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We analyze numerical methods for the pathwise approximation of a sys-
tem of stochastic differential equations. As a measure of performance we
consider the qth mean of the maximum distance between the solution and
its approximation on the whole unit interval. We introduce an adaptive dis-
cretization that takes into account the local smoothness of every trajectory of
the solution. The resulting adaptive Euler approximation performs asymptot-
ically optimal in the class of all numerical methods that are based on a finite
number of observations of the driving Brownian motion.

1. Introduction. We consider a d-dimensional system of stochastic differen-
tial equations

dX(t)= a(t,X(t)) dt + σ (t,X(t)) dW(t), t ∈ [0,1],(1)

with initial value X(0). HereW denotes an m-dimensional Brownian motion, and
a: [0,1] × R

d → R
d and σ : [0,1] × R

d → R
d×m satisfy certain smoothness

conditions.
In most cases an explicit solution of (1) will not be available such that an

approximation must be used. In this paper we analyze numerical methods that
are based on the initial value X(0) and finitely many sequential observations

W(τ1), . . . ,W(τν)

of the driving Brownian motion W . Except for measurability conditions we do
not impose any further restrictions. The kth site τk may depend on the previous
evaluations X(0),W(τ1), . . . ,W(τk−1) and the total number ν of observations of
W may be determined by a stopping rule. Finally, the resulting discrete data may
be used in any way to generate an approximation.

We aim to find an approximation X that is pathwise close to the whole
corresponding d-dimensional trajectory of the solution X. As a natural measure
of performance we consider the maximum distance

‖X−X‖∞ = max
t∈[0,1] max

1≤i≤d |Xi(t)−Xi(t)|,
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of the d components of X and X on the interval [0,1], and we define the error of
X by averaging over all trajectories, that is,

eq(X)= (
E(‖X−X‖q∞)

)1/q
, 1 ≤ q <∞.

As a rough measure for the computational cost of X we use the expected number
n(X) of observations of W . We adress the following question: What is the
minimum cost necessary to achieve an error eq(X)≤ ε?

Up to now, answers to this question are partial with respect to the numerical
methods or the system (1) of stochastic differential equations. Faure (1992)
determines an upper bound with an unspecified constant for the error of a piecewise
interpolated equidistant Euler scheme. Hofmann, Müller-Gronbach and Ritter
(2000b) introduce an approximation that performs asymptotically optimal for
systems with additive noise, that is, σ(t, x)= σ(t).

In the present paper we provide an answer for the general case. We introduce an
adaptive discretization that takes into account the local smoothness of the solution.
Under standard regularity conditions, the smoothness of each componentXi of the
solution at the point (t,X(t)) is determined by

E
((
Xi(t + δ)−Xi(t))2 |X(t))= m∑

j=1

σ 2
i,j

(
t,X(t)

) · δ+ o(δ).
Hence

∑m
j=1 σ

2
i,j (t,X(t)) serves as a conditional Hölder constant for Xi . Due to

our error criterion it is reasonable to evaluate W more often in regions where the
maximum conditional Hölder constant

σ ∗(t, x)= max
1≤i≤d

(
m∑
j=1

σ 2
i,j (t, x)

)1/2

is large and vice versa. Roughly speaking, we apply this rule by taking the
step-size τk+1 − τk proportional to the squared inverse of the current value of
σ ∗(τk,X(τk)) with a proportionality constant that depends on the average size of
σ ∗ on the interval [0,1]. It suffices to use the interpolated Euler Scheme with this
discretization to obtain an asymptotically optimal approximation X̂∗∗

q,n with input
parameter n. The corresponding error satisfies

lim
n→∞

(
n(X̂∗∗

q,n)/ lnn(X̂∗∗
q,n)

)1/2 · eq(X̂∗∗
q,n)

=
(
E

(∫ 1

0
(σ ∗(t,X(t))2 dt

)q/(q+2))(q+2)/2q/√
2;

see Theorem 1.
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No other method that usesN observations ofW on the average can lead to better
results. In fact, we show that

lim inf
N→∞ (N/ lnN)1/2 · eq(XN)≥

(
E

(∫ 1

0
(σ ∗(t,X(t))2 dt

)q/(q+2))(q+2)/2q/√
2

for every sequence of methods XN such that

n(XN)≤N;
see Theorem 3.

In Section 2 we state our assumptions on the system (1). The conditions
imposed on the drift and diffusion coefficients as well as on the initial value
are standard assumptions for analyzing stochastic differential systems; see, for
example, Bouleau and Lépingle [(1994), Chapter 5].

The adaptive method X̂∗∗
q,n is defined in Section 3. This method adjusts the

number ν of evaluations of a given trajectory of the driving Brownian motion
W to the corresponding trajectory of the solution X. Hence no a priori bound
on the computation time is available for the user. Alternatively, we introduce a
modified version of this method that uses the same number of evaluations for every
trajectory.

In Section 4 we present the exact asymptotic performance of both the adaptive
methods and the interpolated Euler Scheme with equidistant step-size. All methods
yield the same order of error but the corresponding asymptotic constants may
heavily differ. This is illustrated by the case of a geometric Brownian motion in (1)
which results in linear and exponential dependence on the squared volatility for the
respective constants of X̂∗∗

q,n and the equidistant Euler Scheme.
Lower bounds for arbitrary numerical methods that are based on a finite number

of evaluations ofW are given in Section 5. In particular these results show that for
being optimal it is inevitable to adjust the number ν of observations to the current
trajectory of the solution.

Proofs are postponed to Section 6. Finally, in the Appendix, we present an
explicit formula for moments of the maximum of a geometric Brownian motion
which is needed for the calculation of some asymptotic constants.

The central role of conditional Hölder constants has already been observed
and successfully exploited by Hofmann, Müller-Gronbach and Ritter (2000c) for
L2-approximation of a scalar equation (1). In this case, basically, an interpolated
Milstein Scheme with step-size proportional to the inverse of |σ | performs
asymptotically optimal. See Remark 4 for a more detailed comparison.

We further mention that pathwise approximation of a stochastic differential
equation is strongly connected to the problem of reconstruction of a stochastic
process based on observations of the process itself. See Traub, Wasilkowski and
Woźniakowski (1988), Maiorov and Wasilkowski (1996), Müller-Gronbach and
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Ritter (1997, 1998) and the references therein for corresponding results with
respect to uniform and L2-approximation.

Frequently, discrete norms, that is, the distance between the solution and its
approximation at a finite number of points, are studied in the literature. See
Hofmann, Müller-Gronbach and Ritter (2000a) for a discussion on this topic and
Kloeden and Platen (1995), Milstein (1995) and Talay (1995) for results and
references.

2. Assumptions. We use | · |∞ to denote the maximum-norm of a matrix
or a vector. By ‖ · ‖p we denote the Lp-norm of real-valued functions on
[0,1]. Furthermore, we define ‖f ‖p = max1≤i≤d ‖fi‖p for R

d -valued functions
f on [0,1].

Throughout this paper we assume that the drift coefficient a, the diffusion
coefficient σ and the initial value X(0) have the following properties.

(A) There exists a constant K > 0 such that f = a and f = σ satisfy

|f (t, x)− f (t, y)|∞ ≤K · |x − y|∞,
|f (t, x)|∞ ≤K · (1 + |x|∞),

|f (s, x)− f (t, x)|∞ ≤K · (1 + |x|∞) · |s − t|1/2
for all s, t ∈ [0,1] and x, y ∈ R

d .
(B) The initial value X(0) is independent ofW and

E |X(0)|max(2,q)∞ <∞.
Given the above properties, a pathwise unique strong solution of the equation (1)

with initial value X(0) exists. In particular the conditions assure that

E ‖X‖max(2,q)∞ <∞.

3. The adaptive method. The adaptive method basically works in two steps.
First, we use a rough approximation at equidistant discrete points to estimate the
drift and diffusion coefficients as well as the maximum Hölder constant of the
current trajectory of the solution. The latter determines the number and distribution
of additional observation sites for the Brownian path to be used. At the second
stage we piecewise freeze the drift and diffusion coefficients and we take the
additional observations to refine the approximation.

We use the Euler Scheme to compute approximations at discrete points. For
every discretization

0 = τ0 < · · ·< τk = 1

this scheme is defined by

X̂(τ0)=X(0)
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and

X̂(τ#+1)= X̂(τ#)+a(τ#, X̂(τ#)) · (τ#+1 −τ#)+σ (τ#, X̂(τ#)) · (W(τ#+1)−W(τ#)),
where #= 0, . . . , k − 1. A global approximation X̂ for X on [0,1] is obtained by
piecewise linear interpolation of the data (τ#, X̂(τ#)). Obviously X̂ depends onW
only through its values at the discretization points.

3.1. The adaptive method X̂∗∗
q,n with variable number of discretization points.

For n ∈ N choose kn ∈ N and compute the Euler approximation

x# = X̂∗∗
q,n(τ#,0)

at the equidistant points

τ#,0 = #/kn, #= 0, . . . , kn − 1.

The corresponding estimates of the maximum conditional Hölder constant are

σ ∗# = σ ∗(τ#,0, x#), #= 0, . . . , kn − 1.

Put

S =
(

1/kn ·
kn−1∑
#=0

(σ ∗# )2
)1/2

and determine the number of additional knots to be placed equidistantly in the
subinterval ]τi,0, τi+1,0[ by

µq,i =

⌊(
(σ ∗i )2

/ kn−1∑
#=0

(σ ∗# )2
)
· n · S2q/(q+2)

⌋
if S > 0,

0 otherwise.
The resulting adaptive discretization of the subinterval [τi,0, τi+1,0] is thus given
by

τi,j = τi,0 + j/(kn · (µq,i + 1)), j = 0, . . . ,µq,i + 1.

Next, put

ai = a(τi,0, xi), σi = σ(τi,0, xi),
and use the Euler method

X̂∗∗
q,n(τi,j+1)= X̂∗∗

q,n(τi,j )+ ai · (τi,j+1 − τi,j )+ σi · (W(τi,j+1)−W(τi,j )),
on every subinterval [τi,0, τi+1,0] without updating the drift and diffusion coeffi-
cient. Finally, piecewise linear interpolation yields the global approximation on
[0,1].

Clearly, the distribution of the majority of knots used by X̂∗∗
q,n should be adapted

to the particular trajectory. On the other hand, the quality of adaption crucially
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depends on the estimates of the maximum Hölder constant. We therefore adjust
the size kn of the initial equidistant discretization by

lim
n→∞ kn/n= 0

and

lim
n→∞(kn/n) · lnn=∞.

Note that the total number of observations of W that are used by X̂∗∗
q,n is roughly

determined by the L2-average

‖σ ∗‖2 =
(∫ 1

0

(
σ ∗(t,X(t)

)2
dt

)1/2

of the maximum conditional Hölder constant, which may heavily depend on the
particular trajectory. Consequently, there is no a priori bound on the computation
time available for the user. This can be overcome by using the following version X̂∗

n

of the adaptive method. However, note that the property of bounded computation
time is not free of charge, see Theorem 1, the second equality in Theorem 3 as well
as Example 1.

3.2. The adaptive method X̂∗
n with at most n discretization points. In contrast

to X̂∗∗
q,n, the method X̂∗

n does not depend on the parameter q . It coincides with
X̂∗∗
q,n up to the fact that the numbers µq,i of evaluation points in the subintervals

]τi,0, τi+1,0[ are replaced by

µi =


⌊(
(σ ∗i )2

/ kn−1∑
#=0

(σ ∗# )2
)
· (n− kn)

⌋
if S > 0,

�(n− kn)/kn� otherwise,

for i = 0, . . . , kn − 1.
Clearly, X̂∗

n uses at most n observations ofW for every trajectory. Nevertheless,
the distribution of the observation sites is still adapted to the trajectory. On the
subinterval ]τi,0, τi+1,0[ the method X̂∗

n takes steps of size roughly given by
(1/n) · ‖σ ∗‖2

2/(σ
∗(τi,0,X(τi,0)))2.

4. Performance of the adaptive method. To every system (1) and every
q ≥ 1 we associate the constants

C∗∗
q = (

E ‖σ ∗‖2q/(q+2)
2

)(q+2)/2q
,

C∗
q = (E ‖σ ∗‖q2)1/q.

Let n(X̂∗∗
q,n) denote the expected number of observations of W that are used by

X̂∗∗
q,n and recall that X̂∗

n uses at most n observations of W for every trajectory.
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THEOREM 1. The adaptive methods X̂∗∗
q,n and X̂∗

n satisfy

lim
n→∞

(
n(X̂∗∗

q,n)/ lnn(X̂∗∗
q,n)

)1/2 · eq(X̂∗∗
q,n)=C∗∗

q /
√

2

and

lim
n→∞(n/ lnn)1/2 · eq(X̂∗

n)=C∗
q/
√

2

for every system (1).

In a first step, we justify the use of our adaptive method by showing its
superiority to the piecewise interpolated Euler Scheme X̂e

n with step-size 1/n. We
stress that much stronger optimality properties of our method will be established
in Section 5.

The constant associated with X̂e
n is given by the qth mean

Ce
q = (E ‖σ ∗‖q∞)1/q

of the global maximum of the maximum conditional Hölder constant σ ∗.

THEOREM 2. The interpolated equidistant Euler Scheme X̂e
n satisfies

lim
n→∞(n/ lnn)1/2 · eq(X̂e

n)=Ce
q/
√

2

for every system (1).

Clearly, the order of convergence is the same for all of the above methods. Note,
however, that

C∗∗
q ≤ C∗

q ≤ Ce
q

with strict inequality in most cases. See Remark 1 for a characterization of equality.
Furthermore, we have

sup
1≤q≤2

C∗∗
q =C∗

1 = inf
q≥1
C∗
q ,

sup
q≥1
C∗∗
q =C∗

2 = inf
q≥2
C∗
q .

EXAMPLE 1. Consider the linear equation

dX(t)= bX(t) dW(t)
with b > 0 and initial value X(0) = 1 in the case d = m = 1. The solution is the
geometric Brownian motion

X(t)= exp
(−b2/2 · t + b ·W(t))
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with drift zero. For q = 2 we obtain

Ce
2 = b ·

(
3 · exp(b2) ·((3b/2)−((b/2))1/2

from Theorem 5. Here ( denotes the standard normal distribution function.
Straightforward calculations yield

C∗
2 = (

exp(b2)− 1
)1/2
.

Finally, using Theorem 5 again, we have

C∗∗
2 = E(‖b ·X‖2)

≤ b ·E(‖X‖1/2∞ · ‖X‖1/2
1 )

≤ b · (E(‖X‖∞))1/2 · (E(‖X‖1)
)1/2

= (b ·Ce
1)

1/2

≤ b · (b+ 2) · 2−1/2.

For X̂e
n and X̂∗

n the asymptotic constant depends exponentially on the parameter b2.
For X̂∗∗

2,n we only have a linear dependence on b2.

5. General methods and lower bounds. The adaptive methods introduced
in section 3 use a realization of the initial value X(0) and a finite number of
observations of a trajectory of the driving Brownian motion W . We now present
lower bounds that hold for arbitrary methods of the above type and arbitrary
systems.

Fix a and σ , and consider the corresponding system (1). We follow the notation
in Hofmann, Müller-Gronbach and Ritter (2000c). Formally, a general method is
then defined by mappings

ψk: R
(k−1)·m+d →[0,1],

χk: R
k·m+d →{STOP,GO},

φk: R
k·m+d → (

L∞([0,1]))d
for k ∈ N. The sequential observation of a trajectory w of the Brownian motionW
starts at the knot ψ1(x), which may depend on the realization x of the initial value.
After k steps we have observed the data

-k(x,w)= (x′, y′1, . . . , y′k)′,
where

y1 =w(ψ1(x)
)
, . . . , yk =w(ψk((x′, y′1, . . . , y′k−1)

′)).
After each step we decide to stop or to further evaluatew according to the value of

χk
(
-k(x,w)

)
.
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The total number of observations of w is then given by

ν(x,w)= min
{
k ∈ N :χk

(
-k(x,w)

)= STOP
}
.

If ν(x,w) <∞ then the data

-(x,w)=-ν(x,w)(x,w)
are used to construct the approximation φν(x,w)(-(x,w)).

Formally, we assume measurability of the mappings ψk , χk , and φk. Further-
more, for obvious reasons, we restrict to the case ν(X(0),W) <∞ with probabil-
ity one. The resulting method is given by

X = φν(X(0),W)(-(X(0),W ))
.

Note that

D(X(0),W)= {
ψ1
(
X(0)

)
, . . . ,ψν(X(0),W)

(
-ν(X(0),W)−1

(
X(0),W

))}
is the set of observation sites used by X. As previously we analyze the error eq(X)
with respect to the average number

n(X)= E #D
(
X(0),W

)
of evaluations of W . Here # denotes the cardinality of a set.

Let X
∗∗ denote the class of all methods of the above form, and note that

X̂∗∗
q,n ∈ X

∗∗ for the adaptive method from Section 3.1.
Put

X
∗∗
N = {

X ∈ X
∗∗ :n(X)≤N}

for N ∈ N, and let

e∗∗q (N)= inf
{
eq(X) :X ∈ X

∗∗
N

}
denote the minimal error that can be obtained by methods that use at most N
sequential observations ofW on the average.

As a subclass X
∗ ⊂ X

∗∗ we consider all methods that use the same number
of observations for all trajectories. Formally, the mappings χk are constant and
ν = min{k ∈ N :χk = STOP}. Put

X
∗
N = {

X ∈ X
∗ :n(X)≤N}

as well as

e∗q(N)= inf
{
eq(X) :X ∈ X

∗
N

}
.

Recall that the adaptive method X̂∗
n from Section 3.2 uses at most n observations

for each trajectory. Hence X̂∗
n ∈ X

∗
n by a suitable definition of the mappings ψk ,

χk , and φk .
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THEOREM 3. The minimal errors satisfy

lim
N→∞(N/ lnN)1/2 · e∗∗q (N)= C∗∗

q /
√

2,

lim
N→∞(N/ lnN)1/2 · e∗q(N)= C∗

q/
√

2

for every equation (1) and each q ≥ 1.

Note that the estimates from Theorem 1 match with the corresponding estimates
from Theorem 3.

COROLLARY 1. For each q ≥ 1 the methods X̂∗∗
q,n and X̂∗

n are asymptotically
optimal in the respective classes X

∗∗
N with N = �n(X̂∗∗

q,n)� and X
∗
n.

REMARK 1. Let

α∗(t)= (
E
((
σ ∗
(
t,X(t)

)2))1/2
for each t ∈ [0,1]. Note that in the one dimensional case, d = 1, α∗ describes the
smoothness of X only locally in time.

Due to the Markov property of X we have C∗∗
q =C∗

q iff, with probability one,

∀ t ∈ [0,1]: σ ∗
(
t,X(t)

)= α∗(t).(2)

In particular (2) holds for systems (1) with additive noise.
Next, it is easy to see that C∗ =Ce iff, with probability one,

∀ t ∈ [0,1]: σ ∗
(
t,X(t)

)= σ ∗(0,X(0)).(3)

In the one-dimensional and univariate case, d = m = 1, (3) is equivalent to the
solution X being of the form

X(t)=X(0)+
∫ t

0
a
(
t,X(t)

)
dt ± σ (0,X(0)) ·W(t).

Thus, the local smoothness of each trajectory does not vary in time.

REMARK 2. The optimal method X̂∗∗
q,n crucially depends on the parameter q .

Whether or not there is a single method X̂∗∗
n which is optimal for all q ≥ 1 remains

an open question. However, by Lemma 9 and the Hölder inequality we have

lim sup
n→∞

(
n(X̂∗∗

1,n)/ lnn(X̂∗∗
1,n)

)1/2 · eq(X̂∗∗
1,n)

≤ (
E ‖σ ∗‖2/3

2

)1/2 · (E ‖σ ∗‖2q/3
2

)1/q
/
√

2

≤ (
E ‖σ ∗‖2q/3

2

)3/2q
/
√

2

≤C∗
q/
√

2

for each q ≥ 1.
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Note that the last two inequalities are strict except for the specific case
corresponding to (2). The method X̂∗∗

1,n is therefore superior to the method X̂∗
n

for every q ≥ 1.

REMARK 3. Roughly speaking, the method X̂∗∗
q,n uses step-sizes proportional

to 1/(σ ∗(τ#, X̂(τ#)))2 with a path dependent proportionality constant determined
by S; see Section 3.1. The latter seems to be essential for its superior asymptotic
performance. For instance, define the method X̃n in the same way as X̂∗∗

q,n with the
numbers µq,i replaced by

µi = �(σ ∗i )2 · n�
for i = 0, . . . , kn − 1.

The ratios of the number of knots assigned to the subintervals by X̃n and X̂∗∗
q,n

basically coincide,

µi/µj = µq,i/µq,j ,
but the method X̃n does not adjust the total number of knots in an appropriate way.

In fact, the methods of proof in Section 6 carry over to show that

lim
n→∞

(
n(X̃n)/ lnn(X̃n)

)1/2 · eq(X̃n)= C∗
2/
√

2.

Hence, the method X̃n is inferior to X̂∗∗
q,n, and it performs even worse than X̂∗

n if
q < 2.

Note further that, in contrast to X̂∗∗
q,n, the method X̃n progresses from the left to

the right. It remains an open question whether there exists a method of the latter
kind that performs asymptotically optimal.

REMARK 4. The concept of choosing the discretization according to the size
of conditional Hölder constants also works for other optimality criteria. Hofmann,
Müller-Gronbach and Ritter (2000a, c) analyze numerical methods for pathwise
approximation of a scalar equation (1) with respect to the averaged L2-error

e(X)= (E ‖X−X‖2
2)

1/2.

They show that the minimum error in the class of all methods that use at most N
observations of the driving Brownian motionW on the average,

e∗∗(N)= inf
{
e(X) :X ∈ X

∗∗
N

}
satisfies

lim
N→∞ N1/2 · e∗∗(N)=E‖σ‖1/

√
6.
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Moreover, using a step-size proportional to 1/|σ | leads to an asymptotically
optimal method. We conjecture that these results may be extended to the
communitive system case by employing the discrete L2-average(

d∑
i=1

m∑
j=1

σ 2
i,j

)1/2

of the respective conditional Hölder constants.

6. Proofs. Instead of estimating X −X directly, we use an approximation X̌
that is based on the whole trajectory of W and analyze X − X̌ as well as X̌ −X
separately. For a discretization

0 = t0 < · · ·< tk = 1,(4)

the process X̌ is given by X̌(0)=X(0) and

X̌(t)= X̌(t#)+ a(t#, X̌(t#)) · (t − t#)+ σ (t#, X̌(t#)) · (W(t)−W(t#))(5)

for t ∈ [t#, t#+1]. Clearly, X̌ is not an implementable numerical scheme for
the global approximation of X. Due to Theorem 4, if the discretization (4) is
equidistant and k is chosen suitably with respect to n(X) then (E ‖X̌ −X‖q∞)1/q
is the dominating term asymptotically.

Throughout the following we let c denote unspecified constants that only
depend on d , m, q and the constants from conditions (A) and (B).

Let

1# = t#+1 − t#
for #= 0, . . . , k − 1, and put

1max = max
0≤#≤k−1

1#.

Due to Hofmann, Müller-Gronbach and Ritter (2000b) the following upper
bound holds for the error of X̌.

THEOREM 4. Assume that a as well as σ satisfy condition (A) and let X(0)
satisfy (B). Then

(E ‖X− X̌‖q∞)1/q ≤ c ·11/2
max.

Observe further that, conditioned on W(t1), . . . ,W(tk), each component X̌i
of X̌ is a weighted Brownian bridge with a linear trend on each subinterval
[t#, t#+1]. Basically, error bounds for the uniform approximation of X̌ may thus
be obtained by employing results on the uniform approximation of weighted
Brownian bridges.
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6.1. Approximation of weighted Brownian bridges. Throughout the following
we use B1,B2, . . . to denote a sequence of independent Brownian bridges on the
interval [0,1] with Bi(0)= Bi(1)= 0. We put

Gq(u;α1, . . . , αn)= P
(

max
1≤i≤n (αi · ‖Bi‖∞)

q > u
)
, u≥ 0

and

Mq(α1, . . . , αn)=E max
1≤i≤n (αi · ‖Bi‖∞)

q

for nonnegative numbers α1, . . . , αn. Furthermore, we use the notation

Gq(u;n)= Gq(u;1, . . . ,1), Mq(n)=Mq(1, . . . ,1).

LEMMA 1. For all numbers α1, . . . , αn > 0 it holds

(
Mq(α1, . . . , αn)

)1/q ≥ (
1/n ·

n∑
i=1

α2
i

)1/2

· (Mq(n)
)1/q

.

LEMMA 2. Let α,α1,n, . . . , αn,n > 0 such that

lim
n→∞ max

1≤i≤nαi,n = α
and

lim inf
n→∞

#{i :αi,n ≥ α − ε}
n

> 0

for every ε > 0. Then ∫ ∞
0

Gq
(
u · (lnn)q/2;α1,n, . . . , αn,n

)
du≤ c,

lim
n→∞

∫ ∞
(α2/2)q/2

Gq
(
u · (lnn)q/2;α1,n, . . . , αn,n

)
du= 0

and

lim
n→∞Gq

(
u · (lnn)q/2;α1,n, . . . , αn,n

)= 1

for 0 ≤ u < (α2/2)q/2.

See Ritter (1990) for proofs of Lemmas 1 and 2 in the particular case αi,n = α.
The latter immediately yields the following fact.

COROLLARY 2. Under the assumptions of Lemma 2 we have

lim
n→∞ (lnn)

−1/2 · (Mq(α1,n, . . . , αn,n)
)1/q = α · 2−1/2.
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Next, consider the discretization (4) and let

B1,#, . . . ,Bm,#

denote Brownian bridges on the interval [t#, t#+1] so that B1,0, . . . ,Bm,k−1 are
independent. Fix numbers

βi,j,#, j = 1, . . . ,m, i = 1, . . . , d, #= 0, . . . , k − 1,

and let

β ≥ max
1≤i≤d max

0≤#≤k−1

(
1# ·

m∑
j=1

β2
i,j,#

)1/2

.

LEMMA 3. For every z≥ 0 it holds

E max
1≤i≤d max

0≤#≤k−1
sup

t#≤t≤t#+1

∣∣∣∣∣
m∑
j=1

βi,j,# ·Bj,#(t)
∣∣∣∣∣
q

≤ z+ d ·
∫ ∞
z

Gq(u/β
q; k) du.

PROOF. We have

E max
1≤i≤d max

0≤#≤k−1
sup

t#≤t≤t#+1

∣∣∣∣∣
m∑
j=1

βi,j,# ·Bj,#(t)
∣∣∣∣∣
q

=
∫ ∞

0
P

(
max

1≤i≤d max
0≤#≤k−1

sup
t#≤t≤t#+1

∣∣∣∣∣
m∑
j=1

βi,j,# ·Bj,#(t)
∣∣∣∣∣
q

> u

)
du

≤ z+
d∑
i=1

∫ ∞
z
P

(
max

0≤#≤k−1
sup

t#≤t≤t#+1

∣∣∣∣∣
m∑
j=1

βi,j,# ·Bj,#(t)
∣∣∣∣∣
q

> u

)
du

= z+
d∑
i=1

∫ ∞
z
P

(
max

0≤#≤k−1
sup

t#≤t≤t#+1

∣∣∣∣∣
(
m∑
j=1

β2
i,j,#

)1/2

·B1,#(t)

∣∣∣∣∣
q

> u

)
du

by the independence of B1,0, . . . ,Bm,k−1.
Renormalize each interval [t#, t#+1] to [0,1] to obtain∫ ∞

z
P

(
max

0≤#≤k−1
sup

t#≤t≤t#+1

∣∣∣∣∣
(
m∑
j=1

β2
i,j,#

)1/2

·B1,#(t)

∣∣∣∣∣
q

> u

)
du

=
∫ ∞
z
P

(
max

0≤#≤k−1
sup

0≤t≤1

∣∣∣∣∣
(
m∑
j=1

β2
i,j,#

)1/2

·11/2
# ·B#(t)

∣∣∣∣∣
q

> u

)
du

≤
∫ ∞
z
P
(
βq · max

0≤#≤k−1
‖B#‖q∞ > u

)
du,

which completes the proof. �
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6.2. Proofs of the lower bounds in Theorems 3 and 2. Fix a discretization (4)
and put

U# = (
t#,X(t#)

)
, Ǔ# = (

t#, X̌(t#)
)
,

as well as

A =
(
k−1∑
#=0

(
σ ∗(U#)

)2 ·1#
)1/2

, Ǎ =
(
k−1∑
#=0

(
σ ∗(Ǔ#)

)2 ·1#
)1/2

.

LEMMA 4. For every discretization (4) it holds that(
E max

0≤#≤k−1
|σ ∗(U#)− σ ∗(Ǔ#)|q

)1/q ≤ c ·11/2
max,(6)

(E|A− Ǎ|q)1/q ≤ c ·11/2
max(7)

and

A ≤ c · (1 + ‖X‖∞).(8)

PROOF. Due to (A) we have

|σ ∗(U#)− σ ∗(Ǔ#)| ≤ d · max
1≤i≤d

∣∣∣∣∣
(
m∑
j=1

σ 2
i,j (U#)

)1/2

−
(
m∑
j=1

σ 2
i,j (Ǔ#)

)1/2∣∣∣∣∣
≤ d · max

1≤i≤d

(
m∑
j=1

(
σi,j (U#)− σi,j (Ǔ#))2

)1/2

≤ c · |X(t#)− X̌(t#)|∞
≤ c · ‖X − X̌‖∞.

(9)

Hence(
E
(

max
0≤#≤k−1

|σ ∗(U#)− σ ∗(Ǔ#)|q
))1/q ≤ c · (E ‖X − X̌‖q∞)1/q ≤ c ·11/2

max

by Theorem 4, which proves (6).
Furthermore, it holds

|A− Ǎ| ≤
(
k−1∑
#=0

(
σ ∗(U#)− σ ∗(Ǔ#))2 ·1#

)1/2

≤ max
0≤#≤k−1

|σ ∗(U#)− σ ∗(Ǔ#)|,

such that the second inequality is a consequence of (6).
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Finally, by (A),

A ≤ max
0≤#≤k−1

σ ∗(U#)

= max
0≤#≤k−1

max
1≤i≤d

(
m∑
j=1

σ 2
i,j (U#)

)1/2

≤ c · max
0≤#≤k−1

max
1≤i≤d

(
m · (1 + |X(t#)|∞)2)1/2

≤ c · (1 + ‖X‖∞),
which completes the proof. �

Consider an arbitrary method X ∈ X
∗∗ and recall from Section 4 that

D
(
X(0),W

)= {
ψ1
(
X(0)

)
, . . . ,ψν(X(0),W)

(
-ν(X(0),W)−1

(
X(0),W

))}
is the set of observation sites used by X. Let

d# = #
(
D
(
X(0),W

)∩]t#, t#+1[)+ 1,

L= {
# ∈ {0, . . . , k − 1} :σ ∗(Ǔ#) �= 0

}
,

and put

δ = max
(

1,
∑
#∈L
d#

)
.

Note that d# as well as δ are measurable functions of - .

LEMMA 5. If X uses the knots t0, . . . , tk then

eq(X)≥ (
E
(
(Ǎq/δq/2) ·Mq(δ)

))1/q − c ·11/2
max.

PROOF. Observing Theorem 4, it suffices to show that

E ‖X̌ −X‖q∞ ≥E((Ǎq/δq/2) ·Mq(δ)
)
.(10)

Since Ǔ# is a function of - , we have

X̌(t)−E(X̌(t)|-)= σ(Ǔ#) · (W(t)−E(W(t)|-))
for t ∈ [t#, t#+1]. Conditioned on- , the discretizationD(X(0),W) is fixed and the
processW −E(W |-) consists of independent, m-dimensional Brownian bridges
corresponding to each subinterval. In particular it follows that, conditioned on - ,
the distribution of the process X̌−E(X̌|-) is symmetric with respect to the zero
function. Hence

E(‖X̌−X‖q∞|-)≥E(‖X̌ −E(X̌|-)‖q∞
∣∣-);(11)

see Traub, Wasilkowski and Woźniakowski (1988).
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Let

i(t, x)= min

{
i :
(
σ ∗(t, x)

)2 = m∑
j=1

σ 2
i,j (t, x)

}
.

Then

E
(‖X̌−E(X̌|-)‖q∞|-)

=E
(

max
1≤i≤d max

0≤#≤k−1
sup

t#≤t≤t#+1

∣∣∣∣∣
m∑
j=1

σi,j (Ǔ#) · (Wj(t)−E(Wj(t)|-))
∣∣∣∣∣
q ∣∣-)

(12)

≥E
(

max
0≤#≤k−1

sup
t#≤t≤t#+1

∣∣∣∣∣
m∑
j=1

σ
i(Ǔ#),j

(Ǔ#) · (Wj(t)−E(Wj(t)|-))
∣∣∣∣∣
q ∣∣-)

=E
(

max
0≤#≤k−1

sup
t#≤t≤t#+1

∣∣σ ∗(Ǔ#) · (W1(t)−E(W1(t)|-))∣∣q ∣∣-).
Recall that d# is the number of subintervals in [t#, t#+1]. Renormalize each
subinterval to [0,1], and apply Lemma 1 to obtain

E(‖X̌−X‖q∞|-) ≥E
(
max
#∈L sup

t#≤t≤t#+1

∣∣σ ∗(Ǔ#) · (W1(t)−E(W1(t)|-))∣∣q ∣∣-)
≥ (Ǎq/δq/2) ·E

(
max

1≤i≤δ ‖Bi‖
q∞
)

from (11) and (12).
Clearly, (10) follows by taking expectations. �

We now turn to a sequence of methodsXN ∈ X
∗∗. Choose a sequence of positive

integers kN such that

lim
N→∞ kN/N = lim

N→∞ N/(kN · lnN)= 0.(13)

Since kN = o(N) we may assume that XN uses in particular the knots

t# = #/kN, #= 0, . . . , kN .(14)

We use this discretization in (4), and we denote the related quantities canonically
by X̌N ,AN, δN, . . . .

Due to (6) we have

lim
N→∞ max

1≤#≤kN
|σ ∗(UN,#)− σ ∗(ǓN,#)| = 0(15)

in probability.
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Furthermore,

P
(

lim
N→∞AN = ‖σ ∗‖2

)
= 1,(16)

by the continuity of X and σ ∗. Observing (7) we thus conclude that

lim
N→∞ ǍN = ‖σ ∗‖2(17)

in probability.
Applying a subsequence argument, we may assume that (15) and (17) hold with

probability 1. Since

δN = max
(

1,
∑
#∈LN

dN,#

)
≥ #LN,

it follows in particular from (15) that

P
(

lim
N→∞ δN =∞,‖σ ∗‖∞ > 0

)
= P (‖σ ∗‖∞ > 0

)
.(18)

We first analyze the classes X
∗∗ and X

∗.

LEMMA 6. If XN ∈ X
∗∗
N for every N then

lim inf
N→∞ (N/ lnN)1/2 · (E((Ǎq

N/δ
q/2
N ) ·Mq(δN)

))1/q ≥ C∗∗
q /

√
2.

PROOF. Let νN denote the number of knots used by XN and note that
νN ≥ kN . By monotonicity and concavity of the function

x  → x/ lnx, x > e2,

we have

N/ lnN ≥EνN/ ln(E νN)≥E(νN/ lnνN)≥E((δN/ ln δN) · 1{δN>e2}
)

for N sufficiently large. Here 1A denotes the characteristic function of a set A.
Applying the Hölder inequality we conclude that

(N/ lnN)1/2 · (E((Ǎq
N/δ

q/2
N ) ·Mq(δN )

))1/q
≥ (
E
(
(δN/ ln δN) · 1{δN>e2}

))1/2 · (E((Ǎq
N/δ

q/2
N ) ·Mq(δN)

))1/q
=
((
E
(
(δN/ ln δN) · 1{δN>e2}

))q/q+2

× (
E
(
(Ǎ

q
N/δ

q/2
N ) ·Mq(δN )

))2/q+2
)(q+2)/2q

≥
(
E
(
Ǎ

2q/q+2
N · (1/ ln δN)

q/q+2 · (Mq(δN )
)2/q+2 · 1{δN>e2}

))(q+2)/2q
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≥
(
E
(
Ǎ

2q/q+2
N · ((1/ ln δN)

1/2 · (Mq(δN )
)1/q)2q/(q+2)

×1{δN>e2,‖σ ∗‖∞>0}
))(q+2)/2q

.

Furthermore, with probability 1,

Ǎ
2q/q+2
N ·

(
(1/ ln δN)

1/2 · (Mq(δN )
)1/q)2q/(q+2) · 1{δN>e2,‖σ ∗‖∞>0}

N−→ (‖σ ∗‖2/
√

2)2q/(q+2)

by (17), (18) and Corollary 2.
Now use Fatou’s Lemma to complete the proof. �

LEMMA 7. If XN ∈ X
∗
N for every N then

lim inf
N→∞ (N/ lnN)1/2 ·

(
E
(
(Ǎ

q
N/δ

q/2
N ) ·Mq(δN )

))1/q ≥ C∗
q/
√

2.

PROOF. Note that δN ≤N by definition of X
∗
N . Thus

(N/ lnN)1/2 · (E((Ǎq
N/δ

q/2
N ) ·Mq(δN )

))1/q
≥
(
E
(
(δN/ ln δN)

q/2 · (Ǎq
N/δ

q/2
N ) ·Mq(δN ) · 1{δN>e2,‖σ ∗‖∞>0}

))1/q

=
(
E
(
Ǎ
q
N · ((1/δN)1/2 · (Mq(δN)

)1/q)q · 1{δN>e2,‖σ ∗‖∞>0}
))1/q

,

and the result follows as above in the proof of Lemma 6. �

Combine Lemma 5 with Lemmas 6–7 and observe

lim
N→∞(N/ lnN)1/2 ·11/2

N,max = lim
N→∞

(
N/(kN · lnN)

)1/2 = 0,

to obtain the lower bounds in Theorem 3. Moreover, if N is chosen appropriately,
these lower bounds yield the lower bounds in Theorem 1.

Finally, we turn to the piecewise linear interpolated Euler Scheme X̂e
N . Recall

that X̂e
N evaluates every Brownian trajectory at the equidistant knots

tN,# = #/N, #= 0, . . . ,N,(19)

only.

LEMMA 8. The equidistant Euler Scheme X̂e
N satisfies

lim inf
N→∞ (N/ lnN)1/2 · eq(X̂e

N)≥ Ce
q/
√

2.
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PROOF. By Theorem 4 we obtain

lim sup
N→∞

(N/ lnN)1/2 · (E ‖X− X̌N‖q∞)1/q ≤ c · lim sup
N→∞

1/(lnN)1/2 = 0(20)

for the approximation X̌N corresponding to (19).
From (11) and (12) we get

E
(‖X̌N − X̂e

N‖q∞|-N )
≥E

(
max

0≤#≤N−1
sup

tN,#≤t≤tN,#+1

∣∣σ ∗(ǓN,#) · (W1(t)−E(W1(t)|-N ))∣∣q ∣∣-N).
Note that W1 − E(W1|-N) = W1 − E(W1|W1(tN,1), . . . ,W1(tN,N)) consists of
independent Brownian bridges corresponding to each subinterval [tN,#, tN,#+1].
Renormalize each subinterval to [0,1] to obtain

E(‖X̌N − X̂e
N‖q∞|-N)≥ (1/Nq/2) ·Mq

(
σ ∗(ǓN,0), . . . , σ ∗(ǓN,N−1)

)
.

As above we may assume that (15) holds with probability 1. Thus

P
(

lim
N→∞ max

0≤#≤N−1
σ ∗(ǓN,#)= ‖σ ∗‖∞

)
= 1

and

P
(
lim inf
N→∞ (1/N) · #

{
# : σ ∗(ǓN,#)≥ ‖σ ∗‖∞ − ε}> 0

)
= 1

for every ε > 0.
Hence, by Corollary 2,

P
(

lim
N→∞ (lnN)

−q/2 ·Mq

(
σ ∗(ǓN,0), . . . , σ ∗(ǓN,N−1)

)= ‖σ ∗‖q∞ · 2−q/2
)
= 1.

Fatou’s Lemma yields

lim inf
N→∞ (N/ lnN)1/2 · (E ‖X̌N − X̂e

N‖q∞)1/q

≥ lim inf
N→∞ (1/ lnN)1/2 · (EMq

(
σ ∗(ǓN,0), . . . , σ ∗(ǓN,N−1)

))1/q
(21)

≥ Ce
q/
√

2.

Finally, combine (20) and (21) to complete the proof. �

6.3. Proof of the upper bounds in Theorems 1 and 2 and Remark 2. Fix
q̃ ∈ [1, q] and consider a method

XN ∈ {X̂∗∗
q̃,N , X̂

∗
N, X̂

e
N

}
.
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Recall that XN uses the knots (14) if XN ∈ {X̂∗∗
q̃,N
, X̂∗

N } and X̂e
N is based on the

discretization (19) only. Put

mN =
{
kN if XN ∈ {X̂∗∗

q̃,N
, X̂∗

N

}
,

N if XN = X̂e
N ,

let

0 = tN,0 < · · ·< tN,mN = 1

denote the discretization corresponding to the above cases, and let X̌N denote the
respective approximation (5).

Fix # ∈ {0, . . . ,mN − 1} and recall from Section 3 that

r# =


µq̃,# + 2 if XN = X̂∗∗

q̃,N
,

µ# + 2 if XN = X̂∗
N ,

2 if XN = X̂e
N ,

is the number of knots

tN,# = τ#,0 < τ#,1 < · · ·< τ#,r# < τ#,r#+1 = tN,#+1

used by XN in [tN,#, tN,#+1]. Let W̃N,# denote the piecewise linear interpolation
of W −W(tN,#) at these knots. Then

X̌N(t)−XN(t)= σ(Ǔ#) · (W(t)−W(tN,#)− W̃N,#(t))(22)

for t ∈ [tN,#, tN,#+1].
Put

HN = (
X(0),W(tN,1), . . . ,W(tN,mN )

)′
and note that Ǔ#, ǍN , r# and the knots τ#,r are measurable functions of HN .
Moreover, conditioned on HN , the processes W − W(tN,#) − W̃N,# consist of
independent m-dimensional Brownian bridges corresponding to each subinterval
[τ#,r , τ#,r+1].

By definition of XN , all subintervals [τ#,r , τ#,r+1] are of the same length with(
m∑
j=1

σ 2
i,j (Ǔ#)

)1/2

· (τ#,r+1 − τ#,r )1/2

≤ σ ∗(Ǔ#)/(kN · (r# − 1)
)1/2

≤
{

Ǎ
2/(q̃+2)
N /N1/2 if XN = X̂∗∗

q̃,N
,

ǍN/(N − kN)1/2 if XN = X̂∗
N ,

(23)
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and (
m∑
j=1

σ 2
i,j (Ǔ#)

)1/2

· (τ#,r+1 − τ#,r)1/2 ≤ σ ∗(Ǔ#)/N1/2(24)

if XN = X̂e
N .

Let νN denote the total number of knots used by XN and put

βN =


Ǎ

2/(q̃+2)
N /N1/2 if XN = X̂∗∗

q̃,N
,

ǍN/(N − kN)1/2 if XN = X̂∗
N ,

max
0≤#≤N−1

σ ∗(Ǔ#)/N1/2 if XN = X̂e
N .

Observe (23) and (24), and apply Lemma 3 with βi,j,(#,r) = σi,j (Ǔ#), 1#,r =
τ#,r+1 − τ#,r and z= βqN · (lnνN)q/2/2q/2 to obtain

E(‖X̌N −XN‖q∞|HN)
≤ βqN · (lnνN)q/2 ·

(
2−q/2 + d ·

∫ ∞
2−q/2

Gq
(
u · (ln νN)q/2; νN )du).(25)

We separately analyze the methods X̂∗∗
q̃,N

, X̂∗
N and X̂e

N .

LEMMA 9. The sequence X̂∗∗
q̃,N

satisfies

lim sup
N→∞

(E νN/ lnE νN)
1/2 · eq(X̂∗∗

q̃,N )

≤ (
E ‖σ ∗‖2q̃/(q̃+2)

2

)1/2 · (E ‖σ ∗‖2q/(q̃+2)
2

)1/q
/
√

2.

PROOF. Fix p ∈ [0, q]. Similarly to Section 6.2 we may assume that
limN→∞ ǍN = ‖σ ∗‖2 with probability 1. Hence

lim inf
N→∞ E Ǎ

p
N ≥E ‖σ ∗‖p2

by Fatou’s Lemma.
Furthermore,

lim
N→∞ EA

p
N = E ‖σ ∗‖p2

by (16), (8) and (B).
Hence,

lim
N→∞EǍ

p
N = E ‖σ ∗‖p2(26)

follows from (7).
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Clearly, we may assume P (‖σ ∗‖2 > 0) > 0. Recall that

N · Ǎ2q̃/(q̃+2)
N ≤ νN ≤ kN +N · Ǎ2q̃/(q̃+2)

N(27)

by definition of X̂∗∗
q̃,N

.
Hence,

lim
N→∞(EνN/ lnEνN) · (lnN/N)=E‖σ ∗‖2q̃/(q̃+2)

2(28)

by (26), and therefore

lim sup
N→∞

(
EνN/ ln(EνN)

)1/2 · (E‖X− X̌N‖q)1/q

≤ c · lim sup
N→∞

(
N/(kN · lnN)

)1/2 = 0

by Theorem 4.
Put

IN = d ·
∫

2−q/2
Gq
(
u · (ln νN)q/2; νN )du

and let

VN = (lnνN/ lnN)q/2 · Ǎ2q/(q̃+2)
N · (2−q/2 + IN).

In view of (28) and (25) it remains to show that

lim sup
N→∞

EVN ≤ (
E‖σ ∗‖2q/(q̃+2)

2

)
/2q/2.(29)

From (27) we get

ln νN/ lnN ≤ (
lnN + ln

(
1 + Ǎ

2q̃/(q̃+2)
N

))
/ lnN ≤ 1 + Ǎ

2q̃/(q̃+2)
N / lnN.

Moreover, by Lemma 2,

IN ≤ c(30)

and

P
(

lim
N→∞ IN = 0

)
= 1.(31)

Hence

VN ≤ (2−q/2 + IN) · (1 + Ǎ
2q̃/(q̃+2)
N / lnN

)q/2 · Ǎ2q/(q̃+2)
N

≤ (2−q/2 + IN) · (Ǎ2/(q̃+2)
N + ǍN/(lnN)

1/2)q
≤ (

Ǎ
2/(q̃+2)
N /

√
2 + c · ǍN/(lnN)

1/2 + I 1/q
N · Ǎ2/(q̃+2)

N

)q
,
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and therefore

(E VN)
1/q ≤ (

E Ǎ
2q/(q̃+2)
N

)1/q
/
√

2 + (
c/(lnN)1/2

) · (E Ǎ
q
N)

1/q

(32)
+ (E I 3

N)
1/3q · (E Ǎ

3q/(q̃+2)
N

)2/3q
by the Hölder inequality.

Note that

lim
N→∞EI

3
N = 0,

due to (30) and (31), and

2q/(q̃ + 2)≤ 3q/(q̃ + 2)≤ q.
Thus (29) follows from (32) and (26). �

For q̃ = q we have(
E ‖σ ∗‖2q̃/(q̃+2)

2

)1/2 · (E ‖σ ∗‖2q/(q̃+2)
2

)1/q =C∗∗
q

such that Lemma 9 yields in particular the upper bound for the sequence X̂∗∗
q,N in

Theorem 1.

LEMMA 10. The sequence X̂∗
N satisfies

lim sup
N→∞

(N/ lnN)1/2 · eq(X̂∗
N)≤ C∗

q/
√

2.

PROOF. Note that N − kN ≤ νN ≤N by definition of X̂∗
N . Consequently,

(N/ lnN)q/2 ·E(‖X̌N − X̂∗
N‖q |HN

)
≤ (
N/(N − kN))q/2 · Ǎq

N ·
(

2−q/2 +
∫

2−q/2
Gq
(
u · (lnN)q/2;N)du)

by (25).
Lemma 2 and (26) yield

lim sup
N→∞

(N/ lnN)1/2 · (E ‖X̌N − X̂∗
N‖q

)1/q ≤ lim sup
N→∞

(EǍ
q
N)

1/q/
√

2 = C∗
q/
√

2.

Finally, use Theorem 4 to complete the proof. �

LEMMA 11. The sequence X̂e
N satisfies

lim sup
N→∞

(N/ lnN)1/2 · eq(X̂e
N)≤ Ce

q/
√

2.
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PROOF. By definition of X̂e
N we have νN =N . Hence (25), Lemma 2 and (6)

imply

(N/ lnN)1/2 · (E (‖X̌N − X̂e
N‖q)

)1/q
≤
(
E
((

max
0≤#≤N−1

σ ∗(ǓN,#)
)q · (2−q/2 + IN )))1/q

≤
(
E
((

max
0≤#≤N−1

σ ∗(UN,#)
)q · (2−q/2 + IN )))1/q

+ c ·
(
E
(

max
0≤#≤N−1

|σ ∗(ǓN,#)− σ ∗(UN,#)|q
))1/q

≤
(
E
((

max
0≤#≤N−1

σ ∗(UN,#)
)q · (2−q/2 + IN )))1/q + c/N1/2.

Due to Lemma 2 and (A) we have

P
(

lim
N→∞

(
max

0≤#≤N−1
σ ∗(UN,#)

)q · (2−q/2 + IN )= ‖σ ∗‖q∞ · 2−q/2
)
= 1

and (
max

0≤#≤N−1
σ ∗(UN,#)

)q · (2−q/2 + IN )≤ c · (1 + ‖X‖q∞).
Hence,

lim sup
N→∞

(N/ lnN)1/2 · (E ‖X̌N − X̂e
N‖q

)1/q ≤ (E ‖σ ∗‖q∞)1/q/
√

2 = (Ce
q)/

√
2.

by (B) and Fatou’s Lemma.
Finally, observe Theorem 4 to obtain the desired result. �

APPENDIX

Consider the geometric Brownian motion

X(t)= exp
(−b2/2 · t + b ·W(t)), t ∈ [0,1],

with zero drift and volatility b ∈ R. Here W denotes a one-dimensional Brownian
motion. We provide an exact formula for the pth moment

E ‖X‖p∞, p > 0,

of the maximum of X in terms of the distribution function ( and the density ϕ of
the standard normal distribution.

LEMMA 12. For α,β ∈ R it holds that∫ ∞
0
eα·u ·((−u+ β)du=

{
(1/α) · (eα·β+α2/2 ·((α+ β)−((β)), if α �= 0
β ·((β)+ ϕ(β), if α = 0.
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PROOF. Let α �= 0. By partial integration,∫ ∞
0
eα·u ·((−u+ β)du= (1/α) ·

(∫ ∞
0
eα·u · ϕ(−u+ β)du−((β)

)
.

Clearly, ∫ ∞
0
eα·u · ϕ(−u+ β)du= eα·β+α2/2 ·

∫ ∞
0
ϕ
(
u− (α + β))du

= eα·β+α2/2 ·((α+ β),
which yields the desired result.

Next, assume α = 0. By partial integration,∫ ∞
0
((−u+ β)du=

∫ ∞
0
u · φ(u− β)du

= β ·((β)−
∫ ∞

0
ϕ′(u− β)du

= β ·((β)+ ϕ(β),
which completes the proof. �

THEOREM 5. For every p > 0 it holds that

E ‖X‖p∞

=


1/(p− 1) · ((2p− 1) · ep(p−1)·b2/2 ·(((p− 1/2) · |b|)−((|b|/2)),
if p �= 1,

(2 + b2/2) ·((|b|/2)+ |b| · ϕ(b/2), if p = 1.

PROOF. Clearly, we may assume b > 0. Then

E ‖X‖p∞ = 1 +
∫ ∞

1
P
(

sup
0≤t≤1

exp
(
p · (−b2/2 · t + b ·W(t)))> u)du

= 1 +
∫ ∞

0
eu · P

(
sup

0≤t≤1

(
W(t)− b/2 · t)> u/(p · b)

)
du.

For α ∈ R and x ≥ 0 we have

P
(

sup
0≤t≤1

(
W(t)+ α · t)> x)=((α− x)+ e2·α·x ·((−α− x),

see Karatzas and Shreve [(1999), page 368]. Hence

E ‖X‖p∞ = 1 + p · b ·
(∫ ∞

0
ep·b·u ·((−u− b/2) du

+
∫ ∞

0
e(p−1)·b·u ·((−u+ b/2) du

)
.
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Now, evaluate both integrals by applying Lemma 12 with α = p ·b, β =−b/2 and
α = (p− 1) · b, β = b/2, respectively. �
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