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ON A NONLINEAR STOCHASTIC WAVE EQUATION IN THE
PLANE: EXISTENCE AND UNIQUENESS OF THE SOLUTION

By Annie Millet and Pierre-Luc Morien

Université Paris 6 and Université Paris 10

In this paper, we investigate the existence and uniqueness of the solu-
tion for a class of stochastic wave equations in two space-dimensions con-
taining a non-linearity of polynomial type. The method used in the proofs
combines functional analysis arguments with probabilistic tools, and fur-
ther estimates for the Green function associated with the classical wave
equation.

1. Introduction. Let � be a bounded open subset of �n, T > 0, ρ > 0.
The following nonlinear PDE defined on �0�T� ×�:



∂2u

∂t2
�t	 x� − �u�t	 x� + 	u�t	 x�	ρ · u�t	 x� = φ�t	 x�	

u�0	 x� = u0�x�	
∂u

∂t
�0	 x� = v0�x�	

(1.1)

which appears in relativistic quantum mechanics, has been extensively stud-
ied (see [7] and the references therein for a detailed account on the subject).
If u0 ∈ H1

0���⋂Lρ+2���, v0 ∈ L2��� and φ ∈ L2��0	T�×��, it is known that
the Cauchy problem (1.1) admits a unique solution

u ∈ L∞ (�0	T��H1
0���⋂Lρ+2���)⋂C��0	T��L2�����

When the forcing term φ�t	 x� is random and ρ = 0, (1.1) reduces to a linear
or semi-linear SPDE and has been studied by several authors. More precisely,
consider the following stochastic real-valued wave equation:



∂2u

∂t2
�t	 x� − �u�t	 x� = σ�u�t	 x��Ḟ�t	 x� + b�u�t	 x��	

u�0	 x� = u0�x�	
∂u

∂t
�0	 x� = v0�x�	

(1.2)

where σ , b � � �−→ � are globally Lipschitz functions. When n = 1, R. Carmona
and D. Nualart have shown in [2] that (1.2) has a unique solution when F is
the space-time white noise.
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For n = 2, the fundamental solution S�t	 x� to the wave equation

∂2S

∂t2
�t	 x� − �S�t	 x� = δ�0	0�

is still a function (while in dimension n ≥ 3 it is only a distribution) but lacks
L2 integrability properties, which forbids to consider equation (1.2) when F
is the space-time white noise. On the other hand, physical models of wave
propagation in a random environment have led to Gaussian perturbations
which are white in time but correlated in space (see, e.g., [1] and [8]). Thus
Mueller [11], Dalang and Frangos [4], Millet and Sanz-Solé [10] have studied
existence and uniqueness of the solution of (1.2) when F is a generalized
Gaussian noise �F�ϕ�	 ϕ ∈ � ��+ × �2�� with covariance

Ɛ�F�ϕ�Fψ�� =
∫ T
0

∫
�2

∫
�2
ϕ�t	 x� · ψ�t	 y� · f�	x− y	�dxdydt	(1.3)

where f is the Fourier transform of some positive measure µ on �2. In [10],
it is shown that the following integrability condition

∫
0+
rf�r� ln

(
1 + 1

r

)
dr <∞(1.4)

is necessary and sufficient to obtain existence of a unique L2- bounded solution
u�t	 x� for (1.2). (A similar result was proved in [11] when f is bounded and,
in [4], in the linear case or for “small time” in the semi-linear case.)

We remark that in dimension 1 and 2 equation (1.2) is to be considered in a
weak form, with stochastic integrals with respect to the martingale measure
Mt�A� = F��0	 t� × A�, t ∈ �0	T�, A ∈ ���2�, associated with the noise F.
Equivalently, one can consider the following evolution formulation:

u�t	 x� =
∫
�2
S�t	 x− y�v0�y�dy+ ∂

∂t

(∫
�2
S�t	 x− y�u0�y�dy

)

+
∫ t
0

∫
�2
S�t− s	 x− y� �σ�u�s	 y��F�ds	dy� + b�u�s	 y�dyds� �

(1.5)

Peszat and Zabczyk [13], Dalang [3] and Peszat [12] have recently studied the
existence and uniqueness of the solution to (1.2) in dimension n ≥ 3 by using
Fourier transform methods and a characterization of the space covariance
structure of the noise F. In [13], the authors show the existence of a unique
solution u in C��0	T��L2�µ�� where µ is a positive finite measure on �n. In
[3], a theory of distribution-valued martingale measures is developed, which
enables the author to solve the Cauchy problem (1.2) in non-Hilbert spaces.

In the present paper, we study the following nonlinear stochastic wave equa-
tion, deduced from (1.1) by replacing φ�t	 x� by a random forcing term and
from (1.2) by replacing b�r� by the non-globally Lipschitz function −	r	ρr for
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ρ > 0: 


∂2u

∂t2
�t	 x� − �u�t	 x� + 	u�t	 x�	ρ u�t	 x� = σ�u�t	 x��Ḟ�t	 x�	

u�0	 x� = u0�x�	
∂u

∂t
�0	 x� = v0�x��

(1.6)

For this problem, when σ is bounded and u0 and v0 have compact support, we
prove an existence and uniqueness result in the case of a general Gaussian
noise F with covariance defined by (1.3) and satisfying certain integrability
properties. We also obtain a sharper result in the particular case where the
function f appearing in (1.3) is x−α with α ∈�0� 2� (or is dominated by this
function). The proofs are based on a combination of classical functional anal-
ysis and probability theory, as it can be found, for instance, in a recent paper
by I. Gyöngy (see [5]) for the study of a stochastic Burgers-type equation. The
solution of (1.6) is obtained by an approximation procedure via regularized
versions of equation (1.6) and suitable a priori estimates. To this end, new
regularity properties for the Green function S are proved.

The paper is organized as follows: the framework and the results are pre-
sented in the next section; in section 3, we prove the uniqueness of a solution
to (1.6), while the existence is established in section 4. Finally, some technical
estimates of integrals involving S are proved in the Appendix.

2. General framework and statements of the results. Let F�t	 x� be
a Gaussian centered noise on �+ × �2 with covariance given by (1.3). We
assume that the function f ��0	+∞�−→ �+ is continuous and satisfies (1.4).

Let � denote the inner product space of measurable functions ϕ � �2 �−→ �
such that ∫

�2
dx

∫
�2
dy 	ϕ�x�	f�	x− y	� 	ϕ�y�	 <∞

endowed with the inner product

�ϕ	ψ�� =
∫
�2
dx

∫
�2
dyϕ�x�f�	x− y	�ψ�y�	

and let � denote the completion of � .
We shall say that condition �Hβ� holds if there exists a constant C such

that

�Hβ�
∫
0+
r1−βf�r�dr <∞�

it clearly implies that (1.4) is satisfied. Consider the nonlinear stochastic wave
equation defined in (1.6). Following the method of Walsh [15], a natural way
to give it a rigorous meaning is in terms of the following weak formulation:



NONLINEAR STOCHASTIC WAVE EQUATION 925

given any function ϕ ∈ � ��0	T� × �2�,∫ T
0

∫
�2

(
∂ϕ

∂t2
− �ϕ

)
�t	 x�u�t	 x�dtdx

+
∫ T
0

∫
�2

	u�t	 x�	ρu�t	 x�ϕ�t	 x�dtdx

=
∫
�2

(
ϕ�0	 x�v0�x� − ∂ϕ

∂t
�0	 x�u0�x�

)
dx

+
∫ T
0

∫
�2
ϕ�t	 x�σ�u�t	 x��F�dt	dx��

(2.1)

As is classical, (2.1) can be stated equivalently in terms of the associated
evolution equation

u�t	 x� = S�0��t	 x� − ∫ t
0

∫
�2 S�t− s	 x− y�	u�s	 y�	ρu�s	 y�dyds

+
∫ t
0

∫
�2
S�t− s	 x− y�σ�u�s	 y��F�ds	dy�	

(2.2)

where

u�0��t	 x� =
∫
�2
S�t	 x− y�v0�y�dy+ ∂

∂t

(∫
�2
S�t	 x− y�u0�y�dy

)
(2.3)

and S is the fundamental solution of the deterministic wave equation associ-
ated to (1.6), that is,

S�t	 x� = 1
2π

�t2 − 	x	2�− 1
2 1�	x	<t��(2.4)

We assume the following hypotheses:

�C1� u0, v0 � �2 �−→ � have compact support K.
�C2� u0 is of class C1, v0 ∈ Lq0��2� for some q0 ∈�2	+∞�.
�C3� σ �� �−→� is globally Lipschitz and bounded such that σ�0� = 0.

For any t ∈ �0	T�, set

D�t� = {
x ∈ �2 � ∃y ∈K	 	x− y	 < t} �

Because of the definition of S, it is easy to see that if u0 and v0 satisfy �C1�
and �C2�, then

u�0��t	 x� = 0 for x �∈ D�t��(2.5)

Besides, consider for the time being the “Lipschitz” version of equation (1.6)
[or (2.2)], that is,

u�t	 x� = u�0��t	 x� +
∫ t
0

∫
�2
S�t− s	 x− y�b�u�s	 y��dyds

+
∫ t
0

∫
�2
S�t− s	 x− y�σ�u�s	 y��F�ds	dy�	

(2.6)

where b is globally Lipschitz and b�0� = 0. It is well-known that the unique so-
lution of (2.6) can be obtained by means of the following Picard approximation
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procedure:


u0�t	 x� = u�0��t	 x�	
uk+1�t	 x� = u�0��t	 x� +

∫ t
0

∫
�2
S�t− s	 x− y�b�uk�s	 y��dyds

+
∫ t
0

∫
�2
S�t− s	 x− y�σ�uk�s	 y��F�ds	dy��

(2.7)

Then, by induction, one easily sees that if u0 and v0 satisfy �C1� and �C2�,
then, for all k,

uk�t	 x� = 0 if x �∈ D�t��(2.8)

Indeed, assume (2.8) for some k and for all t ∈ �0	T�, then for a fixed time
t ∈ �0	T� and x �∈ D�t�, one has: for every s ∈ �0	 t� and every y such that
	x− y	 ≤ t− s,

∀z ∈K 	z− y	 ≥ 	z− x	 − 	y− x	 ≥ s�
The induction assumption implies that uk�s	 y� = 0 for all s ∈ �0	 t� and
y �∈ D�s�; since b�0� = σ�0� = 0, we deduce uk+1�t	 x� = 0 for x �∈ D�t�,
which yields (2.8) for k+ 1.

Of course, (2.8) yields the same support property for the solution u itself.
This property of “propagation of the support”, which will also be proved for
the solution to (1.6), is very important because, by only assuming �C1� and
�C2�, all the integrals on �2 involved in (2.2) can be considered as integrals on
the bounded region � �= D�T� of �2, and thus one can work in spaces based
on �. More precisely, we prove the following result:

Theorem 2.1. Let ρ ∈�0	2�, u0, v0 satisfy �C1� and �C2�, and σ satisfy �C3�.
Then�

(a) If the function f in �1�3� satisfies �Hβ� for some β ∈�0	2�, then equation

�1�6� has a unique solution u ∈ C��0	T��Lp���� for 8 < p < 2�ρ+2�
ρ

.

(b) If f�x� = x−α with α ∈�0	2�, then equation �1�6� has a unique solution

u ∈ C��0�T��Lp���� for 2 ∨ �ρ+ 1� ∨ � 8
5−2α� < p < 2�ρ+2�

ρ
.

The next sections are devoted to the proof of this theorem. In the sequel, � · �p
will denote the usual norm in Lp���.

3. Uniqueness and local existence of the solution. The main result
of this section is the following:

Proposition 3.1. Suppose that the assumptions of Theorem 2�1 hold and
that either condition �a� or �b� is satisfied�

(a) f satisfies �Hβ� for some β ∈�0	2� and p ∈�8	+∞�.
(b) f�r� = r−α for some α ∈�0	2� and p ∈�2 ∨ ( 8

5−2α

)
	+∞�.
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Then the Cauchy problem �1�6� has at most one solution in C��0	T��Lp����
such that for all t ∈ �0	T� the support of u�t	 ·� is contained in D�t�.

Notice that the property of “propagation of support” is postulated because at
this stage, we have no way to obtain it a priori. We will prove later on that the
solution we construct possesses this property; this yields a more satisfactory
uniqueness result.

Proof of Proposition 3.1. The method used is adapted from that of
Proposition 4.7 in [5]. Given R > 0, let χR � � �−→ � be a C1 function such
that χR�x� = 1 for 	x	 ≤ R, χR�x� = 0 for 	x	 ≥ R + 1, and �χ′

R�∞ ≤ 2. We
consider the following “truncated” problem:



∂2u

∂t2
�t	 x� − �u�t	 x�
+	u�t	 x�	ρu�t	 x�χR��u�t	 ·��p� = σ�u�t	 x�� Ḟ�t	 x�	

u�0	 x� = u0�x�	
∂u

∂t
�0	 x� = v0�x��

(3.1)

Set b�r� = −	r	ρ r. Let u and v be solutions to (3.1) such that, for all t ∈ �0	T�,
the functions u�t	 ·� and v�t	 ·� vanish outside D�t�. Writing the evolution for-
mula for (3.1) and using the support property for u and v, one obtains

u�t	 x� − v�t	 x� = A�t	 x� +B�t	 x�	
where

A�t	 x� =
∫ t
0

∫
D�s�
S�t− s	 x− y� [χR��u�s	 ·��p�b�u�s	 y��

−χR��v�s	 ·��p�b�v�s	 y�� ]dyds	
B�t	 x� =

∫ t
0

∫
D�s�
S�t− s	 x− y� �σ�u�s	 y�� − σ�v�s	 y��F�dy	ds��

Burkholder’s and Hölder’s inequalities yield

Ɛ
(
�B�t	 ·��pLp�D�t��

)

≤ Cp
∫
D�t�

Ɛ

(∣∣∣∣
∫ t
0

�S�t− s	 x− ·� �σ�u�s	 ·�� − σ�v�s	 ·���2
� ds

∣∣∣∣
p
2

dx

)
�

Because of the hypotheses on p and the Lipschitz property of σ , Lemma A4
implies the existence of γ > −1 such that

Ɛ
(
�B�t	 ·��pLp�D�t��

)
≤ Cp

∫ t
0
�t− s�γ�u�s	 ·� − v�s	 ·��pLp�D�s��ds�(3.2)
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On the other hand, suppose for instance that �u�s	 ·��p ≤ �v�s	 ·��p. Then,
setting q = p

ρ+1 and using the definition of χR, we have

�χR��u�s	 ·��p�b�u�s	 ·� − χR��v�s	 ·��p�b�v�s	 ·���q
≤ ∣∣χR��u�s	 ·��p� − χR��v�s	 ·��p�

∣∣ �b�u�s	 ·���q
+χR��v�s	 ·��p��b�u�s	 ·�� − b�v�s	 ·���q

≤ 2�u�s	 ·� − v�s	 ·��p �u�s	 ·��ρ+1
p 1��v�s	·��p≤R+1�

+Cρ χR��v�s	 ·��p� �	u�s	 ·� − v�s	 ·�	 sup�	u�s	 ·�	ρ	 	v�s	 ·�	ρ��q
≤ C�R��u�s	 ·� − v�s	 ·��p

+Cρ χR��v�s	 ·��p��u�s	 ·� − v�s	 ·��p
(�u�s	 ·��ρp + �v�s	 ·��ρp

)
≤ C�R� �u�s	 ·� − v�s	 ·��p	

by means of Hölder’s inequality used in the following way:

If h1 ∈ Lp, h2 ∈ Lp
ρ , then �h1 h2�Lq ≤ �h1�Lp �h2�Lpρ .

Hence, since p > 2 > ρ, inequality (A.9) in Lemma A2 applied with κ =
1 + 1

p
− 1
q

= 1 − ρ
p
> 0 and Hölder’s inequality imply that for t ∈ �0	T�,

�A�t	 ·��pp ≤ C�R�
∫ t
0
�t− s�2κ−1�u�s	 ·� − v�s	 ·��pp ds�(3.3)

Thus (3.2) and (3.3) together with Gronwall’s lemma yield

sup
0≤t≤T

Ɛ
(�u�t	 ·� − v�t	 ·��pp

) = 0	(3.4)

which means that uniqueness holds for the truncated problem (3.1). Now, let
u1	 u2 ∈ C��0	T��Lp���� be solutions to (1.6) such that for all t ∈ �0	T� the
support of u1�t	 ·� and u2�t	 ·� is included inD�t�. For everyR > 0 and i = 1	2,
define

τiR = inf�t ≥ 0 � �ui�t	 ·��p ≥ R� ∧T�
Then limR−→+∞ ��τ1

R ∧ τ2
R < T� = 0 while (3.4) shows that u1�t	 x� = u2�t	 x�

a.s. for every t ∈ �0	 τ1
R ∧ τ2

R� and almost every x ∈ �; this concludes the
proof. ✷

Using arguments similar to those of the proof of Proposition 3.1, one can
also show a local existence theorem for the solution to (1.6). Indeed, let �
denote the Banach space of Lp���-valued random processes v�t�, t ∈ �0	T�,
endowed with the norm

�v�� �= sup
t≤T

{
Ɛ
(
w�v�t��pp

)}1/p
<∞	
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where w �= exp�−��u0�p+�v0�p+�∇v0�p�. In this argument, we may suppose
that the initial conditions u0��� and v0��� are random processes indexed by �2

and independent of the noise F.
Define the operator 	 on � by

	 �v��t	 x� �=
4∑
i=1

Ai�t	 x�	

where

A1�t	 x� �=
∫
�2
S�t	 x− y�v0�y�dy	

A2�t	 x� �= ∂

∂t

(∫
�2
S�t	 x− y�u0�y�dy

)
	

A3�t	 x� �=
∫ t
0

∫
D�s�
S�t− s	 x− y�χR��v�s	 ·��p�b�v�s	 y��dyds	

A4�t	 x� �=
∫ t
0

∫
D�s�
S�t− s	 x− y�σ�v�s	 y��F�dy	ds��

Clearly,

Ɛ�w�	 �v��t	 ·��pp� ≤ 4p−1
4∑
i=1

Ti�t�	

where Ti�t� = Ɛ�w�Ai�v��t	 ·��pp�. Using Young’s inequality (with q = 1), we
have

�A1�p� = sup
t≤T
T1�t� ≤ CpƐ

(
w
∫
�2

	v0�y�	pdy
)

= Cp < +∞�(3.5)

We have

A2�t	 x� =
∫
	ξ	<1

1
2π

�1 − 	ξ	2�− 1
2u0�x+ tξ�dξ +

∫
�2
S�t	 x− y�∇u0�y�dy

�= A1
2 +A2

2

and, using Hölder’s inequality with respect to the measure 1
2π �1 − 	ξ	2�− 1

2dx
and Fubini’s theorem, we obtain:

�A1
2�p� ≤ Cp sup

t≤T
Ɛ

[
w
∫
�2

∫
	ξ	<1

1
2π

�1 − 	ξ	2�− 1
2 	u0�x+ tξ�	pdξdx

]

≤ Cp sup
t≤T

Ɛ

[
w

(∫
	ξ	<1

1
2π

�1 − 	ξ	2�− 1
2dξ

)
�u0�pp

]
≤ Cp�

(3.6)

On the other hand, Young’s inequality yields

�A2
2�p� ≤ Cpw�∇u0�pp ≤ Cp�(3.7)

Finally, again using (A.9), Lemma A4 and the fact that σ is bounded, compu-
tations similar to that proving (3.2) and (3.3) show that �A3�� and �A4�� are
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also bounded by a constant only depending on p and R. Hence the operator
	 maps the Banach space � into itself.

Furthermore, let u and v belong to �; using arguments similar to the pre-
vious ones, one proves the existence of β > −1 such that

Ɛ �w�	 �u��t	 ·� − 	 �v��t	 ·��rr�

≤ Cp	R sup
t≤T

Ɛ

(
w
∫ t
0
�t− s�β�u�s	 ·� − v�s	 ·��rrds

)
(3.8)

≤ Cp	R	βTβ+1 sup
t≤T

Ɛ�w�u�t	 ·� − v�t	 ·��rr��

hence 	 is a contraction on � provided T < t1 �= C− 1
β+1

p	R	β. Consequently, there
exists a unique solution to (3.1) on �0	 t1/2�; notice that the constant Cp	R	β
does not depend on the initial conditions u0 and v0. Considering next the
initial conditions u�t1/2	 ·� and ∂u

∂t
�t1/2	 ·� at time t1/2, we get a solution to

(3.1) on the interval �t1/2	 t1� in the same way, with the obvious modification
of the Banach space � and the operator 	 . Iterating this procedure, we thus
construct a solution to (3.1) on the whole interval �0	T�. Finally, if τR = inf�t ≥
0 � �u�t	 ���p ≥ R� ∧ T and τ∞ = limR→+∞ τR, we deduce the local existence
(on the interval �0	 τ∞�) of a solution to equation (1.6). ✷

The problem of global existence is addressed in the next section.

4. Global existence of a solution. The purpose of this section is to prove
the following result:

Proposition 4.1. Under assumptions (a) or (b) of Theorem 2�1	 equation
�1�6� admits a solution u ∈ C��0	T��Lp���� for p satisfying the requirements
stated in Theorem 2�1� Moreover, for all t ∈ �0	T�, the function u�t	 ·� vanishes
outside D�t�.

The proof is divided into several steps.

Step 1� We first “regularize” equation (1.6). For every n ≥ 1, let bn and Bn
be defined as follows:

bn�r� �=




−	r	ρ · r	 if 	r	 ≤ n	
−nρ+1 − �ρ+ 1�nρ�r− n�	 if r ≥ n	
nρ+1 − �ρ+ 1�nρ�r+ n�	 if r ≤ −n	

(4.1)

and

Bn�r� =
∫ r
0
bn�u�du�(4.2)
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Then −Bn is a non-negative even function. Let us introduce the following
SPDE: 



∂2un
∂t2

�t	 x� − �un�t	 x� − bn�un�t	 x�� = σ�un�t	 x��Ḟ�t	 x�	
un�0	 x� = u0�x�	
∂un
∂t

�0	 x� = v0�x��
(4.3)

The properties of bn and its anti-derivative Bn are proved in Lemma A1 in
the Appendix. Since in particular bn is globally Lipschitz on �, Theorem 1.2.
of [10] provides a unique weak solution to this equation, which is also the
unique solution to the following evolution equation:

un�t	 x� = u�0��t	 x� + ηn�t	 x� +
∫ t
0

∫
�2
S�t− s	 x− y�bn�un�s	 y��dyds	(4.4)

where

ηn�t	 x� =
∫ t
0

∫
�2
S�t− s	 x− y�σ�un�s	 y��F�dy	ds��(4.5)

We remark that, as the solution to (2.6), un satisfies

un�t	 x� = 0 if x �∈ D�t��(4.6)

We shall prove that �un�n admits a subsequence which converges in distri-
bution to a solution u to (1.6) [or (2.2)]. We at first study the behavior of the
stochastic integrals:

Lemma 4.1. Let σ satisfy �C3�, F satisfy Hβ, ζn be a predictable random
field on �0	T�×� such that, for all t ∈ �0	T�, the support of ζn�t	 ·� is included
in D�t�. Then the sequence of processes

In�t	 x� �=
∫ t
0

∫
�2
S�t− s	 x− y�σ�ζn�s	 y��F�dy	ds�

is uniformly tight in C��0	T� ×��, and hence in C��0	T��Lp���� for any p ∈
�1	+∞�. Moreover, for all t ∈ �0	T�, the support of In�t	 ·� is included in D�t�.

Proof. The support property of In is clear. Given 0 ≤ t < t′ ≤ T x	x′ ∈ �,
the boundedness of σ , Burkholder’s inequality and (A.15) imply that for 0 <
δ < 1

2�β ∧ 1�,
Ɛ�	In�t	 x� − In�t′	 x′�	p�

≤ C
(∫ T

0
�σ�u�s	 ��� �S�t− s	 x− �� −S�t′ − s	 x′ − ��� �2

� ds

) p
2

(4.7)

≤ C�σ�p∞ �	t− t′	 + 	x− x′	�pδ �
Set

D �= ⋃
0≤t≤T

(
�t� ×D�t�

)
�
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for

γ <
1
p

+ δ	E
(∫
D

∫
D

( 	In�ξ� − In�ξ′�	
	ξ − ξ′	γ

)p
dξdξ′

)
< +∞

and on{∫
D

∫
D

( 	In�ξ� − In�ξ′�	
	ξ − ξ′	γ

)p
dξdξ′ ≤ λ

}
	 0 < δ̄ = γ − 4

p
< δ− 3

p
	

the Garsia-Rodemich-Rumsey lemma (see, e.g., [14], page 60) yields
�In�·	 ·��Cδ̄	δ̄�D� ≤ λ 1

p . Hence, given p > 3
δ

and 0 < δ̄ < δ− 3
p
,

sup
n

�
(�In�·	 ·��Cδ̄	δ̄�D� ≥ λ) ≤ Cλ−p2

	

so that by Ascoli’s theorem In is uniformly tight in C�D�. ✷

Define η<n �= sup�t	x�∈D 	ηn�t	 x�	 ∨ 1. Applying Lemma 4.1 to un yields in
particular

sup
n

Ɛ�η<n� <∞(4.8)

and

lim
C−→+∞

sup
n

� �η<n ≥ C� = 0�(4.9)

Set ξn�t	 x� = un�t	 x� − ηn�t	 x�; then ξn is the unique (weak) solution to the
following semi-linear wave equation (defined ω by ω):



∂2ξn
∂t2

�t	 x� − �ξn�t	 x� − bn�ξn�t	 x� + ηn�t	 x�� = 0	

ξn�0	 x� = u0�x�	
∂un
∂t

�0	 x� = v0�x��
(4.10)

Step 2� We now prove a suitable a priori estimate for the sequence �ξn�,
and follow here the method of Lions [7]. Let H1��� = �v ∈ L2��� � ∂v

∂xi
∈

L2���	 i = 1	2�, endowed with the norm

�u�H1��� =
(

�v�2
2 +

2∑
i=1

∥∥∥∥ ∂v∂xi
∥∥∥∥

2

2

) 1
2

(4.11)

and let H1
0 be the closure of � ��� in H1���. Let vi be a sequence of elements

of Lρ+2���⋂H1
0��� which is total in this set. Given u	 v ∈H1

0���, set

a�u	 v� �=
2∑
i=1

∫
�

∂u

∂xi

∂u

∂xi
dx�(4.12)
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Then
√
a�u	u� is a norm on H1

0��� equivalent with �u�H1���. For each n ≥ 1,
we approximate ξn by the sequence �ξkn	 k ≥ 1� defined by

ξkn =
k∑
i=1

gki	n�t�vi�x�	(4.13)

where the functions �gki	n	1 ≤ i ≤ k� are determined by the conditions


(�ξkn�′′�t	 ·�	 vj
)+ a (ξkn�t	 ·�	 vj)− (

bn
(
ξkn�t	 ·� + ηn�t	 ·�

)
	 vj

) = 0	

ξkn�0	 x� = uk0�x�	
∂ξkn
∂t

�0	 x� = vk0�x�	
(4.14)

where the first equations hold for 1 ≤ j ≤ k, �·	 ·� denotes the usual scalar
product on L2��� and


uk0�x� =

k∑
i=1

αi	nvi −→ u0 inLρ+2���⋂H1
0��� when k→ +∞	

vk0�x� =
k∑
i=1

βi	nvi −→ v0 in L2��� when k→ +∞�
(4.15)

For a.e. ω, the system (4.14)–(4.15) of ordinary differential equations has a
unique solution on the time interval

[
0	 tkn�ω�] with tkn�ω� ≤ T. This is due

to the linear independence of the functions vi, which yields det��vi	 vj�	1 ≤
i	 j ≤ k� �= 0. In the sequel, we shall prove that tkn = T.

Multiplying the first line of (4.14) by �gkj	n�′�t� and summing up for 1 ≤ j ≤
k, we deduce

1
2
d

dt

[∥∥�ξkn�′�t	 ·�∥∥2

2 + a
(
ξkn�t	 ·�	 ξkn�t	 ·�

)]
− d

dt

(∫
�
Bn�ξkn�t	 x��dx

)
= Dkn�t�	

(4.16)

where

Dkn�t� =
∫
�

[
bn�ξkn�t	 x� + ηn�t	 x�� − bn�ξkn�t	 x��

]
�ξkn�′�t	 x�dx�

Schwarz’s inequality and the Taylor formula yield

	Dkn�t�	 ≤ 1
2��ξkn�′�t	 ·��2

2 + 1
2

∫
�

∫ 1

0

(
b′
n�ξkn�t	 x� + rηn�t	 x��

)2
η2
n�t	 x�drdx�

Inequality (A.4) in Lemma A1 yields

	Dkn�t�	 ≤ 1
2

∥∥�ξkn�′�t	 ·�∥∥2
2

+C
∫
�

[
−Bn�ξkn�t	 x�� + 	ηn�t	 x�	2ρ + 1

]
η2
n�t	 x�dx�

(4.17)
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Thus, for 0 ≤ t ≤ tkn, (4.16) and (4.17) imply that for any k ≥ 1:

1
2

∥∥∥(ξkn)′
�t	 ·�

∥∥∥2

2
+C�ξkn�t	 ·��2

H1��� −
∫
�
Bn

(
ξkn�t	 x�

)
dx

≤ 1
2

∫ t
0

∥∥∥(ξkn)′
�s	 ·�

∥∥∥2

2
ds−Cη<2n

∫ t
0

∫
�
Bn

(
ξkn�s	 x�

)
dxds

+Cη<2�ρ+1�
n +Cη<2n +C�n	k�	

where

C�n	k� = 1
2

∥∥�ξkn�′�0	 ·�∥∥2 +C �ξkn�0	 ·��H1��� −
∫
�
Bn�ξkn�0	 x��dx

= 1
2

∥∥vk0∣∣22 +C ∣∣uk0∥∥H1
+
∫
�

	uk0�x�	ρ+2 dx ≤ C

for some constant C which does not depend on k and n; hence Gronwall’s
lemma implies

sup
0≤t≤tkn

(∥∥�ξkn�′�t	 ·�∥∥2

2 + ∥∥ξkn�t	 ·�∥∥2

H1��� −
∫
�
Bn�ξkn�t	 x��dx

)

≤ C
[
1 + η<2�ρ+1�

n

]
exp

(
Cη<2n

)
�

(4.18)

Step 3. We now extract converging subsequences. Since −Bn is nonnegative,
(4.18) implies that for every n

sup
k≥1

sup
0≤t≤tkn

�ξkn�t	 ·��2
H1��� <∞	

which means that tkn = T for all k. Recall that an Orlicz function @ satisfies
the condition ��2� if for any a > 1, lim supt→+∞

@�at�
@�t� < +∞ (see [6] for de-

tails). According to (A.3), 	Bn	 is an Orlicz function which satisfies ��2� and
its conjugate function 	B̃n	 also satisfies ��2�; therefore L1��0	T�	 	B̃n	�′ "
L∞��0	T�	 	Bn	�. Then (4.18) implies that there exists a subsequence �ξskn �k
which converges to ξ̃n in L∞��0	T�	H1

0���⋂LBn���� weak-star and �ξ′sk
n � con-

verges to ξ̃′
n in L∞��0	T�	L2���� weak-star (see, e.g., [7]).

Since the inclusion H1��0	T�×�� ↪→ L2��0	T�×�� is compact, we can ex-
tract a further subsequence, still denoted by �ξskn �, such that ξskn converges to
ξ̃n in L2��0	T�×�� and dt⊗ dx a.s. on �0	T�×�. Hence,

bn�ξskn + ηn� −→ bn�ξ̃n + ηn�	 dt⊗ dx a.s.

Furthermore, (4.18) and (A.3) imply that �bn�ξskn + ηn�	 k ≥ 1� is uniformly
integrable, since

sup
k

sup
0≤t≤T

∫
�

	bn�ξskn �t	 x� + ηn�t	 x��	
ρ+2
ρ+1dx <∞�

Therefore, extracting a further subsequence, we obtain that �bn�ξskn + ηn�	
k ≥ 1� converges to bn�ξ̃n + ηn� in L1��0	T�×�� and to some limit ln in
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L∞��0	T�	Lρ+2
ρ+1 ���� weak-star. This yields that ln = bn�ξ̃n+ηn�. Letting k −→

+∞ in (4.14), we obtain


(
�ξ̃n�′′�t	 ·�	 vj

)
+ a

(
ξ̃n�t	 ·�	 vj

)
−
(
bn

(
ξ̃n�t	 ·� + ηn�t	 ·�

)
	 vj

)
= 0	

ξ̃n�0	 x� = u0�x�	
∂ξ̃n
∂t

�0	 x� = v0�x��

Since �vj� is total in H1
0���, we conclude that ξ̃n satisfies (4.10), which by

uniqueness yields ξn = ξ̃n.
Therefore, letting k −→ +∞ in (4.18) and using Fatou’s lemma, we deduce

that ∫ T
0

∫
�

∣∣Bn�ξn�t	 x��∣∣dxdt ≤ T sup
0≤t≤T

lim inf
k

∫
�

∣∣Bn�ξskn �t	 x��∣∣dxdt
≤ C

[
1 + η<2�ρ+1�

n

]
exp

(
Cη<2n

)
�

Since un = ξn+ηn and 	ηn	 is bounded by η<n, using (A.3) and (A.5) in Lemma
A1, we deduce that for q = ρ+2

ρ+1 ,

∫ T
0

∫
�

	bn�un�t	 x��	qdxdt ≤
[
C1 +C2η

<�ρ+2�
n

]
exp

(
Cη<2n

)
�(4.19)

The following result gives a tightness criterion for a sequence of convolution
of random fields with the Green function.

Lemma 4.2. Let q ∈�1	+∞�� for v ∈ L∞��0	T��Lq����, set

J�v��t	 x� �=
∫ t
0

∫
�
S�t− s	 x− y�v�s	 y�dyds�

Let �ζn�t	 x�	 n ≥ 1� be a sequence of random fields on �0	T�×� such that for all
t ∈ �0	T�, ζ�t	 ·� vanishes outside D�t� and such that there exists γ ∈�1	+∞�
and a sequence of finite random variables �Mn�n ≥ 1� which satisfies the
following conditions�

�ζn�Lγ��0	T��Lq���� ≤Mn	(4.20)

lim
C−→+∞

sup
n

��Mn ≥ C� = 0�(4.21)

Then, if p satisfies 0 < 1
q

− 1
p
< 1

2 , the sequence of processes �J�ζn��n ≥ 1� is

uniformly tight in C��0	T��Lp����.

Proof. Given R > 0, set

DR = {
J�v� � v ∈ Lγ��0	T��Lq����	 �V�Lγ��0	T��Lq���� ≤ R} �
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Lemma A2 shows that if 0 < 1
q

− 1
p
< 1

2 , then

sup
J�v�∈DR

sup
t∈�0	T�

�J�v�t	 ·���p = C�R� <∞	(4.22)

lim sup
h−→0

sup
	t−s	<h	s	t≤T

sup
J�v�∈DR

sup
t∈�0	T�

�J�v�t	 ·� −J�v�s	 ·���p = 0	(4.23)

lim sup
	z	−→0

sup
J�v�∈DR

sup
t≤T

�J�v�t	 ·�� −J�v�t	 · + z���p = 0�(4.24)

Therefore Ascoli-Arzela’s and Kolmogorov’s theorems (see [5], Lemma 3.3) im-
ply that the set DR is relatively compact in C��0	T�	Lp����. Furthermore,
given ε > 0, assumptions (4.20) and (4.21) imply the existence of some R > 0
such that

1 − ε ≤ inf
n

��Mn ≥ R� ≤ inf
n

��J�ζn� ∈ Dn� �

this concludes the proof. ✷

From (4.19) and Lemma 4.2 (applied with γ = q = ρ+2
ρ+1 ), we deduce that the

sequence of processes

∫ t
0

∫
�
S�t− s	 x− y�bn�un�s	 y��dyds

is uniformly tight in C��0	T��Lp���� for q < p < 2q
2−q , that is, for

p ∈
]
ρ+ 2
ρ+ 1

	
2�ρ+ 2�
ρ

[
�

On the other hand, Lemma 4.1 implies that the sequence �ηn� is uniformly
tight in the same space. Hence, (4.4) implies that the sequence �un� itself is
uniformly tight in C��0	T��Lp����. Thus, by Skorohod’s theorem, given subse-
quences �um� and �ul�, there exist further subsequences �m�k�	 l�k��, a prob-
ability space �Ĥ	 
̂ 	 �̂� and a sequence of random elements zk �= �ũk	 ūk	 F̂k�
in C��0	T��Lp����2 × C��0	T��� ′���� such that zk converges �̂-a.s. to z �=
�ũ	 ū	 F̂� when k→ +∞, and the laws of zk and �um�k�	 ul�k�	F� are the same.
Hence �F̂k	 �̂� is a Gaussian random field such that for every i ≥ 1:

lim
k

sup
t∈�0	T�

∣∣∣�F̂k − F̂	 ei��t�
∣∣∣ = 0	 �̂-a.s.(4.25)

where �ei� i ≥ 1� is a complete orthonormal system of � made of elements
of � . Using Proposition 3.1, we will prove that ū = ũ by checking that both
satisfy (2.1) with F̂ instead of F. Thus, for any ϕ ∈ � ��+ ×�2� with compact
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support included in �0	T� ×�,∫ T
0

∫
�

(
∂2ϕ

∂t2
− �ϕ

)
�t	 x�ũk�t	 x�dtdx

=
∫
�

(
ϕ�0	 x�v0�x� − ∂ϕ

∂t
�0	 x�u0�x�

)
dx

+
∫ T
0

∫
�
ϕ�t	 x�σ�ũk�t	 x��F̂k�dt	dx�

+
∫ T
0

∫
�
ϕ�t	 x�bm�k��ũk�t	 x��dtdx�

(4.26)

Since p > 1 and �ũk� is bounded in � ��0	T�	Lp����, the dominated conver-
gence theorem implies that the left hand-side of (4.26) converges �̂-a.s. to the
left hand-side of (2.1) with ũ instead of u.

We now need the following technical results to study the right hand side of
(4.26):

Lemma 4.3. Let

Wi�t� �=
∫ T
0

∫
�2

1�0	t��s� ⊗ ei�x�F�dx	ds�	(4.27)

�Fn	n ≥ 1� be Gaussian processes with the same covariance as F, Wi
n be

defined like Wi �with Fn instead of F�	 hn�t	 x��n ≥ 1� �resp. h�t	 x�� be a
sequence of �
 n

t �- adapted �resp. an 
t-adapted� random fields. Suppose that
for every i ≥ 1,

lim
n

sup
t∈�0	T�

∣∣Wi
n�t� −Wi�t�∣∣ = 0 in probability	(4.28)

Ɛ
(
�h�2

L2��0	T��� �
)
<∞	(4.29)

lim
n

Ɛ
(
�hn − h�2

L2��0	T��� �
)

= 0�(4.30)

Then, for any ε > 0,

lim
n

�

(∣∣∣∣
∫ T
0

∫
�2
hn�s	 y�Fn�dy	ds� −

∫ T
0

∫
�2
h�s	 y�F�dy	ds�

∣∣∣∣ > ε
)

= 0�(4.31)

Lemma 4.4. Let �vn� and v be random fields satisfying, for some p ∈ �ρ +
1	+∞� the following properties�∫ T

0

∫
�

	u�t	 x�	pdxdt <∞ a.s.	(4.32)

lim
n

∫ T
0

∫
�

	un�t	 x� − u�t	 x�	pdxdt = 0 a.s.(4.33)

Then for any φ ∈ C2��0	T� ×�� with compact support

lim
n

∫ T
0

∫
�
φ�t	 x��bn�un�t	 x�� − b�u�t	 x���dxdt = 0 a.s.(4.34)
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Suppose that these two results hold. Then Lemma 4.4 implies that for �̂-
almost every ω,

lim
k

∫ T
0

∫
�
φ�t	 x��bm�k��ũk�t	 x�� − b�ũ�t	 x���dxdt = 0(4.35)

On the other hand, Lemma 4.3 applied with hk�t	 x� = ϕ�t	 x�σ�ũk�t	 x��
shows that in �̂-probability,

lim
k

( ∫ T
0

∫
�2
ϕ�t	 x�σ�ũk�t	 x��F̂k�dx	ds�

−
∫ T
0

∫
�2
ϕ�t	 x�σ�ũ�t	 x��F̂�dx	ds�

)
= 0�

(4.36)

Therefore, letting k −→ +∞ in (4.26) yields that ũ solves (2.1) with F̂ instead
ofF. A similar argument shows that ū solves the same equation. Therefore, by
Proposition 3.1, we deduce that ũ = ū �̂-almost surely; hence the subsequences
of C�0	T��Lp����-valued random variable �um�k�� and �ul�k�� converge weakly
to the same limit. Using a result of Gyöngy and Krylov (see [5], Lemma 4.1),
we conclude that un converges in �̂-probability to some random variable u ∈
C�0	T��Lp����.

Applying again the dominated convergence theorem, Lemma 4.3 with Fn =
F and hn�t	 x� = ϕ�t	 x�σ�un�t	 x��, Lemma 4.4 and letting n −→ +∞ in the
weak formulation of (4.3), that is,∫ T

0

∫
�

(
∂2ϕ

∂t2
− �ϕ

)
�t	 x�un�t	 x�dtdx

=
∫
�

(
ϕ�0	 x�v0�x� − ∂ϕ

∂t
�0	 x�u0�x�

)
dx

+
∫ T
0

∫
�
ϕ�t	 x�σ�un�t	 x��F�dt	dx�

+
∫ T
0

∫
�
ϕ�t	 x�bn�un�t	 x��dtdx

(4.37)

we finally conclude that u solves (2.1), which concludes the proof of existence.
It only remains to prove Lemmas 4.3 and 4.4.

Proof of Lemma 4.3. Note first that by definition �Wi	 i ≥ 1� [resp.
�Wi

n	 i ≥ 1�] are sequences of independent standard Brownian motions. Fur-
thermore, recall that �T �= L2��0	T��� � is isomorphic to the reproducing
kernel space of F (resp. Fn) and that F can be identified with the Gaussian
process �W�h�	 h ∈ �T� defined by

W�h� = ∑
j≥0

∫ T
0

�h�s�	 ej�� dWj�s��

Given ε > 0, using (4.29), we choose i0 such that

Ɛ

(∑
i≥i0

∫ T
0

�hi�s��2
� ds

)
< ε
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where hi�s� = �h�s	 ·�	 ei�� . Then using (4.30), we choose n0 such that for
n ≥ n0,

Ɛ

(∑
i≥i0

∫ T
0

�hin�s��2
� ds

)
< 2ε�

The proof of (4.31) then reduces to checking that for any ε > 0,

lim
n

�

(
i0∑
i=1

∣∣∣∣
∫ T
0
hin�s�dWi

n�s� −
∫ T
0
hi�s�dWi�s�

∣∣∣∣ > ε3
)

= 0�(4.38)

Clearly, (4.30) implies that for every i ≥ 1,

lim
n

Ɛ

(∫ T
0

∣∣hin�s� − hi�s�∣∣2 ds) = 0�

Using (4.28), a generalization of Skorohod’s argument (see, e.g., [5], page 282)
yields that for every i ≥ 1 and ε > 0,

lim
n

�

(∣∣∣∣
∫ T
0
hin�s�dWi

n�s� −
∫ T
0
hi�s�dWi�s�

∣∣∣∣ > ε

3�i0 + 1�
)

= 0�

This concludes the proof of (4.31). ✷

Proof of Lemma 4.4. To prove (4.34), it clearly suffices to check that for
φ ∈ C2

c��0	T� ×��,

lim
n

∫ T
0

∫
�
φ�t	 x��bn�un�t	 x�� − bn�u�t	 x���dxdt = 0 a.s.(4.39)

and

lim
n

∫ T
0

∫
�
φ�t	 x��bn�u�t	 x�� − b�u�t	 x���dxdt = 0 a.s.(4.40)

Using the Taylor formula, (A.1) in Lemma A1, then Hölder’s inequality with
the conjugate exponents p and p′ = p

p−1 , (4.32) and (4.33) we obtain∣∣∣∣
∫ T
0

∫
�
φ�t	 x��bn�un�t	 x�� − bn�u�t	 x���dxdt

∣∣∣∣
≤ C�φ�∞

∫ T
0

∫
�

	un�t	 x� − u�t	 x�	 �	un�t	 x�	ρ + 	u�t	 x�	ρ�dxdt

≤ C�φ�∞

(∫ T
0

∫
�

	un�t	 x� − u�t	 x�	pdxdt
) 1
p

×
(
�un�ρLp′ρ��0	T�×�� + �u�ρ

Lp′ρ��0	T�×��
)

≤ C�φ�∞�un − u�Lp��0	T�×��	
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since p > ρ+1 and ρ ∈�0	2�, so that p′ρ ≤ p; this proves (4.39). Furthermore,
(4.32) implies that for any p̄ < p we have

	u�t	 x�	p̄ ∈ Lp
p̄ ��0	T� ×�� �

hence 	u�t	 x�	p̄ is uniformly integrable. Therefore, since p > ρ+1, given ε > 0,
we can choose M ≥ 1 such that∫ ∫

	u�t	x�	≥M
	u�t	 x�	ρ+1dxdt < ε�

Hence, using the fact bn�r� = b�r� when 	r	 ≤ n and (A.2) in Lemma A1, we
conclude that for n ≥M,∣∣∣∣

∫ T
0

∫
�
φ�t	 x��bn�u�t	 x�� − b�u�t	 x���dxdt

∣∣∣∣
≤ C�φ�∞

∫ ∫
	u�t	x�	≥M

	u�t	 x�	ρ+1dxdt ≤ C �φ�∞ ε�

This concludes the proof of (4.40). ✷

APPENDIX

We begin this section by a technical result concerning the approximation bn
of −	r	ρr defined in Section 4�

Lemma A1. For each n ≥ 1, let bn and Bn be defined by �4�1� and �4�2�
respectively. Then bn is a C1, globally Lipschitz function on �, Bn is an even
function and 	Bn	 is an Orlicz function which satisfies ��2�. Furthermore�

(i) There exists a constant C such that, for every r ∈ �,

sup
n

	b′
n�r�	 ≤ C	r	ρ	(A.1)

sup
n

	bn�r�	 ≤ C	r	ρ+1�(A.2)

(ii) There exists a constant C such that, for q �= ρ+2
ρ+1 and for every n ≥ 1

and r ∈ �,

	bn�r�	q ≤ C �1 + 	Bn�r�	� ≤ C�1 + 	r	ρ+2��(A.3)

(iii) There exists a constant C such that, for every n ≥ 1, r1, r2 ∈ �,

	b′
n�r1 + r2�	2 ≤ C (1 + 	Bn�r1�	 + 	r2	2ρ

)
�(A.4)

(iv) There exists a constant C such that, for every n ≥ 1, r1, r2 ∈ �,

	Bn�r1 + r2�	 ≤ C (	Bn�r1�	 + 	r2	ρ+2) �(A.5)
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Proof. It is clear that bn is odd, so that b′
n and Bn are even [since Bn�0� =

0]. On �0	+∞�, the function b�r� = −	r	ρr is negative, decreasing, so that bn
is clearly decreasing on �, negative on �0	+∞� (resp. positive on � − ∞	0�).
Furthermore, sup	r	≥n 	b′

n�r�	 = 	b′�n�	 = �ρ + 1�nρ, which yields (A.1) and
the fact that bn is globally Lipschitz. As for (A.2), it is simply obtained by
integration of (A.1).

Now, as Bn is even and bn is negative on �0	+∞�, −Bn is non-negative on
� and its restriction to �0 + ∞� is clearly an Orlicz function which satisfies
��2� (see [6] for basic results on Orlicz functions). If 	r	 ≤ n, inequality (A.3)
reduces to

	r	q�ρ+1� ≤ C (1 + 	r	ρ+2) 	
which is clear given the value of q. If 	r	 ≥ n, (A.3) can be deduced from(

nρ+1 + �ρ+ 1�nρ�	r	 − n�)q ≤ C (nρ+2 + nρ+1	r	 + nρr2) 	
which again is clear, given the value of q and the fact that n ≤ 	r	.

We now prove (A.4). We remark that the corresponding inequality for b,

	b′�r1 + r2�	2 ≤ C (1 + 	B�r1�	 + 	r2	2ρ
)
	(A.6)

is satisfied insofar as ρ ≤ 2 (B being the anti-derivative of b which is zero at
r = 0). This fact will be used in the sequel.

• If 	r1 + r2	 ≤ n, then there are three sub-cases:
(a) If 	r1	 ≤ n, then (A.6) yields

	b′
n�r1 + r2�	2 = 	b′�r1 + r2�	2 ≤ C (1 + 	B�r1�	 + 	r2	2ρ

)
	

and, as 	r1	 ≤ n, 	B�r1�	 = 	Bn�r1�	.
(b) If r1 ≥ n, since r1 + r2 ≤ n, we have 0 ≤ r1 − n ≤ −r2, which means in

particular that r2 ≤ 0. Furthermore, 	Bn	 increases on �0	+∞�, so that

	b′
n�r1 + r2�	2 = 	b′�r1 + r2 − n+ n�	2

≤ C (1 + 	B�n�	 + 	r1 + r2 − n	2ρ)
= C (1 + 	Bn�n�	 + 	r1 + r2 − n	2ρ)
≤ C (1 + 	Bn�r1�	 + 22ρ−1	r2	2ρ + 22ρ−1	r1 − n	2ρ) 	

and since 	r1 − n	 ≤ 	r2	, we have

	b′
n�r1 + r2�	2 ≤ C (1 + 	Bn�r1�	 + 	r2	2ρ

)
�

(c) If r1 ≤ −n, since −n ≤ r1 + r2, we clearly have r2 ≥ −n− r1 = 	r1 + n	.
This implies

	b′
n�r1 + r2�	2 = 	b′��r1 + r2 + n� + �−n��	2

≤ C (1 + 	B�−n�	 + 	r1 + r2 + n	2ρ)
≤ C (1 + 	Bn�r1�	 + 22ρ−1	r2	2ρ + 22ρ−1	r1 + n	2ρ) 	

and we conclude as in case (b).
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• If r1 + r2 ≥ n, then we have

	b′
n�r1 + r2�	2 = 	b′�n�	2�

(a) If 	r1	 ≤ n, we have 0 ≤ n − r1 ≤ r2 and (A.6) used with r2 = n − r1
yields

	b′�n�	2 ≤ C (1 + 	B�r1�	 + 	n− r1	2ρ
) = C (1 + 	Bn�r1�	 + 	n− r1	2ρ

)
≤ C (1 + 	Bn�r1�	 + 	r2	2ρ

)
�

(b) If r1 ≥ n, since 	Bn	 increases on �0	+∞�, using (A.6) with r2 = 0 we
obtain:

	b′�n�	2 ≤ C �1 + 	B�n�	� ≤ C (1 + 	Bn�r1�	 + 	r2	2ρ
)
�

(c) Finally, if r1 ≤ −n, we have r2 ≥ n − r1 ≥ 2n; (A.6) used with r1 = −n
and r2 = 2n yields

	b′�n�	2 ≤ C (1 + 	B�−n�	 + 	2n	2ρ) ≤ C (1 + 	Bn�−n�	 + 	r2	2ρ
)
	

which gives the required result.
The case r1 + r2 ≤ −n, which is similar, is omitted.
We finally prove (A.5). We remark that the same inequality holds trivially

for B instead of Bn. As before, we divide the proof into several cases.
• If 	r1 + r2	 ≤ n, then:
(a) If 	r1	 ≤ n, we deduce

	Bn�r1 + r2�	 = 	B�r1 + r2�	
≤ C�	B�r1�	 + 	r2	ρ+2� = C�	Bn�r1�	 + 	r2	ρ+2��

(b) If r1 ≥ n, we have 0 ≤ r1 − n ≤ −r2, that is 	r1 − n	 ≤ 	r2	. Hence

	Bn�r1 + r2�	 = 	B�r1 + r2�	 ≤ C�	B�n�	 + 	r2 + r1 − n	ρ+2�
≤ C�	Bn�n�	 + 2ρ+1�	r2	ρ+2 + 	r1 − n	ρ+2�
≤ C�Bn�r1�	 + 2ρ+2	r2	ρ+2�

(since 	Bn	 increases on �0	+∞�).
(c) The case r1 ≤ −n is similarly dealt with.
• If r1 + r2 ≥ n, then there exists a constant C (which does not depend on

n) such that

	Bn�r1 + r2�	 =
∣∣∣∣− nρ+2

ρ+ 2
− nρ+1�r1 + r2 − n� − ρ+ 1

2
nρ�r1 + r2 − n�2

∣∣∣∣
≤ C 	r1 + r2	ρ+2�

(A.7)

(a) If 	r1	 ≤ n, then 	Bn�r1�	 = 	r1	ρ+2

ρ+2 and we have

	Bn�r1 + r2�	 ≤ C�	Bn�r1�	 + 	r2	ρ+2��
(b) If r1 ≥ n, then

Bn�r1 + r2� = Bn�r1� − nρ+1 r2 − ρ+ 1
2
nρ r2 �2�r1 − n� + r2��
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Since 	Bn	 increases on �0	+∞�, if 	r2	 ≤ n, we clearly obtain

	Bn�r1 + r2�	 ≤ 	Bn�r1�	 +C
(
nρ+2

ρ+ 2
+ nρ+1 �r1 − n�

)

≤ C	Bn�r1�	 ≤ C�	Bn�r1�	 + 	r2	ρ+2��
If on the contrary 	r2	 ≥ n, using Schwarz’s inequality, we obtain

	Bn�r1 + r2�	 ≤ 	Bn�r1�	 +C	r2	ρ+2 + 2nρ	r2	 	r1 − n	
≤ 	Bn�r1�	 +C	r2	ρ+2 +Cnρ (	r1 − n	2 + r2

2

)
≤ C�	Bn�r1�	 + 	r2	ρ+2��

(c) Finally, if r1 ≤ −n, then r2 ≥ 2n and

Bn�r1� = − n
ρ+2

ρ+ 2
+ nρ+1�r1 + n� − ρ+ 1

2
nρ�r1 + n�2�

Hence, we have

	Bn�r1 + r2�	 ≤ 	Bn�r1�	 +Cnρ+1 	r2 − 2n	 +Cnρ �r2 − 2n�2

≤ C�	Bn�r1�	 + 	r2	ρ+2��
The last case r1 +r2 ≤ −n is similarly dealt with. This concludes the proof. ✷

We now prove a series of technical results on the fundamental solution S
of the classical wave equation in the plane. Let q ≥ 1, V be an open subset of
�2 (not necessarily bounded), let v ∈ L∞��0	T��Lq�V�� and set

J�v��t	 x� �=
∫ t
0

∫
V
S�t− s	 x− y�v�s	 y�dyds�(A.8)

To lighten the notation, we shall denote by � · �p the usual norm in Lp�V�.
The following lemma provides continuity properties for the operator J.

Lemma A2. Let p	q ∈ �1	+∞� be such that κ �= 1 + 1
p

− 1
q

∈� 1
2 	1�, T > 0,

γ ∈ �1	+∞� and v ∈ Lγ��0	T��Lq�V��. Then there exist constants Ci, 1 ≤ i ≤ 5,
which do not depend on V and such that�

(i) For t ∈ �0	T� and γ > �2κ�−1,

�J�v��t	 ·��p ≤ C1

∫ t
0
�t− s�2κ−1�v�s	 ·��qds

≤ C2t
2κ− 1

γ

(∫ t
0

�v�s	 ·��γqds
) 1
γ

�

(A.9)

(ii) For κ̄ ∈�0	 κ− 1
2 � and z ∈ �2,

�J�v��t	 ·� −J�v��t	 · + z��p ≤ C3	z	κ̄
∫ t
0
�t− s�κ̄�v�s	 ·�qds

≤ C4	z	κ̄tκ̄+1− 1
γ

(∫ t
0

�v�s	 ·��γqds
) 1
γ

�

(A.10)
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(iii) For κ̄ ∈�0	 κ− 1
2 � and γ ∈�1	∞�,

�J�v��t	 ·� −J�v��s	 ·��p

≤ C5	t− s	κ̄∧� γ−1
γ �

(∫ s∨t
0

�v�r	 ·��γqdr
) 1
γ

�
(A.11)

Remark A1. If γ = +∞, p > 2ρ and q = p
ρ+1 , we have κ > 1

2 . Thus (A.11)
yields the existence of δ > 0 such that J is a bounded linear operator from
L∞��0	T��Lq�V�� into Cδ��0	T��Lp�V��.

Proof of Lemma A2. (i) We first remark that �S�t	 ·��r is convergent if
and only if r < 2 and that

�S�t	 ·��rr ≤ Ct2−r(A.12)

where the constant C does not depend on V. Using Minkovski’s inequality,
then Young’s inequality for 1

p
= 1
q

+ 1
r

− 1, κ = 1
r
, we deduce

�J�v��t	 ·��p ≤ C
∫ t
0

�S�t− s	 ·� < v�s	 ·��pds ≤ C
∫ t
0

�S�t− s	 ·��r �v�s	 ·��qds

≤ C
∫ t
0
�t− s�2κ−1 �v�s	 ·��qds�

Then Hölder’s inequality concludes the proof of (A.9).
(ii) A similar computation yields

�J�v��t	 ·� −J�v��t	 · + z��p ≤ C
∫ t
0

�S�t− s	 ·� −S�t− s	 · + z��r �v�s	 ·��qds�

Using the proof of Lemma A.4 in [10], we conclude that for 1 < r < 2 and
0 < r̄ < 1 − r

2 ,

A1 =
∫
	y+z	<	y	<s

∣∣∣∣∣ 1√
s2 − 	y	2

− 1√
s2 − 	y+ z	2

∣∣∣∣∣
r

dy ≤ C	z	r̄ sr̄�(A.13)

On the other hand, the triangular inequality implies that if 	y + z	 > s and
	y	 < s, we have �s− 	z	�+ < 	y	 < s, so that

A2 =
∫
	y	<s<	y+z	

�s2 − 	y	2�− r
2dy ≤ C

∫ s
�s−	z	�+

�s2 − v2�− r
2 vdv

≤ Cs1− r
2 	z	1− r

2 �

(A.14)

Inequalities (A.13) and (A.14) imply that for 0 < κ̄ < 1
r

− 1
2 = κ− 1

2 ,

�S�s	 �� −S�s	 �+ z��r ≤ C�A1 +A2� ≤ C	z	κ̄ sκ̄

and hence

�J�v��t	 ·� −J�v��t	 · + z��p ≤ C
∫ t
0

	z	κ̄ �t− s�κ̄�v�s	 ·��q ds�

Again, Hölder’s inequality concludes the proof of (A.10).
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(iii) Similar computations yield, for 0 ≤ s ≤ t ≤ T,

�J�v��t	 ·� −J�v��s	 ·��p ≤
∫ s
0

�S�t− u	 ·� −S�s− u	 ·��r �v�u	 ·��q du

+
∫ t
s

�S�t− u	 ·��r �v�u	 ·��q du�

Fix λ ∈�0	 κ− 1
2 �; then, for 0 ≤ t′ < t ≤ T, we have

∫
	z	<t′

∣∣∣∣∣ 1√
t′2 − 	z	2

− 1√
t2 − 	z	2

∣∣∣∣∣
r

dz

≤ C
∫ t′
0

(
t2 − t′2

�t′2 − v2� 1
2 �t2 − v2� 1

2 ��t′2 − v2� + �t2 − v2�� 1
2

)λr

×
(

1

�t′2 − v2� 1
2

+ 1

�t2 − v2� 1
2

)�1−λ�r
vdv

≤ C 	t− t′	λr
∫ t′
0

vdv

�t′2 − v2� 3λr
2 + �1−λ�r

2

≤ C 	t− t′	λr t′2−r−2λr�

Hence, using (A.12) for the second term, we deduce

�J�v��t	 ·� −J�v��s	 ·��p

≤ C
{∫ s

0
�t− s�λ�s− u�2κ−1−2λ�v�u	 ·��qdu+

∫ t
s
u2κ−1�v�u	 ·��q du

}
�

Thus, Hölder’s inequality implies that for γ ∈�1	+∞�,
�J�v��t	 ·� −J�v��s	 ·��p

≤ C
{

�t− s�λ
(∫ s

0
�v�u	 ·��γq ds

) 1
γ

+ �t− s� γ−1
γ

(∫ t
s

�v�u	 ·��γq ds
) 1
γ

}
�

This completes the proof of (A.11). ✷

The following upper estimate for the increments of the Green function S
has been proved in [9], Lemmas A.2 and A.6. Suppose that f satisfies (Hβ);
then for δ ∈�0	 β ∧ 1�, 0 ≤ t ≤ t′ ≤ T, x	 x′ ∈ �2,

∫ T
0

�S�t− s	 x− ·� −S�t′ − s	 x′ − ·��2
� ds ≤ C �	t− t′	 + 	x− x′	�δ�(A.15)

The following lemma provides an upper estimate of an integral generalizing
the function J�s� introduced in [10], identity (A.1).
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Lemma A3. For s ∈ �0	T�, λ > 0 and p ∈ �1	+∞�, set
I�s� �=

∫
�2

∫
�2
S�s	 y�pf�	y− z	�λS�s	 z�pdydz�

(a) Suppose that f�r� = r−α for some α ∈�0	2�. Then for 1 ≤ p < 2 ∧ �3 −
λα� ∧ �4 − 2λα�, one has

I�s� ≤ Cs4−2p−λα�(A.16)

(b) Suppose that the function f satisfies �Hβ� for β ∈�0	2�. If λ ∈�0	1� and
1 ≤ p < 2 ∧ �3 − 2λ� ∧ �4 − 2λ�2 − β�� ∧ � 5

2 − λ�, then one has
I�s� ≤ Cs4−2p−λ�2−β��(A.17)

Proof. The change of variables x = �u cos�θ0�	 u sin�θ0��, z = �v cos�θ +
θ0�	 v sin�θ + θ0�� and r = cos�θ� used in the proof of Lemma A1 in [10] and
Fubini’s theorem yield

I�s� ≤ C
∫ s
0

udu

�s2 − u2� p2
∫ 2u

0
vf�v�λdv

∫ 1

v
2u

dr

�1 − r� 1
2 �s2 − u2 − v2 + 2uvr� p2

≤ C �I1�s� + I2�s��	
where

I1�s� =
∫ 2s

0
vf�v�λdv

∫ s
v
2

u
3
2du

�s2 − u2� p2 �u− v
2 � 1

2

∫ 1
2 �1+ v

2u �
v
2u

dr

�s2 − u2 − v2 + 2uvr� p2 	

I2�s� =
∫ 2s

0
vf�v�λdv

∫ s
v
2

udu

�s2 − u2� p2 [�s2 − u2� + v�u− v
2 �] p2

∫ 1

1
2 �1+ v

2u �
dr

�1 − r� 1
2

�

Since p < 2, for r ≤ 1
2�1 + v

2u� one has

�s2 − u2 − v2 + 2uvr�1− p
2 ≤

[
s2 −

(
u− v

2

)2
− v

2

4

]1− p
2

≤ s2−p	

and hence, since ln�1 + x� ≤ Cxb for x > 0 and b ∈�0	1 − p
2 �,

I1�s� ≤
∫ 2s

0
vf�v�λ dv

∫ s
v
2

u
3
2du

�s2 − u2� p2 �u− v
2 � 1

2

×
∫ 1

2 �1+ v
2u �

v
2u

s2−pdr
s2 − u2 − v2 + 2uvr

≤ s2−p
∫ 2s

0
f�v�λ dv

∫ s
v
2

u
1
2

�s2 − u2� p2 �u− v
2 � 1

2

× ln
(

1 + v�u− v
2 �

s2 − u2

)
du

≤ s2−p
∫ 2s

0
vbf�v�λdv

∫ s
v
2

s
1
2

(
u− v

2

)b− 1
2 �s− u�−b− p

2 s−b−
p
2 du

≤ Cs 5
2 − 3p

2 −b
∫ 2s

0
vbf�v�λ

(
s− v

2

) 1
2 − p

2
dv�

(A.18)
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In the last inequality, we have used the fact that for x1 < x2,∫ x2

x1

�x− x1�r1 �x2 − x�r2dx

=
{
Cr1	r2

�x2 − x1�1+r1+r2	 if r1 > −1 and r2 > −1	

+∞	 otherwise.

(A.19)

On the other hand, let p− 1 < γ < 3
2 ; using again (A.19), we obtain

I2�s� ≤ C
∫ 2s

0
vf�v�λ dv

∫ s
v
2

u
1
2

(
u− v

2

) 1
2 �s2 − u2�−p+γ

[
v�u− v

2
�
]−γ
du

≤ Cs 1
2 −p+γ

∫ 2s

0
v1−γf�v�λ

(
s− v

2

) 3
2 −p
dv�

(A.20)

We then consider separately the two cases:
(a) If f�r� = r−α, from (A.19) we deduce that the right hand side of (A.18)

converges if and only if b − λα > −1 and 1
2 − p

2 > −1; then it is equal to
Cs4−2p−λα. The constraints on b: 0 ∨ �λα − 1� < b < 1 − p

2 and p < 3 are
compatible if and only if p < 2 ∧ �4 − 2λα�. On the other hand, the right hand
side of (A.20) converges if and only if 1 − γ − λα > −1, 3

2 − p > −1. The
constraints on γ: p− 1 < γ < 3

2 , 1 − γ − λα > −1 and p < 5
2 are compatible if

and only if p < 5
2 ∧ �3 − λα�. This concludes the proof of (A.16).

(b) If �Hβ� holds and 0 < λ < 1, Hölder’s inequality implies that

∫ 2s

0
vbf�v�λ

(
s− v

2

) 1
2 − p

2
dv

≤
(∫ 2s

0
v1−βf�v�dv

)λ (∫ 2s

0
v
b−λ�1−β�

1−λ
(
s− v

2

) 1−p
2�1−λ�

dv

)1−λ
�

Thus (A.19) implies that the last integral converges if and only if b − λ�1 −
β� > −1 + λ and 1 − p > −2 + 2λ, for 0 < b < 1 − p

2 ; then it is equal to

Csb−λ�1−β�+ 1−p
2 +1−λ. The constraints on b, p, β are compatible if and only if

p < �3 − 2λ� ∧ �4 − 2λ�2 − β��, and I1�s� is dominated by Cs4−2p−λ�2−β�. On
the other hand, using again Hölder’s inequality, we obtain for p− 1 < γ < 3

2 ,

∫ 2s

0
v1−γf�v�λ

(
s− v

2

) 3
2 −p
dv

≤
(∫ 2s

0
v1−βf�v�dv

)λ (∫ 2s

0
v

1−γ−λ�1−β�
1−λ

(
s− v

2

) 3−2p
2�1−λ�

dv

)1−λ
�

The last integral converges if and only if 1 − γ − λ�1 − β� > −1 + λ and
3
2 − p > −1 + λ, and is equal to Cs1−γ−λ�1−β�+ 3

2 −p+1−λ. The constraints on p,
γ, λ are compatible for λ ∈�0	1� if p < 2 ∧ �3 − λ�2 − β�� ∧ � 5

2 − λ� and yield
I2�s� ≤ Cs4−2p−λ�2−β�. Finally, in order to obtain (A.17), we need λ ∈�0	1� and
1 ≤ p < 2 ∧ �3 − λ�2 − β�� ∧ � 5

2 − λ� ∧ �4 − 2λ�2 − β��. ✷
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Finally, the following lemma provides a useful tool to estimate the moments
of stochastic integrals with respect to F:

Lemma A4. Let ���s	 x�� s ∈ �0�T�	 x ∈ �2� be a continuous random process
such that supp���s	 ·�� ⊂ D�s� for every s ∈ �0	T�. For p ∈ �2	+∞�, set

I �=
∫
D�t�
dx

∣∣∣∣
∫ t
0

�S�t− s	 x− ·���s	 ·��2
� ds

∣∣∣∣
p
2

�

Then�
(i) If f�r� = r−α, 0 < α < 2 and 2 ∨ ( 8

5−2α

)
< p < +∞, then there exists

some δ > −1 such that

I ≤ C
∫ t
0
�t− s�δ

(∫
D�s�

	��s	 x�	pdx
)
ds�(A.21)

(ii) If �Hβ� holds for some β ∈�0	2�, then for p ∈�8	+∞�, (A.21) holds for
some δ > −1.

Proof. Let p1 ∈�1	+∞� and p2 ∈�1	 p� be conjugate exponents, and let
λ ∈�0	1�. Hölder’s inequality implies

I ≤
∫
D�t�

∣∣∣∣
∫ t
0
I1�s	 x�

1
p1 I2�s	 x�

1
p2 ds

∣∣∣∣
p
2

dx	(A.22)

where

I1�s	 x� =
∫ ∫

S�t− s	 x− y�p1f�	x− y	�λp1S�t− s	 x− z�p1dydz	

I2�s	 x� =
∫
D�s�

∫
D�s�

	��s	 y�	p2f�	y− z	��1−λ�p2 	��s	 z�	p2dydz�

Let a �= p
p2

∈�1	+∞� and b ∈�1	+∞� be such that 1
a

+ 1
b

− 1 = 1 − 1
a
. Hölder’s

and Young’s inequalities imply that for s ∈ �0	T� and x ∈K,

I2�s	 x� ≤
(∫
D�s�

	��s	 y�	ap2dy

) 1
a

×
(∫
D�s�

∣∣∣∣
∫
D�s�
f�	y− z	��1−λ�p2 	��s	 z�	p2dz

∣∣∣∣
a
a−1

dy

) a−1
a

(A.23)

≤ ���s	 ·��2p2
Lp�D�s��

∥∥f�	 · 	��1−λ�p2
∥∥
Lb�K̄� 	

where K̄ = �x − y � x	y ∈ D�T�� is a compact subset of �2 depending on T
and K.

(i) If f�r� = r−α, the right hand side of (A.23) converges if and only if∫
0 rf�r��1−λ�p2bdr < +∞, i.e., α�1 − λ�bp2 < 2. Furthermore, if 1 ≤ p1 <

2 ∧ �3 − λp1α� ∧ �4 − 2λp1α�, (A.16) implies that

I1�s	 x� ≤ C�t− s�4−2p1−λp1α�(A.24)
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Therefore, using (A.22)–(A.24) we deduce that if δ �= 4
p1

− 2 − λα > −1 and
the previous constraints on λ, p1 and p2 are satisfied, then (A.21) holds. The
requirements on p2 and λ are gathered in the following system:




2 < p2 < p < +∞	

λα < 2 − 3
p2
	

λα <
3
2

− 2
p2
	

α+ 4
(

1
p

− 1
p2

)
< λα < α�

These inequalities on λα ∈�0	 α� are compatible if and only if




2 < p2 < p < +∞	
4
p
< 2 − α+ 1

p2
	

4
p
<

3
2

− α+ 2
p2
	

which in turn are compatible if and only if 2 ∨ � 8
5−2α� < p < +∞.

(ii) Suppose that �Hβ� holds for some β ∈�0	2�; then if �1 − λ�bp2 ≤ 1,
Hölder’s inequalities implies that for every R > 0,

∫ R
0
rf�r��1−λ�bp2dr

≤
(∫ R

0
r1−β f�r�dr

)�1−λ�bp2
(∫ R

0
r

1−�1−β��1−λ�p2b
1−�1−λ�p2b dr

)1−�1−λ�pb2

�

this last integral converges since �1 − λ�p2b�2 − λ� ≤ 2 − λ < 2. On the other
hand, if λp1 ≤ 1, p1 < 2 ∧ �3 − 2λp1� ∧ �4 − 2λp1�2 − β�� ∧ � 5

2 − λp1�, then
(A.17) implies that

I1�s	 x� ≤ C�t− s�4−2p1−λp1�2−β��(A.25)

Therefore, using (A.22), (A.23) and (A.25), we see that if the previous require-
ments on λ, p1, p2 and β are satisfied, then (A.21) holds if δ �= 4

p1
− 2 −

λ�2 − β� > −1. The constraints on λ and p1 are summarized in the following
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system: 


2 < p2 < p < +∞	

0 < λ < 1 − 3
2p2

	

λ > 1 + 2
(

1
p

− 1
p2

)
	

λ <
3

2�2 − β� − 2
2 − β · 1

p2
	

λ <
3
2

− 5
2p2

�

Since for p2 > 2 one has 1 − 3
2p2
< 3

2 − 5
2p2

, these inequalities are compatible
if and only if 



2 < p2 < p < +∞	
2
p
<

1
2p2

	

2
p
<

2β− 1
2�2 − β� + 2�1 − β�

�2 − β�p2
�

This system is equivalent to 2 < p2, 4p2 < p < +∞ and

p >
4�2 − β�p2

p2�2β− 1� + 4�1 − β� > 0�

If 1
2 ≤ β < 2, p2�2β− 1� + 4�1 − β� > 0 always holds, while if 0 < β < 1

2 , this
inequality is equivalent with p2 <

4�1−β�
1−2β (note that in this case 2 < 4�1−β�

1−2β ).
• If 0 < β ≤ 1, the map

p2 �−→ 4�2 − β�p2

p2�2β− 1� + 4�1 − β�
is increasing and the system is compatible (for p2 ∼ 2) if p > 8.

• If 1 ≤ β < 2, the same map is decreasing and (for p2 ∼ p
4 and p > 8) the

system is compatible if p > 8 and

p >
4�2 − β�p

p�2β− 1� + 16�1 − β� 	

that is

p > 8 ∨
(

4�3β− 2�
2β− 1

)
= 8�

This concludes the proof of the lemma. ✷
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Remark A2. If f�r� = r−α with 0 < α ≤ 1
2 , (A.21) holds for p > 2, and if

1
2 < α < 2, (A.21) holds for p > 8

5−2α . Finally,

sup
0≤α<2

8
5 − 2α

= 8

gives the lower limit of p in case (ii).
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Gauthier Villars, Dunod.

Miller, R. N. (1990). Tropical data assimilation with simulated data: the impact of the tropi-
cal ocean and global atmosphere thermal array for the ocean. J. Geophysical Res. 95
11,461–11,482.

Millet, A. and Morien, P. L. (2000). A stochastic wave equation in two space dimensions: regu-
larity of the solution and its density. Stochastic Processes Appl. 86 141–162.
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