Open Access
Translator Disclaimer
November 2002 Estimating some features of $NK$ fitness landscapes
Steven N. Evans, David Steinsaltz
Ann. Appl. Probab. 12(4): 1299-1321 (November 2002). DOI: 10.1214/aoap/1037125864


Kauffman and Levin introduced a class of models for the evolution of hereditary systems which they called $NK$ fitness landscapes. Inspired by spinglasses, these models have the attractive feature of being tunable, with regard to both overall size (through the parameter $N$) and connectivity (through $K$). There are $N$ genes, each of which exists in two possible alleles [leading to a system indexed by $\{0,1\}^{N}$]; the fitness score of an allele at a given site is determined by the alleles of $K$ neighboring sites. Otherwise the fitnesses are as simple as possible, namely i.i.d., and the fitnesses of different sites are simply averaged.

Much attention has been focused on these fitness landscapes as paradigms for investigating the interaction between size and complexity in making evolution possible. In particular, the effect of the interaction parameter $K$ on the height of the global maximum and the heights of local maxima has attracted considerable interest, as well as the behavior of a "hill-climbing" walk from a random starting point. Nearly all of this work has relied on simulations, not on rigorous mathematics.

In this paper, some asymptotic features of $NK$ fitness landscapes are reduced to questions about eigenvalues and Lyapunov exponents. When $K$ is fixed, the expected number of local maxima grows exponentially with $N$ at a rate depending on the top eigenvalue of a kernel derived from the distribution of the fitnesses, and the average height of a local maximum converges to a value determined by the corresponding eigenfunction.

The global maximum converges in probability as $N \to \infty$ to a constant given by the top Lyapunov exponent for a system of i.i.d. max-plus random matrices, and this constant is nondecreasing with $K$. Various such quantities are computed for certain special cases when $K$ is small, and these calculations can, in principle, be extended to larger $K$.


Download Citation

Steven N. Evans. David Steinsaltz. "Estimating some features of $NK$ fitness landscapes." Ann. Appl. Probab. 12 (4) 1299 - 1321, November 2002.


Published: November 2002
First available in Project Euclid: 12 November 2002

zbMATH: 1040.60043
MathSciNet: MR1936594
Digital Object Identifier: 10.1214/aoap/1037125864

Primary: 47A75 , 60G60 , 60G70 , 92D15

Keywords: eigenvalue , Evolution , extreme value , Genetics , Lyapunov exponent , max-plus algebra , Perron--Frobenius , Random field , spinglass

Rights: Copyright © 2002 Institute of Mathematical Statistics


Vol.12 • No. 4 • November 2002
Back to Top