed by p-stable Lévy motion.

Again assumeρ = µλ/γ < 1. By differentiation,q = −φ′(0−) = γ − λµ. The
Lévy measure ofX satisfies

�
+
X(x) = (p − 1)

�(2− p)
x−p + λF (x) and �

−
X(x) = 0, x > 0,

and, further,

�H (u) =
∫ ∞
u

�
+
X(x) dx = u−(p−1)

�(2− p)
+ λ

∫ ∞
u

F (x) dx, u > 0.

We distinguish three different cases: suppose

lim
x→∞xpF(x) =




0,

c ∈ (0,∞), or
∞.
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From l’Hôpital we get, corresponding to the above cases,

�H (u) ∼




u−(p−1)

�(2− p)
,

(
1

�(2− p)
+ λc

p − 1

)
u−(p−1), or

λµFI (u).

This means that we are in the same situation as in the classical subexponential case
(i.e., whenα = 0), but have two different regimes depending on whether the tail of
the claim size distribution is heavier or lighter than that of the stable perturbation.

Consequently, forF with tails lighter than or similar tox−p (i.e., Cases 1 and 2),
Theorem 6.2 gives

P
(
τ (u) < ∞) ∼ C

(γ − λµ)
u−(p−1), u → ∞,

with C = 1/�(2−p) or C = 1/�(2−p)+λc/(p−1). If F is heavier tailed than
x−p (Case 3), we again get (6.6), withρ = µλ/γ .

6.3. Notes and comments. All models considered in the insurance literature so
far have entailed very specific Lévy processes; in particular, of course, the classical
compound Poisson model as introduced in Section 1 has gained a lot of attention.
In [3], page 106, it is suggested that “by a discrete skeleton argument,” it may be
possible to extend their random walk results to a general Lévy process. There
are some difficulties with transferring results in this way, however, to do with
relating the passage time above a levelu of the discrete process{Xn}n=1,2,... to
the continuous time versionτ (u), or, more generally, relating the ladder processes
and corresponding Lévy measures in a useful way. An alternative approach via
a path decomposition of the Lévy process into drift, diffusion, “small jump” and
“large jump” processes seems to run into similar problems. Our direct approach to
the ladder properties of the Lévy process itself, with the help of the Bertoin and
Doney [6] and Vigon [36] techniques, avoids these considerations and provides a
basis for further developments of the theory.

In previous investigations, apart from estimates for the ruin probability, interest
has mostly been concentrated on working out joint limiting distributions of the
ruin time τ (u), the surplusXτ(u)− before ruin, and/or the overshootXτ(u) − u

after ruin. This problem was also considered for the classical model perturbed by a
Brownian motion as in Section 6.1; see [23]. A more general approach than this is
pursued by Huzak, Perman, Arvoje and Vondracek [26]. They consider a perturbed
risk process defined as

Xt = Zt + Ct − γ t, t ≥ 0,

whereC is a subordinator representing the total claim amount process; it has
only upward jumps. The perturbationZ is a Lévy process, independent ofC,
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which is also spectrally positive with zero expectation. In this model the Pollacek–
Khinchine formula can again be given quite explicitly, stating for the survival
probability

1− ψ(u) = (1− ρ)

∞∑
n=1

ρn
(
G∗(n+1) ∗ H ∗n

)
(u), u ≥ 0.

The parameterρ can again be specified, andG andH are d.f.’s, whereG can
be identified as the d.f. of the absolute supremum of the process{Zt − γ t : t ≥ 0}
andH is the integrated tail d.f. of the jumps ofC. The main concern in [26] is
to analyze the supremum and ladder height processes ofX, Z andC. SinceX is
a Lévy process, our results also apply to it, and analysis along our lines can be
carried out; but we do not proceed further here.

Finally we remark that all of our previous general results have exact random
walk analogues too, assuming only that the random walk drifts to−∞ a.s., and
that the distribution of the increments satisfies similar subexponential/convolution
equivalence conditions and a non-Cramér condition as we imposed for the Lévy
process. The results can even be strengthened slightly. Since the proofs for the
discrete time case use the same ideas, and are even a little simpler, we omit the
details.

7. Proofs. We need a couple of technical lemmas. The first is a minor
modification of some working out in [14].

LEMMA 7.1. Let α ≥ 0 and let the d.f. ν(·) ∈ S(α). Then, for each x ≥ 0,

lim
a→∞ lim sup

u→∞

∫
(a,u+x−a]

ν(u + x − y)

ν(u)
ν(dy) = 0.(7.1)

Further, the convergence in (7.1) is uniform in x ≥ 0.

PROOF. Write

ν∗2(z) = ν(z) + ν ∗ ν(z) = ν(z) +
∫
(0,z]

ν(z − y)ν(dy), z ≥ 0.

For a > 0 and z > 2a, split up the convolution integral into integrals over
(0, a], (a, z − a), [z − a, z) and use partial integration on the last integral. This
gives the identity

ν∗2(z) =
(

2
∫
(0,a]

+
∫
(a,z−a)

)
ν(z − y)ν(dy) + ν(a)ν(z − a),(7.2)

from which we see that∫
(a,u+x−a)

ν(u + x − y)ν(dy)

= ν∗2(u + x) − 2
∫
(0,a]

ν(u + x − y)ν(dy) − ν(a)ν(u + x − a).

(7.3)
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Now ν(·) ∈ S(α), soν∗2(u)/ν(u) → 2δα(ν) andν(u − z) ∼ eαzν(u) asu → ∞.
Divide by ν(u) in (7.3) and letu → ∞, using dominated convergence, to get the
limit

2e−αx
∫
(0,∞)

eαyν(dy) − 2
∫
(0,a]

eα(y−x)ν(dy) − eα(a−x)ν(a)

= 2e−αx
∫
(a,∞)

eαyν(dy) − e−αxeαaν(a).

The finiteness ofδα(ν) implies lima→∞ eαaν(a) = 0, so the last expression tends
to 0 asa → ∞.

For the uniformity, note that (7.1) withx = 0 gives
∫
(a,u−a] ν(u − y)ν(dy) ≤

εν(u) once a ≥ a0(ε) and u ≥ u0(a). Then if x ≥ 0 and ux = u + x,∫
(a,ux−a] ν(ux − y)ν(dy) ≤ εν(u) if a ≥ a0(ε) andux ≥ u0(a), certainly if a ≥

a0(ε) andu ≥ u0(a). �

We shall use the nonlattice part of the following lemma; for completeness, we
also include the lattice case. It is simply a re-presentation of the defining properties
for L(α), and we omit the proof.

LEMMA 7.2. For α > 0, G ∈ L(α) is equivalent to

lim
u→∞

G(u,u + h)

G(u,u + 1)
= 1− e−αh

1− e−α
,

where the limit is through values u in R or N, and for all h > 0 or for all
h ∈ N, for the nonlattice and lattice case, respectively. This in turn is equivalent to
saying that G(u+ dy)/G(u) converges weakly to an exponential distribution with
parameter α or to a geometric distribution with parameter e−α, respectively.

PROOF OF THEOREM 4.1. Fix α ≥ 0 and assume (4.1)–(4.3). The forward
part of the theorem follows from (3.8), together with the use of (3.7).

For the converse part, assume (4.1), letC(u) = P (τ(u) < ∞) = qV (u), u > 0,
so that C(u) is the tail of a d.f.C, and supposeC ∈ S(α). Thus δα(C) =
qδα(V ) < ∞, and since

δα(V ) =
∫
[0,∞)

eαy
∫ ∞

0
e−qt dt · P (Ht ∈ dy)

=
∫ ∞

0
e−qt dt · E(eαHt )

=
∫ ∞

0
e−qt dt · δt

α(H),

(7.4)

(4.3) holds. NowC(u) satisfies

C(u) = Cq(u) := q

∫ ∞
0

e−qtP (Ht > u)dt = P
(
Heq > u

)
, u > 0,
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where eq is an independent exponential variable with parameterq, and, since
Cq ∈ S(α), we have by (3.4), for eachk ∈ N,

lim
u→∞

C∗k
q (u)

Cq(u)
= kδk−1

α (Cq).(7.5)

Using the fact thatH has stationary independent increments, we have that
C∗k

q (u) = P (Hek
q

> u), whereek
q is the sum ofk independent exponential r.v.’s,

each with parameterq. That is to say,

C∗k
q (u) = qk

(k − 1)!
∫ ∞

0
tk−1e−qtP (Ht > u)dt, u > 0.

Thus by (7.5),

lim
u→∞

qk

(k − 1)!Cq(u)

∫ ∞
0

tk−1e−qtP (Ht > u)dt = kδk−1
α (Cq).

Multiplying both sides of this by(1 − λ/q)k−1, with q(1 − 1/δα(Cq)) < λ <

q(1+ 1/δα(Cq)) [so that|1− λ/q| < 1/δα(Cq)], and summing overk ∈ N, gives

lim
u→∞

1

Cq(u)

∫ ∞
0

e−λtP (Ht > u)dt

= 1/q

(1− (1− λ/q)δα(Cq))2

= (q − logδα(H))2

q(λ − logδα(H))2
,

(7.6)

becauseδα(Cq) = qδα(V ) = q/(q − logδα(H)). Relation (7.6) is valid for
q(1− 1/δα(Cq)) < λ < q(1+ 1/δα(Cq)). It means that

Cλ(u) = P
(
Heλ

> u
) = λ

∫ ∞
0

e−λtP (Ht > u)dt ∼ cCq(u),

for somec > 0 and henceCλ is in S(α) for λ in the indicated range. So by
repeating the above argument withq replaced by aλ0 ∈ (q, q(1 + 1/δα(Cq)))

[for which one should note thatδα(Cλ0) < q−1λ0δα(Cq) and hence thatλ0(1 +
1/δα(Cλ0)) > q(1 + 1/δα(Cq))], we can extend the upper limit of the range of
applicability of (7.6). Continuing in this way, we see that (7.6) holds for all
λ > q(1− 1/δα(Cq)). So we can write, for all largeλ,

lim
u→∞

1

Cq(u)

∫ ∞
0

e−λtP (Ht > u)dt

= (q − logδα(H))2

q

∫ ∞
0

te−(λ−logδα(H))t dt.
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Then by the continuity theorem for Laplace transforms ([20], page 433), we get

lim
u→∞

P (Ht > u)

Cq(u)
= (q − logδα(H))2

q
tδt

α(H).

By tail equivalence this means thatP (H1 > u) ∈ S(α). �

PROOF OFTHEOREM 4.2. Fixα ≥ 0, and suppose throughout that (4.1)–(4.3)
hold.

(i) Takex > 0 anda > 0, chooseu > 2a, and write, from Corollary 2.9(i),

P
(
Xτ(u) − u > x, τ (u) < ∞) =

(∫
(0,a]

+
∫
(a,u]

)
�H (u + x − y)V (dy)

=: Au + Bu.

(7.7)

By (3.1) we have

lim
u→∞

�H (u − y)

�H (u)
= eαy, y ∈ R.

In Au, y ≤ a, so the integrand is dominated by

�H (u + x − a) ≤ �H (u − a) ≤ 2eαa�H (u), u ≥ u0(a),

for someu0(a) large enough. Thus by dominated convergence,

lim
u→∞

Au

�H (u)
=

∫
(0,a]

eα(y−x)V (dy),

and as the convergence of monotone functions, the convergence is uniform
in x ≥ 0. So by (3.8),

lim
u→∞

Au

P (τ (u) < ∞)
= 1

qδ2
α(V )

∫
(0,a]

eα(y−x)V (dy)

= e−αx

qδ2
α(V )

(
δα(V ) −

∫
(a,∞)

eαyV (dy)

)
.

Sinceδα(V ) < ∞, as shown in the proof of Theorem 4.1, whena → ∞ the integral
here tends to 0 and, with (7.4), we get the first two terms in (4.6).

Next we deal withBu, in (7.7). Integration by parts gives

Bu = �H (u + x − a)V (a) − �H (x)V (u)

+
∫
[x,u+x−a)

V (u + x − y)�H (dy)

= �H (u + x − a)
(
V (a) − V (u)

)
+

∫
[x,u+x−a)

(
V (u + x − y) − V (u)

)
�H (dy)

=: �H (u + x − a)
(
V (a) − V (u)

) + Cu.

(7.8)
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When divided by�H (u), the first term is dominated by�H (u − a)V (a)/�H (u),
which tends toeαaV (a) asu → ∞, and sinceδα(V ) < ∞, we haveeαaV (a) → 0
asa → ∞.

Takea > x > 0 andu + x > a and write

Cu

V (u)
=

(∫
[x,a]

+
∫
(a,u+x−a)

)(
V (u + x − y)

V (u)
− 1

)
�H (dy)

=: Du

V (u)
+ Eu

V (u)
.

(7.9)

In the first term, the integrand is dominated by

V (u − a)

V (u)
≤ 2eαa, u ≥ u1(a),

for u1(a) large enough, and a constant is integrable with respect to�H (dy) over
y ∈ (x,∞), x > 0. Thus, by Proposition 2.5,

Du

P (τ(u) < ∞)
= Du

qV (u)

→ 1

q

∫
[x,a]

(
eα(y−x) − 1

)
�H (dy), u → ∞,

for eacha > 0. This convergence of monotone functions is uniform inx ∈ [η,∞)

for eachη > 0. Asa → ∞, we get the last term on the right-hand side of (4.6).
The second term on the right-hand side of (7.9) is not negative, and since

V (u) ≤ c0 �H (u) for u ≥ u2, u2 large enough, and somec0 > 0, by (3.8),Eu is
bounded above by a constant multiple of∫

(a,u+x−a)
�H (u + x − y)�H (dy)(7.10)

onceu+ x − y ≥ u2, and this is the case wheny < u+ x − a if we choosea > u2.
Now since�H (·) 
= 0, we can choosez0 > 0 such that�H (z0) > 0. Also keep
a > z0. Then define

ν(z) =
(

1− �H (z)

�H (z0)

)
1{z≥z0},

which is a (proper) d.f. on[0,∞) with tail ν(z) = �H (z)/�H (z0), z > z0. The
integral in (7.10) is, apart from a constant multiple,∫

(a,u+x−a)
ν(u + x − y)ν(dy).(7.11)

The proof of part (i) is now complete with Lemma 7.1.
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To prove part (ii), use the strong Markov property at the stopping timeL−1
t to

deduce

P
(
Lτ(u) > t, τ (u) < ∞) = P

(
Ht < u, τ (u) < ∞)

= E
(
1(Ht<u)P

(
τ (u) < ∞|F

L−1
t

))
= E

(
1(Ht<u)PHt

(
τ (u) < ∞))

= E
(
1(Ht<u)P

(
τ (u − Ht) < ∞))

= E
(
1(Ht<u)P

(
τ (u − Ht) < ∞); t < L∞

)
= e−qtE

(
1(Ht<u)P

(
τ (u − Ht ) < ∞))

= qe−qt
∫
(0,u)

V (u − y)P (Ht ∈ dy).

Write the last expression as

qe−qt

(∫
(0,a]

+
∫
(a,u−a]

+
∫
(u−a,u)

)
V (u − y)P (Ht ∈ dy),(7.12)

whereu > 2a > 0, then divide it byP (τ(u) < ∞) = qV (u) and letu → ∞. By
dominated convergence, the first term tends to

e−qt
∫
(0,a]

eαyP (Ht ∈ dy) = e−qt

(
δα(Ht ) −

∫
(a,∞)

eαyP (Ht ∈ dy)

)
,

and this tends toe−qtδt
α(H) as a → ∞. (Recall thatt is kept constant in this

proof.)
By Lemma 3.5, we can choosea such that

V (y) ≤ c1�H (y) ≤ c1P (Ht > y)

for y ≥ a, and somec1 > 0, so the second integral in (7.12) is not larger than

c1

∫
(a,u−a]

P (Ht > u − y)P (Ht ∈ dy)

and, after division byP (Ht > u), this tends to 0 asu → ∞ then a → ∞
by Lemma 7.1.

Finally,

q

∫
(u−a,u)

V (u − y)P (Ht ∈ dy)

= qV (a)P (Ht > u − a) − qV (0)P (Ht > u)

+ q

∫
(0,a)

P (Ht > u − y)V (dy),

(7.13)
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while by (3.7) and (4.4), asu → ∞,

P (Ht > u − y)

V (u)
= P (Ht > u − y)

P (H1 > u − y)

P (H1 > u − y)

P (H1 > u)

P (H1 > u)

V (u)

→ tδt
α(H)eαy(

q − logδα(H)
)2

= cte
αy,

say. Thus the right-hand side of (7.13), when divided byqV (u), tends asu → ∞
thena → ∞ to

ct

(
δα(V ) − 1/q

) = ct logδα(H)

q(q − logδα(H))
= tδt

α(H)
(
q − logδα(H)

)
logδα(H)/q.

Thus the limit is

e−qt
(
δt
α(H) + tδt

α(H)
(
q − logδα(H)

)
logδα(H)/q

)
,

which is the right-hand side of (4.7).
For part (iii), simply use Corollary 2.9 to write

P
(
X

L−1
Lτ(u)−

≥ φ, τ (u) < ∞
)

= P
(
τ (u) < ∞) −

∫
[0,φ)

V (dy)�H (u − y),

divide by P (τ(u) < ∞), and take the limit asu tends to infinity, using (4.4), to
get (4.8). �

PROOF OF THEOREM 4.4. Suppose that�H ∈ S(0). Take a = 0 in (7.7)
and (7.8) to see that

P
(
Xτ(u) − u > x | τ (u) < ∞) − V (0)�H (u + x)

P (τ (u) < ∞)

is bounded in modulus by

�H (u + x)V (u)

P (τ (u) < ∞)
+

∫
[x,u+x)

(
V (u + x − y) − V (u)

P (τ (u) < ∞)

)
�H (dy).(7.14)

SinceV (0) = 1/q andP (τ(u) < ∞) ∼ �H (u)/q by (4.4), the first term in (7.14)
converges to 0 (uniformly inx ≥ 0) asu → ∞, and it suffices to show that the
integral converges to 0 asu → ∞, where, in the denominator, we can replace
P (τ(u) < ∞) by �H (u) or by V (u). Takea > 0 andu > a and write the integral
in (7.14) as(∫

[x,u+x−a)
+

∫
[u+x−a,u+x)

)(
V (u + x − y) − V (u)

)
�H (dy).

The first integral on the right-hand side is the same one we dealt with in (7.8),
calledCu, and consequently when divided byV (u) has the same limit asCu/V (u)
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has, but withα = 0, namely, 0. As observed there, the convergence is uniform in
x ∈ [η,∞), η > 0.

Finally,

∫
[u+x−a,u+x)

V (u + x − y)

�H (u)
�H (dy)

≤ V (0)

(
�H ((u + x − a)−) − �H (u + x)

�H (u)

)

and this tends to 0 asu → ∞, for eacha > 0, uniformly inx ≥ 0. �

PROOF OFPROPOSITION4.5. From Corollary 2.9(iii) and the remark in the
proof thereof concerning an expression forP (Xτ(u) = u), we can write

P
(
L−1

Lτ(u)− > ψ,τ(u) < ∞) ≤
∫
(0,u)

V (dy;ψ)�H (u − y) + cV ′(u)

=
{∫

(0,a)
+

∫
[a,u)

}
V (dy;ψ)�H (u − y) + cV ′(u),

whereu > 2a > 0. AlsoP (τ(u) < ∞) ∼ c3�H (u) for somec3 > 0, so it suffices
for our purposes to divide by�H (u). For the first integral,

lim
u→∞

∫
(0,a)

V (dy;ψ)
�H (u − y)

�H (u)
≤ lim

u→∞
�H (u − a)

�H (u)
V (a;ψ) ≤ V (a;ψ).

However,

V (a;ψ) =
∫ ∞

0
dt · e−qtP (Ht ≤ a,L−1

t > ψ)

≤
∫ ∞

0
dt · e−qtP (L−1

t > ψ)

= 1

q
P

(
L−1

eq
> ψ

) → 0

asψ → ∞ becauseL−1
eq

< ∞ almost surely. For the remaining terms, note that

∫
[a,u)

V (dy;ψ)�H (u − y) + cV ′(u) ≤
∫
[a,u)

V (dy)�H (u − y) + cV ′(u)

= P
(
X

L−1
Lτ(u)−

≥ a, τ (u) < ∞
)
.

Divide byP (τ(u) < ∞), take the limsup asu tends to infinity, and then leta → ∞.
The result is zero by (4.8).�
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PROOF OFPROPOSITION 5.1. Fix ν > 0 and assume (4.1). Putθ = −iν in
the Wiener–Hopf factorization (2.5) to get

− logE(eνX1) = log
(
e−qE(eνH1)

)
logE

(
eνĤ1

)
(7.15)

(when each side is finite). Now since limt→∞ Xt = −∞ a.s.,E(eνĤ1) is always
finite and less than 1 (recall our convention thatĤ is negative), soE(eνX1) is
finite and less than 1 if and only ifE(e−qeνH1) is finite and less than 1. Thus
the first equivalence in (5.1) holds, and the second equality in (5.2) holds. The
second equivalence in (5.1) and the first equality in (5.2) follow from (7.4). Also,
from (2.8), which is valid also forν < 0 whenδν(H) < ∞, we get

δν(H) = E(eνH1) = exp
(
νc +

∫
[0,∞)

(eνy − 1)�H (dy)

)
,

giving the third equivalence in (5.1). The fourth equivalence in (5.1) follows from
EeνX1 < 1 and (2.1). �

PROOF OFPROPOSITION5.3. Fixα > 0. Suppose first that�
+
X ∈ L(α). (This

part is based on the analogous version for random walks which appears in [7].)
Using Theorem 2.10(ii), we have that

�H (u,u + h) =
∫
(−∞,0)

�+
X(u − y,u + h − y) dV̂ (y).

It is not difficult to justify integrating by parts to get

�H (u,u + h)

�
+
X(u)

=
∫
(0,∞)

[
V̂ (−y) − V̂

(−(y − h)+
)]�X(u + dy)

�
+
X(u)

.

Since �
+
X ∈ L(α), it follows that �X(u + dy)/�

+
X(u) converges foru → ∞

weakly to the exponential distribution. This, together with the fact thatV̂ is a
renewal measure and hence the integrand in the last equality is uniformly bounded,
implies that

lim
u→∞

�H (u,u + h)

�
+
X(u)

= α(1− e−αh)

∫
(0,∞)

V̂ (−y)e−αy dy, h > 0.

Since the right-hand side is nonzero (recall Remark 2.11), Lemma 7.2 suffices to
conclude that�H ∈ L(α).

Conversely, let�H ∈ L(α). Write Theorem 2.10(i) as

�
+
X(u) =

∫
(u,∞)

�
Ĥ

(u − y) d
(
�H (u) − �H (y)

) + ĉ�′
H (u),(7.16)

where the derivative is only present ifĉ > 0. By Fubini’s theorem,

�
+
X(u) =

∫
(−∞,0)

�H (u,u − y)�
Ĥ

(dy) + ĉ�′
H (u), u > 0.
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Take 0< h1 < h2 and integrate both sides of the last equation to get∫ u+h2

u+h1

�
+
X(z) dz =

∫
(−∞,0)

(∫ h2

h1

�H (u + z,u + z − y) dz

)
�

Ĥ
(dy)

(7.17)
+ ĉ

(
�H (u + h1) − �H (u + h2)

)
.

By dominated convergence,

lim
u→∞

1

�H (u)

∫ h2

h1

(
�H (u + z) − �H (u + z − y)

)
dz

= (1− eαy)

∫ h2

h1

e−αz dz

= α−1(1− eαy)(e−αh1 − e−αh2),

uniformly in y ≤ 0. Thus, dividing (7.17) by�H (u) and lettingu → ∞, we get

lim
u→∞

∫ h2

h1

(
�

+
X(u + z)

�H (u)

)
dz

= α−1(e−αh1 − e−αh2)

(∫
(−∞,0)

(1− eαy)�
Ĥ

(dy) + ĉα

)

= α−1(e−αh1 − e−αh2)κ̂(−iα).

(7.18)

Finally, take any sequenceu′′
n → ∞ and a subsequenceu′

n → ∞ such that, by
Helly’s theorem,

lim
u′

n→∞
�

+
X(u′

n + z)

�H (u′
n)

= p(z), z > 0.

Using Fatou’s lemma in (7.18) we see that the nonincreasing functionp(z) is finite
for all z > 0, and then we can use dominated convergence in (7.18) to deduce that∫ h2

h1

p(z) dz = α−1(e−αh1 − e−αh2)κ̂(−iα).

Differentiating, we see thatp(z) = e−αzκ̂(−iα) for all z > 0, true also for all
subsequences, and so

�
+
X(u + z) ∼ e−αzκ̂(−iα)�H (u), u → ∞.

Consequently,�
+
X ∈ L(α), and the exact form of the asymptotic is also established.

�

PROOF OF PROPOSITION 5.4. By Remark 2.11,�
Ĥ

(y) > 0 for all x > 0.
Next, Theorem 2.10(ii) gives

�H (u) =
∫
(u,∞)

V̂
(−(y − u)

)
�X(dy), u > 0,(7.19)



1798 C. KLÜPPELBERG, A. E. KYPRIANOU AND R. A. MALLER

and [4], page 74, gives, for ally ≥ 0,

V̂ (−y) � y

ĉ + Â(y)
� y

Â(y)
,(7.20)

where

Â(x) =
∫ x

0
�

Ĥ
(y) dy

is nonzero for allx > 0. [The second asymptotic relation in (7.20) follows by
considering caseŝA(∞) = ∞ or Â(∞) < ∞.] Consequently, for allu > 0,

�H (u) �
∫
(u,∞)

(
y − u

Â(y − u)

)
�X(dy).(7.21)

Now Â(x)/x = ∫ 1
0 �

Ĥ
(xy) dy is nonincreasing, tends to 0 asx → ∞ and has a

positive (possibly infinite) limit asx → 0+. Thusa0 := limx→0+(x/Â(x)) is finite
(possibly 0).

Symmetrically to (7.19), we have

�
Ĥ

(u) =
∫
(u,∞)

V (y − u)|�−
X(dy)|, u > 0.

Now V (y) ≤ V (∞) = 1/q; thus�
Ĥ

(u) ≤ �
−
X(u)/q and it follows that

Â(x) ≤ Â(1) + 1

q

∫ x

1
�

−
X(y) dy, x ≥ 1.(7.22)

If
∫ x
1 �

−
X(y) dy = ∞, then the right-hand side is asymptotic to(1/q)

∫ x
1 �

−
X(y) dy

asx → ∞. For a reverse inequality in this case, choosex0 ≥ 1 so thatV (x0) ≥
1/(2q). Then forx > x0,

Â(x) = Â(1) +
∫ x

1
�

Ĥ
(z) dz = Â(1) +

∫ x

1

∫
(z,∞)

V (y − z)|�−
X(dy)|dz

≥ Â(1) +
∫ x

x0

∫
(2z,∞)

V (x0)|�−
X(dy)|dz

≥ Â(1) + 1

2q

∫ x

x0

�
−
X(2z) dz �

∫ x

1
�

−
X(z) dz, x → ∞.

Together these give

Â(x) �
∫ x

1
�

−
X(y) dy � A−(x), x → ∞,

thus c−A−(x) ≤ Â(x) ≤ c+A−(x) for some 0< c− ≤ c+ < ∞ wheneverx ≥
x0 > 1. Integration by parts in (7.21) gives

�H (u) � a0�
+
X(u) +

∫ ∞
0

�
+
X(u + y) d

(
y

Â(y)

)
, u ≥ 0.
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Now assume�
+
X ∈ L(0). Then Fatou’s lemma applied to the last equation shows

that�H (u)/�
+
X(u) → ∞ asu → ∞. Then∫

(u,u+x0)

(
y − u

Â(y − u)

)
�X(dy) ≤

(
x0

Â(x0)

)
�

+
X(u) = o

(
�H (u)

)
, u → ∞.

Thus, asu → ∞,

�H (u) �
∫
(u+x0,∞)

(
y − u

Â(y − u)

)
�X(dy)

�
∫
(u+x0,∞)

(
y − u

A−(y − u)

)
�X(dy)

�
∫
(u+1,∞)

(
y − u

A−(y − u)

)
�X(dy).

This proves (5.3) in case
∫ ∞
1 �

−
X(y) dy = ∞. If

∫ ∞
1 �

−
X(y) dy < ∞ then (7.22)

givesÂ(∞) < ∞ and then (5.4) follows from (7.21).�
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