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We formulate the insurance risk process in a general Lévy process
setting, and give general theorems for the ruin probability and the asymptotic
distribution of the overshoot of the process above a high level, when the
process drifts to—oco a.s. and the positive tail of the Lévy measure, or of
the ladder height measure, is subexponential or, more generally, convolution
equivalent. Results of Asmussen and Kluppelb&gdhastic Process. Appl.

64 (1996) 103-125] and Bertoin and Donegdy. in Appl. Probab. 28

(1996) 207—226] for ruin proltmlities and the ovetsoot in random walk and
compound Poisson models are shown to have analogues in the general setup.
The identities we derive open the way to further investigation of general
renewal-type properties of Lévy processes.

1. Introduction. Various recent studies of insurance risk processes and
associated random walks and Lévy processes have paid particular attention to the
heavy-tailed case, when downward jumps of the process—claims—may be very
large. Such models are now thought to be quite realistic, especially in view of a
recent tendency to large-claim events in the insurance industry.

To give some intuition for the much more general framework of this paper, we
briefly recall theclassical insurance risk mod&there all quantities are explicit.

In the classical model, the claims arriving within the inter¢@l¢], ¢+ > 0, are
modelled as a compound Poisson process, yielding the risk process

N
(1.1) Ri=u+yt—Y_ Y, t>0,
i=1
whereu is the initial risk reserve angt > 0 is the premium rate (as usual, we

setz?zla,- = 0). Denote byF the claim size distribution function (d.f.), that is,
the d.f. of the independent and identically distributed (i.i.d.) almost surely (a.s.)
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positive random variables (r.v.'8}, assumed to have finite mean> 0. LetA > 0
be the intensity of the Poisson process, assumeiu, and letp = Au/y < 1.
The probability of ultimate ruin is then

Y(u) = P(R, <0 for somer > 0)

N,
= P(ZYi — yt > u for somer >0)
i=1

1.2) =P<Z(Y,- —yT;) > ufor someneN)
i=1
(1.3) =Q—p) Y p"F"(u).
n=1

We have used the following notation and facts:

(i) In this model, ruin can occur only when a claim occurs. This, jointly
with the fact that the interarrival timed; :i € N} of a Poisson process are i.i.d.
exponential r.v.'s, leads to (1.2).

(i) Equation (1.3) follows from a ladder height analysis; in this classical case,
theintegrated tail distribution

1 ¥
(1.4) Frx) =~ / Foydy, x=0,
nJo

is the d.f. associated with the increasing ladder height process of the process
X = Z,N:tl Y; —yt,t >0, andF;" is the tail of itsn-fold convolution.

(i) The conditionp < 1 guarantees that the processas negative drift.

(iv) The infinite sum in (1.3) constitutes a renewal measure, which is defective
with killing rate p.

All this standard theory can be found in various textbooks, for example,
[20] and [2], to mention just the classic and the most recent one.

In analyzing (1.3), two regimes can be recognized. The first is calleGrdneér
case, when there existsa> 0 satisfyingo [5° ¢"“ F;(dx) = 1. The defecp in the
renewal function (1.3) can then be removed by an exponential tilting, and, using
Smith’s key renewal lemma (see, e.g., [16], Section 1.2), the ruin probability can
be shown to decrease exponentially fast, in fact, proportionattty, asu — oo.
This result has been extended to a Lévy process setting by Bertoin and Doney [6].

If such a “Lundberg coefficientd does not exist, as is the case for subexponen-
tial and other “convolution equivalent” distributions (see Section 3), estimates of
the ruin probability have been derived by Embrechts, Goldie and Veraverbeke [15],
Embrechts and Veraverbeke [18] and Veraverbeke [35]; see [16], Section 1.4.

It is also of prime interest to understand the way ruin happens. This question
has been addressed by Asmussen [1] for the Cramér case, and more recently by
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Asmussen and Klippelberg [3] for the subexponential case. They describe the
sample path behavior of the process along paths leading to ruin via various kinds
of conditional limit theorems. As expected, the Cramér case and the non-Cramér
case are qualitatively quite different; see, for example, [2] and [16], Section 8.3.

Our aim is to investigate the non-Cramér case in a general Lévy process
setting, which clearly reveals the roles of the various assumptions. Our Lévy
processX will start at 0 and be assumed to drift teco a.s., but otherwise is
quite general. Upward movement Bfrepresents “claim payments,” and the drift
to —oo reflects the fact that “premium income” should outweigh claims. “Ruin”
will then correspond to passage ¥fabove a specified high level, say. In this
scenario, heavy-tailedness of the positive side of the distribution of upward jumps
models the occurrence of large, possibly ruinous, claims, and has previously been
studied in connection with the assumption of a finite mean for the process. But
in general we do not want to restrict the process in this way. A higher rate of
decrease of the process-tao is more desirable from the insurer’s point of view,
while allowing a heavier tail for the positive part is in keeping with the possibility
of even more extreme events, which indeed are observed in recent insurance data.

This leads to the idea of considering processes for which the only assumption
is of a drift to —oo a.s., possibly at a linear rate, as is the case when the mean
is finite and negative, but possibly much faster. This kind of analysis is aided by
results going back to [19] which allow us to quantify such behavior, as is done,
for example, via easily verified conditions for drift tooo given in [11]. We also
make essential use of important fluctuation identities given in [4] and [36]. Our
results can thus be seen as adding to an understanding of renewal and fluctuation
properties of Lévy processes which drifttao, with application to passage time
and overshoot behavior at high levels.

The paper is organized as follows. In the next two sections we introduce
some basic notation, definitions and results for later use in the study. These
consist of some renewal-theoretic aspects of Lévy processes (driftingxdd
in Section 2, together with definitions and properties of subexponential and
related classes of distributions in Section 3. In Section 4 we present our main
results, which concern the asymptotic analyses of first passage times and the ruin
probability, asymptotic conditional overshoot distributions and some ladder height
and ladder time considerations. Section 5 establishes some useful asymptotic
relations between the Lévy measuresXofand its ladder height process, while
Section 6 offers some examples of the results presented in Section 4. Proofs of the
main results are given in Section 7.

2. Some renewal theory for Lévy processes.Let us suppose thak =
{X;:t >0} is a general Lévy process with laf and Lévy measuré&ly. That is
to say,X is a Markov process with paths that are right continuous with left limits
such that the increments are stationary and independent and whose characteristic
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function at each time is given by the Lévy—Khinchine representation
E@E %) =eO geR,
where

(2.1) W) =iba+020?/2+ / (1— " +i0x1{x)<1)) TIx (dx).
(—00,+00)
We have: € R, 02 > 0 andI1y is a measure supported Brwith ITx ({0}) = 0 and
Jr(x? A DTx(dx) < oo ([4], page 13, and [32], Chapter 2). The natural filtration
generated by is assumed to satisfy the usual assumptions of right continuity and
completeness.
Throughout we impose three essential restrictions:

(i) Xo =0 and the process drifts teco: lim;_, o, X; = —oc0 a.s;
(i) TIx{(0,0)} > 0, so the process is not spectrally negative;
(iii) we consider the non-Cramér case [see (4.3) and Proposition 5.1].

Further discussion of these points is given below. Otherwise, the only require-
ment will be on the asymptotic tail behavior (convolution equivalence, see
Definition 3.2) which we assume for the right tail Ofy .

The following are standard tools of fluctuation theory for Lévy processes; see,
for example, [4], Chapter VI.

DEFINITION 2.1.

Supremum. Let X = {X, = SUR¢[0.,; Xs:7 > O} be the process of the last
supremum.

Local timeand inverselocal time. LetL = {L,:t > 0} denote théocal timein
the time periodO0, 7] that X — X spends at zero. Theb 1 = {L,_lit > 0} is the
inverse local time such that

L7l=inf{s>0:L; >1}.
We shall also understand
Lt =inf{s > 0:L, >1}.

In both cases and in the following text, we take the infimum of the empty set
asoo. Note that the previous two inverse local times are both stopping times with
respect to the natural filtration &. SinceX drifts to —oo, it follows that, with
probability 1, L., < oo and hence there existsya 0 such thal‘L,‘1 = 00, again

with probability 1.
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Increasing and decreasing ladder height processes. The processd defined
by {H; = L—l .t > 0} is theincreasing ladder height process, that is to say, the
process of new maxima indexed by local time at the maximum. We Icall
the (upwards) ladder time process. The procesges and H are both defective
subordinators. It is understood thdf = co whenL;1 = 00.

We shall define = {H,:¢ > 0} to be thedecreasing ladder height process
in an analogous way. Note that this means tHais a process which is negative
valued (this is unconventional, as the usual definition of decreasing ladder height
process would correspond teH here).

Bivariate ladder process. Given the even{0 <t < L}, the joint process
(L~1, H) behaves or{0,r) like a bivariate subordinator which is independent
of Lo. Also there exists a constant> 0 such thatL o, < e;, Whereeg, is an
exponential variable with meary4; compare [4], Lemma VI.2. Throughout the
paper we shall distinguish between the nondefective processes, denotéd by
(With Lo = 00), L7 and #, and their defective versions, L~ and H. The
corresponding nondefective bivariate ladder process is then', #). It is a
bivariate subordinator, independentgyf with the property

Law

(2.2) ((L7Y HY) it < Loo) =LY )01 < gy).
Note that, by contrast, the decreasing ladder height process is not defective in
this sense because we have assumedXhdrifts to —oo.

DEFINITION 2.2 (Lévy measures and their tails). In addition to the measure
[Mx, we shall denote by1s andIl, the Lévy measures off and H, with
supports in(0, co) and(—oo, 0), respectively. Further, far > 0,

Ty (u) = Mx{(u, 00)},
My (u) = Hx{(—00, —u)},
Ty =Ty (u) + Ty (u)

represent the positive, negative and combined tail§1gf We use analogous
notation for the tails of14 andIT .

In our applications, the first passage time
t(u)=inf{r >0:X; > u}, u >0,

corresponds to ruin occurring at leve] and major objects of interest are the
probability that this occurs in a finite time, and the behavior of this probability
as the reserve leval is increased toco. Following [3] and [15], a natural
way to proceed is by placing subexponential or, more generally, “convolution
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equivalence” assumptions (see Section 3Ybja or on ﬁ;. We are then able to
follow in outline the program of [3], finding the limiting conditional distribution
asu — oo of the overshooX ;) —u above level: (when it occurs), and of further
guantities in our general setup. This gives quite a clear picture of how and when
first passage over a high level happens for general Lévy processes.

The following development is essentially based on appropriate sections of [4]
and [36], but adapted and extended in part for our requirements.

DEFINITION 2.3 (Ladder height renewal measure). We define the renewal
measureV, of the defective procesH in the usual way. Its connection to the
nondefective proces® with exponentibkilling time is as follows:

0 0
(2.3) dV(y):/o dt - P(H, edy):/(; dt-e 1" P(H; edy), y=>0.

We shall also be interested in the renewal measiyef H, the downward ladder
height process, satisfying

~ m A
av(y) =/ di- P(H, edy),  y<O.
0

The nexttheorem gives an identity from which we can calculate the distributions
of Xy, L7 andX, L _ . Although notationally rather complicated, the latter

(u)

two objects are nothlng Mmore than the time corresponding to the ladder time prior
to the first passage time (i.e., to the ruin time), and the position of this ladder
height, respectively.

THEOREM2.4. Fixu > 0. Supposethat f, g and i are bounded, positive and
measurable, and that g () = 0. Define

th(y):/oodt-e_q’/ h(@)P(H- edy, L71edp),  y=0.

0 [0,00)

Then

E(f(x
— / AV () £ () / 8O M),

)g(Xr(u))h(L 1(@ ) T(M)<oo>

L,
(2.4) b

ProoOF Define T(u) = inf{r > 0:H, > u} and recall thatX experiences
first passage at(u) if and only if H experiences first passage Bf{u). The
quantity X, _1 can alternatively be written a7 ,)-. On{T (1) < oo}, H is a

subordinator an(L has an Exponentiaj] distribution. Start from the left-hand
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side of the statement of the theorem, and decompose accord{iy:iip= ¢} to
get

E(f(X,-1 )e(Hra)h(Lyl,); T() < Loo)

T(u)—

=E Y (f(H-)g(H-+AH)h(LY: H- <u < Hy- + AH,)

O<t<Leso
o 1
=E [ dvoge® Y (FO6IR(H + AHONLD);
0 O<t<y
th— <u< J(’t— + AJ&)
=EY e ' (f(H)g(Hy- + AHOR(L); Hp- <u < He + AH),

t>0

Use the compensation formula for the Poisson point prodes#,:: > 0}
([4], page 7) to get that the last expression is equal to

/ dt - e_fitE(f(e;‘fz—)h(cct_l)l{ﬂ[—Su}/ [y (ds)g(H,- + S)l{ﬂ,—+s>u})
° (0,00)
= > L ,—qt ~ 1
(o,u]{/o di-¢ /[o,oo)h((p)P(‘%f edy, L ed¢)}
(u—y,00)
f(o’u] Vi f(y) /(M_MO) #(ds)g(y + s) .

The proof of Theorem 2.4 is similar to calculations appearing in Proposi-
tion 1.2, page76, [4] (see also [37]). Theeemingly curdus conditiong(z) =0
functions as a way of excluding from the calculation the fact that there is possibly
an atom at in the distribution ofX, ) which is a result of crossingcontinuously
or “creeping upwards” (see Remark 2.8).

The next result, giving a formula for the ruin probability, is the continuous time
version of the Pollacek—Khinchine formula (see [4], page 172, and [6], page 364).

PROPOSITION2.5. P(t(u) <o0) =qV(u,00):=qV(u), u>0.

DEFINITION 2.6 (Wiener—Hopf factors). The Wiener—Hopf factorization
theorem (see, e.g., [4], page 166), together with the downward drift assumption
on our Lévy process, tells us that we can write, for some conktar,

kW(0) = —klog Ee'?%1 = [~ log EeieHl][_ log Eeieﬁl]
=Kk (0) x k(0), 6 eR.

(2.5)
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The constank is determined by the choice of normalization of the local tilne
We may and will assume without loss of generality that 1. A different value
of £ would simply modify the choices of, # andq. We have, forv > 0 and
somec >0, ¢ >0,

(2.6) k(iv) = —log Ee V1 = o )(1 — e "N g(dy) +ve+gq
, 00

and, recalling that] is negative,

(2.7) £(—iv) = —logEe"™ = (1— ") (dy) + vé.
(—00,0)

The factorsc () andk (-) are the Lévy—Khinchine exponents &f and —H,
which are subordinators, and accordingly the integrals in the definitionaofix
converge. The nonnegative constantand ¢ are the drift coefficients of these
subordinators ang is the same killing rate that appears in the definitionz6f
[see (2.2)]. The convention that?/1 = 0 = ¢"#1 when H; = oo is used in
(2.5) and (2.6).

REMARK 2.7. SinceEe VM1 =¢ 9Ee "#1 for v > 0, (2.6) implies

(2.8) —logEe™"%1 = / A —e " g(dy) + ve, v >0,
(0,00)

and, as a consequence of (2.5), (2.6) and (2.8), we have dJ,

(i

g —logEe~7 = Y1)

K(iv)

and hence
_ W(iv)

2.9 =lim .
(2.9) =30 %)

The limit in (2.9) exists, and can be easily calculated, for example, vikhelmas
finite mean, in which cas& andk are differentiable at 0; see the examples in
Section 6.

REMARK 2.8 (Creeping). X is said to creep upward if P(Xcu) = u,
(1) < o0) > 0 for some (hence every)> 0; equivalently, if the defined in (2.6)
is positive ([4], pages 174 and 175Y. creeps downward i X creeps upward;
equivalently, if thec defined in (2.7) is positive. Suppose- 0. Then we have

P(Xrwy=u,t(u) <o0)=P(T'(u) < Loo) = E(e_qT/(”)), u >0,

whereT'(u) = inf{t > 0: H; = u}. A similar proof as in Theorem 5, page 79,
of [4], applied to the defective subordinatéf, then shows that the derivative
dV (u)/du exists and is continuous and positive @oo), and that

(2.10) P(Xiw=u,t() <oo):cili—v(u) =:cV'(u), u> 0.
u



1774 C. KLUPPELBERG, A. E. KYPRIANOU AND R. A. MALLER

Whenc =0, V' is not defined, but the next corollary (to Theorem 2.4), which lists
the main formulae that we will use, shows that we do not need it then.

COROLLARY 2.9. We have the following four convolution identities for
u>0:

() P(Xe) —u>x,7t(u) <o0)= f(o’u]dV(y) Tye(u+x—y);

(i) P(v(u) <00) = [ig,) dV(¥) Tse(u — y) + cV'(u), with the convention
that the term containing V’(u) is absent when V' is not defined, that is, when
c=0;

(i) P(Xewy > w, Ly, - > ¥.t() < 00) = fig, V(dy: ) s — y),
where V (dy; ) = [$° dt - e~ 4" P(H; e dy, L7 > ¥);

(iv) P(XLZTlmr > ¢, () < 00) = [ V@) g —y) +cV'(u), ¢ €
[0, u), again with the convention that the term containing V' (u) is absent when
V' is not defined.

PrRoOOF. (i) Just choos¢f =/ =1 andg = 1{.. x4, in Theorem 2.4.
(i) Multiply each side of the equation in (ii) by~ "%, with v > 0, and integrate
overu € [0, o0), making use of Proposition 2.5 and the identities

1

2.11 Vdy) = —
(2.12) /[o,oof ) = o

[obtained by integrating (2.3)], and

vc—{—v/ e Tg(y)dy
(2.12) (
= ve + (1—e ) y(dy) = —logEe™ "
(0,00
[from (2.8)] to see that (ii) holds as stated. [Note that by taking the limit &nds
to zero in (i), and combining the result with (ii), we recover (2.10).]
(i) Choosingf =1, g = 1{.>x4u) andh = 1;..y) in (2.4), and taking the limit
asx tends to zero, gives (iii).
(iv) Choosingf =1(.-¢}, & = 1{.=x+4) @andh = 1in (2.4), then lettinge tend

to zero, gives an expression fér(X, -1 > ¢, t(u) < 00, X¢(u) > u). Since
L)~
{X,-1 =u}on{X.y) =u}almostsurely, by adding arV’ we have (iv). O
Lr(u)~

Further convolution identities thatilvbe of use can be found in Proposition 3.3
of [36].

THEOREM 2.10 (Vigon [36]). We have, for u € (0, c0):
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() Ty () = fiy.00 T (@ — ) dT13(y) + ET1 (), where I, is the density
of Ty, which existsif and only if ¢, the drift coefficient of —I{I, is positive;
(i) () == f_no0) Tx( —y)dV(y).

REMARK 2.11. Note that by our conventidn(y) is positive and nonincreas-
ing ony e (—oo, 0), with V(0) = 0. X drifts to —oo a.s. in our analysis, so we can
and will exclude the case when is a subordinator. This means thdt V andz
are not identically zero.

We say thatX is spectrally positive if ITx{(—oc0,0)} = 0. We then have
H, = —t and henceV (dy) = —dy andé = 1, and the expressions in Vigon’s
theorem simplify considerably. In particular, (i) and (ii) both say that

(2.13) ﬁﬂ<u>=/ ﬁ§<y>dy=/ Tx(dy., u>0

[further implying that the integral in (2.13) is finite, and thus also thaX| is
finite]. See [4], Chapter VII, for other useful results concerning spectrally one-
sided processes.

3. Convolution equivalence and infinite divisibility. Each infinitely divisi-
ble d.f. generates a Lévy process in the sense that it may serve as theXhf. of
For the most part we shall restrict ourselves to those infinitely divisible d.f.’s which
belong to one of the following classes.

DEFINITION 3.1 (Class,g("‘)). Take a parameter > 0. We shall say that a
d.f. G on [0, co) with tail G := 1 — G belongs to classt® if G(x) > 0 for
eachx > 0 and

G(u— e .
(3.1) lim M =% for eachx e R, if G is nonlattice
u—00  G(u)
-1
(3.2) Iim @ =e“ if G is lattice (then assumed of span 1
n—o0o  G(n)

(There should be no confusion of the clag¥’ with our notationt; for the local
time.)

DEFINITION 3.2 (Convolution equivalence and cla$$’). With x denoting
convolution,G is said to beconvolution equivalent if G € £ for somea > 0,
and if in addition, for somé/ < oo, we have

ox2
(3.3) jim )

=2M,
u—00 G(u)
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where G*2(u) = 1 — G*2(u). We say thaiG belongs to8@. The classs© is
called thesubexponential distributions. The parametez is referred to as thismdex
of the classs@ (or £©®). We will often write G € £ rather tharG € £, and
similarly for 8.

A number of useful properties flow from these definitions. The limit rela-
tion (3.1) holds locally uniformly. In [14] it is shown that, whe®h € 8®), then
any d.f. F which is tail equivalent taG [i.e., F(x) ~ G(x) asx — oo, equiva-
lently lim,_ o F(x)/G(x) = 1] is also in8®). The tail of any (Lévy or other)
measure, finite and nonzero ary, oo) for somexg > 0, can be renormalized to
be the tail of a d.f., and, by extension, then is said to beif? or @ if the
appropriate conditions in Definitions 3.1 or 3.2 are satisfied. For these results and
others, see, for example, [14, 15], and their references.

We follow Bertoin and Doney [7] in (3.1) and (3.2). They drew attention to
the need, wher > 0, to distinguish the lattice and nonlattice cases; under (3.1),
the geometric distribution, for example, would not be£#’). For « = 0, no
distinction is necessary. Having noted this distinctiondas 0, we will confine
our proofs to the nonlattice case by considering (3.1) to be the defining property
of L@,

DerINITION 3.3 (Moment generating function).  For a finite dif.on [0, co),
the moment generating function is defined (for alla € R such that the following
integral is finite) as

Sa(G)zf[O )e““G(du).

Of course8o(G) < co. WhenG e 8@ for ana > 0, Fatou's lemma applied
to (3.3), using (3.1), shows thé4 (G) < co. Furthermore, the constamf in (3.3)
must then equad, (G) (cf. [9, 10, 31]). Moreoverd,+.(G) = oo for all ¢ > 0.
For the classs© of subexponential d.f.’s, the latter property means that the
moment generating function does not exist for any 0—these distributions are
“heavy-tailed” in this sense. Typical examples are Pareto, heavy-tailed Weibull and
lognormal d.f.’s. Distributions with regularly varying tails are in this class. Note
that while the Exponential) distribution itself is in.£® (for the same index),
it is not in 8 for any indexp > 0; the convolution of two Exponentialf
distributions is a Gamma(g) distribution for which (3.3) does not hold.
Distributions in the clasg® for « > 0 are, however, “near to exponential” in
the sense that their tails are only slightly modified exponential; see [27]. The slight
modification, however, results in a moment generating function which is finite for
argumenty, as observed above. An important class of d.f.'s which are convolution
equivalent or subexponential for some values of the parameters is the generalized
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inverse Gaussian distributions, having densities

/2
flx)= (g) (ZKd(\/E))_lxd_leXp(—%(ax_l + bx)), x>0,

where K, is the modified Bessel function of the third kind with indéx The
following parameter sets are possible:> 0, b > 0} for d > 0; {a > 0, b > 0} for
d=0;{a>0,b>0}ford <0. (Fora =0 orb =0, the respective limits are to be
taken in the norming constants.) For this distributiéhe .£*/2 for eachb > 0,
and, wheni <0, F € $%/2 for eachb > 0; see [13] and [28].

Extending (3.3), whe@ € 8 for ana > 0, itis in fact true that, for alk € N,

ok
(3.4) jim &)
u—00 G (u)

Also, the following uniform bound due to Kesten holds: for each 0, there is
a K (¢) such that, uniformly int > 0 for eachk € N,

=ksk=1(G).

G (u)
Gu)

An important property of§® relates these classes to infinitely divisible
distributions, and hence to Lévy processes.

(3.5) < K(©)(8a(G) +¢)".

PROPOSITION3.4. Fixana > 0.1f G isinfinitely divisible with Lévy measure
I () # 0, whose tail is Tg () = Mg{(u,o0)}, u > 0, then the following are
equivalent:

() G e 8@;
(3.6) (i) TIg € 89, B
o — . G(u)
(@) _
(i) Tig e L and ul|_>moo o)~ 34 (G).

For a proof of Proposition 3.4 in the case= 0, see Embrechts, Goldie
and Veraverbeke [15]; they restrict themselves to distributionfOpso), while
Pakes [30] gives the result for distributions @Groo, co), and fore > 0. For more
detailed information on the classé&”, and in particular on the subexponential
class, we refer to [16] and the review paper [24].

The next lemma applies Proposition 3.4 to get some basic asymptotic relations
for the tail of the ladder height proceg§ and for the ruin probability.

LEMMA 3.5. Fixan o > 0. Suppose P(#1 > u) € 8, or, equivalently, by
Proposition 3.4,T15 € 8. Then for eacht > 0,

(3.7) P(H, > u) ~ 18 (H)Tge(u) ~ 18,2 (FH)P(Hy > u),  u— o0,
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and hence, by tail equivalence, P(#; > u) € 8@ for each+ > 0. Suppose further
that e=45,(#) < 1. Then

. P(t(u) <o0) q
3.8 lim — =
(3:8) u=oo Tlge(u) (g — 10984 (F))?
[Here and throughout, we writg, () for &, (F1).]

= q82(V).

PROOF Apply (3.6) to the infinitely divisible r.v.7, with Lévy measure
g, () =tT15(-) to get, for each > 0,

P(H; > u) ~ 8o (H) Mg, (u) = 18L, (F) g (u), u — 00,

then apply (3.6) again to complete (3.7). Next, use the fact®{&t; > u) does
not decrease in (for eachu > 0) and the discrete uniform bound (3.5) to see that
for eache > 0, there is & (¢) such that, for alk > 0 andu > 0,

P(e;lfz > M) < P(:;lthJ+l > M)
(3-9) <K lr]+1
< K(&)(8o(H) +¢) P(H1 > u), u>0.

Proposition 2.5 gives
P(t(u) < o0) . qV (u) .
Ty (u) Ty (u)
Then (3.7) and the uniform bound (3.9), together with dominated convergence, and
assuming that=96, (#) < 1, give
jim £t <00) _
U— 00 H}g(u)

q gt
= e 'P(H; >u)dt, u>0.
H}g(u) 0

q
(g —10g8q (H))?

The final equality in (3.8) follows from (2.11), as we can put —«a when
e 1854(H) <1. O

o
q/o e 118l (H) dt =

4. Main results. Throughout the entire paper we assume

(4.2) Xo=0, timoo X, =—o0a.s, IMx{(0, c0)} > 0.

[The spectrally negative case, whdiy{(0,oc0)} = 0, is easily dealt with
separately in our context; see Remark 4.6.]
Our main assumption throughout this section will be

(4.2) Ty € 89,

for a specifiedr > 0.
For the specified, thenon-Cramér condition,

4.3) e 985, (H) < 1,
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will also be assumed in our main results. This condition has force only whef;
for « = 0, condition (4.3) is automatically satisfied when (4.1) holds, sinse0
then.

We start with the asymptotics of the first passage tinwe) in Theorem 4.1,
which extends Lemma 3.5 by showing that (3.8) can only hold if the ruin
probability is in 8@,

THEOREM4.1 (Limiting first passage time, > 0). Fixan « > 0 and assume
(4.1H4.3)hold. Then, asu — oo,

q
(¢ —logs. (#))?
- q
(¢ — 10984 (#))254 (H)

P(t(u) < o0) ~ Ty (1)

(4.4)

P(H1 > u),

and thus C (u) := P(t(u) < 00), u > 0,isin 8, Conversely, suppose that (4.1)
holdsand C(-) isin 8. Then (4.2) and (4.3),and hence (4.4), hold.

To be practically useful, we need to replace the quantities depending on the
ladder variables in Theorem 4.1 (and similarly in our other results) with quantities
defined as far as possible in terms of the marginal distributior? of, better, in
terms ofITy. Section 5 is devoted to results like this so we defer discussion until
then.

THEOREM 4.2 (Overshoot, local time at ruin, last ladder height before ruin,
a >0). Fixana > 0and assume (4.1)}+(4.3)hold. Then:
(i) for all x >0,
(4.5) uli_)moo P(Xew) —u>x|t(u) <o0)=G(x),

where G isthetail of a (possibly improper) distribution function:

e—O{x

4.6) G(x)= (q—logsa<%)+ (e“y—e”m}e(dy)), x> 0;

(x,00)
(i) forallr=>0,
lim P(Lr(u) >t|t(u) < OO)

= ¢ (471005 (1 4 1(g — log s, (#)) 10g8, (H)/q);

(i) for all ¢ >0,

_ 2
(4.8) lim P(XL_l §¢|r(u)<oo>=(q 1995 (#)) (/ e“yV(dy)>.
u=00 Lew™ q (091
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REMARK 4.3. (i) In the last result, whes = 0, the limiting distribution is
proper. This follows by virtue of the fact that

o
V (00) :/ e 'dt=1/q.
0
On the other hand, whan> 0, the limiting distribution is improper, having mass
at infinity
(g —logda(3)? _ 1

1-364(V) — 252 (V) >0

(i) Whena > 0, we can letr — 0+ in (4.6) to see thaG(0") =1 — ac/q;
thus we can also conclude that the asymptotic conditional probability of creeping
over the barrier, asu — oo, is equal taxc/g. When ruin occurs, the process has
positive probability of crossing the boundary by creeping or jumping.

(i) When « = 0, the distributionG in Theorem 4.2 is degenerate, placing all
its mass at infinity. Ruin thus occurs asymptotically only by a jump.

For the case = 0, we have the following sharper result:
THEOREM 4.4 (Sharper limiting overshoot distributiow, = 0). Suppose
that (4.1) holdsand TT % € $©. Then, for all x > 0,
Ty(u+x)|

s =0,
Iy (u)
and the convergenceis uniformin x > n for each n > 0.

(4.9) Mim P (X —u>x | 7() <o0) -

The remaining result in this section concerns the last ladder time before ruin.
For this, we only show tightness:

_ PrOPOSITION4.5 (Last ladder time before rui, = 0). Assume (4.1) and
Iy € 8©. Then
lim limsupP (L7 > ¢|t(u) <o0)=0.
¢—00 y—00 T
REMARK 4.6 (Spectrally negative case). In this caBg;{(0, o0)} =0, and
there are no upward jumps, so we ha¥g,) = u on t(u) < oo, for all u > O,
X creeps up, and the overshoot is a.s. zero at all levels. The ladder height process
H, is simply the unit driftr ([4], page 191). The passage timé:) has Laplace
transform

E(e™™™; 7(u) < 00) = W),

where® is the right inverse function te-W (—i)) ([4], page 189). Thus the ruin
probability is P(t(u) < o0) = e~%*, wherea > 0 satisfies¥/(—ia) = 0. In the
classical risk model, this setup is taken to describe annuities in life insurance ([25],
page 9).
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5. Relations betweenly, I and ¢. In this section we give some useful
connections between the m.g.f.'s and the Lévy measur&said.#¢, and related
guantities.

PROPOSITION 5.1 [Criteria for (4.3)]. Assume (4.1). For any v > O, the
following equivalencesaretrue:
E(e"X1) (isfiniteand) <1
— e 15,(H)<]l < §,(V)<x

(5.1) — 10g8,(H)=vc+ /[O )(e”y — DI (dy) <q

= va-oc&?/2— (" — 1 — vxlfyj<y)x(dx) > 0,

(—00,00)
and if any of the conditions holds then
—log Ee"X1

5.2 —.
5:2) —log EevH1

5. 0V) =g —logd,(#) =

REMARK 5.2. In the caser > 0, Proposition 5.1 shows that our results in
Section 4 apply to the class of Lévy processes for wiieRX1 < 1. By contrast,
suppose there is & > 0 such thatEe"0X1 = 1. This forcesX to drift to —oo
a.s., and, without further assumptions, Bertoin ([4], page 183) and Bertoin and
Doney [6] then prove Cramér's estimatB(t (1) < oo) ~ Ce ™", asu — oo,
where C < oo, and C > 0 if and only if the Lévy proces&® with exponent
W#(L) = W(A — ivg) hasE|X¥| < oo.

Furthermore Ee'oX1 = 1 implies (by [32], Theorem 25.17) thgﬂg(ble"ox X
IT(dx) < oo and thus (by differentiation}- ¥ (—iv) is finite and strictly convex
for v < vo. This rules out the possible existence ofaas 0 with Ee®X1 < 1 and
Ty € 8@, because the latter implieBe@+9)X1 = oo for all £ > 0, while the
convexity of —W(—iv) means thatr < vg. Thus the situation in [6] and ours are
mutually exclusive.

ProPOsSITION 5.3 (Relation betweemly and Iy, « > 0). Assume (4.1).
Then TT;; belongs to £@ for a given o > 0 if and only if TT does, in which
case TTy (1) ~ R (—ie) Ty (u), 8Su — co.

Define
_— x—_
A_(x) =Tlx(D) +/1 Tydy, x>1,

and let “<” in a relationship denote that ratio of the two sides is bounded away
from zero and infinity, over the indicated range of the variable.
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PrROPOSITIONS.4 (Relation betweeR y andIly,« =0). Assume(4.1)and
My e LO.

(i) If [°T(y)dy = oo, then

(5.3) ﬁ;g(u)xf(loo)<%(y))l'[x(u +dy), u — 00.

(i) If °TIx(y)dy < oo, then

(5.4) ﬁ}g(u)x/ TE)dy, u— .

(u,00)

REMARK 5.5. (i) By[11], lim,— o X; = —oc a.s. if and only if

(5.5) Amﬁ;‘(y)dy=°° and /(1’00)(A_y(y))nx(dy)<oo,

or 0<—EX;<E|X1| < oo.

Thus the integral on the right-hand side of (5.3) is finite under (4.1).

(i) We can apply (4.9), (5.3) and (5.4) as follows. Denote the right-hand side
of (5.3) or (5.4) byBo(u), a finite, nonincreasing function oi®, co). Suppose
there are functiona(u) — oo asu — oo andb(x) — 0 asx — oo such that, for
eachx > 0,

Bo(u + xa(u))
Bo(u)
Note thata(u) and b(x) are defined in terms of the Lévy characteristicsXof

rather than of#¢. Assumell; € £©@. Then by (5.3) or (5.4) and (4.9), and using
the uniformity of convergence in (4.9), we have, for each O,

(5.6)

= b(x), U — 00.

(5.7) P(Xeqy —u>xa(u)|t(u) < oo)xb(x), U — 00.

This gives the asymptotic order of magnitude of the overshoot, when normalized
by a(u); it tells us that(X;) — u)/a(u) is tight asu — oo, conditional on

(1) < oo. It is the counterpart of the corresponding result in (1.5) of [3], except
that [3] obtains a limit rather than an order of magnitude estimate, as a result
of its more restrictive (finite mean and maximum domain of attraction) but more
informative assumptions. We can likewise strengthen (5.3), replacifipy “ ~,”

under stronger assumptions, using methods such as those of [34], for example.
We omit further details of this here. Wheﬁ]; e £O it is shown in the proof of
Proposition 5.4 thaﬁﬂ(u)/ﬁ;(u) — 00 asu — oo, SO we cannot replace the

hypothesidTy € £© by T} € £© in Theorem 4.4.
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(i) Theorems 4.1, 4.2 and 4.4 generalize corresponding results of Asmussen
and Kluppelberg [3] concerning the classical insurance risk process. In their
case the limit d.f.G reduces to a generalized Pareto distribution: do& 0,
the normalizing functioru(u) from (5.7) is the well-knowrauxiliary function
in extreme value theory (see [16], Chapter 3), &nds a Pareto distribution;
for « > 0, the normalizing function degenerates to the constamnd G is the
standard exponential d.f.

6. Examples. In this section we shall consider examples, all of which have
the feature thak is spectrally positive; that is to say, we assufhg = 0. This
case is very tractable and allows us to derive quite explicit expressions which
generalize well-known results in collective risk theory. It is the case of most direct
interest in insurance applications. As befokealso drifts to—oco a.s. For such
processes, from Remark 2.11 we have that the downward ladder height process is
simply a negative linear driftd, = —t, Ty () = [>Ty () dy (finite), foru > 0,
E|X;1| <o00,andEX1 <O0.

ASSUMPTION6.1. Fix ana > 0. Whena > 0, assume thalll; € 8@, and
whena = 0, assume thafly belongs to8©. (Thus in either case we have
H}g S /3(05).)

Suppose thak has Laplace exponegt®) for 6 € R such that
E (%) = 901

The introduction ofp conveniently connects with existing literature on one-sided
Lévy processes. When is finite, ¢ and ¥ are related through the identity
¢(0) = —¥(—if). Under Assumption 6.1¢ () is finite for 6 € (—oo, «] and
infinite for 6 € («, 00). Noting that—X is spectrally negative, we can extract the
following facts from [4], Chapter VII, [5] and [32]: the functio$(9) is strictly
convex on(—oo, ], passes though the origin, hasjim_, ¢ () = +o0, and the
drift of X is given by the left-hand derivatiw'(0—) = E X1, which is finite and
strictly negative.

Using (2.9) and taking advantage of the fact that the downward ladder height
process is simply a linear drift, we can identifyas

g =lim \{J@) _im 2D i 2D
010 k(i) 0l0 _ log E(e—0H1) 610 9

We thus deduce thaj = —¢'(0—) = |EX3] < oo. Next note from (5.2) that,
whena > 0,

¢ —logsy (3 = —2).
o
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and hence the conditiaaT 95, (#) < 1 reduces to the requirement thiatx) < 0.
(Recall that whena = 0, the requirement—45,(J) < 1 is automatically
satisfied.)

We can now read off the following conclusions from (2.13) and Theorems
4.1 and 4.2.

THEOREM 6.2. Suppose that X is spectrally positive, drifts to —co a.s,,
satisfies Assumption 6.1 for a given « > 0, and has ¢ («) < 0 if @ > 0. With the
understanding that —¢ («) /a = —¢’(0—) = | E X 1| when o = 0, we have:

(04

2 poo_,
0) P(r(u)<oo)~|EX1|(m)/ Iy (y)dy asu — oo,

(ii)) 1im o0 P(Xz) —u > x|t (1) < 00) = G(x), where

e <—¢(a)
|E X1]

iy _ d@tjafq _ 1p(a) ¢ (@)
(iii) J@oop(l”(”) > flt(u) <oo0)=e <1 — <1+ a|EX1|>)'

Gx) = + /( )(e“y - e“X)ﬁ§(y)dy);

o

Let us proceed to examine some specific spectrally positive models in more
detail.

6.1. Jump diffusion process. Suppose Assumption 6.1 is in force and, further,
that X, is of the form

Ny
(6.1) Xi=0B +) Y;—yt, t>0,
i=1

wherey > 0 ando > 0 are constantsB, is a standard Brownian motiow; is

a Poisson process of ratg the Y; are a.s. positive i.i.d. r.v.s with d.& and all
processes are independent. In the context of insurance risk theory, this process is
called arisk process perturbed by Brownian motion; see [12] and [22]X, can drift

to —oo only if EY7 = u < 0o, so assume this. For this process we have

(6.2) b©O) =—0y +020%/2+ xf (e —1)F(dx),
[0,00)
and this is finite fol® < « by Assumption 6.1. Alsoﬁ§ (x) = AF(x), SO

63 [ Mmdy=r[ Fory=iFiw, =0

whereF; is the integrated tail d.f. as defined in (1.4).



GENERAL LEVY INSURANCE RISK PROCESSES 1785

(i) Take « > 0. By Assumption 6.1TT; € 8@ for the specifiede, SO
F € 8@; thus we haveF e £, or, equivalently,F o log is regularly varying
with index —«. Then by Karamata's theorem (see [8], page 28), we have
lim, oo F(u)/ [ F(y)dy = a. Hence by tail equivalence alsb; € 4 and
Sa(F1) = (84 (F) — 1)/ (na) < oo. It follows from (6.2) that

—¢(a) =ya — 0?2 — k/ (€** — 1)F(dx)
[0,00)
=ya —o2a%/2— A(84(F) — 1)
=ya —o%?/2 - Apady(F)),

and this is positive if and only if (recall that= ui/y)

2
(6.4) pSu(FI) + =% <1,
2y

which we will assume to be the case. Note that this impties 1 and hence
lim; o X; = —oo a.s., because Wald's lemma and (6.1) show th&tX; =

y —an =y (1 - p) > 0. Finally we have via substitution in Theorem 6.2(i) with
the help of (6.3) and (6.4) that, as— oo,

1-p)p —
P ~ F
(6.5) (00 = ) ™~ 52012y — paatr?
' _ A—-p)p T
pa(l—o2a/(2y) — psa(F1)2 7

This holds under Assumption 6.1 and (6.4). Similarly, we can obtain a quite
explicit expression for the overshoot limit distribution from Theorem 6.2(ii),
calculable once the (incomplete) moment generating function is calculated.

(i) Takeo =0. Our assumption is now that

Ty (") :A/ F(y)dye8©.
Assumingp = u)/y < 1 and again applying Theorem 6.2(i), we get
(6.6) P(t(u) < 00) ~ %fﬂu), 1 = 00,
—p

in which the effect of the Brownian component has washed out. Equation (6.6)
is the same as for the classical case; see [18] and [16], Section 1.4. In this case
a = 0, (4.6) simply tells us that the overshoot abavtends tooco in probability

asu — oo, as we expect from the heavy-tailedness in the positive direction. To
sharpen the result we use Theorem 4.4 and the arguments in Remark 5.5. With
Bo(u) = A [° F(y)dy, choosea(u) to satisfy (5.6), so that (5.7) holds. This
parallels the development of Asmussen and Klippelberg [3] for essentially the
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same model (without the Brownian component). They require a maximum domain
of attraction condition, which gives—=" in (5.7), whereas our more general

analysis only givesx.

REMARK 6.3. The last result can be viewed as a robustness result in the sense
of suggesting how far we can move away from a specific model without changing
the asymptotic ruin probability: to a random walk with subexponential claims, we
can add a diffusion term without changing the ruin probability. This effect has been
investigated in a more general framework by Embrechts and Samorodnitsky [17].
See also [29]. Our next example also has an interpretation in this sense.

6.2. Sable processwith jumps and drift. In this example we supposg is of
the form

Ny
(6.7) X, =S+ Yi—yt, 120
i=1

wherey > 0, St(p) is a stable Lévy motion with index € (1, 2), and the variables

{Y; i > 1} are as before (thus, withY; = u < o0). It follows from [38] that
pip—1

0) = —y6 O 1 —0x)—————dx+a O _1)FWd
se)=—vo+[ g et Xtk [ = DF@D

=—y0 + (—0)" + xf (e’ — 1)F(dx), 6 <O0.
[0,00)

For this example the mg# (6) is finite only if & < 0, so we only consider the case
o = 0; that is, we assumH 5 € $©. The process has no downward jumps= 1
in the notation of [4], Chapter VIII, pge 217). This model has been considered
by Furrer [21] and Schmidli [33] and is in the ruin context calledsk process
perturbed by p-stable Lévy motion.

Again assume = uA/y < 1. By differentiationg = —¢'(0—) =y — Au. The
Lévy measure oK satisfies

(p—12

Ty (x) = Fa )

x P+ AF(x) and TIy(x)=0, x>0,
and, further,

u—P=D g 0
— 4+ A F .
F(2—p)+ /u (x)dx, u>
We distinguish three different cases: suppose

0,
lim xPF(x)= ’ce (0,00), or
X—> 00

Q.

Ty (u) = /ooﬁ;(x) dx =
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From I'Hopital we get, corresponding to the above cases,
u—P-D
B r2-p’
T~ H (L2 Yo, o
rz-p p-1
)\.MF[(M).

This means that we are in the same situation as in the classical subexponential case
(i.e., wherx = 0), but have two different regimes depending on whether the tail of
the claim size distribution is heavier or lighter than that of the stable perturbation.

Consequently, foF with tails lighter than or similar ta —” (i.e., Cases 1 and 2),
Theorem 6.2 gives

c
P(z(u) < 00) ~ ————u~ P71, u — 00,
(¥ — Au)
withC=1/T(2—p)orC=1/T'(2— p)+xrc/(p—1).If Fis heavier tailed than
x~P (Case 3), we again get (6.6), with= ux/y.

6.3. Notesand comments. All models considered in the insurance literature so
far have entailed very specific Lévy processes; in particular, of course, the classical
compound Poisson model as introduced in Section 1 has gained a lot of attention.
In [3], page 106, it is suggested that “by a discrete skeleton argument,” it may be
possible to extend their random walk results to a general Lévy process. There
are some difficulties with transferring results in this way, however, to do with
relating the passage time above a lewealf the discrete proceds(,},=1.2.. to
the continuous time version(x), or, more generally, relating the ladder processes
and corresponding Lévy measures in a useful way. An alternative approach via
a path decomposition of the Lévy process into drift, diffusion, “small jump” and
“large jump” processes seems to run into similar problems. Our direct approach to
the ladder properties of the Lévy process itself, with the help of the Bertoin and
Doney [6] and Vigon [36] techniques, avoids these considerations and provides a
basis for further developments of the theory.

In previous investigations, apart from estimates for the ruin probability, interest
has mostly been concentrated on working out joint limiting distributions of the
ruin time t(u), the surplusX, - before ruin, and/or the oversho#t, ), — u
after ruin. This problem was also considered for the classical model perturbed by a
Brownian motion as in Section 6.1; see [23]. A more general approach than this is
pursued by Huzak, Perman, Arvoje and Vondracek [26]. They consider a perturbed
risk process defined as

Xt=Zz+Cz_)/t, IZO,

where C is a subordinator representing the total claim amount process; it has
only upward jumps. The perturbatiafi is a Lévy process, independent ©6f
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which is also spectrally positive with zero expectation. In this model the Pollacek—
Khinchine formula can again be given quite explicitly, stating for the survival
probability

o
1—y@=0-p) Y "G s H™) (), u > 0.

n=1
The parametep can again be specified, aded and H are d.f’s, whereG can
be identified as the d.f. of the absolute supremum of the prdégss yr:r > 0}
and H is the integrated tail d.f. of the jumps @f. The main concern in [26] is
to analyze the supremum and ladder height processgs gfandC. SinceX is
a Lévy process, our results also apply to it, and analysis along our lines can be
carried out; but we do not proceed further here.

Finally we remark that all of our previous general results have exact random

walk analogues too, assuming only that the random walk driftsdo a.s., and
that the distribution of the increments satisfies similar subexponential/convolution
equivalence conditions and a non-Cramér condition as we imposed for the Lévy
process. The results can even be strengthened slightly. Since the proofs for the
discrete time case use the same ideas, and are even a little simpler, we omit the
details.

7. Proofs. We need a couple of technical lemmas. The first is a minor
modification of some working out in [14].

LEMMA 7.1. Leta > Oandletthedf. v(-) € 8. Then, for each x > 0,

(7.1) lim limsup Putx =y, 4y =o.

A= y—seoco J(a,u+x—al v(u)

Further, the convergencein (7.1)isuniformin x > 0.

PROOE Write
v2(z) =0(z) + T * v(2) =V(Z)+/(O ]V(z—y)V(dy), z>0.

For a > 0 and z > 2a, split up the convolution integral into integrals over
(0,al, (a,z —a), [z — a, z) and use partial integration on the last integral. This
gives the identity

(7.2) V¥2(z) = (2/ +/ )V(z —yv(dy) +v(a)v(z — a),
(0,a] (a,z—a)
from which we see that

/ T+ x — y)v(dy)
(73) (a,u—%—x—i)
= V2 +x) — 2/0 T +x — y)v(dy) — (@) +x —a).
(0,a]
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Now v(-) € 8@, s0v*2(u)/V(u) — 284(v) andv(u — z) ~ €**V(u) asu — oco.
Divide by v(u) in (7.3) and letu — oo, using dominated convergence, to get the
limit

26_‘”/(0 e vidy) - 2/(0 ]e“(y_x)v(dy) A ()
, 00 ,a

= Ze_‘”/ e*v(dy) — e * e v(a).
(a,00)

The finiteness 08, (v) implies lim,_, -, ¢““v(a) = 0, so the last expression tends
to 0 asa — oo.

For the uniformity, note that (7.1) with = 0 gives /, ,_,; V(u — y)v(dy) <
ev(u) once a > ap(¢) and u > ug(a). Then if x >0 and u, = u + x,
f(a,ux—a]v(ux — yv(dy) <ev(u) if a > ag(e) andu, > up(a), certainly ifa >
ao(e) andu > ug(a). O

We shall use the nonlattice part of the following lemma; for completeness, we
also include the lattice case. It is simply a re-presentation of the defining properties
for £©®, and we omit the proof.

LEMMA 7.2. Fora >0,G e £ isequivalent to

i Gu,u+h) 1- e—ah

u—co G(u,u+1 1—e @

where the limit is through values # in R or N, and for all 2 > 0 or for all

h € N, for the nonlattice and lattice case, respectively. Thisin turn is equivalent to

saying that G (u + dy)/G (u) convergesweakly to an exponential distribution with
parameter o or to a geometric distribution with parameter e, respectively.

’

PROOF OFTHEOREM 4.1. Fixa > 0 and assume (4.1)—(4.3). The forward
part of the theorem follows from (3.8), together with the use of (3.7).

For the converse part, assume (4.1)dét) = P(t(u) <oo) =qV (u), u >0,
so thatC(u) is the tail of a d.f.C, and suppose&C € 8@, Thus §,(C) =
qé4 (V) < 00, and since

[e.e]
8a(V) =/ e‘”‘f e~ dt - P(H; € dy)
[0,00) 0
o0
(7.4) =/ e~ dt - E(e*%)
0

o
- /O e~ d1 - 8L (H),
(4.3) holds. NowC (1) satisfies

J— _ [e.e]
C(u)=Cyu) :=qf e_q’P(Jf,>u)dt=P(J€eq > u), u>0,
0
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where g, is an independent exponential variable with parameteand, since
C, € 8, we have by (3.4), for eache N,

*k
(7.5) lim_ %7((:)) =ks-1(c,).

q
Using the fact that# has stationary independent increments, we have that
C*k(u) P(J(’ek > u), Wheree" is the sum ofk independent exponential r.v.’s,
each with paramete[ Thatis to say,

k

q o0
T / Lo~ p(H, > u) dt, u>0.

Cifw) =
Thus by (7.5),

o0
im — 1 / t*Le™ P (3, > u)dr = ksk71(C,).
u=00 (k — 1)IC, (u) Jo

Multiplying both sides of this by(1 — 1/¢)*~2, with g(1 — 1/8,(Cy)) < A <
q(1+1/6,(Cy)) [sothat|l —1/gq| < 1/6,(C,)], and summing ovek € N, gives

- 1 (% u
lim — / e MP(H; >u)dt
u=00 C,(u) Jo

_ 1/q

(1— (1= 2/q)84(Cy))?
(g —logdy (#))?
— q(h —10gsy (#))?’

becauses, (C,) = qd4(V) = q/(q — l0gé,(#)). Relation (7.6) is valid for
q(1—=1/64(Cy)) <A < q(1+41/6,(Cy)). It means that

(7.6)

—_— m —_
Co(u)=P(He, >u)= kfo e MP(JH, > u)dt ~ cCq(u),

for somec > 0 and henceCy, is in 8 for A in the indicated range. So by
repeating the above argument wighreplaced by a\o € (g, g(1 + 1/8,(Cy)))

[for which one should note that, (C;,) < q_lko&x(Cq) and hence thatg(1 +
1/64(Cyy)) > q(1 + 1/64(Cy))], we can extend the upper limit of the range of
applicability of (7.6). Continuing in this way, we see that (7.6) holds for all
A >q(1—1/6,(Cy)). So we can write, for all large,

o0
lim — e MP(H, > u)dt
U—>00 Cq () Jo

2
_ (g — 10934 (7)) /oote—()»—logtsa(]f))tdt.
q 0
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Then by the continuity theorem for Laplace transforms ([20], page 433), we get
i PO >w _ (g —logs.(3)?
U—>00 6q ()

181 (3¢).

By tail equivalence this means thB{ #1 > u) € §@. O

PROOF OFTHEOREM4.2. Fixa > 0, and suppose throughout that (4.1)—(4.3)
hold.
(i) Takex > 0 anda > 0, choose: > 2a, and write, from Corollary 2.9(i),

PX,u—u>x,r(u)<oo=(/ +/ )ﬁ (u+x—y)Vidy)
(7.7) (Kew )= U ™ Jiu)

=:A,+ B,.
By (3.1) we have
ﬁﬂ(u_)’) _ oy
—_— =@

lim , yeR.
u— 00 H%(u)
In A,, y <a, so the integrand is dominated by
Mye(u+x —a) < Ty (u —a) < 2e“ Tz (u), u > uo(a),

for someug(a) large enough. Thus by dominated convergence,
. A ,_
lim —~ :/ OV (dy),
U= My (u)  J©a

and as the convergence of monotone functions, the convergence is uniform
in x > 0. So by (3.8),

. Ay 1
lim =—
u—=00 P(t(u) <o0) qd5(V) J,al

ed()‘—x)v(dy)

e—O{x

_ _ oy
——qég(v)(aam /<a,oo>e V(dy)).

Sinces, (V) < oo, as shownin the proof of Theorem 4.1, when> oo the integral
here tends to 0 and, with (7.4), we get the first two terms in (4.6).
Next we deal withB,,, in (7.7). Integration by parts gives

B, =Tx+x—a)V(a) — zpx)V(u)

+ i )V(u +x — y) [z (dy)
(7.8) =Mypw+x—a)(V(a) — V)
+ . )(V(u +x—y)— V() y(dy)

=Ty +x—a)(V(a)—Vu)+Cy.
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When divided by % (1), the first term is dominated by s (. — a) V (a)/T1 g (1),
which tends t@*“V (a) asu — oo, and sincé, (V) < oo, we havee*@V (a) — 0
asa — Q.

Takea > x > 0 andu + x > a and write

V(u +x—y) )1‘[ J
V(u) </X ,a) /(a u+x— a))( V(u) #(dy)

(7.9)

V(u) V(u)
In the first term, the integrand is dominated by
Vu— a)
V(u)

for u1(a) large enough, and a constant is integrable with respeldt#ddy) over
y € (x,0), x > 0. Thus, by Proposition 2.5,

2%, u>ui(a),

Dy _ D,
P(t(u) <o) ~ qV(u)
1
— = (@O — DMy (dy),  u— oo,
q J[x,a]

for eacha > 0. This convergence of monotone functions is uniform ia [, co)
for eachn > 0. Asa — oo, we get the last term on the right-hand side of (4.6).

The second term on the right-hand side of (7.9) is not negative, and since
V(u) < co Tz (u) for u > uy, up large enough, and somsg > 0, by (3.8),E, is
bounded above by a constant multiple of

(7.10) /( " e+ x — y)e(dy)

onceu + x — y > uo, and this is the case when< u + x — a if we chooser > us.
Now sincellg(-) # 0, we can choosegg > 0 such thafll(zg) > 0. Also keep

a > zg. Then define
Ty (2) )
v()=(1— = 1 ,
(2) ( M (20) {z>z0}

which is a (proper) d.f. offi0, oo) with tail v(z) = M #(z) /T #(z0), z > zo. The
integral in (7.10) is, apart from a constant multiple,

(7.11) /(a ix a)U(u +x — y)v(dy).

The proof of part (i) is now complete with Lemma 7.1.
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To prove patrt (ii), use the strong Markov property at the stopping ﬂm%to
deduce

P(Lyw >1t,7(u) <00)=P(H; <u,t(u) < o0)

E 1(Ht<u)P(T(M) < oo|F —1))

D'JD'J

1(H;<M)P(r(u — H,) < OO))
= E(LH,<uyP(t(u — H;) <00); 1 < L)
=e qt (1(J€t<u)P(T(M — sz) < OO))

(Hi
(
(Lt <u) P, (T (u) < 00))
(
(

=g /(O V)Pt cdy)
U

Write the last expression as

7.12) qe_qt</ w4 )V(M—)’)P(HzEd)’),
(0,a] (a,u—al) (u—a,u)

whereu > 2a > 0, then divide it byP (t (1) < 00) = ¢V (1) and letu — oco. By
dominated convergence, the first term tends to

e_qt/ e P(H; edy) = e_q’<8a(<3‘€,) - /
(0,a] (

a,00)

eayP(]fz € dy)),

and this tends te~7'5., (#) asa — oo. (Recall thatr is kept constant in this
proof.)
By Lemma 3.5, we can choosgesuch that

V(y) <cillgp(y) <c1P(H > y)

for y > a, and some; > 0, so the second integral in (7.12) is not larger than
cl/ P(H; >u —y)P(H; €dy)
(a,u—al)

and, after division byP(#; > u), this tends to 0 ast — oo thena — oo
by Lemma 7.1.
Finally,

q V(u—y)P(H €dy)

(u—a,u)

(7.13) =qV(@)P(H, >u—a)—qV(OQ)P(H; >u)

+4q P(H, >u—y)Vdy),
0,a)
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while by (3.7) and (4.4), as — oo,
P(Hr>u—y)  P(H;>u—y) P(H1>u—y) P(H1>u)

Vw  PUsu—y P@Hi>u) V)
— 181 (H)e™ (q — 10984 (H))?
= c;e*?,

say. Thus the right-hand side of (7.13), when divided;by(u), tends ast — oo
thena — oo to
c;10g8, (#)

V) = 1/a) = =108 )

= 18}, (#)(q — 1098, (F)) 1098, () /q.
Thus the limit is

™4 (85, (F) + 184, (H) (¢ — 10984 (3)) 10984 (H) /)
which is the right-hand side of (4.7).

For part (i), simply use Corollary 2.9 to write

p(X z¢,r(u)<oo)=P(r(u)<oo)—f[o’¢)V(dy)ﬁJf(u—y),

sz(u),
divide by P(t(u) < 00), and take the limit ag tends to infinity, using (4.4), to
get (4.8). O

PROOF OF THEOREM 4.4. Suppose thally € §©. Takea =0 in (7.7)
and (7.8) to see that

V(O (u + x)
P(t(u) < o0)

P(Xzqy—u>x|t(u) <oo)—

is bounded in modulus by

Ty (u+x)V () / (V(u +x—-y)— V(u)
P(t(u) < o0) [x,u+x) P(t(u) < o0)

SinceV (0) = 1/g and P (t (1) < 00) ~ T 5 (u)/q by (4.4), the first term in (7.14)
converges to 0 (uniformly i > 0) asu — oo, and it suffices to show that the
integral converges to 0 as— oo, where, in the denominator, we can replace
P(t(u) < 00) by Iz (u) or by V(u). Takea > 0 andu > a and write the integral

in (7.14) as

(/ + )(V(u+x—y)—7(u))nﬂ(dy).
[x,u+x—a) [u+x—a,u+x)

The first integral on the right-hand side is the same one we dealt with in (7.8),
calledC,, and consequently when divided By(«) has the same limit aS,,/V (u)

(7.14)

)an(dy).
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has, but withw = 0, namely, 0. As observed there, the convergence is uniform in
x €[n,00),n>0.
Finally,

Vu+x—y)
[ Vg g
[u+x—a,u+x) H]{(u)

Ox((u+x—a)—) — Tz +x)>
T (u)
and this tends to 0 as— oo, for eacha > 0, uniformly inx > 0. 0O

V0 (

PROOF OFPROPOSITION4.5. From Corollary 2.9(iii) and the remark in the
proof thereof concerning an expression fo(X ;) = u), we can write

P, > vrw <00) < [ Vidys Tt - y) + V'

={f + }wdy;w)ﬁﬂ(u—ywcv’(u),
(0,a) [a,u)

whereu > 2a > 0. Also P(t(u) < 0o) ~ ¢35 (u) for somecz > 0, so it suffices
for our purposes to divide by (). For the first integral,

. o=y o Typw—a) .
lim_ f( VN T S m SV @ ) < V@),
However,

o0
V)= [ dre PO sa £ )

0
o0

5/ dt-e 1" P(L7> )
0

_ et 0

= g ( e > V) —

asy — oo becauseﬁ(;q1 < oo almost surely. For the remaining terms, note that

/[ ) V(dy; Y)ge(u — y) +cV'(u) < V(dy) Ty —y) +cV'(u)

a,u

= P(XLZrl(u)_ >a,t(u) < oo).

Divide by P (t (1) < 00), take the limsup ag tends to infinity, and then let— oo.
The result is zero by (4.8).
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PROOF OFPROPOSITIONS.1. Fixv > 0 and assume (4.1). Pat= —iv in
the Wiener—Hopf factorization (2.5) to get

(7.15) —log E (¢"X1) = log(e ™7 E(¢" 7)) log E (¢” 1)

(when each side is finite). Now since limy, X, = —cc a.s.,E(e"/1) is always
finite and less than 1 (recall our convention tiatis negative), saE (e"*1) is

finite and less than 1 if and only i (e~9¢"7) is finite and less than 1. Thus
the first equivalence in (5.1) holds, and the second equality in (5.2) holds. The
second equivalence in (5.1) and the first equality in (5.2) follow from (7.4). Also,
from (2.8), which is valid also for < 0 whené, (#) < oo, we get

5,(J) = E(e"74) = exp(vc v e 1)Hﬂ(dy)>,

[0,00)

giving the third equivalence in (5.1). The fourth equivalence in (5.1) follows from
Ee’X1 <1and (2.1). O

PROOF OFPROPOSITION5.3.  Fixe > 0. Suppose first thal ; € £, (This
part is based on the analogous version for random walks which appears in [7].)
Using Theorem 2.10(ii), we have that

Macwuth=[ M= yuth-ydve.
(=00,0)
It is not difficult to justify integrating by parts to get
Mgp(u,u+h A A Myx(u-+d
PELED [ [0 = V(- - ),
My (u) (0,00) [Ty (u)

Since T € L@, it follows that Ty (« + dy)/TTy (1) converges foru — oo
weakly to the exponential distribution. This, together with the fact has a
renewal measure and hence the integrand in the last equality is uniformly bounded,
implies that

. H ) h — i —V

lim M —a(l—ec “h)f Vi—y)e ®dy,  h>0.

U—00 Iy (u) (0,00)
Since the right-hand side is nonzero (recall Remark 2.11), Lemma 7.2 suffices to
conclude thafly € L.

Conversely, leTlz € £®. Write Theorem 2.10(i) as

(16) = Ty — (M) ~ () + M @),
u,o00
where the derivative is only presentit- 0. By Fubini’'s theorem,

ﬁ;(u)zf Mye(u, u — ) 5 (dy) + My (u), u>0.

(—00,0)
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Take O< h1 < ho and integrate both sides of the last equation to get

u+ho — ho
/ HX(z)dz=/ ( H}g(u+z,u+z—y)dz)l'[,;,(a’y)
u+hq (—00,0) \Jh1

(7.17)

+ ¢(Tge(u 4 h1) — TLe(u + h2)).

By dominated convergence,

hy _
lim — I1 +2z)—1TII +z— d
BLUSS (TLye(u +2) #W~+z—y))dz

h2
=(1-¢e*) e %“dz
h1

— O(_l(l _ eay)(e—othl _ e—ahz)’
uniformly in y < 0. Thus, dividing (7.17) byl 4 («) and lettingu — oo, we get
ho ST
lim Z(LK(” i Z)) dz
U=00Jhy I (u)

(7.18) _ a—l(e—ahl _ e—och) </(_ O)(]_ — eay)l'lﬁ(dy) + 50{)

= o He M — 72\ (—iq).
Finally, take any sequengg — oo and a subsequene€ — oo such that, by
Helly’s theorem,
ﬁ;(u; +2)
u),— 00 ﬁ}g(bt;l) N
Using Fatou’s lemma in (7.18) we see that the nonincreasing fungtions finite
for all z > 0, and then we can use dominated convergence in (7.18) to deduce that

p(2), z>0.

h
/h p(2)dz=a (e M — 72\ (—ia).
1

Differentiating, we see thap(z) = e **k(—ia) for all z > 0, true also for all
subsequences, and so
Ty (u+2)~e R (—ia)Tlyu),  u— oo

Consequentlyﬁ;g e £@, and the exact form of the asymptotic is also established.
O

PROOF OF PROPOSITIONS.4. By Remark 2.11ﬁ1:1(y) > 0 for all x > 0.
Next, Theorem 2.10(ii) gives

(7.19) ﬁﬂ(u):/ V(=(y —uw)x(dy), u>0,

(u,00)
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and [4], page 74, gives, for ajl > 0,

- y y
(7.20) V(i—y) x ———— =< —,
c+A(y) AQ)

where
At =/0 T (y)dy

is nonzero for allx > 0. [The second asymptotic relation in (7.20) follows by
considering cases(oo) = 0o or A(co) < oo.] Consequently, for alk > 0,

—Uu

(y7> My (dy).
Aly —u)

Now A(x)/x = folﬁl_}(xy) dy is nonincreasing, tends to 0 as— co and has a

positive (possibly infinite) limit as — 0+. Thusag := Iimx_>o+(x/A(x)) is finite

(possibly 0).
Symmetrically to (7.19), we have

ﬁﬁ(u):/( )V(y—u)|ﬁ;(dy)|, u>0.

(7.21) Ty (1) x/

(u,00)

Now V (y) < V(o0) = 1/g; thusTl ; (u) < Ty (u)/q and it follows that
n - 1 x__
(7.22) A(x) §A(1)+—/ Iy(y)dy, x> 1
qJ1
If 7 TIx(y)dy = oo, then the right-hand side is asymptotialgq) /7 T (y) dy
asx — oo. For a reverse inequality in this case, chosge- 1 so thatV (xg) >

1/(2g). Then forx > xo,

A<x>=/i<1>+/l ﬁ,;<z>dz=fi<1>+/l/( VO =2l @)l dz
zA<1>+/ /(2 VeI (@n]dz
X0 7,00

~ 1 x__ x__
> AW+ o [ My@odex [ My@dz x>0
2q X0 1
Together these give
A x—_
A(x)x/ Iy(y)dy < A_(x), X — 00,
1

thusc_A_(x) < A(x) < ciA_(x) for some O< c_ < ¢y < oo wheneverx >
xo > 1. Integration by parts in (7.21) gives

T () = agTTT et d<Ay ) 0.
s () < ag X(u)+fo K nd( g u>
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Now assumeﬁ;(r e £, Then Fatou’s lemma applied to the last equation shows
thatﬁ}g(u)/ﬁ;(u) — 0o asu — oo. Then

y—u X0 \=+ _
— |IIx(d - I —o(TI ’ .
‘mexéw—ug X(”5<Auw>XW) o(Mse@).  u— oo

Thus, ast — oo,

Ty (u) < /

(u+x0,00)

(X%E%;)“XW”

y—u
= YT \rvid
/(M-l-xO,oo)(A_(y — M)) x(dy)

Lo
" Justo\A_(y—w) ) ¥ e

This proves (5.3) in casg™ Iy (y)dy = oo. If [[°TIx(y)dy < oo then (7.22)
givesA(oo) < oo and then (5.4) follows from (7.21).00
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